基本不等式教学课件
2.2.1 基本不等式 课件(28张)
【定向训练】
已知a,b,c都是非负实数,试比较 a2+b2+ b2+c2+ c2+a2 与 2 (a+b+c)的大小. 【解析】因为a2+b2≥2ab,
所以2(a2+b2)≥a2+b2+2ab=(a+b)2,
所以 a2+b2(a+b2 ),
2
同理 b2+c2(b +c2),
2
c(2c++aa2), 2
xyz
【证明】因为x,y,z是互不相等的正数,且x+y+z=1,
所以 1-1=1-x= y+z 2 yz ,①
x
x
x
x
1-1=1-y=x+z 2 xz ,②
y
yy
y
1-1=1-z=x+y 2 xy ,③
z
zz
z
又x,y,z为互不相等的正数,由①×②×③,
得 ( 1-1)( 1-1)( 1-1>) 8.
【定向训练】
已知a,b,c为正数,
求证: b+c-a+c+a-b+a+b-c 3.
a
b
c
课堂素养达标
1.下列不等式中,正确的是
()
A.a+ 16 ≥8
B.a2+b2≥4ab
a
C. ab a+b
2
D.
x
2+
3 x2
2
3
【解析】选D.若a<0,则a+ 16 ≥8不成立,故A错;若a=1,b=1,a2+b2<4ab,故B错,
x
C.当x≥2时,x+ 1 的最小值为2
x
D.当0<x≤2时,x-
1
基本不等式课件(共43张PPT)
02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式ppt课件
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
基本不等式课件
均值不等式的证明
均值不等式的证明可以通过数学归纳法、柯西不等式等方法 进行。
其中,利用柯西不等式进行证明的方法较为简洁明了,可以 通过构造向量并应用柯西不等式得出结论。
均值不等式的应用
均值不等式在数学中有着广泛的应用,例如在证明不等式 、求最值、解决方程等问题中都可以发挥作用。
在实际应用中,均值不等式也可以用于解决一些实际问题 ,例如在经济学中的收入分配、物理学中的能量均分等问 题中都可以应用均值不等式进行分析和求解。
一元二次不等式的解集
满足不等式的 $x$ 的取值范围。
3
一元二次不等式的图像
一元二次函数的图像在 $x$ 轴上方的部分或下方 的部分。
一元二次不等式的解法
判别式法
通过计算判别式 $Delta = b^2 4ac$,判断一元二次方程的根的 情况,从而确定不等式的解集。
配方法
通过配方将一元二次不等式转化为 完全平方的形式,然后利用平方根 的性质求解。
THANKS
感谢观看
05
柯西-施瓦茨不等式
柯西-施瓦茨不等式的定义
对于任意实数序列${a_i}$和${b_i}$($i=1,2,...,n$),有
$left( sum_{i=1}^{n} a_i^2 right) left( sum_{i=1}^{n} b_i^2 right) geq left( sum_{i=1}^{n} a_i b_i right)^2$
基本不等式的重要性
01
02
03
数学基础
基本不等式是数学中的重 要内容,是后续学习不等 式解法、函数性质等的基 础。
实际应用
在实际问题中,经常需要 比较大小、求解最值等问 题,基本不等式是解决这 些问题的有效工具。
2024-2025学年高一数学必修第一册(配湘教版)教学课件2.1.2基本不等式
(+1)
所以 -1 的最小值为
2 2+3.
学以致用·随堂检测促达标
1 2 3 4 5
1.下列说法正确的个数是( B )
①a2+b2≥2ab成立的条件是a≥0,b≥0;
②a2+b2≥2ab成立的条件是a,b∈R;
③a+b≥2 成立的条件是 a≥0,b≥0;
④a+b≥2 成立的条件是 ab>0.
.
(x>0,a>0),
时等号成立,此时
2
时,4x+ 的最小值为
a=36.
36
4 ,
4x+ 取得最小值
4 .
+
2
≥a+b
2
a≥2b- ,
2
b≥2a- ,
3
2.已知x>0,求y=x+ 的最小值,并说明x为何值时y取得最小值.
解 因为 x>0,所以
当且仅当
3
x= 且
3
y=x+ ≥2
3
· =2
3,
x>0,即 x= 3时等号成立,即当 x= 3时,y 取得最小值 2 3.
重难探究·能力素养速提升
大(小)值,则可将要求的式子看成一个函数,利用函数求最大(小)值.
变式训练2
设
(+1)
x≥2,求 -1 的最小值.
解 由题意,设 t=x-1(t≥1),则 x=t+1,
(+1)
则 -1
=
当且仅当
(+1)(+2)
2
t= ,即
基本不等式(共43张)ppt课件
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
基本不等式公开课课件
三角函数值的比较
三角函数的最值
三角恒等式的证明
04
基本不等式的推广
柯西不等式
总结词 详细描述
均值不等式
总结词 详细描述
贝努利不等式
总结词
详细描述
贝努利不等式表明对于任何正整数n和 正实数x,都有(x+1/x)^n >= x^n + n*x^(n-1)/n。这个不等式在证明其他 不等式和解决优化问题时非常有用。
对于任何正数a、b,有$frac{a+b}{2} geq sqrt{ab}$。
性质
不等式的传递性 不等式的加法性质 不等式的乘法性质
分类
严格不等式与非严格不等式
1
单调性
2
可比与不可比
3
02
基本不等式的证明方法
代数证法
代数证法是通过代数运算和代数 恒等式来证明基本不等式的方法。
常用的代数恒等式包括平方差公 式、完全平方公式、均值不等式
等。
代数证法通常需要经过一系列的 推导和变换,最终得出基本不等
式的结论。
几何证法
几何证法是通过几何图形和几 何性质来证明基本不等式的方法。
常用的几何图形包括三角形、 矩形、圆等。
几何证法通常利用几何图形的 性质和面积、周长等计算来证 明基本不等式。
Hale Waihona Puke 函数证法反证法反证法是通过假设相反的结论来证明 基本不等式的方法。
反证法需要严密的逻辑推理和推理能 力,是数学证明中常用的一种方法。
反证法通常先假设基本不等式不成立, 然后推导出矛盾,从而证明基本不等 式成立。
03
基本不等式的应用
在代数中的应用
01
02
代数式简化
基本不等式ppt课件
a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b
≥
(1)当积xy等于定值P时,
≥
2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.
基本不等式教学课件
基本不等式教学课件pptxx年xx月xx日•基本不等式简介•基本不等式的证明方法•基本不等式的应用•基本不等式的扩展目•基本不等式的实际应用案例•基本不等式教学设计建议与展望未来发展录01基本不等式简介$x + y \over 2$基本不等式的定义算术平均数$\sqrt{xy}$几何平均数$x + y \geq 2\sqrt{xy}$基本不等式基本不等式的性质等号成立条件当且仅当$x = y$时,基本不等式取等号。
单调性若$x_1 \leq x_2, y_1 \leq y_2$,则$\sqrt{x_1y_1} \leq \sqrt{x_2y_2}$。
范围限制当$x > 0, y > 0$时,基本不等式才能成立。
1基本不等式的历史背景23基本不等式是数学中的一个基本概念,其历史可以追溯到古代数学。
起源在欧几里得几何、牛顿力学等数学领域中,基本不等式得到了广泛应用。
发展基本不等式在经济学、工程学、物理学等领域也有广泛的应用。
应用02基本不等式的证明方法总结词简洁明了,易于理解详细描述利用导数来证明基本不等式是一种简洁且易于理解的方法。
首先,我们需要引入导数的概念和性质。
然后,通过构造一个函数,我们可以找到这个函数的最小值,从而证明基本不等式。
利用导数证明基本不等式总结词抽象复杂,需要一定的数学基础详细描述利用矩阵相等的条件来证明基本不等式是一种比较抽象的方法,需要学生具备一定的数学基础。
首先,我们需要引入矩阵的概念和性质。
然后,通过矩阵相等的条件,我们可以证明基本不等式。
利用矩阵相等的条件证明基本不等式利用微积分基本定理证明基本不等式总结词直观易懂,需要掌握微积分基本定理详细描述利用微积分基本定理来证明基本不等式是一种直观且容易理解的方法。
首先,我们需要引入微积分基本定理的概念和性质。
然后,通过微积分基本定理,我们可以证明基本不等式。
这种方法需要学生熟练掌握微积分基本定理。
03基本不等式的应用利用基本不等式可以求解函数的最值问题。
基本不等式ppt 课件-
解答:
AC=a,BC=b。过点 C作垂直于AB 的弦
可证△ACD∽△DCB,因而 CD= .由
DE,连接 AD,BD。你能利用这个图形,
于 CD 小于或等于圆的半径,用不等
得出基本不等式的几何解释吗?Leabharlann 式表示为+≤
显然,当且仅当点 C 与圆心重合,即
当a= 时,上述不等式的等号成立
2.2.4
分析:
(1) 矩形菜园的面积是矩形的两邻边之积,于是问题转
化为:矩形的邻边之积为定值,边长多大时周长最短。
(2) 矩形莱园的周长是矩形两邻边之和的 2倍,于是问
题转化为:矩形的邻边之和为定值,边长多大时面积
最大。
解答:
应用
例4:某工厂要建造一个长方体形无盖贮水池,
其容积为4 800 m³,深为3 m。如果池底每平
证明
证明方法一:作差法
证明方法二:借助完全平方公式
证明方法三:分析法
要证
≤
+
只要证 2 ≤ a+b
只要证 2 -a-b≤0
只要证 -( - )²≤0
只要证 ( − )²≥0
显然,最后一个成立,当且仅当a=b时,等号成
立
2.2.3
基本不等式的
几何解释
几何解释
如图:AB 是圆的直径,点C是AB 上一点
方米的造价为 150 元,池壁每平方米的造价为
解答:
设水池底的相邻两条边的边长分别为xm,ym,
水池的总价为z元,根据题意,有
120 元,那么怎样设计水池能使总造价最低?最
低总造价是多少?
由容积为4800m³,可得3xy=4 800,
基本不等式ppt课件
我们都知道,把一个物体放在天平的一个盘
子上,在另一个盘子上放砝码使天平平衡,
可称得物体的质量为 .
如果是一架臂长不同(其他因素不计)的天平,
那么 并非物体的实际质量.
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?
取平均值:
ab
导果”的证明思路.
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).
2
当 a,b 0 时,不等式仍然成立.
基本不等式:
ab
ab
(a,b 0)
2
对于正数 a,b ,
ab
算术平均数:
2
几何平均数: ab
两个正数的几何平均数不大于算术平均数
问题3.设 a,b为正数,证明下列不等式成立:
2
证法2: 对于正数 a,b ,
ab
要证 ab
,
2
只要证 2 ab a b ,
只要证 0 a 2 ab b ,
只要证 0 ( a b ) 2 .
ab
因为最后一个不等式成立,所以 ab
成立,
2
当且仅当 a b时,等号成立.
分析法:是从结论出发,分析确定不等式成立的
2
1
( a b)2
2
ab
- ab 0
因为 ( a b ) 0, 所以
2
ab
得 ab
(当且仅当 a b时,等号成立).
2
2
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).
基本不等式课件(共43张)
可用于证明数列中的基本不等式及其他需要归纳证明的数学问题。
复合函数的不等式
概念
由函数f和g构成的复合函数,通常记为f(g(x))。
定理
若g(x) 在[a,b]上单调递增,且在[a,b]上有连续导数, 则f(g(x)) 在[g(a),g(b)]上也有连续导数;若f(x) 在 [g(a),g(b)]上是凸函数,则有:f(g((sa+tb)/(s+t))) < (sf(g(a))+tf(g(b)))/(s+t) (0<s<t)
3 注意事项
某些情况下需要分类讨论,如系数符号和大小关系不同。
两个变量的基本不等式
定义
指两个变量之间的不等关系。
公式
(a+b)² > a²+2ab+b² (a,b为变量)
多个变量的基本不等式
公式
对于n个非负实数a1、a2、…、an,有(∑ai)² ≥ n∑ai²
应用
可用于证明柯西不等式、绝对值不等式等多项式不 等式。
集中不等式
2
权值后再求和,然后除以所有的权值之 和所得的数。
对于任意n个实数(不限正负),有下 面这些不等式。
(1)(非加权)算数平均数 ≥ (非 加权)几何平均数 ≥ 调和平均数 (2)若各实数互不相等,则平方差
中项≥2几何平均中项减去(非加权) 算数平均中项
3
应用
可以用于求解一些需要加权平均数作为 结果的应用题。
(1+a)^x > 1+ax (1-a)^x > 1-ax
3
应用
可用于证明基本不等式等各种不等式定理。
函数保证与不等式
概念
将不等式在两端同时乘以正数或同时乘以负数, 得到的新不等式的符号不变,就称原不等式与 新不等式互为保证。
基本不等式课件(共43张PPT)
重要不等式:一般地,对于任意实数a、b,总有
立
a2 b2≥2ab 当且仅当a=b时,等号成
适用范围: a,b∈R
文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
即: a b≥ ab (a 0,b 0) 2
通常我们把上式写作: ab≤ a b (a 0,b 0) 2
课堂练习: 已知 a,b,c∈{正实数},且 a+b+c=1.
求证:1a+1b+1c≥9.
解:证明:1a+1b+
1c = a+ab+c + a+bb+c +
a+b+c c
=3+
(ba+ab)+(ac+ac)+(bc+bc)
≥3+2+2+2=9.
当且仅当a=b=c=13时取等号.
小结 基本不等式 ab a b (a 0,b 0)
第三章 不等式
§3.4 基本不等式
这是2002年在北京召开的第24届国际数 学家大会会标.会标根据中国古代数学家赵爽 的弦图设计的,颜色的明暗使它看上去象一个 风车,代表中国人民热情好客。
D
a2 b2
b
G
F
A
a HE
探究1:
1、正方形ABCD的
面积S=_a__2 __b2
C 2、四个直角三角形的
例1.(1) 已知 x 0, 求证x 1 2, 并指出等号
成立的条件.
x
(2) 已知 ab 0, 寻找 a b 与2的大小关系, ba
并说明理由.
(3) 已知 ab 0, a b 能得到什么结论? 请说明理由. b a
[例 2] 若 a>b>1,P= lga·lgb,Q=lga+2 lgb,R=lg(a+2 b), 试比较 P、Q、R 的大小.
《基本不等式》课件
01
传递性
如果a≥b且b≥c,则a≥c。
02
对称性
如果a≥b,则对于任意正实数d,有a+d≥b+d。
02
CHAPTER
基本不等式的证明
面积法
利用几何图形面积的性质,通过比较不同形状的面积来证明基本不等式。
体积法
利用几何体体积的性质,通过比较不同几何体的体积来证明基本不等式。
三角法
利用三角形的性质,通过比较不同三角形的边长或角度来证明基本不等式。
在化学反应速率的研究中,基本不等式可以用来分析反应速率与反应物浓度的关系,从而优化反应条件。
生物医学研究
在生物医学研究中,基本不等式可以用来研究药物剂量与治疗效果的关系,以找到最佳用药方案。
市场占有率分析
在市场占有率分析中,基本不等式可以用来确定企业产品的最大市场份额,以提高市场竞争力。
广告投放策略
AM≥GM,即算术平均数大于等于几何平均数。
柯西不等式形式
对于任意的正实数a₁,a₂,…,an和b₁,b₂,…,bn,都有(a₁²+a₂²+…+an²)(b₁²+b₂₂+…+bn²)≥(a₁b₁+a₂b₂+…+anbn)²。
平方和与平方差形式
a²+b²≥2ab和a²-b²≥0。
03
可加性
如果a≥b且c≥d,则a+c≥b+d。
基本不等式
目录
基本不等式的定义基本不等式的证明基本不等式的应用基本不等式的扩展基本不等式的实际例子
01
CHAPTER
或多个正数之间大小关系的数学式子。
表达形式简单明了,是数学中常用的一个概念。
《基本不等式》PPT课件
一元一次不等式的解法
解一元一次不等式的基本步骤
01
去分母、去括号、移项、合并同类项、系数化为1。
解一元一次不等式需要注意的事项
02
在解不等式的过程中,要确保每一步都是等价变换,不改变不
等式的解集。
解一元一次不等式的实例分析
03
通过具体例子展示解一元一次不等式的详细步骤和注意事项。
一元一次不等式的应用举例
课程目标与要求
知识与技能
掌握不等式的定义、性质及基本 不等式,能够运用所学知识解决
相关问题。
过程与方法
通过探究、归纳、证明等方法, 培养学生的数学思维和解决问题
的能力。
情感态度与价值观
培养学生对数学的兴趣和热爱, 认识到数学在解决实际问题中的 重要作用。同时,通过基本不等 式的学习,培养学生的严谨、细
排序不等式的概念与性质
性质 反序和不大于乱序和,乱序和不大于顺序和。
当且仅当$a_i = b_i$($i = 1, 2, ldots, n$)时,反序和等于顺序和。
切比雪夫不等式的概念与性质
概念:对于任意两个实数序列$a_1, a_2, ldots, a_n$和$b_1, b_2, ldots, b_n$,若它们分别单调不 减和单调不增,则有$frac{1}{n}sum_{i=1}^{n}a_i cdot frac{1}{n}sum_{i=1}^{n}b_i leq frac{1}{n}sum_{i=1}^{n}a_ib_i$。
1 2
一元一次不等式在生活中的应用 例如比较两个数的大小、判断某个数是否满足某 个条件等。
一元一次不等式在数学中的应用 例如在解方程、求函数值域等问题中,经常需要 利用一元一次不等式进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式教学课件
基本不等式教学课件
基本不等式教学课件
【学习目标】
1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;
2.过程与方法:通过实例探究抽象基本不等式;
3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣
【能力培养】
培养学生严谨、规范的学习能力,分析问题、解决问题的能力。
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;及其在求最值时初步应用
【教学难点】
基本不等式等号成立条件
【教学过程】
一、课题导入
基本不等式的几何背景:如图是在北京召开的第24界国际数学家大会的会标,教师引导学生从面积的关系去找不等关系。
二、讲授新课
1.问题探究——探究图形中的不等关系。
将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为。
这样,4个直角三角形的面积的和是2ab,正方形的面积为。
由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。
当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有。
2.总结结论:一般的,如果
(结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导)
3.思考证明:(让学生尝试给出它的'证明)
4.特别的,如果a>0,b>0,我们用分别代替a、b,可得,
通常我们把上式写作:
①从不等式的性质推导基本不等式
用分析法证明:(略)
②理解基本不等式的几何意义
探究:对课本第98页的“探究”(几何证明)
注:在数学中,我们称为a、b的算术平均数,称为a、b的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.
5、例:当时,取什么值,的值最小最小值是多少
6、课时小结
本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数(),几何平均数()及它们的关系(≥).它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将进一步学习它们的应用).
7、作业:
课本第100页习题[a]组的第1、2题
板书设计
课题:3.4基本不等式
一、两个不等式
二、例题及练习。