第7章 DA转换器的应用
数电电子第7章 数模(DA)和模数(AD)转换
28
D7
27
D1
21
D0
20 )
VREF R 210
9
i0
Di
2i
VREF R 210
D
模拟输出电流(流入运算放大 器虚地)与10位二进制数的数 值(即数字量)成正比,实现 了数字/模拟电流的转换
式中D为输入二进制数的数值。
接入运算放大器后,则可 将数字量转换为模拟电压,运放 的输出电压:
(二)集成D/A转换器的结构及分类
各种类型的集成DAC器件多由参考电压源,电阻网络和电子开关三个 基本部分组成。
按电阻网络的结构不同,可将DAC分成T形R-2R电阻网络DAC、倒T 形R-2R电阻网络DAC及权电阻求和网络DAC等几类。由于权电阻求和网 络中电阻值离散性太大,精度不易提高,因此在集成DAC中很少采用。T 形R-2R电阻网络DAC、倒T形R-2R电阻网络DAC中只有两种阻值的电阻, 因此最适用于集成工艺,集成DAC普遍采用这种电路结构。倒T形R-2R电 阻网络DAC在集成芯片中比T形R-2R网络DAC应用更广泛。
(二)集成A/D转换器的主要参数 1.分辨率 其含义与DAC的分辨率一样,通 常也可用位数来表示,位数越多,分辨率(有时 也称分辨力)也越高。
2.量化编码电路
用数字量来表示采样信号时,必须把它转化成某个最 小数量单位的整数倍,这个转化过程叫量化,所规定的最 小数量单位叫作量化单位,用S表示。
将量化的数值用二进制代码表示,称为编码。这个二 进制代码便是A/D转换器的输出信号。
量化的方法一般有两种形式:
1)舍尾取整法
2)四舍五入法
用舍尾取整法量化时,最大量化误差为1S,用四舍五 入法量化时,最大量化误差为S/2。所以,绝大多数ADC 集成电路均采用四舍五入量化方式。
第7章充放电控制器
第七章充放电控制器7.1 充放电控制器的功能在独立运行的以风能、太阳能为主的可再生能源发电系统中,必须配备储能蓄电池,蓄电池起着储存和调节电能的作用。
当风力很大或日照充足而产生的电能过剩时,蓄电池将多余的电能储存起来;反之,当系统发电量不足或负载用电量大时,蓄电池向负载补充电能,并保持供电电压的稳定。
蓄电池,尤其是铅酸蓄电池,要求在充电和放电过程中加以控制,频繁的过充电和过放电都会影响蓄电池的使用寿命。
过充电会使蓄电池大量出气(电解水),造成水分散失和活性物质的脱落;过放电则容易加速栅板的腐蚀和不可逆硫酸化。
为了保护蓄电池不受过充电和过度放电的损害,则必须要有一套控制系统来防止蓄电池的过充电和过放电,称为充放电控制器。
控制器通过检测蓄电池的电压或荷电状态判断蓄电池是否已经达到过充点或过放点,并根据检测结果发出继续充、放电或终止充、放电的指令。
随着可再生能源发电系统容量的不断增加,设计者和用户对系统运行状态及运行方式的合理性的要求越来越高,系统的安全性也更加突出和重要。
因此,近年来设计者又赋予控制器具有更多的保护和监测功能,使早期的蓄电池充电控制器发展到今天比较复杂的系统控制器。
此外,控制器在控制原理和使用的元器件方面也有了很大发展和提高,目前先进的系统控制器已经使用了微处理器,实现了软件编程和智能控制。
可再生能源系统中充放电控制器的功能主要有:1)高压(HVD)断开和恢复功能:控制器应具有输入高压断开和恢复连接的功能。
2)欠电压(LVG)告警和恢复功能:当蓄电池电压降到欠电压告警点时,控制器应能自动发出声光告警信号;3)低压(LVD)断开和恢复功能:这种功能可防止蓄电池过放电。
通过一种继电器或电子开关连结负载,可在某给定低压点自动切断负载。
当电压升到安全运行范围时,负载将自动重新接入或要求手动重新接入。
这一功能也往往通过逆变器来实现,而充电控制器不包含这一功能;4)保护功能:防止任何负载短路的电路保护;防止充电控制器内部短路的电路保护;防止夜间蓄电池通过太阳电池组件反向放电保护;防止负载、太阳电池组件或蓄电池极性反接的电路保护;防止感应雷的线路防雷。
PIC单片机的AD和DA技术
§7.3 D/A转换技术
• D/A转换器(数模转换器)是把数字量转换成与之成一
定比例的模拟量的线性电路器件。
• 衡量一个D/A转换器的性能的主要参数有:分辨率、转
换时间、精度和线性度等。
• 主要朝着高精度、高速度、高可靠性和低功耗等方面
发展。
• 按分辨率分有八位、十位、十二位、十四位、十六位
几种;按接口形式分有串行与并行的;按芯片集成组 分有单路、双路、四路、八路。主要的厂家有AD公司、 MAXIM公司、TI公司、Linear Technology公司、 Intersil公司、Xicor公司、Cirrus公司等。
– 转换数据可以在SCLK脉冲串的作用下从DOUT 引脚逐位输出,数据输出的顺序为先高位后低 位。
• 在SCLK的下降沿,DOUT输出数据,在
SCLK的上升沿,数据稳定。
• 在SCLK信号为高电平期间单片机从DOUT引
脚上读数据。需要13个时钟脉冲下降沿来 传送12位数据元和一个导引位。
4 应用实例
• 旁路电容选择
– 推荐最低值是0.1μF. 如果基准的输出阻抗值较高 或是内含纹波等噪声,则紧靠于引脚REF旁安装 一个的旁路电容。
3 MAX187时序
• MAX187的接口时序
3 MAX187时序(续1)
• Max187转换和读数据操作由/CS和SCLK引
脚的数字输入信号控制。
• /CS的下降沿触发转换序列:
• ⑧等待A/D转换完成,读取转换结果
– 当启动A/D转换后,ADCON0<2>会一直保持高 电平,到转换结束自动跳到低电平。通过检测 这一位,判断A/D的转换状态。转换结束后可 以直接读取结果。
例片内RA0通道A/D转换
数模及模数转换器接口71DA转换器
20 8 9 11
2 3
4
1
5
6 VO
19 ILE IOUT2 12
U2
LM741
7
1 2
CS WR1 AGND
3
P27 /WR
17 18
XFER WR2 DGND
10
+12
DAC0832LCJ(20)
(c)
数模及模数转换器接口71DA转换
器
2、
主要应用在多路D/A转换器同步系统中。
DB
VCC
P27 /WR
D 0 VCC D1 D 2 VREF D3 D 4 FB D5 D 6 IOUT1 D7
19 ILE IOUT2
1 2
CS WR1 AGND
17 18
XFER WR2 DGND
DAC0832LCJ(20)
VCC VREF(-5V) -12 20
8
5
1
4
9
11
2
6 VO
3
12
U2
LM741
7
3
+12 10
当WR和2 否则
X均FER为低电平时, =L1E,2此时允许D/A转换, LE2=0,将数据锁存于DAC寄存器中
数模及模数转换器接口71DA转换 器
三、DAC0832管脚功能
引脚功能: D0~D7 数据线 ILE输入锁存允许信号
CS片选信号
U1
7 6 5 4 16 15 14 13
D0 D1 D2 D3 D4 D5 D6 D7
图 8-3 D A C 0832 引 脚 图
AGND:模拟地;数模D及模G数N转换D器:接口数71D字A转换地。
器
10AD转换器
uo (V)
d0 输入 d1 uo 或 io
…
dn-1
D/A
输出
7 6 5 4 3 2 1 0
D
000 001 010 011 100 101 110 111
uo Ku (dn 1 2n 1 dn 2 2n 2 d1 21 d0 20 )
《数字电子技术基本教程》
Vi n 2
量化误差 =
如:采样的电 压分别是7/8V (0.875)和 0.9V时,编码 都为111,但前者 无误差,后者 存在误差。
输入 信号 1V 7/8V
二进制 代表的模拟 代码 电压 111 110 7=7/8 (V)
输入 信号 1V
二进制 代表的模拟 代码 电压
111
7=14/15(V) 6=12/15(V) 5=10/15(V) 4= 8/15(V) 3= 6/15(V) 2= 4/15(V) 1= 2/15(V) 0 = 0 (V)
vo RF i
V R i REF (d3 23 d 2 22 d1 21 d 0 20 ) 2 24
缺点:电阻值分散,相差太大
《数字电子技术基本教程》
10.2.2 倒T型电阻网络DAC
电阻网络中的种类少 (仅R和2R两种)
R
不论模拟开关接到运算放大器的 反相输入端(虚地)还是接到地, 也就是不论输入数字信号是1还是0, 各支路的电流不变。
《数字电子技术基本教程》
DAC0832
特点 ① 8位DA转换器 ② COMS工艺 ③ 倒T型电阻网络 ④ 内部有2个数据寄存器 ⑤ 直通、单缓冲、双缓冲三种工作方式
《数字电子技术基本教程》
VCC(+5V) NC GND VEE Io D7 D6 D5 D4 1 2 3 4 5 6 7 8 引脚排列图 DAC0808 16 15 14 13 12 11 10 9 COP VREF(-) VREF(+ ) VCC D0 D1 D2 D3 D0 D1 D2 D3 D4 D5 D6 D7 2.4kΩ 5 13 6 7 8 DAC0808 9 10 11 12 3 14 15 2 4 16 Io RL +VREF(+5V) 2.4kΩ
第7章 模数转换及数模转换
一个完整的微机闭环实时控制系统示意图
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
2
7.2 传感器
• A/D转换器是将模拟的电信号转换成数字信号。所以将物理量 转换成数字量之前,必须先将物理量转换成电模拟量。传感 器是把非电量的模拟量(如温度、压力、流量等)转换成电 压或电流信号。 • 因此,传感器一般是指能够进行非电量和电量之间转换的敏 感元件。传感器的精度直接影响整个系统的精度,如果传感 器误差较大,则测量电路、放大电路以及A/D转换电路和微机 的处理都会受到影响。 • 物理量的多样性使得传感器的种类繁多,下面对几种常用的 传感器作以简单的介绍。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
15
1.DAC 0832主要特性 . 主要特性
• • • • • • • • • • 8位分辨率, 电流型输出, 外接参考电压-10V~+10V, 可采用双缓冲、单缓冲或直接输入三种工作方式, 单电源+5V~+15V, 电流建立时间1µs, R-2R T型解码网络, 线性误差0.2%FS(FS为满量程), 非线性误差0.4%FS, 数字输入与TTL兼容。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
3
1.温度传感器 .
• 热电偶是一种大量使用的温度传感器,它是利用热电势效应 来工作的,室温下的典型输出电压为毫伏数量级。温度测量 范围与热电偶的材料有关,常用的有镍铝-镍硅热电偶和铂铑铂热电偶。热电偶的热电势-温度曲线一般是非线性的,需要 采取措施进行非线性校正。 • 另一种温度传感器为热敏电阻,它是一种半导体新型感温元 件,具有负的电阻温度系数,当温度升高时,其电阻值减小, 在使用热敏电阻作为温度传感器时,将温度的变化反映在电 阻值的变化中,从而改变电压或电流值。
第七章 IO接口_AD_DA技术
C口上半部分(PC7~PC4)随A口称为A组,
C口下半部分(PC3~PC0)随B口称为B组。
其中A口可工作于方式0、1、和2,而B口只能工作在 方式0和1。 例如:写入工作方式控制字95H
可将8255A编程为:A口方式0输入,B口方式1输出, C口的上半部分(PC7~ PC4)输出,C口的下半部分 (PC3~PC0)输入。
第9章 MCS-51扩展I/O接口的设计 9.1 I/O接口扩展概述
I/O (输入/输出)接口是MCS-51与外设交换数字信 息的桥梁。
I/O扩展也属于系统扩展的一部分。
真正用作I/O口线的只有P1口的8位I/O线和P3口的某些 位线。 在多数应用系统中,MCS-51单片机都需要外扩I/O接 口电路。
数据总线为三态 非法状态 数据总线为三态
0
0 1 1 × 1 ×
0
1 0 1 × 1 ×
1
1 1 1 × 0 1
0
0 0 0 × 1 1
0
0 0 0 1 0 0
9.2.2 工作方式选择控制字及C口置位/复位控制字
8255A有三种工作方式:
(1) 方式0:基本输入输出; (2) 方式1:选通输入输出; (3) 方式2:双向传送(仅A口有)。
各端口的工作状态与控制信号的关系如表9-1所示。
表9-1
A1 A0
8255A端口工作状态选择
RD* WR* CS* 工作状态
0
0 1
0
1 0
0
0 0
1
1 1
0
0 0
读端口A:A口数据→数据总线 读端口B:B口数据→数据总线 读端口C:C口数据→数据总线 写端口A:总线数据→A口 写端口B:总线数据→B口 写端口C:总线数据→C口 写控制字:总线数据→控制字寄存 器
单片机DA转换(一)
单片机DA转换(一)引言概述:单片机DA转换是指通过数字信号与模拟信号之间的转换,将数字信号转换为相应的模拟信号输出。
本文将介绍单片机DA转换的基本原理和相关知识,包括DA转换的作用、工作原理、不同类型的DA转换以及相关应用。
正文:1. DA转换的作用- 将数字信号转换为模拟信号,实现数字系统与模拟系统之间的有效连接。
- 实现对模拟信号的控制和调节,用于控制各种模拟设备,如温度传感器、电机等。
- 提供数字信号与模拟信号之间的接口,用于与外部设备进行数据交换。
2. DA转换的工作原理- 采用采样-量化-编码的过程,将输入的连续模拟信号转换为离散的数字信号。
- 通过数值编码将数字信号转换为相应的模拟量输出。
3. 不同类型的DA转换器- 串行式DA转换器:采用串行输入和并行输出的方式进行转换,适用于低速、低分辨率的应用。
- 并行式DA转换器:采用并行输入和并行输出的方式进行转换,适用于高速、高分辨率的应用。
- PWM式DA转换器:通过调整占空比来实现模拟信号的输出,适用于需要高分辨率和高精度的应用。
4. DA转换器的应用- 电子测量仪器:用于测量和检测各种物理量的仪器,如数字万用表、示波器等。
- 工业自动化控制系统:用于控制和监测生产线上的各种设备和工艺变量。
- 通信系统:用于数字信号的调制和解调,如调制解调器、数字移位寄存器等。
- 音频信号处理:用于数字音频信号的转换和处理,如音频播放器等。
- 机器人技术:用于控制和执行机器人的各种动作和任务。
总结:本文介绍了单片机DA转换的基本原理和相关知识,包括其作用、工作原理、不同类型的DA转换器以及应用范围。
了解和掌握这些知识对于单片机设计和应用具有重要意义,能够帮助我们更好地实现数字信号与模拟信号的转换和控制。
《计算机控制技术》习题参考答案(完整版)
《计算机控制技术》(机械工业出版社范立南、李雪飞)习题参考答案第1章1.填空题(1) 闭环控制系统,开环控制系统(2) 实时数据采集,实时决策控制,实时控制输出(3) 计算机,生产过程(4) 模拟量输入通道,数字量输入通道,模拟量输出通道,数字量输出通道(5) 系统软件,应用软件2.选择题(1) A (2) B (3) C (4) A (5) B3.简答题(1) 将闭环自动控制系统中的模拟控制器和和比较环节用计算机来代替,再加上A/D转换器、D/A转换器等器件,就构成了计算机控制系统,其基本框图如图所示。
计算机控制系统由计算机(通常称为工业控制机)和生产过程两大部分组成。
工业控制机是指按生产过程控制的特点和要求而设计的计算机,它包括硬件和软件两部分。
生产过程包括被控对象、测量变送、执行机构、电气开关等装置。
(2)操作指导控制系统:其优点是控制过程简单,且安全可靠。
适用于控制规律不是很清楚的系统,或用于试验新的数学模型和调试新的控制程序等。
其缺点是它是开环控制结构,需要人工操作,速度不能太快,控制的回路也不能太多,不能充分发挥计算机的作用。
直接数字控制系统:设计灵活方便,经济可靠。
能有效地实现较复杂的控制,如串级控制、自适应控制等。
监督计算机控制系统:它不仅可以进行给定值的控制,还可以进行顺序控制、最优控制、自适应控制等。
其中SCC+模拟调节器的控制系统,特别适合老企业的技术改造,既用上了原有的模拟调节器,又可以实现最佳给定值控制。
SCC+DDC 的控制系统,更接近于生产实际,系统简单,使用灵活,但是其缺点是数学模型的建立比较困难。
集散控制系统:又称分布式控制系统,具有通用性强、系统组态灵活,控制功能完善、数据处理方便,显示操作集中,调试方便,运行安全可靠,提高生产自动化水平和管理水平,提高劳动生产率等优点。
缺点是系统比较复杂。
计算机集成制造系统:既能完成直接面向过程的控制和优化任务,还能完成整个生产过程的综合管理、指挥调度和经营管理的任务。
第7章机电一体化系统整体设计与禁忌
第7章机电一体化系统整体设计与禁忌7.1机电一体化系统整体设计概述7.1.1机电一体化系统整体设计的主要内容机电一体化系统整体设计就是应用系统整体技术,从系统整体目标动身,综合分析产品的性能要求和各机电组成单元的特性,选择最合理的单元组合方案,实现机电一体化产品整体最优化设计的进程。
随着大规模集成电路的出现,机电一体化产品取得了迅速普及和迅猛发展,从家用电器到生产设备,从办公自动化到军事装置,从交通运输装备到航空航天飞行器,机电紧密结合的程度都在迅速增加,形成了一个纵深而广漠的市场。
市场竞争规律要求产品不仅具有高性能,而且要有低价钱,这就给产品设计人员提出了愈来愈高的要求。
另一方面,种类繁多、性能各异的集成电路、传感器和新材料等,给机电一体化产品设计人员提供了众多的可选方案,使设计工作具有更大的灵活性。
如何充分利用这些条件,应用机电一体化技术,开发出知足市场需求的机电一体化新产品,是机电一体化整体设计的重要任务。
一般来讲,机电一体化整体设计应包括下述一些主要内容。
1.技术资料准备1)普遍搜集国内外有关技术资料,包括现有同类产品资料、相关的理论研究功效和新发展的先进创新技术资料等。
通过对这些技术资料的分析比较,了解现有技术发展的水平、趋势和创新点。
这是肯定产品技术组成的主要依据。
2)了解所设计产品的利用要求,包括功能、性能等方面的要求。
另外,还应了解产品的极限工作环境、操作者的技术素质、用户的维修能力等方面的情况。
利用要求是肯定产品技术指标的主要依据。
3)了解生产单位的设备条件、工艺手腕、生产基础等,作为研究具体结构方案的重要依据,以保证缩短设计和制造周期、降低生产本钱、提高产品质量。
2.性能指标肯定性能指标是知足利用要求的技术保证,主要应依据利用要求的具体项目来相应地肯定,固然也受到制造水平和能力的约束。
性能指标主要包括以下几项:(1)功能性指标包括运动参数、动力参数、尺寸参数、品质指标等实现产品功能所必需的技术指标。
AD转换器的基本概念及基本结构DA转换器的工作原理及其
➢D/A、A/D转换器的基本概念及基本结构 ➢D/A转换器的工作原理及其特点 ➢A/D转换器的工作原理
实用文档
1
第10章
模拟量输入/输出接口技术
10.1 典型D/A转换器芯片
控制系统中传感器所检测的信号如温度、压力、流 量、速度、湿度等物理量都是随着时间连续变化的模拟 量,为了能用计算机对模拟量进行采集、加工和输出, 就需要把模拟量转换成便于计算机存储和加工的数字量 (称为A/D转换);同样经过计算机处理后的数字量必须 转换成模拟量(称为D/A转换)才能控制外部设备。
实用文档
6
第10章
模拟量输入/输出接口技术
10.1.2 DAC0832及其应用 DAC0832是8位分辨率的D/A转换集成芯片,其明显特
点是与微机连接简单、转换控制方便、价格低廉,在微 机系统中得到了广泛的应用。D/A转换器的输出一般都要 接运算放大器,微小信号经放大后才能驱动执行机构的 部件。
AC0832的主要技术指标有:分辨率为8位;转换速度 约为1μs;非线性误差为 0.20%FSR;温度系数为2×106/℃;工作方式为双缓冲、单缓冲和直通方式;逻辑输 入与TTL电平兼容;功耗为20mW;单电源供电。
模拟量输入/输出接口技术
(2)梯形电阻 D/A转换器:如图 10-2所示,该电阻 网络中仅有R和2R 两种电阻,切换开 关的工作原理与二 进制加权电阻网络 D/A转换工作原理 相同。
2R
d n 1
2R
K1
Rf
R
d n2
2R
K2
d1
+
2R
R 2R
VREF
K -2 梯形电阻D/A转换器的结构
实用文档
自动控制系统—— 第7章-1 离散系统的基本概念
第7章 线性离散系统的 分析与校正
7.1离散系统的基本概念
1
7.1离散系统的基本概念 7.1.1 信号分类 7.1.2 采样控制系统 7.1.3 离散控制系统的特点 7.1.4 信号采样与保持
2
7.1离散系统的基本概念
7.1.1 信号分类 1)连续时间,连续幅度信号(CT signal),又称 为模拟信号(Analog Signal)
D/ A
对象
f (t)
反馈装置
2)A/D转换器:将连续信号转换为离散信号
采样间隔: T
采样频率:Leabharlann fs1 TT 2
fs 2
是采样角频率
8
r(t) e(t)
e(kT) 数字 u(kT)
u1(t) 被控 c(t)
A/ D
计算机
D/ A
对象
f (t)
反馈装置
3)D/A转换器:将离散信号转换为连续信号
采样脉冲序列
采样的离散信号
1.5 e*(t) e(t)T (t)
13
采样信号为
e*(t) e(t)T (t) e(t) (t nT ) n0
e(t) 只在 t nT时取值,所以
e*(t) e(nT ) (t nT ) n0
采样定理: 若采样器的采样频率ωs大于或等于其输入
连续信号f(t)的频谱中最高频率ωmax的两倍,即 ωs≥ωmax,则能够从采样信号 f(t)中完全复现
离散信号中存在高频信号,一般在D/A转换 后需要加滤波器虑除高频噪声
4)计算机实现数字控制器
9
数字控制系统的典型结构
r (t )
e(t )
e* (t)
u (t )
常见DAC转换器及应用
首页 向上 向下 未页 返回
单片机电子教案
9.1.1 电压输出型
bojia@
电压输出型D/A转换器虽有直接从电阻阵 列输出电压的,但一般采用内置输出放 大器以低阻抗输出。直接输出电压的器 件仅用于高阻抗负载,由于无输出放大 器部分的延迟,故常作为高速D/A转换器 使用,如TLC5620。
首页 向上 向下 未页 返回
单片机电子教案
bojia@
9.1.3乘算型 D/A转换器中有使用恒定基准电压的,也有在 基准电压输入上加交流信号的,后者由于能得 到数字输入和基准电压输入相乘的结果而输出, 因而称为乘算型DA转换器。乘算型D/A转换器 一般不仅可以进行乘法运算,而且可以作为使 输入信号数字化地衰减的衰减器及对输入信号 进行调制的调制器使用, 如AD7533。
bojia@
例9.2 正弦波信号在通信信号中被广泛应用,应用DAC0832与 MCS-5l接口作正弦波形发生器,如上图9-8所示。 分析:图中采用波形叠加的方法,在0°、180°和360°时仅 有直流分量80H。从0°~90°、Sin0°、Sin90°其值为0~1, 分成0~127份,即当Sin0°=00H,Sin90°=7FH。现将0°~ 90°分成9段,每段10°,查表得出 其对应的正弦值和16进制 数字量。将其数字量依次存入某程序存储区。然后用逐点加的 方法得出正半波,又用逐点相减的方法得出负半波。bojia 首页 向上 向下 未页 返回
单片机电子教案
bojia@
1.芯片管脚功能及定义DAC0832模数转换器的引脚功能
IOUT1~IOUT2:2路模拟 电流输出。 ILE:数据允许锁存信号 ,高电平有效在ILE的沿,将A 、B、C上的通道地址锁存到内 部的地址锁存器。 D0~D7:八位数据线。 CS:寄存器选择信号,低 电平有效。 /WR1:输入寄存器写选通 信号,低电平有效。 /XFER:数据传送信号, 低电平有效。
电子设计创新训练(基础)第四章 常用AD、DA转换器应用介绍
此程序仅为一个采样示例, 主函数实际没有使用意义。
(二)8路8位分辨率ADC0809及与MCU的直接I/O接口
1、简介
ADC0809芯片有28条引脚,采用双列直 插式封装,如图3-13所示。下面说明各引脚功 能。IN0~IN7:8路模拟量输入端。2-1~2-8: 8位数字量输出端。ADDA、ADDB、ADDC:3 位地址输入线,用于选通8路模拟输入中的一路。 ALE:地址锁存允许信号,输入,高电平有效。 START: A/D转换启动信号,输入,高电平 有效。 EOC: A/D转换结束信号,输出, 当A/D转换结束时,此端输出一个高电平(转 换期间一直为低电平)。 OE:数据输出允许 信号,输入,高电平有效。当A/D转换结束时, 此端输入一个高电平,才能打开输出三态门, 输出数字量。CLK:时钟脉冲输入端。要求时 钟频率不高于640KHZ(典型500KHZ,转换时 间小于100μs)。 REF(+)、REF(-):基 准电压。 Vcc:电源,单一+5V。GND:地。 图4-13 ADC0809引脚图
图4-8 AD57A的管脚图
A0 :字节地址/短周期,高为8位变换/输出低4位,低为12位变换/输出高8位; STS :变换状态,高为正在变换,低为变换结束.STS总共有三种接法:(1)空着:只 能在启动变换,25 μ s以后读A/D结果;(2)接静态端口线:可用查询方法,待STS为 低后再读A/D变换结果;(3)接外部中断线:可引起中断后,读A/D变换结果; REFIN :基准输入. REFOUT :内部10V基准输出; BIP OFF :双极性方式时,偏置电压输入端(10V基准);
ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存 入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上 升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变 低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/ D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输 入高电平 时,输出三态门打开,转换结果的数字量输出到数据总线上。
da转换原理
da转换原理
DA转换原理是指将数字信号转换为模拟信号的过程。
数字信号是由0和1表示的离散信号,而模拟信号则是连续的信号。
DA转换器主要由数字模拟转换器(DAC)和时钟信号发生器组成。
首先,数字信号通过DAC转换器被解码成为二进制信号。
DAC转换器中的数字模拟转换器将二进制信号转换成对应的模拟电压或电流输出。
这个转换过程是通过基于电压或电流的模数转换器来实现的。
模数转换器是将数字信号转换为模拟信号的关键部件。
它将数字信号按照一定的时间间隔进行采样,并将每个采样点用对应的模拟信号表示。
这样就得到了一系列连续的模拟信号。
时钟信号发生器是DA转换器的另一个重要组成部分。
它用于控制模数转换器的采样频率,即决定了数字信号中的每个采样点之间的时间间隔。
时钟信号发生器的工作频率越高,DA转换器的转换精度就越高。
最后,经过模数转换器转换成的模拟信号进一步经过滤波和放大等处理,被输出为模拟信号。
这个输出信号可以用来驱动模拟设备,例如扬声器,显示器等。
综上所述,DA转换的原理是通过DAC转换器将数字信号解码成为模拟电压或电流输出。
这个过程主要依靠模数转换器和
时钟信号发生器来实现。
最后,经过滤波和放大等处理,转换得到的模拟信号被输出用于控制模拟设备。
第八章AD和DA转换器
VREF (dn-1 2 n-1 d n-2 2 n-22nd 121 d °20)U 0V REF(d n 1d n 22nd 1 21 d 0 20)10数模和模数转换器在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工 处理;经过处理获得的输出数据又要送回物理系统, 对系统物理量进行调节和控制。
传感器 输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。
这种模拟量到数字量的转换称为模-数(A/D)转换。
处理后获得的数字量有时又需转换成模拟量,这种转 换称为数-模(D/A)变换。
A/D 转换器简称为 ADC 和D/A 转换器简称为 DAC 是数字系统和 模拟系统的接口电路。
一、D/A 转换器D/A 转换器一般由变换网络和模拟电子开关组成。
输入 n 位数字量D (=D n-i …D i D o )分别控制这些电子开关, 通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。
1、倒T 型电阻网络D/A 转换器倒T 型电阻解码D/A 转换器是目前使用最为广泛的一种形式,其电路结构如图10.1.1 所示。
当输入数字信号的任何一位是“ 1”时,对应开关便将 2R 电阻接到运放反相输入端, 而当其为“ 0”时,则将电阻2R 接地。
由图7.2可知,按照虚短、虚断的近似计算方法,求 和放大器反相输入端的电位为虚地,所以无论开关合到那一边,都相当于接到了“地”电位 上。
在图示开关状态下,从最左侧将电阻折算到最右侧,先是 2R//2R 并联,电阻值为 R , 再和R 串联,又是2R , 一直折算到最右侧,电阻仍为 R ,则可写出电流I 的表达式为IV REFR只要V REF 选定,电流I 为常数。
流过每个支路的电流从右向左,分别为「、~2、「3、…。
21 22 23当输入的数字信号为“ 1”时,电流流向运放的反相输入端,当输入的数字信号为“ 0”时, 电流流向地,可写出I 的表达式12d n 1:d n 2在求和放大器的反馈电阻等于R 的条件下,输出模拟电压为U o RI 讯知1知2d12nd0)2、权电流型D/A转换器倒T型电阻变换网络虽然只有两个电阻值,有利于提高转换精度,但电子开关並非理想器件,模拟开关的压降以及各开关参数的不一致都会引起转换误差。
(完整版)AD、DA转换原理数模、模数转换
2. 工作原理
由于集成运算放大器的电流求和点Σ为虚地, 所以每个2R电阻的上端都相当于接地,从网络的A、 B、C点分别向右看的对地电阻都是2R。
2020/7/25
9
因此流过四个2R电阻的电流分别为I/2、I/4、 I/8、I/16。电流是流入地,还是流入运算放大器, 由输入的数字量Di通过控制电子开关Si来决定。故 流入运算放大器的总电流为:
1 分辨率 = 2n 1
位数越多,能够分辨的最小输出电压变化量就
越小,分辨率就越高。也可用位数n来表示分辨率。
2020/7/25
16
2. 转换速度
D/A转换器从输入数字量到转换成稳定的模拟 输出电压所需要的时间称为转换速度。
不同的DAC其转换速度也是不相同的,一般约 在几微秒到几十微秒的范围内。
2020/7/25
精度由电阻的精度定,而此电路中阻值差别大,对集成不利
2020/7/25
7
倒T形电阻网络DAC
双向模拟开关 DD1电= =.源10电时时组电路接接成路组运 地。由成放解码网络、模拟开关、求和放求 算大放和器大集和器成基运准
基准参 考电压
2020/7/25
R-2R倒T 形电阻解 码网络
图7-2 倒T型电阻网络DAC原理图
模拟量:
uo=K(D3×23+D2×22+D1×21+D0×20)10
uo=K(1×23+1×22+0×21+1×20)10
(K为比例系数)
2020/7/25
3
组成D/A转换器的基本指导思想:将数字量按 权展开相加,即得到与数字量成正比的模拟量。
n位D/A转换器方框图
D/A转换器的种类很多,主要有: 权电阻网络DAC、 T形电阻网络DAC 倒T形电阻网络DAC、 权电流DAC
第7章 AD、DA、CMP和TSI模块
第7章A/D、D/A、CMP和TSI模块本章导读:作为工业控制及测量最主要的模块之一,模/数转换(ADC)及数/模转换(DAC)的是嵌入式系统应用的基本内容之一。
比较器CMP也是嵌入式应用系统中基本的控制逻辑之一。
触摸感应接口TSI 作为一种新型的人机交互手段,已应用于越来越多的嵌入式系统。
本章主要知识点有①A/D转换的基本知识及一般编程模型;②D/A转换的基本知识及一般编程模型;③比较器CMP模块的基本知识及一般编程模型;④TSI模块的基本知识及一般编程模型。
7. 1 16位A/D转换模块的驱动构件设计在过程控制和仪器仪表中,多数情况下是由嵌入式计算机进行实时控制及实时数据处理的。
计算机所加工的信息是数字量,而被测控对象往往是一些连续变化的模拟量(如温度、压力、速度或流量等)。
模/数(Analog/Digital,A/D)转换模块是嵌入式计算机与外界连接的纽带,是大部分嵌入式应用中必不可少的重要组成部分,该部分的性能直接影响到嵌入式设备的总体性能。
本节首先简要阐述A/D转换的基础知识,接着给出K60 MCU内部A/D转换模块的基本编程方法,并封装了A/D转换构件,可供实际开发参考使用。
7. 1. 1 A/D转换的基础知识A/D转换模块(Analog To Digital Convert Module)即模/数转换模块,其功能是将电压信号转换为相应的数字信号。
数字控制系统如图7-1所示。
实际应用中,该电压信号可能由温度、湿度、压力等实际物理量经过传感器和相应的变换电路转化而来。
经过A/D转换后,MCU就可以处理这些物理量。
进行A/D转换,应该了解以下一些基本问题:第一,采样精度是多少;第二,采样速率有多快;第三,滤波问题;第四,物理量回归等。
图7-1数字控制系统框图1. 采样精度采样精度就是指数字量变化一个最小量时模拟信号的变化量,即采样位数。
通常,MCU 的采样位数为8位,某些增强型的可达到10位,而专用的A/D采样芯片则可达到12位、14位,甚至16位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.3 DAC0832的输出方式
单极性输出
VREF Rfb
DAC0832
IOUT1
IOUT2
−5V
− LM324
+
双极性输出
Vout
VREF Rfb
DAC0832
IOUT1
IOUT2
−5V 10kΩ
−
LM324 +
5kΩ VA
10kΩ
− LM324
+
Vout
图中若参考电压VREF为5V,则单极性输出电路中电压Vout=0~+5V; 双极性输出电路中电压VA=0~+5V,Vout= 5~+5V。
P2.5 P0.0~P0.7
P2.7
89S51
WR
P2.6
17
CS
Rfb
D0~D7 XFER
IOUT1
IOUT2
DAC0832 (1)
WR1
−
LM324 +
WR2 ILE Vcc
+5V
ILE Vcc CS
D0~D7
DAC0832 (2) Rfb
XFER
WR1
IOUT1
WR2
Байду номын сангаас
IOUT2
−
LM324 +
Iout1 11
Vout2
12V
− +
+12V
LM324
+5V
D4 D5 D6 D7
+5V
30pF
30pF
D0 1 P1.0
Vcc 40
D1 2 P1.1 D2 3 P1.2 D3 4 P1.3
39
P0.0 P0.1
38
P0.2 37
D4 5
D5 6
D6 7
D7 8
9
10μF
10 11
10kΩ
12
13
• 直通方式
将输入锁存器和DAC寄存器的有关控制信号都置为有效状态,当数 字量送到数据输入端时,不经过任何缓冲立即进入D/A转换器进行 转换,这种方式一般不用于单片机控制系统。
• 单缓冲器方式
将输入锁存器或DAC寄存器的任意一个置于直通方式而另一个受 CPU控制,当数字量送入时只经过一级缓冲就进入D/A转换器进行 转换,这种方式适用于只有一路模拟量输出或有几路模拟量输出但 不要求同步的系统。
11
九江职业技术学院电气工程系
7.2.1 DAC0832引脚及内部结构
DAC0832由8位输入寄存器 ,8位D / A转换器 及逻辑控 制单元组成。 D / A转换器采用28=256级的倒T型R-2R电阻 译码网络,基准电压Vref, D / A转换器输出为电流,经过一个 外接的运算放大器转换为电压输出。
9
九江职业技术学院电气工程系
7.1.2 D/A转换器的性能指标
• 建立时间
从输入数字量到转换为模拟量输出所需的时间,反映 D/A转换器的速度快慢程度,一般电流型D/A转换器比 电压型D/A转换器快。
• 转换精度
在D/A转换器转换范围内,输入数字量对应的模拟量实 际输出值与理论值之间的最大误差,主要包括失调误差、 增益误差和非线性误差等。
MOV DPTR,#0BFFFH;送DAC0832(2)的地址
MOV A,#data2
MOVX @DPTR,A
;将data 2送DAC0832(2)的输入锁存器
MOV DPTR,#7FFFH ;送两片DAC0832的DAC寄存器地址
MOVX @DPTR,A
;进行两路数据同步转换输出
18
九江职业技术学院电气工程系
输入 锁存器
LE1 &
DAC
寄存器
LE2 &
D/A 转换器
&
VREF
IOUT2
IOUT1
Rfb
AGND
VCC
WR2
XFER
九江职业技术学院电气工程系
图1 DAC0832电路结构图
数
D7 13 D6 14 8
据
D5 15
位 数
输
D4 16 据 D3 4 寄
入
D2 5 存 D1 6 器
端 D0 7
输入 允许
7.1.2 D/A转换器的性能指标
• 分辨率是指输入数字量的最低有效位(LSB)发生
变化时,所对应的输出模拟量(常为电压)的变化 量。它反映了输出模拟量的最小变化值。
• 分辨率与输入数字量的位数有确定的关系,可以表 示成FS /2n 。FS表示满量程输入值,n为二进制 位数。 对于5V的满量程,采用8位的DAC时,分辨率为 5V/256=19.5mV;当采用12位的DAC时,分辨率则 为5V/4096=1.22mV。显然,位数越多分辨率就越高。
P0.0~P0.7
89S51
P2.7 WR
16
+5V
ILE Vcc
D0~D7
VREF
DAC0832
CS
Rfb
WR1 XFER WR2
IOUT1 IOUT2
−5V
− LM324
+
例1: 利用图示电路,在Vout端产 生锯齿波信号输出。
START:MOV DPTR,#7FFFH
;送DAC0832的地址
MOV A,#00H
4
九江职业技术学院电气工程系
7.1.1 D/A转换的工作原理
• 在进行转换时首先将单片机输出的数字信号传递到数据寄
存器中,然后由模拟电子开关把数字信号的高低电平变成 对应的电子开关状态。当数字量某位为“1”时,电子开关 将基准电压VR接入电阻网络的相应支路,若为“0”时,则 将该支路接地。各支路的电流信号经过电阻网络加权后, 由运算放大器求和并转换成电压信号,作为D/A转换器的 输出。
25
12MHz
17 P3.7/RD 18 XTAL2
P2.3 24 P2.2 23
19 XTAL1
P2.1 22
20 GND
P2.0 21
+5V
Vout1 +5V 10kΩ
S1 S2 S3
21
九江职业技术学院电气工程系
7.4.3 低频信号发生器的软件设计
• 低频信号发生器由主程序、定时器中断子程序等部分组成。
7.1.1 D/A转换的工作原理
7
九江职业技术学院电气工程系
7.1.1 D/A转换的工作原理
• 由于数字量的不连续性,同时D/A转换器进行转
换及单片机输出数据都需要一定的时间,因此输出
的模拟量随时间的变化曲线是呈阶梯状不连续的曲
线。
A
Δt越小输出越光滑,可 以近似认为是连续的。
0
t Dt
8
九江职业技术学院电气工程系
数字量输出
VR 寄存器
电阻解码网络 …
模拟电子开关
D/A转换器的基本结构
5
放大器 模拟量输出
九江职业技术学院电气工程系
7.1.1 D/A转换的工作原理
• D/A转换器的基本原理
-是用电阻解码网络将N位数字量逐位转换成模拟量并求和。
I I7
I6
I5
I4
I3
I2
I1
I0
VREF
R
R
R
R
R
R
R
I7
I6
I5
20
九江职业技术学院电气工程系
7.4.2 低频信号发生器硬件制作
DAC0832
1
2
3
D3
4
D2
5
D1
6
D0
7
8
+5V 9
10
CS WR1 GND DI3 DI2 DI1 DI0 VREF RFB GND
20 Vcc
19 ILE
18 WR2
17 XFER
16 DI4
15 DI5
14 DI6
13 DI7 Iout2 12
7.4.1 工作任务
• 本项目的工作任务是设计一个简易低频信号发生器, 要求能输出0.1~50Hz的正弦波、三角波和方波 信号,其中正弦波和三角波信号可用按键选择输出, 频率可通过加减键调节。
19
九江职业技术学院电气工程系
低频信号发生器设计与制作
• 由于输出信号的频率较低,可使用单片机作为控制 器产生各种波形,对于方波,可以直接由51单片 机的端口输出,而正弦波和三角波可以由 DAC0832进行转换实现。
CS 1 WR1 2 AGND 3
D3 4 D2 5 D1 6 D0 7 VREF 8 Rfb 9 DGND 10
12
DAC0832
20 Vcc 19 ILE 18 WR2 17 XFER 16 D4 15 D5 14 D6 13 D7 12 IOUT2 11 IOUT1
DI7~DI0
ILE CS WR1
ILE 19
&
CS 1
片选
WR1 2
&
写入
WR2 17
XFER 18
&
数据传送控制
20 Vcc
基准电压
输 入 寄 存 器
LE1
DAC 寄 存 器
LE2
D/A 转换 电路
Rf
8 VREF IOUT2
12 IOUT1
11
输出 电流
9 Rfb
10 DGND
3 AGND
7.2.2 DAC0832的工作方式
主程序主要包括初始化程序、键盘扫描程序、及频率值修改程序组 成。
初始化程序进行定时器初值、中断允许等设置。 键盘扫描程序主要对三个按键进行检测,以判断是否要进行频率调整及