高中数学选修21课后习题答案[人教版](2020年整理).pptx
人教版高中数学选修课后习题参考答案
⼈教版⾼中数学选修课后习题参考答案新课程标准数学选修2—2第⼀章课后习题解答第⼀章导数及其应⽤ 3.1变化率与导数练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度⼤约以1 ℃/h 的速度下降;在第5 h 时,原油温度⼤约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近⽐在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9)函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学⽣,然后让学⽣根据导数的⼏何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然⽽10102020()()()()W t W t t W t W t t t t--?--?≥-?-?. 所以,企业甲⽐企业⼄治理的效率⾼.说明:平均变化率的应⽤,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t+-==--,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t+-==+,所以,(5)10s '=.因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =??= J.4、设车轮转动的⾓度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时⾓速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ?+?-==?+??,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时⾓速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表⽰的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率⼤于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,⼏乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应⽤.6、第⼀个函数的图象是⼀条直线,其斜率是⼀个⼩于零的常数,因此,其导数()f x '的图象如图(1)所⽰;第⼆个函数的导数()f x '恒⼤于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x ⼩于零时,()f x '⼩于零,当x ⼤于零时,()f x '⼤于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满⾜上述条件的导函数图象中的⼀种.说明:本题意在让学⽣将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、⾼度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的⼤致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. ⾸先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的⼤致形状. 下⾯是⼀种参考答案.说明:这是⼀个综合性问题,包含了对导数内涵、导数⼏何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯⼀. 1.2导数的计算练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=;(2)2x y e '=;(3)4106y x x '=-;(4)3sin 4cos y x x '=--;(5)1sin 33xy '=-;(6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π?+?-==+,所以,0()lim(2)2r S r r r r ππ?→'=+?=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+;(2)1n x n x y nx e x e -'=+;(3)2323sin cos cos sin x x x x xy x-+'=;(4)9899(1)y x '=+;(5)2x y e -'=-;(6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+;(2)1y x =-. 7、1xy π=-+.8、(1)氨⽓的散发速度()500ln 0.8340.834t A t '=??.(2)(7)25.5A '=-,它表⽰氨⽓在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越⼩时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的⽅程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮⽔的速度为0.42-m /h ;上午9:00时潮⽔的速度为0.63-m /h ;中午12:00时潮⽔的速度为0.83-m /h ;下午6:00时潮⽔的速度为 1.24-m /h.1.3导数在研究函数中的应⽤练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增;当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增;当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增;当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,注:图象形状不唯⼀.其中2x x =是函数()y f x =的极⼤值点,4x x =是函数()y f x =的极⼩值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极⼩值,并且极⼩值为211149()6()212121224f =?--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下⾯分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极⼤值,并且极⼤值为54;当3x =时,()f x 有极⼩值,并且极⼩值为54-. (3)因为3()612f x x x=+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下⾯分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极⼩值,并且极⼩值为10-;当2x =时,()f x 有极⼤值,并且极⼤值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下⾯分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极⼩值,并且极⼩值为2-;当1x =时,()f x 有极⼤值,并且极⼤值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极⼩值,并且极⼩值为149()1224f =-. ⼜由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最⼤值是20、最⼩值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极⼤值,并且极⼤值为(3)54f -=;当3x =时,3()27f x x x =-有极⼩值,并且极⼩值为(3)54f =-;⼜由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最⼤值是54、最⼩值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极⼤值,并且极⼤值为(2)22f =.⼜由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最⼤值是22、最⼩值是5527.(4)在[2,3]上,函数3()3f x x x =-⽆极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最⼤值是2-、最⼩值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数.(4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极⼤值;(2)在1x x =和4x x =处,导函数()y f x '=有极⼩值;(3)在3x x =处,函数()y f x =有极⼤值;(4)在5x x =处,函数()y f x =有极⼩值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增;当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极⼩值,并且极⼩值为211149()6()212121224f -=?---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下⾯分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极⼤值,并且极⼤值为16;当2x =时,()f x 有极⼩值,并且极⼩值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±.下⾯分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极⼤值,并且极⼤值为22;当2x =时,()f x 有极⼩值,并且极⼩值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下⾯分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极⼩值,并且极⼩值为128-;当4x =时,()f x 有极⼤值,并且极⼤值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极⼩值,并且极⼩值为4724.由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最⼤值和最⼩值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极⼤值,并且极⼤值为16;当2x =时,函数3()12f x x x =-有极⼩值,并且极⼩值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最⼤值和最⼩值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1-上⽆极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最⼤值和最⼩值分别为26927,5-.(4)当4x =时,()f x 有极⼤值,并且极⼤值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最⼤值和最⼩值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;⼜11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象⼤致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有⼀个极⼤值和⼀个极⼩值,从图象上能⼤致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下⾯分类讨论:当0a ≠时,分0a >和0a <两种情形:①当0a >,且230b ac ->时,设⽅程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设⽅程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4⽣活中的优化问题举例习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正⽅形的边长分别为4x ,4l x -,两个正⽅形的⾯积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极⼩值点,也是最⼩值点.所以,当两段铁丝的长度分别是2时,两个正⽅形的⾯积和最⼩.2、如图所⽰,由于在边长为a 的正⽅形铁⽚的四⾓截去四个边长为x 的⼩正⽅形,做成⼀个⽆盖⽅盒,所以⽆盖⽅盒的底⾯为正⽅形,且边长为2a x -,⾼为x .(1)⽆盖⽅盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极⼤值点,也是最⼤值点.所以,当6ax =时,⽆盖⽅盒的容积最⼤.3、如图,设圆柱的⾼为h ,底半径为R ,则表⾯积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极⼩值点,也是最⼩值点. 此时,22V h R R π===. 所以,当罐⾼与底⾯直径相等时,所⽤材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,(第3题)可以得到,11ni i x a n ==∑是函数()f x 的极⼩值点,也是最⼩值点.这个结果说明,⽤n 个数据的平均值11ni i a n =∑表⽰这个物体的长度是合理的,这就是最⼩⼆乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的⾯积为28x π2m ,矩形的⾯积为28x a π-2m ,矩形的另⼀边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极⼩值点,也是最⼩值点.时,所⽤材料最省. 6、利润L 等于收⼊R 减去成本C ,⽽收⼊R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再⽤导数求最⼤利润.收⼊211(25)2588R q p q q q q =?=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极⼤值点,也是最⼤值点.所以,产量为84时,利润L 最⼤,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极⼤值点,也是最⼤值点.所以,当每个房间每天的定价为350元时,宾馆利润最⼤. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c c c x a x b b-=-+?=--,54ba x <<.令845()0c ac bc L x x b b+'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极⼤值点,也是最⼤值点.所以,销售价为458a b+元/件时,可获得最⼤利润.1.5定积分的概念练习(P42) 83. 说明:进⼀步熟悉求曲边梯形⾯积的⽅法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'?≈?=?=-+?=-?+?,1,2,,i n =L .于是 111()n n ni i i i i is s s v t n ==='=?≈?=?∑∑∑2112[()]ni i n n n ==-?+?∑22211111()()()2n n n n n n n n -=-?--?-?+L2231[12]2n n=-++++L31(1)(21)26n n n n ++=-?+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进⼀步体会“以不变代变”和“逼近”的思想.2、223km.说明:进⼀步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的⽅法和步骤. 练习(P48)2304x dx =?. 说明:进⼀步熟悉定积分的定义和⼏何意义.从⼏何上看,表⽰由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的⾯积4S =.习题1.5 A 组(P50) 1、(1)1001111(1)[(1)1]0.495100100i i x dx =--≈+-?=∑?;(2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-?=∑?;(3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-?=∑?. 说明:体会通过分割、近似替换、求和得到定积分的近似值的⽅法.2、距离的不⾜近似值为:18112171310140?+?+?+?+?=(m );距离的过剩近似值为:271181121713167?+?+?+?+?=(m ).3、证明:令()1f x =. ⽤分点 011i i n a x x x x x b -=<<<<<<=L L将区间[,]a b 等分成n 个⼩区间,在每个⼩区间1[,]i i x x -上任取⼀点(1,2,,)i i n ξ=L作和式11()nni i i b af x b a nξ==-?==-∑∑,从⽽11lim nbn i b adx b a n→∞=-==-∑,说明:进⼀步熟悉定积分的概念.4、根据定积分的⼏何意义,0表⽰由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的⾯积,即四分之⼀单位圆的⾯积,因此4π=.5、(1)03114x dx -=-. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -?表⽰由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的⾯积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -?等于位于x 轴上⽅的曲边梯形⾯积减去位于x 轴下⽅的曲边梯形⾯积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -?等于位于x 轴上⽅的曲边梯形⾯积减去位于x 轴下⽅的曲边梯形⾯积.说明:在(3)中,由于3x 在区间[1,0]-上是⾮正的,在区间[0,2]上是⾮负的,如果直接利⽤定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项⼜有负项,⽽且⽆法抵挡⼀些项,求和会⾮常⿇烦. 利⽤性质3可以将定积分231x dx -?化为02331x dx x dx -+??,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利⽤定积分的定义,容易求出031x dx -?,230x dx ?,进⽽得到定积分231x dx -?的值. 由此可见,利⽤定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进⼀步体会定积分的⼏何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间⾛过的路程⼤约为145 m.说明:根据定积分的⼏何意义,通过估算曲边梯形内包含单位正⽅形的个数来估计物体⾛过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i ==??=∑(m );不⾜近似值:81111879.819.8168.672242i i =-??==∑(m )(3)49.81tdt ?;49.81d 78.48t t =?(m ).3、(1)分割在区间[0,]l 上等间隔地插⼊1n -个分点,将它分成n 个⼩区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n -,记第i 个区间为(1)[,]i l iln n-(1,2,i n =L ),其长度为 (1)il i l l x n n n-?=-=.把细棒在⼩段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m L ,则细棒的质量1ni i m m ==?∑.(2)近似代替当n 很⼤,即x ?很⼩时,在⼩区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很⼩,近似地等于⼀个常数,不妨认为它近似地等于任意⼀点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在⼩段(1)[,]i l il n n-上质量2()i i i lm x nρξξ?≈?=(1,2,i n =L ).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====?≈?=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =?..1.6微积分基本定理练习(P55)(1)50;(2)503;(3)533-;(4)24;(5)3ln 22-;(6)12;(7)0;(8)2-.。
高中数学选修21课后习题答案[人教版].docx
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、略 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称.这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:若 a b 1,则a2b22a 4b3( a b)( a b) 2( a b) 2b3a b 2 2b3a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则a,b都是偶数.这是假命题.否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数.这是假命题.逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b不都是偶数.这是真命题.(2)逆命题:若方程 x2 x m 0 有实数根,则m 0. 这是假命题 . 否命题:若 m 0 ,则方程x2x m 0没有实数根.这是假命题.逆否命题:若方程x2x m 0 没有实数根,则m 0 .这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是e O的两条互相平分的相交弦,交点是 E ,若 E 和圆心 O 重合,则AB,CD是经过圆心 O 的弦,AB,CD是两条直径.若 E 和圆心 O 不重合,连结AO, BO,CO 和DO,则OE是等腰AOB , COD 的底边上中线,所以,OE AB ,OE CD .AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的.所以, E 和 O 必然重合.即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1).3( 1) .4、(1)真;(2)真;( 3)假;( 4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;( 3)p是q的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc 0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形.(2)必要性:如果ABC是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a 所以 a 2b2c2ab ac bc 0 2b2c2ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假 .2、(1)真;(2)假 .3、(1)225,真命题;( 2)3 不是方程 x290的根,假命题;( 3)( 1)21,真命题.习题 1.3 A组( P18)1、(1) 4{2,3}或 2 {2,3},真命题;(2) 4{2,3}且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;( 4) 2 是偶数且 3 不是素数,假命题 .2、(1)真命题;( 2)真命题;(3)假命题 .3、(1) 2 不是有理数,真命题;( 2)5 是 15 的约数,真命题;(3)2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组( P18)(1)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(2)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(3)假命题 . 因为p为假命题,q为假命题,所以p q为假命题;(4)假命题 . 因为p为假命题,q为假命题,所以p q为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .练习( P26)1、(1) n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数 .2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数 .习题 1.4 A 组( P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .3、(1) x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3) x R, x2x 10 ;(4)所有四边形的对角线不互相垂直 .习题 1.4 B组( P27)(1)假命题 . 存在一条直线,它在y轴上没有截距;(2)假命题 . 存在一个二次函数,它的图象与 x 轴不相交;(3)假命题 . 每个三角形的内角和不小于180;(4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1) n N ,n20 ;(2)P { P P 在圆x2y2r 2上 } ,OP r (O 为圆心);(3)( x, y) {( x, y) x, y 是整数},2x 4y 3;( 4)x0{ x x 是无理数}, x03{ q q 是有理数} .6、(1)32,真命题;(2)5 4 ,假命题;( 3) x0R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1)p q;(2) ( p) (q) ,或 ( p q) .2、(1)Rt ABC,C90 ,A, B, C 的对边分别是 a, b, c ,则 c2a2b2;(2)ABC ,A,B,a b cC 的对边分别是 a, b,c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a32 ,b 18 .25253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率2 02kCAt2 t2所以, k CB1 t 2k CA2由直线的点斜式方程,得直线CB 的方程为 y2t2( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t ) .由于点 M 是线段 AB 的中点,由中点坐标公式得 xt, y4 t .t4 t ,22由 x得 t 2x ,代入 y 22 得 y42x,即 x y 20 ①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A 组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点M 的轨迹方程为 x 2y 2 4 .4、解法一:设圆 x 2y 2 6x 50 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CM AB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]yy1 (x 3, x 0)所以,3 xx化简得 x 2y 23x 0 (x 3, x 0)当 x 3 时, y 0 ,点 (3,0) 适合题意;当 x 0 时, y 0 ,点 (0,0) 不合题意 .解方程组x 2 y 23x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 23x 0 ,5x3.3解法二:注意到OCM 是直角三角形,利用勾股定理,得 x 2 y 2(x 3)2y 2 9 ,即 x 2y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为xy 1.a b因为直线 l 经过点 P(3,4) ,所以341因此, ab 4a 3bab由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3 y 0 .2、解:如图,设动圆圆心M 的坐标为 (x, y) .y由于动圆截直线 3xy0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD 4 . 过点 M 分别CMFE作直线 3x y0 和 3x y0 的垂线,垂足分别为E ,DF ,则 AE4 , CF2 . A3xy, MF3x yME1010 .Ox连接 MA , MC ,因为 MAMC ,(第 2 题)2ME 2CF 2MF 2 则有, AE(3 x y) 2(3 x y) 210 .所以, 1610410,化简得, xy因此,动圆圆心的轨迹方程是 xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1PF220 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1 ;(2) y2x21;(3) x2y21,或 y2x2 1616361636163、解:由已知,a 5, b 4 ,所以 c a2b2 3 .(1)AF1B 的周长AF1AF2BF1BF2.由椭圆的定义,得 AF1AF22a, BF1BF22a .所以, AF1B 的周长4a20.(2)如果AB不垂直于 x 轴, AF1B 的周长不变化 .这是因为①②两式仍然成立,AF1 B 的周长20,这是定值 .4、解:设点M的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x1)kAM;x1直线 BM 的斜率y(x1) ;kBMx1由题意,得kAM2,所以y2y( x1, y0) kBM x 1x1化简,得 x3( y0)因此,点 M 的轨迹是直线 x 3 ,并去掉点( 3,0) .练习( P48)yB2 1、以点 B2(或 B1)为圆心,以线段 OA2(或 OA1)为半径画圆,圆与 x 轴的两个交点分别为F1 , F2 .A 1F1O点 F1 , F2就是椭圆的两个焦点 .B 1这是因为,在 Rt B2OF2中,OB2 b , B2 F2OA2 a ,(第 1 题)所以, OF2 c .同样有 OF1 c .2、(1)焦点坐标为(8,0) , (8,0) ;14.1.F2 A 2x(2)焦点坐标为 (0,2) , (0, 2) .3、(1)x2y 21;(2) y2x2 1 . 363225164、(1)x2y21(2) x2y 21,或 y2x2 1. 9410064100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x2y2 1 的离心率是 1 ,316122因为221 ,所以,椭圆x2y2 1 更圆,椭圆 9x2y236 更扁;321612(2)椭圆 x29 y236 的离心率是22 ,椭圆 x2y2 1 的离心率是10 ,36105因为2210 ,所以,椭圆x2y2 1 更圆,椭圆 x29 y 236 更扁 . 356106、(1)(3,8(2) (0,2) ;( 3)(487082 ) ;,) .7、. 537377习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x2( y3)2x2( y3)210 以及椭圆的定义得,点 M 的轨迹是以F1(0,3) , F2 (0,3) 为焦点,长轴长为10 的椭圆 .它的方程是y2x21. 25162、(1)x2y 21;( 2)y2x2 1 ;(3) x2y21,或 y2x2 1. 3632259494049403、(1)不等式2x 2 , 4 y 4 表示的区域的公共部分;(2)不等式25x25 ,10y10表示的区域的公共部分 .图略 . 334、(1)长轴长2a8 ,短轴长 2b 4 ,离心率e 3 ,2焦点坐标分别是 (23,0), (23,0),顶点坐标分别为 (4,0), (4,0), (0,2) , (0,2) ;(2)长轴长2a18 ,短轴长 2b 6 ,离心率e 2 2 ,3焦点坐标分别是 (0, 62),(0,62),顶点坐标分别为 (0, 9) ,(0,9) , (3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2y21,或 y2x2 1 ;859819(3) x2y21,或 y 2x2 1 .2592596、解:由已知,椭圆的焦距F1F2 2 .因为PF1F2的面积等于1,所以,1F1F2y P1,解得y P1. 2代入椭圆的方程,得x211,解得 x15 .P54215l所以,点 P 的坐标是(1),共有 4个 .,2QA 7、解:如图,连接 QA .由已知,得 QA QP .O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以 OA OP(第 7 题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点, r 为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x m 代入椭圆方程x2y2 1 ,得 9x26mx2m218 0 .249这个方程根的判别式36m236(2 m 218)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 32,32) 时,直线与椭圆相交 .( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为M (x, y) .则 x x1x2m .23因为点 M 在直线y 3 x m 上,与 x m联立,消去 m ,得 3x 2 y0 .23这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .x2y29、3.5252 2.8752 1 .10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km.习题 2.2 B 组( P50)1、解:设点M的坐标为 ( x, y) ,点P的坐标为 ( x0 , y0 ) ,则 x x0, y 3 y0 .所以 x0x , y0 2 y① . 23因为点 P(x0, y0 ) 在圆上,所以 x02y02 4 ② .将①代入②,得点 M 的轨迹方程为x2 4 y24,即 x2y21949所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P(x, y) ,半径为R,两已知圆的圆心分别为O1, O2 .分别将两已知圆的方程x2y26x 50 , x2y 26x 910配方,得 (x 3)2y2 4 ,( x3) 2y2100当 e P 与e O1:( x3)2y2 4 外切时,有O1P R2①当 e P 与e O2:( x3)2y2100 内切时,有O2P10R ②①②两式的两边分别相加,得O1P O2 P12即, ( x 3)2y2(x 3)2y212③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2y212x ④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⑥3627由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12, 6 3 .解法二:同解法一,得方程( x 3)2y2( x 3)2y 212①由方程①可知,动圆圆心P(x, y) 到点 O1 ( 3,0) 和点 O2 (3,0)距离的和是常数12,所以点 P 的轨迹方程是焦点为( 3,0) 、 (3,0) ,长轴长等于 12 的椭圆 .并且这个椭圆的中心与坐标原点重合,焦点在 x 轴上,于是可求出它的标准方程 .因为 2c 6 , 2a 12 ,所以 c 3 , a 6所以 b 2 36 927 .于是,动圆圆心的轨迹方程为x 2y2361.273、解:设 d 是点 M 到直线 x8 的距离,根据题意,所求轨迹就是集合PMF 1 M2d( x2)2y 2 1由此得x28将上式两边平方,并化简,得3x24 y248 ,即x 2y 2 11612所以,点 M 的轨迹是长轴、短轴长分别为8, 4 3 的椭圆 .4、解:如图,由已知,得E(0, 3) , F (4,0) , G (0,3) , H ( 4,0) .DyGLC因为 R,S,T 是线段 OF 的四等分点,R'MR , S ,T 是线段 CF 的四等分点,S' 所以, R(1,0), S(2,0), T (3,0) ;HN T'O RSTF xR (4, 9 ), S (4, 3),T (4, 3) .424直线 ER 的方程是 y 3x 3 ;直线 GR 的方程是 y3.AEBx 31632 , y 45 .(第 4 题)联立这两个方程,解得x17 17所以,点 L 的坐标是 (32 ,45) .17 17同样,点 M 的坐标是 (16 , 9) ,点 N 的坐标是 ( 96 , 21) .5 525 25由作图可见,可以设椭圆的方程为x 2y 21 (m 0, n 0) ①nm 22把点 L, M 的坐标代入方程①,并解方程组,得11,11m 22232.4 n高中数学选修 2-1 课后习题答案 [ 人教版 ]所以经过点 L, M 的椭圆方程为x 2y 21 .16 9把点 N 的坐标代入x 2y 2 ,得 1( 96 ) 2 1 ( 21)2 1,169 16 259 25所以,点 N 在x 2y 2 1 上 . 169因此,点 L, M , N 都在椭圆x 2y 2 1 上.1692.3双曲线练习( P55)1、(1)x 2y 21 .(2) x 2y21.16 93(3)解法一:因为双曲线的焦点在y 轴上y 2x 21 ( a 0,b0)所以,可设它的标准方程为2b 2a将点 (2, 5) 代入方程,得254 1 ,即 a 2b 24a 2 25b 2 0a 2b 2又 a 2b 236解方程组a 2b 2 4a 2 25b 2 0a2b 236令 m a 2,nmn 4m 25n 0 b 2,代入方程组,得n 36m m 20 m 45 解得16,或9nn第二组不合题意,舍去,得a 2 20,b 2 16y 2x 2所求双曲线的标准方程为 120 16解法二:根据双曲线的定义,有 2a4 (5 6)24 (5 6)2 4 5 .所以, a 2 5高中数学选修2-1 课后习题答案 [ 人教版 ]又 c6,所以 b23620 16由已知,双曲线的焦点在y2x2y 轴上,所以所求双曲线的标准方程为 1 .20162、提示:根据椭圆中a2b2c2和双曲线中 a2b2c2的关系式分别求出椭圆、双曲线的焦点坐标 .3、由 (2 m)( m 1) 0 ,解得m 2 ,或 m1练习( P61)1、(1)实轴长 2a8 2 ,虚轴长2b 4 ;顶点坐标为(4 2,0),(42,0);焦点坐标为 (6,0),(6,0);离心率 e3 2 .4(2)实轴长2a 6 ,虚轴长 2b18 ;顶点坐标为(3,0),(3,0) ;焦点坐标为 (310,0),(310,0) ;离心率 e10 .(3)实轴长2a 4 ,虚轴长 2b 4 ;顶点坐标为(0,2),(0,2);焦点坐标为 (0,22),(0,22) ;离心率 e 2 .(4)实轴长2a10,虚轴长2b14;顶点坐标为(0,5),(0,5) ;焦点坐标为 (0,74),(0,74) ;离心率 e74 .52、(1)x2y 2 1 ;(2) y2x2 1.3、 x2y21169362835 4、 x2y2 1 ,渐近线方程为y x .18185、(1) (6,2),( 14,2) ;( 2) (25,3) 334习题 2.3 A组( P61)y2x21 . 因为a 8,由双曲线定义可知,点P 到两焦点距1、把方程化为标准方程,得1664离的差的绝对值等于16. 因此点P到另一焦点的距离是17.2、(1)x2y2 1 .(2) x2y2120162575高中数学选修 2-1 课后习题答案 [ 人教版 ]3、(1)焦点坐标为 F 1 ( 5,0), F 2 (5,0) ,离心率 e5 ;3 (2)焦点坐标为 F 1 (0, 5), F 2 (0,5) ,离心率 e5 ;44、(1)x 2y 21.( 2) y2x 2 1 2516916(3)解:因为 ec2 ,所以 c 22a 2 ,因此 b 2c 2 a 22a 2 a 2a 2 .a设双曲线的标准方程为x 2 y 21 ,或 y 2x 2 1.a 2 a 2a 2a 2将 ( 5,3) 代入上面的两个方程,得25 9 1 ,或 925 1 .a 2a 2 a 2a 2解得 a 216 (后一个方程无解) .所以,所求的双曲线方程为x 2 y 21 .16 165、解:连接 QA ,由已知,得 QA QP .所以, QA QO QP QO OP r .又因为点 A 在圆外,所以 OA OP .根据双曲线的定义,点Q 的轨迹是以 O, A 为焦点, r 为实轴长的双曲线 .6、 x 2 y 2 1 .8 8习题 2.3 B组( P62)1、 x 2y 2116 92、解:由声速及 A, B 两处听到爆炸声的时间差,可知A, B 两处与爆炸点的距离的差,因此爆炸点应位于以 A, B 为焦点的双曲线上 .使 A, B 两点在 x 轴上,并且原点 O 与线段 AB 的中点重合,建立直角坐标系 xOy .设爆炸点 P 的坐标为 ( x, y) ,则 PA PB 340 3 1020 .即 2a 1020 , a 510.又 AB1400,所以 2c 1400 , c 700 , b 2 c 2 a 2229900 .因此,所求双曲线的方程为x 2y22601001.2299003、 x 2y 2 1 a 2b 24、解:设点 A( x 1 , y 1) , B( x 2 , y 2 ) 在双曲线上,且线段 AB 的中点为 M ( x, y) .设经过点 P 的直线 l 的方程为 y 1 k ( x 1) ,即 ykx 1 k把 ykx1 k 代入双曲线的方程 x 2y 2 1得2(2 k 2 )x 2 2k(1 k )x (1 k 2 ) 20 ( 2 k 2 0 ) ①所以, x x 1 x 2 k(1 k)22 k2由题意,得k (1k) 1,解得 k 2 .2k 2当 k 2 时,方程①成为 2x 2 4x 3 0 .根的判别式16 24 8 0 ,方程①没有实数解 .所以,不能作一条直线 l 与双曲线交于 A, B 两点,且点 P 是线段 AB 的中点 .2.4 抛物线练习( P67)1、(1) y 2 12x ; ( 2) y 2x ;(3) y 24x, y 2 4x, x 2 4 y, x 24y .2、(1)焦点坐标 F (5,0) ,准线方程 x5 ; ( 2)焦点坐标 F (0, 1) ,准线方程 y1 ;88(3)焦点坐标 F ( 5 ,0) ,准线方程 x5; ( 4)焦点坐标 F (0, 2) ,准线方程 y 2 ; p . 8 83、(1) a , a ( 2) (6,6 2) , (6, 6 2)2提示:由抛物线的标准方程求出准线方程 . 由抛物线的定义,点 M 到准线的距离等于 9,所以 x 39 , x 6, y 6 2 .yy 2= 4x练习(P72)y 2= 2x1、(1) y216 x ; ( 2) x220 y ;y 2=x52 1=(3) y 216 x ;( 4) x 232 y .yx22、图形见右, x 的系数越大,抛物线的开口越大 .Ox3、解:过点 M (2,0) 且斜率为 1 的直线 l 的方程为 yx 2与抛物线的方程 y24x 联立y x 2y24x解得x 142 3 x 24 2 3,y 1 2 2 3y 2 2 2 3设 A(x 1, y 1 ) , B(x 2 , y 2 ) ,则 AB( x 2 x 1) 2( y 2 y 1 )2( 4 3) 2( 4 3) 2 4 6 .4、解:设直线 AB 的方程为 xa ( a 0) .将 x a 代入抛物线方程 y 2 4x ,得 y 24a ,即 y 2 a .因为AB 2 y 2 2 a 4 a 4 3 , 所以, a3因此,直线 AB 的方程为 x3 .习题 2.4 A 组( P73)1、(1)焦点坐标 F (0, 1) ,准线方程 y1 ;22(2)焦点坐标 F (0,3) ,准线方程 y3 ;1616(3)焦点坐标 F ( 1 ,0) ,准线方程 x1 ;8 8 (4)焦点坐标 F ( 3 ,0) ,准线方程 x3 .222、(1) y 28x ;( 2) (4,4 2) ,或 (4, 42)3、解:由抛物线的方程 y 2 2 px ( p0) ,得它的准线方程为 xp .2根据抛物线的定义,由 MF 2 p ,可知,点 M 的准线的距离为 2 p .设点 M 的坐标为 ( x, y) ,则xp 2 p ,解得 x3p .3 p 代入 y 222将 x2 px 中,得 y3 p .2因此,点 M 的坐标为 (3 p,3 p) , (3 p,3 p) .224、(1) y 2 24 x , y 2 24x ;(2) x 212 y (图略)5、解:因为xFM 60 ,所以线段 FM 所在直线的斜率 k tan 603 .因此,直线 FM 的方程为 y3( x 1)高中数学选修2-1 课后习题答案 [ 人教版 ]与抛物线 y 24xy3( x1)L L 1联立,得y 24xL L 2将 1 代入 2 得, 3x210 x 3 0 ,解得, x 11, x 2 33把 x 11, x 2 3 分别代入①得y 12 3, y 2 2 333由第 5 题图知 (1 ,2 3) 不合题意,所以点 M 的坐标为 (3,2 3) .33因此, FM(3 1)2 (2 3 0) 246、证明:将 y x2 代入 y 22x 中,得 ( x2) 2 2x ,化简得 x 2 6x 4 0 ,解得 x35则 y 3 5 2 15因为 k OB1 5, k OA 1 535 35所以 k OB k OA1 5 1 5 153535 915所以 OA OB7、这条抛物线的方程是 x217.5 yy8、解:建立如图所示的直角坐标系,Ox设拱桥抛物线的方程为 x 22 py ,2l因为拱桥离水面 2 m ,水面宽 4 m所以222 p( 2) , p 1因此,抛物线方程为 x 2 2y4①(第 8 题)水面下降 1 m ,则 y 3 ,代入①式,得 x 22 ( 3) , x6 .这时水面宽为 2 6 m.习题 2.2 B 组( P74)1、解:设垂线段的中点坐标为( x, y) ,抛物线上相应点的坐标为(x 1, y 1 ) .根据题意, x 1x , y 1 2 y ,代入 y 122 px 1 ,得轨迹方程为 y21px .2由方程可知,轨迹为顶点在原点、焦点坐标为( p,0) 的抛物线 .82、解:设这个等边三角形 OAB 的顶点 A, B 在抛物线上,且坐标分别为( x 1 , y 1 ) , (x 2 , y 2 ) ,则 y 12 2 px 1 , y 22 2 px 2 .又 OAOB ,所以 x 12 y 12 x 22 y 22即 x 12 x 22 2 px 1 2 px 2 0, (x 12 x 22 ) 2 p( x 1 x 2 ) 0因此, ( x 1 x 2 )( x 1 x 2 2 p)因为 x 1 0, x 2 0,2 p 0 ,所以 x 1 x 2由此可得 y 1y 2 ,即线段 AB 关于 x 轴对称 .因为 x 轴垂直于 AB ,且AOx 30 ,所以y 1tan303 .x 13因为 x 1y 12 ,所以 y 1 2 3p ,因此 AB2 y 14 3 p .2 p3、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x1) .x 1直线 BM 的斜率 k BMy ( x 1) .x 1由题意,得 k AMkBM2 ,所以,yy2( x1) ,化简,得 x 2( y 1)(x1)x 1 x 1第二章复习参考题 A 组( P80)1、解:如图,建立直角坐标系, 使点 A, B, F 2 在 x 轴上, F 2 为椭圆的右焦点 (记 F 1 为左焦点) .因为椭圆的焦点在 x 轴上,所以设它的标准方程为x 2 y 2.a2b 21(a b0)y则 a c OAOF 2 F 2 A 6371 439 6810,a c OBOF 2F 2B 6371 2384 8755 ,解得 a 7782.5 , c 8755BF 1OF 2A x所以 ba 2c 2(a c)( ac)8755 6810用计算器算得 b 7722因此,卫星的轨道方程是x 2y 2 1.77832772222R r 1 r 2a cR r 1 a 22、解:由题意,得,解此方程组,得a c Rr 2r 1r 2c2因此卫星轨道的离心率 ecr 2 r 1 .a2R r 1r 23、(1) D ; ( 2) B .4、(1)当0 时,方程表示圆 .(2)当 090 时,方程化成 x 2y 21. 方程表示焦点在 y 轴上的椭圆 .1cos(3)当 90 时, x 2 1,即 x1,方程表示平行于 y 轴的两条直线 .(4)当 90180 时,因为 cos0,所以 x 2y 2 cos1 表示双曲线,其焦点在 x 轴上. 而当180 时,方程表示等轴双曲线 .5、解:将 ykx 1代入方程 x 2y 2 4得 x 2k 2 x 2 2kx 1 4 0即 (1 k 2 ) x 2 2kx 5 0 ①4k 2 20(1k 2 ) 20 16k 2令0 ,解得 k5,或 k522因为0 ,方程①无解,即直线与双曲线没有公共点,所以, k 的取值范围为 k5,或 k5226、提示:设抛物线方程为y 2 2 px ,则点 B 的坐标为 ( p, p) ,点 C 的坐标为 ( p, p)2 2 设点 P 的坐标为 ( x, y) ,则点 Q 的坐标为 ( x,0) .因为, PQ y2px , BC 2 p , OQ x .所以, PQ 2BC OQ ,即 PQ 是 BC 和 OQ 的比例中项 .7、解:设等边三角形的另外两个顶点分别是A, B ,其中点 A 在 x 轴上方 .高中数学选修2-1 课后习题答案 [ 人教版 ]3 p直线 FA 的方程为 y( x)32与 y 22 px 联立,消去 x ,得 y 2 23 py p 2解方程,得 y 1 ( 3 2) p , y 2 ( 3 2) p把 y 1( 3 2) p 代入 y3( xp ) ,得 x 1(72 3) p .322把 y 2( 3 2) p 代入 y3(xp) ,得 x 2 (72 3) p .322所以,满足条件的点 A 有两个 A 1 ((72 3) p,(3 2) p) , A 2 ((72 3) p,(3 2) p) .22根据图形的对称性,可得满足条件的点B 也有两个B 1(( 72 3) p, (3 2) p) ,2 7( 32) p)B 2 ((2 3) p,2所以,等边三角形的边长是A 1B 12( 3 2) p ,或者 A 2 B 22(23) p .8、解:设直线 l 的方程为 y 2xm .把 y2x m 代入双曲线的方程 2x 23y 2 6 0 ,得 10x 2 12mx 3m 2 6 0 .x 1 x 26m, x 1x 2 3m 2 6 ①5 10由已知,得(1 4)[( x 1 x 2 ) 2 4x 1x 2 ] 16②210 把①代入②,解得m3210 所以,直线 l 的方程为 y2x39、解:设点 A 的坐标为 (x 1, y 1 ) ,点 B 的坐标为 ( x 2 , y 2 ) ,点 M 的坐标为 (x, y) .并设经过点 M 的直线 l 的方程为 y1 k (x 2) ,即 ykx 1 2k .22y把 y kx 1 2k 代入双曲线的方程 x1 ,得(2 k 2 )x 22k (1 2k )x(1 2k)2 2 0 (2 k 2 0) . ①高中数学选修 2-1 课后习题答案 [ 人教版 ]x 1 x 2 k (1 2k)所以, x22 k 2由题意,得k(12k) 2 ,解得 k42 k 2当 k4 时,方程①成为 14 x 2 56x 51根的判别式56 256 51 2800 ,方程①有实数解 .所以,直线 l 的方程为 y4x 7 .10、解:设点 C 的坐标为 (x, y) .由已知,得 直线 AC 的斜率 k ACy (x5)x 5直线 BC 的斜率kBCy 5 ( x 5)x 由题意,得 k AC k BCm . 所以, y y m( x5)5 x 5x化简得,x 2y 2 1(x 5)2525m当 m 0 时,点 C 的轨迹是椭圆 (m 1) ,或者圆 ( m 1) ,并除去两点 ( 5,0),(5,0) ;当 m 0 时,点 C 的轨迹是双曲线,并除去两点( 5,0),(5,0) ;11、解:设抛物线 y 2 4x 上的点 P 的坐标为 ( x, y) ,则 y 24x .点 P 到直线 yx 3 的距离 dx y 3y 2 4y 12 ( y 2)2824 24 2.当 y 2时, d 的最小值是2 .此时 x1,点 P 的坐标是 (1,2) .12、解:如图,在隧道的横断面上,以拱y顶为原点、拱高所在直线为y 轴Ox(向上),建立直角坐标系 .抛物线设隧道顶部所在抛物线的方程6 mE为 x 22 py因为点 C (4, 4) 在抛物线上DC所以 422 p( 4) 2 mFA3 m3 m2 p 4B解得高中数学选修2-1 课后习题答案 [ 人教版 ]为 x 2 4 y .设 EFh 0.5. 则 F (3, h 5.5)把点 F 的坐标代入方程 x 24y ,解得 h3.25 .答:车辆通过隧道的限制高度为3.2 m.第二章复习参考题 B 组( P81)1、SPF 1F 224 3 .2、解:由题意,得 PF 1x 轴.把 xc 代入椭圆方程,解得yb 2 . 所以,点 P 的坐标是 ( c, b 2)aa 直线 OP 的斜率 k 1b 2 .直线 AB 的斜率 k 2b .aca由题意,得b 2b,所以, b c , a2c .ac a由已知及 F 1A a c ,得 ac 105所以 (1 2) c 105 ,解得 c5所以, a10 , b5因此,椭圆的方程为x 2 y 2 1.1053、解:设点 A 的坐标 (x 1, y 1 ) ,点 B 的坐标 ( x 2 , y 2 ) .由 OA OB ,得 x 1x 2y 1y 2 0 .由已知,得直线 AB 的方程为 y2x 5 .则有 y 1 y 25( y 1 y 2 ) 25 0 ①由 y2x 5 与 y 22px 消去 x ,得 y 2py 5 p0 ②y 1y 2p , y 1 y 25 p ③把③代入①,解得 p54高中数学选修 2-1 课后习题答案 [ 人教版 ]当 p5时,方程②成为 4 y 25y 25 0 ,显然此方程有实数根 .所以, p5444、解:如图,以连接 F 1 , F 2 的直线为 x 轴,线段 F 1 F 2 的中点为原点,建立直角坐标系 .对于抛物线,有p1763 529 2292 ,2所以, p4584 , 2 p 9168 .对于双曲线,有c a 2080c a 529解此方程组,得 a 775.5, c 1304.5因此, b 2 c 2 a 2 1100320 .(第 4 题)所以,所求双曲线的方程是x 2y 2 601400.31 ( x 775.5) .1100320因为抛物线的顶点横坐标是 (1763 a)(1763 775.5)987.5所以,所求抛物线的方程是y 2 9168( x987.5)答:抛物线的方程为 y 29168( x 987.5) ,双曲线的方程是x 2y 21 ( x 775.5) .601400.311003205、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x 1)x 1直线 BM 的斜率 k BMy ( x 1)x1由题意,得 kAMk2 ,所以y y 2( x1),化简,得 xy x 2 1(x1)BMx1 x 1所以,点 M 轨迹方程是 xy x 21(x1) .6、解:(1)当 m 1时,方程表示 x 轴;( 2)当m3 时,方程表示 y 轴;(3)当 m1,m 3 时,把方程写成x 2 y23 mm 1.1①当 1 m 3, m 2 时,方程表示椭圆;② m 2 时,方程表示圆;③当 m 1,或 m3时,方程表示双曲线 .7、以 AB 为直径的圆与抛物线的准线 l 相切 .高中数学选修2-1 课后习题答案 [ 人教版 ]垂线,垂足分别为 D , E .由抛物线的定义,得AD AF , BE BF .所以, AB AF BF AD BE .设 AB 的中点为 M ,且过点 M 作抛物线y22px ( p0) 的准线l的垂线,垂足为C .显然 MC ∥x轴,所以, MC 是直角梯形 ADEB 的中位线.于是, MC 1( AD BE )1AB .因此,点 C 在以 AB 为直径的圆上.22又 MC l ,所以,以 AB 为直径的圆与抛物线的准线l 相切.类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离;对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.高中数学选修 2-1 课后习题答案 [ 人教版 ]第三章空间向量与立体几何3.1空间向量及其运算练习( P86)1、略 .2、略 .uuuur uuuruuur uuur uuuur uuur uuur uuur uuuur uuur uuur uuur 3、 A C ABAD AA , BD AB AD AA , DB AA AB AD .练习( P89)uuuruuuruuuur1、(1) AD ; (2) AG ;(3) MG .2、(1) x 1; (2) x y1; (3) x y1 .3、如图 .22A CPB QRSO(第 3 题)练习( P92)1、 B .uuuur uuur uuuruuur2、解:因为 ACABADAA ,uuuur2uuur uuur uuur 所以 AC( AB AD AA )2uuur 2 uuur 2 uuur 2uuur uuur uuur uuur uuur uuurABADAA2( AB AD AB AA AD AA )uuuur 42 32 52 2 (0 10 7.5)8585所以 AC3、解:因为 AC所以 AC BD , AC AB ,又知 BD AB .uuur uuur uuur uuur 0uuur uuur 0 .所以 AC BD 0 , AC AB ,又知 BD AB uuur 2 uuur uuur CD CD CDuuur uuur uuuruuur uuuruuur(CA AB BD ) (CA ABBD )uuur 2 uuur 2uuur2CAAB BDa 2b 2c 2所以 CDa 2b 2c 2 .高中数学选修 2-1 课后习题答案 [ 人教版 ]r r r r rr r r r r 1、向量 c 与 a b , a b 一定构成空间的一个基底 . 否则 c 与 ab , a b 共面,r r r2、共面于是 c 与 a , b 共面,这与已知矛盾 .uuur uuuruuur uuur uuur uuur uuur uuur uuuur r r r 2、(1)解: OB OBBB OA AB BB OA OC OO a b c ;uuur uuur uuur uuur uuuur r rBA BABBOC OOc buuur uuur uuur uuur uuur uuuur r r rCA CA AA OA OC OO a bcuuur uuur uuuruuur1 uuur r 1 rr 1rr1r(2) OGOC CGOCCBb (ac)ab2 c .222练习( P97)1、(1) ( 2,7,4) ; (2) ( 10,1,16); (3) ( 18,12,30) ; ( 4)2.2、略 .3、解:分别以 DA ,DC , DD 1 所在的直线为 x 轴、 y 轴、 z 轴,建立空间直角坐标系 .则 D (0,0,0) , B 1 (1,1,1), M (1,1,0) , C(0,1,0) 2uuuur uuuur 1所以, DB 1 (1,1,1), CM (1, ,0) .2uuuur uuuur 1 1uuuur uuuurDB 1 CM 015所以, cos2.DB 1, CMuuuur uuuur 1 15DB 1 CM31D'4C'习题 3.1 A 组( P97)A'B' Muuuruuur uuur D GC1、解:如图,(1) ABBC AC ;uuur uuur uuuruuur uuur uuur uuuur uuuur(2) AB AD AAACAA AC CC AC ;A(第 1 题) Buuur uuur1 uuuur uuur uuuuruuuur(3)设点 M 是线段 CC 的中点,则 ABADCCACCMAM ;1 uuur 21 uuuur(4)设点 G 是线段 AC 的三等分点,则uuur uuuruuur ( AB AD AA ) AC AG .uuur uuuur uuuur uuur33向量 AC , AC , AM , AG 如图所示 .2、 A .uuuur 2 uuur uuur uuur3、解: AC ( AB AD AA )2高中数学选修 2-1 课后习题答案 [ 人教版 ]uuur 2 uuur 2 uuur 2 uuur uuur uuur uuur uuur uuurAB AD AA 2( AB AD AB AA AD AA ) 52 32 722(5 3 1 5 72 3 7 2 )2 2298 56 2所以, AC13.3 .uuur uuuruuur uuur 1a2;4、(1) AB ACAB AC cos60uuur uuuruuur uuur21a 2;(2) AD DBAD DB cos120uuur uuur uuur uuur 2 uuur uuur1 a2 1 1(3) GF AC GF AC cos180 2 ( GF AC a) ;2 2 uuur uuur uuur uuur 1 a 2 uuur 1 uuur 1(4) EF BC EF BC cos60 4 ( EF 2 BD a) ; uuur uuur uuur uuur uuur uuur 21 2 1 1; (5) FG BA FG BA cos120 a ( FG2 AC a)4 2uuur uuur uuur uuur 1 uuur 1 uuur(6) GE GF(GCCB2 BA)CA21 uuuruuur1 uuur 1 uuur( DCCB2 BA)2 CA21 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA 2 CB CA 4 BA CA1 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA cos120 2 CB CA cos604 BA CA cos601 a 245、(1) 60 ; (2)略 .r rr6、向量 a 的横坐标不为 0,其余均为 0;向量 b 的纵坐标不为 0,其余均为 0;向量 c 的竖坐标不为 0,其余均为 0.7、(1)9; (2) (14, 3,3) .rr r r 0 ,即 82 3x0 ,解得 x10 . 8、解:因为 ab ,所以 a buuuruuur3(5,1, 10)9、解: AB ( 5, 1,10) , BAuuuur1 uuur uuur1 9 2) ,设 AB 的中点为 M , OM2(OAOB )( , ,uuur 2 2所以,点 M 的坐标为 (1 , 9 ,( 5)2( 1)21021262) , AB2 210、解:以 DA , DC , DD 1 分别作为 x 轴、 y 轴、 z 轴建立空间直角坐标系 O xyz .高中数学选修 2-1 课后习题答案 [ 人教版 ]则 C ,M , D 1 , N 的坐标分别为:uuuur 1 uuuur CM (1, 1, ) , D 1 N2 uuuur12 ( 1)2 ( 1) 2 所以 CM2C (0,1,0) , M (1,0, 1 1 ) ,D 1(0,0,1) , N (1,1, ) .122(1,1, )23uuuur 121)23, D 1 N12 ( 22 2uuuur uuuur1 1 11 cos CM , D 1N9 4 94由于异面直线 CM 和 D 1N 所成的角的范围是 [0,]2因此, CM 和 D 1 N 所成的角的余弦值为 1.31911、 ( , ,3)2 2 习题 3.1 B组( P99)1、证明:由已知可知,uuur uuur uuur uuurOA BC , OB ACuuur uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA BC 0 , OB AC 0 ,所以 OA (OC OB ) 0 , OB (OC OA) 0 .uuur uuur uuur uuur uuur uuuruuur uuur∴ OA OC OA OB , OB OCOB OA .uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA OC OB OC 0 , (OAOB) OC 0 , BA OC 0 .∴ OC AB .2、证明:∵点 E, F ,G , H 分别是 OA,OB, BC ,CA 的中点 . uuur1 uuuruuur1 uuuruuuruuur ∴ EFAB , HGAB ,所以 EFHG22∴四边形 EFGH 是平行四边形 .uuur uuur 1 uuur 1 uuur 1 uuur uuur uuur 1 uuur uuuruuur uuurEFEHABOC4 (OBOA) OC4(OB OCOA OC )2 2∵ OA OB , CA CB (已知), OC OC .∴ BOC ≌ AOC ( SSS )∴ BOC AOCuuur uuur uuur uuur∴ OB OC OA OCuuur uuur ∴ EF EH 0uuur uuur ∴ EF EH∴ 平行四边形 □ EFGH 是矩形 .。
人教版A版高中数学选修2-1课后习题解答
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
2020-2021学年数学高中人教A版选修2-1课后习题:习题课(5份)
所以
故 a≤2.
若 p 是 q 的必要条件 ,则 (-2,3)? (-a,a),
所以
则 a≥3.
答案 (-∞,2] [3,+ ∞)
7.下列四个命题中为真命题的是 ①“a>b ”是 “2a> 2b”的充要条件 ;
.(填序号 )
②“a=b ”是 “lg a= lg b”的充分不必要条件 ;
③“函数 f(x)=ax 2+bx (x∈ R)为奇函数 ”的充要条件是 “a= 0”;
要使 S? P,则有
解得 m≤ 0,
综上可得 ,当实数 m≤ 0 时 ,x∈ P 是 x∈ S 的必要条件 .
7.已知 p: < 0(m> 0),q:x(x-4)< 0,若 p 是 q 的既不充分也不必要条件 ,求实数 m 的取值范围 .
解由 < 0(m> 0),解得 -m<x< 2m, 由 x(x-4)< 0,解得 0<x< 4. 若 p 是 q 的充分不必要条件 ,则有
答案 B
4.已知条件 p:a=- 1,条件 q:直线 x-ay+ 1= 0 与直线 x+a 2y-1= 0 平行 ,则 p 是 q 的 (
)
A. 充要条件
B. 必要不充分条件
C.充分不必要条件
人教版重点高中数学选修2-1、2-2、2-3课后习题参考参考答案
精心整理新课程标准数学选修2—2第一章课后习题解答第一章 导数及其应用3.1变化率与导数练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 函数h .说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两1、在0t 处,虽然1020()()W t W t =,然而10102020t t≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降.3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.精心整理 (5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>.由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.5函数f . 说61)当x .说明:本题意在让学生将导数与曲线的切线斜率相联系.习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.精心整理2、 说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3势.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟.33习题1.2 A 组(P18)1、()()2S S r r S r r r r rπ∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+.精心整理3、()r V '=. 4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; 习题1.2 B (2)当h 越来越小时,sin(y = x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.精心整理1.3导数在研究函数中的应用练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-. 当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. 、()0f x '>,即2x a>-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2b x a<-时,函数2()(0)f x ax bx c a =++≠单调递减. (2)当0a <时,()0f x '>,即2b x a<-时,函数2()(0)f x ax bx c a =++≠单调递增;精心整理()0f x '<,即2b x a>-时,函数2()(0)f x ax bx c a =++≠单调递减. 4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<, 因此函数32()267f x x x =-+在(0,2)内是减函数.练习(P29)因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-.精心整理(3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-.精心整理又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=; 当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数.(4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数.精心整理2、(1)因为2()24f x x x =+-,所以()22f x x '=+. 当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减.(2)因为2()233f x x x =-+,所以()43f x x '=-.令()1210f x x '=+=,得12x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减. 所以,112x =-时,()f x 有极小值,并且极小值为211149(6()212121224f -=⨯---=-.精心整理 (2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-.精心整理令2()4830f x x '=-=,得4x =±.下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时.当x 变化时,()f x ',()f x 变化情况如下表:. 由于1269()327f -=,(1)5f =-, 所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-. (4)当4x =时,()f x 有极大值,并且极大值为128..由于(3)117f -=-,(5)115f =,精心整理所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-.习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈.因为()cos 10f x x '=-<,(0,)x π∈所以()sin f x x x =-在(0,)π内单调递减当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >.精心整理因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x '=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, 2、(1的图象大致是个“双峰”图象,类似“”或“”的形状. 若.②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <, 当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减1.4生活中的优化问题举例习题1.4 A 组(P37)1 因此,6x =是函数()V x 的极大值点,也是最大值点. 所以,当6a x =时,无盖方盒的容积最大. 3、如图,设圆柱的高为h 则表面积22S Rh π=+精心整理由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.R . 矩形的面积为28x a π-2m ,矩形的另一边长为(8a x x π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<精心整理 令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.0; 最大值点.所以,产量为84时,利润L最精心整理大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元, 那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<..于是 111()n n ni i i i i i s s s v t n ==='=∆≈∆=∆∑∑∑ 2112[(n i i n n n ==-⋅+⋅∑精心整理22211111(()(2n n n n n n n n -=-⋅--⋅-⋅+ 2231[12]2n n=-++++ 31(1)(21)26n n n n ++=-⋅+ 111(1)(1232n n=-+++ 取极值,得..4.距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ= 作和式 11()n n i i i b a f x b a nξ==-∆==-∑∑,精心整理从而 11lim n b a n i b a dx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念.4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y曲边梯形的面积,即四分之一单位圆的面积,因此04π=⎰.03所围成和区间231x dx -⎰.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程.2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );精心整理 不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)409.81tdt ⎰; 409.81d 78.48t t =⎰(m ). 3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间: 1,2,n ),其长度为,,n m ∆,则细棒的质量m =∑ 细棒的质量 21lim n i n i l m nξ→∞==∑,所以20l m x dx =⎰.. 1.6微积分基本定理练习(P55)(1)50; (2)503; (3)533-; (4)24;精心整理(5)3ln 22-; (6)12; (7)0; (8)2-. 说明:本题利用微积分基本定理和定积分的性质计算定积分.习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-; (4)176-; (5)2318π+; (6)22ln 2e e --.x 轴上.这是一个超越方程,为了解这个方程,我们首先估计的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<,因此,500052454949t <<. 因此50000.2749245 3.3610e -⨯-≈⨯,52450.2749245 1.2410e -⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000tt e-+-=时,0.2245te-可以忽略不计.因此,.492455000t-≈,解之得524549t≈(s).说明:B组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握.1.7定积分的简单应用练习(P58)6、(1)令55()501v t tt=-+=+,解之得10t=. 因此,火车经过10s后完全停止.(2)10210551(5)[555ln(1)]55ln1112s t dt t t tt=-+=-++=+⎰(m).习题1.7 B组(P60)1、(1)aa-⎰表示圆222x y a+=半圆的面积,因此22 a aπ-=⎰(2)1]x dx⎰表示圆22(1)1x y-+=与直线y x=所围成的图形(如图所示)的面积,33b11=,22x=.2(2)]1x dx+=.Mmh.(3)22ln ln2xxy xx'=+;(4)2422(21)x xyx-'=+.3、32GMmFr'=-.4、(1)()0f t'<. 因为红茶的温度在下降.(精心整理精心整理(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略.5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小.因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a --=--,即1()1y x a a=--.精心整理当0x =时,1a y a =-,即点B 的坐标是(0,)1a a -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--. 令()0S a '=,即2212()02(1)a a S a a -'=⋅=-.所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3.11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤.令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =.精心整理所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多.12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x, 打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯. 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )精心整理第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+时,()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .33由2R r απ=,得α=. 所以,圆心角为α=时,容积最大.精心整理4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x > 令0y '=,即29600160x -=,24x ≈.元.031221001()[23kk k x x x kx dx x ---=--=-⎰ 3(1)6k -=.精心整理 又因为16S =,所以31(1)2k -=.于是12k =-说明:本题也可以由面积相等直接得到11122000()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值.但计算较为烦琐.21n nn a cq + 所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)精心整理 1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.2(A n ≥6、如图,作DE ∥AB 交因为两组对边分别平行的四边形是平行四边形,2>,只需证22>, 即证1313+>+>, 只需要22>,即证4240>,这是显然成立的. 所以,命题得证.3、因为 222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==,精心整理又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅ 22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)2、因为 (1tan )(1tan )2A B ++=展开得 1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B-=,即cos()0cos cos A B A B += 所以cos()0A B +=.精心整理因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得 tan tan 11tan tan A B A B+=-, 即tan()1A B +=. 又因为0A B π<+<,所以4A B π+=. 说明:本题也可以把综合法和分析法综合使用完成证明.1、要证2s a <,由于2s ab <,所以只需要b ,即证. 因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立.2、由已知条件得 2b ac = ①精心整理2x a b =+,2y b c =+ ②要证2a c x y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得 22()()2ay cx a b c c a b ab ac bc +=+++=++,24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++,(2)假设当n k =时,命题成立,即1(1)k a a k d =+-.那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-.所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.精心整理再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=, 因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+. 那么,1111(1)[(1)1]k k k k k S S a ka d a k d ++-=+=++++- (21)(21)k k ++-++=所以,当n = 3111111111(1)((1122334223344S =++=-+-+-=-⨯⨯⨯. 由此猜想:111n S n =-+. 下面我们用数学归纳法证明这个猜想.(1)当1n =时,左边=111111222S ==-=⨯,右边=11111122n -=-=+,精心整理因此,左边=右边. 所以,当1n =时,猜想成立.(2)假设当n k =时,猜想成立,即111111122334(1)1k k k ++++=-⨯⨯⨯++. 那么,11111111122334(1)(1)(2)1(1)(2)k k k k k k k +++++=-+⨯⨯⨯++++++. 111(1)=-- 1k ++⨯=1)1]3-+⨯(1)]k ++12)(1)(2)2k k +++ 第二章 复习参考题A 组(P98)1、图略,共有(1)1n n -+(n N *∈)个圆圈.2、333n 个(n N *∈).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==……精心整理猜想()2n f n =.4、运算的结果总等于1.5、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ',B ',C ',D ',则 5(-++-1(1)[2(k k +-1(1)[2(1)1]k k k +=--++-1(1)(1)k k +=-+所以,当1n k =+时,等式也成立.根据(1)和(2),可知等式对任何n N *∈都成立.精心整理第二章 复习参考题B 组(P47)1、(1)25条线段,16部分; (2)2n 条线段;(3)最多将圆分割成1(1)12n n ++部分. 下面用数学归纳法证明这个结论.①当1n =时,结论成立.②假设当n k =时,结论成立, 1k +都相交,最多增加1k + 由已知条件,得 sin 2α=,2sin sin cos βθθ=, 代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]ββαα---⨯-- 2238sin cos (1sin cos )32sin (1sin )θθθθαα=---+- 2238sin cos 8sin cos 2(12sin cos )(32sin cos )θθθθθθθθ=--+++-精心整理222238sin cos 8sin cos 68sin cos 8sin cos θθθθθθθθ=--++-+3=因此,cos 44cos 43βα-=习题3.1 A 组(P106)1、(1)由321752x y x y +=⎧⎨-=-⎩,得17x y =⎧⎨=⎩.(2)由3040x y x +-=⎧⎨-=⎩,得41x y =⎧⎨=-⎩ 2、(1)当230m m -=,即0m =或3m =时,所给复数是实数.精心整理(2)当230m m -≠,即0m ≠或3m ≠时,所给复数是虚数. (3)当2256030m m m m ⎧-+=⎪⎨-≠⎪⎩,即2m =时,所给复数是纯虚数. 3、(1)存在,例如i,,等等.(2)存在,例如1,1-,等等.5. (2. 对应的点位于如图所示的图形上3a i +(a R ∈)22(3)4a +=解得 1a =±2z == 3z == 4z ==精心整理 所以,1Z ,2Z ,3Z ,4Z 这4.3.2复数代数形式的四则运算练习(P109)1、(1)5; (2)22i -; (3)22i -+; (4)0.2、略.练习(P111)1、(1)1821i --; (2)617i -; (3)2015i --;2、(1)5-; (2)2i -; (3)5.3、(1)i ; (2)i -; (3)1i -; (4)13i --. 对应的复数为向量BC 对应的复数为于是向量BD 对应的复数为对应的复数为. 2240p ⎨-=⎩习题3.2 B 组(P112)1、(1)24(2)(2)x x i x i +=+-.(2)44()()()()a b a b a b a bi a bi +=+-+-, 2、略.精心整理 第三章 复习参考题A 组(P116)1、(1)A ; (2)B ; (3)D ; (4)C .2、由已知,设z bi =(b R ∈且0b ≠); 则222(2)8(2)8(4)(48)z i bi i b b i +-=+-=-+-. 由2(2)8z i +-是纯虚数,得240480b b ⎧-=⎨-≠⎩,解得2b =-. 因此2z i =-.23、由12z z =,得 22cos 43sin m m θλθ=⎧⎨-=+⎩ 消去m 可得24sin 3sin λθθ=- 2394(sin )816θ=--.精心整理由于1sin 1θ-≤≤,可得精心整理精心整理精心整理精心整理精心整理精心整理精心整理精心整理。
最新[生活]高二数学《选修2-1》课后习题参考答案_图文优秀名师资料
分析性质定理及两个推论的条件和结论间的关系,可得如下结论:
扇形的面积S扇形=LR/2
3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。(2)0≤sinα≤1,0≤cosα≤1。
8、加强作业指导、抓质量。
[生活]高二数学《选修2-1》课后习题参考答案_图文
④初中阶段,我们只学习直角三角形中,∠A是锐角的正切;
(3)相离:直线和圆没有公共点时,叫做直线和圆相离.
186.25—7.1期末总复习及考试
圆内接四边形的性质叫做三角形的内切圆,内切圆的圆心叫做三角形的内心.
人教版A版高中数学选修2-1课后习题解答
高中数学选修2-1课后习题答案第一章常用逻辑用语1.1命题及其关系练习(P4)1、例:(1)若J+x-2=0,贝1J x=1;(2)若x=1,贝1+》一2=0.2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等.这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称.这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行.这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0.这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除.这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0.这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等.这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等.这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数.这是真命题.否命题:不是奇函数的函数的图象不关于原点对称.这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数.这是真命题.练习(P8)证明:证明:命题的逆否命题是:若a—b=1,则a2~b2+2a—4b—3a2-b2+2a-4b-3=(a+b)(a-b)+2<(i-b\-2?当。
一力=1时原式—ci+b-Q.-2.b-?>-b1—所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数。
与人的和a+b是偶数,则都是偶数.这是假命题.否命题:若两个整数。
,力不都是偶数,则a+b不是偶数.这是假命题.逆否命题:若两个整数。
与人的和a+b不是偶数,则。
,力不都是偶数.这是真命题.(2)逆命题:若方程x2+x-m=0有实数根,贝血>0.这是假命题.否命题:若m<Q,则方程x2+x-m=0没有实数根.这是假命题.逆否命题:若方程x2+x-m=0没有实数根,则m<0.这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等.这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上.这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形.这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等.这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形.这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等.这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题.所以,原命题也是真命题.习题1.1B组(P8)证明:要证的命题可以改写成“若p,则0”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设A3,CD是。
人教版高中数学选修2-1、2-2、2-3课后习题参考答案
新课程标准数学选修2—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9)函数()r V =(05)V ≤≤的图象为 根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-.这说明运动员在1t =s 附近以 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=.因此,车轮在开始转动后第 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、3213()34r V V π'=.4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以克/天的速率减少. 习题 B 组(P19) 1、(1) (2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-.注:图象形状不唯一.当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=; 当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-.当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16; 当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±.下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增.②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.(第2题)所以,当6ax =时,无盖方盒的容积最大. 3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m(第3题)因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点. 所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b-=-+⨯=--,54ba x <<.令845()0c ac bc L x x b b+'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =L .于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑取极值,得说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰.说明:体会通过分割、近似替换、求和得到定积分的近似值的方法. 2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ). 3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=L L将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=L作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得10133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得22333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,23x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算. 在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰;49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =L ),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m ∆∆∆L ,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n-上质量2()i i i lm x nρξξ∆≈∆=(1,2,i n =L ).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm n ξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55)(1)50; (2)503; (353; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =. 2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰; (3)21cos 2sin 2sin []224mx x mx mxdx dx mπππππππ----==-=⎰⎰; (4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰. 3、(1)0.202220()(1)[]49245245tkt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰. (2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、424003(34)[4]402W x dx x x =+=+=⎰(J ).习题 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 4240(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则20(31)105ttt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇. 此时,物体A 离出发地的距离为523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题 B 组(P60)1、(1)22a aa x dx --⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此2222aaa a x dx π--=⎰(2)120[1(1)]x x dx ---⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b bh h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x x y x+'=; (2)23(2)(31)(53)y x x x '=-+-; y xO1(第1(2)题)yxh b O(第2题)(3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+.3、32GMm F r'=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略. 5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >. 由于 所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P , 所以直线AB 的方程为001y x a x a --=--,即1()1y x a a=--.当0x =时,1a y a =-,即点B 的坐标是(0,)1a a -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去. 由于 所以,当2a =,即直线的倾斜角为时,的面积最小,最小面积为2. 9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为 m 3. 11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为,长为x ,所以宽为623.7x, 打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯ 23168.396655.9072 6.34x x=--,5.0898.38x <<. 令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为,时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x xdx x x dx x x x xπππ-=-=+=+⎰⎰; (5)原式=22001cos sin 2[]224x x x dx πππ---==⎰. 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+时,()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4l r =是函数()S r 在(0,)2l内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h =.容易知道,h R =是函数()V h 的极大值点,也是最大值点.所以,当h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得3α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x >令0y '=,即29600160x -=,24x ≈. 容易知道,24x =是函数y 的极小值点,也是最小值点.当24x =时,960020(1624)()9412424⨯+÷≈(元/时) 所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x =++⨯,50100x ≤≤ 令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xx x x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x =⎧⎨=-⎩得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得 1120()2k k S x x dx kxdx --=--⎰⎰3(1)6k -=.又因为16S =,所以31(1)2k -=. 于是1k =-说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程标准数学选修2—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列; ……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq++==; ……………………………小前提所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-L L (2n >,且n N *∈). 5、121217n n b b b b b b -=L L (17n <,且n N *∈). 6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形. 因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.(第6题)因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略.2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证.2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为 222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B ∠一定是锐角.2成等差数列,则=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题 A 组(P91)1、由于0a ≠,因此方程至少有一个跟b x a=. 假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则 1ax b = ①2ax b = ②①-②得因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为 (1tan )(1tan )2A B ++=展开得 1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得 tan tan 11tan tan A BA B +=-, 即tan()1A B +=.又因为0A B π<+<,所以4A B π+=.说明:本题也可以把综合法和分析法综合使用完成证明.3、因为 1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证 3sin 24cos2αα=-, 只要证226sin cos 4(cos sin )αααα=-- 即证 222sin 3sin cos 2cos 0αααα--=, 即证 (2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得 2b ac = ① 2x a b =+,2y b c =+ ② 要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得 22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由 tan()2tan αβα+= 得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证 3sin sin(2)βαβ=+即证 3sin[()]sin[()]αβααβα+-=++即证 3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=, 因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=,因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+.那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++-所以,当1n k =+时,命题也成立. 根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.习题 A 组(P96) 1、(1)略.(2)证明:①当1n =时,左边=1,右边=211=, 因此,左边=右边. 所以,当1n =时,等式成立. ②假设当n k =时等式成立,即2135(21)k k ++++-=L . 那么,22135(21)(21)(21)(1)k k k k k ++++-++=++=+L . 所以,当1n k =+时,等式也成立.根据①和②,可知等式对任何n N *∈都成立.(3)略.2、1111122S ==-⨯,2111111(1)()112232233S =+=-+-=-⨯⨯,3111111111(1)()()1122334223344S =++=-+-+-=-⨯⨯⨯.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相等.
这是真命题.
逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分
线上.
这是真命题.
(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.
逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.
学海无涯
高中数学选修 2-1 课后习题答案
第一章 常用逻辑用语
1. 命题及其关系
练习(P4)
1、略.
2、(1)真; (2)假; (3)真; (4)真.
3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.
2 若一个函数是偶函数,则这个函数的图象关于 y 轴对称. 这是真命a2 b2 2a 4b 3
(a b)(a b) 2(a b) 2b 3 a b 2 2b 3 a b 1 0 所以,原命题的逆否命题是真命题,从而原命题也是真命题.
习题 1.1 A 组(P8) 1、(1)是; (2)是; (3)不是; (4)不是.
2、证明:(1)充分性:如果a2 b2 c2 ab ac bc ,那么a2 b2 c2 ab ac bc 0 .
所以(a b)2 (a c)2 (b c)2 0
所以, a b 0 , a c 0 , b c 0 . 即 a b c ,所以, ABC 是等边三角形. (2)必要性:如果ABC 是等边三角形,那么a b c
2、(1)逆命题:若两个整数a 与 b 的和a b 是偶数,则 a,b 都是偶数. 这是假命题.
否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数. 这是假命题.
逆否命题:若两个整数a 与 b 的和a b 不是偶数,则 a,b 不都是偶数. 这是真命题. (2)逆命题:若方程 x2 x m 0 有实数根,则 m 0 . 这是假命题.
3 若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.
练习(P6)
1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是 0. 这是假命题. 否命题:若一个整数的末位数字不是 0,则这个整数不能被 5 整除. 这是假命题. 逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是 0. 这是真命题.
心 O 重合,则 AB,CD 是经过圆心O 的弦, AB,CD 是两条直径. 若 E 和圆心O 不重合,连结
AO, BO,CO 和 DO ,则 OE 是等腰AOB ,COD 的底边上中线,所以,OE AB ,OE CD .
AB 和 CD 都经过点 E ,且与OE 垂直,这是不可能的. 所以,E 和 O 必然重合. 即 AB 和 CD 是 圆的两条直径.
否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题. 逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题. 4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形
是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否
1、略.
2、(1)假; (2)真;
3、(1)充分条件,或充分不必要条件;
(3)既不是充分条件,也不是必要条件;
(3)真. (2)充要条件; (4)充分条件,或充分不必要条件.
4、充要条件是a2 b2 r2 .
习题 1.2 B 组(P13) 1、(1)充分条件; (2)必要条件; (3)充要条件.
否命题:若 m 0 ,则方程 x2 x m 0 没有实数根. 这是假命题.
学海无涯
逆否命题:若方程 x2 x m 0 没有实数根,则 m 0 . 这是真命题.
3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的 距离相等.
逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上. 这是真命题.
2 原命题和它的逆命题都是真命题, p 是 q 的充要条件;
3 原命题是假命题,逆命题是真命题, p 是 q 的必要条件.
学海无 涯
2、(1) p 是 q 的必要条件; (2) p 是 q 的充分条件; (3) p 是 q 的充要条件; (4) p 是 q 的充要条件.
习题 1.2 A 组(P12)
原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.
1.2 充分条件与必要条件
练习(P10)
1、(1) ; (2) ; (3) ; (4) . 4、(1)真; (2)真; (3)假; (4)真.
2、(1).
3(1).
练习(P12)
1、(1)原命题和它的逆命题都是真命题, p 是 q 的充要条件;
2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.
3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题. 否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题. 逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.
命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.
习题 1.1 B 组(P8)
证明:要证的命题可以改写成“若 p ,则 q ”的形式:若圆的两条弦不是直径,则它们不 能互相平分.
此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设 AB,CD 是 O 的两条互相平分的相交弦,交点是 E ,若 E 和圆
所以(a b)2 (a c)2 (b c)2 0
所以a2 b2 c2 ab ac bc 0
所以a2 b2 c2 ab ac bc
1.3 简单的逻辑联结词
练习(P18) 1、(1)真; (2)假.
3、(1) 2 2 5 ,真命题;
2、(1)真; (2)假. (2)3 不是方程 x2 9 0 的根,假命题;