第三章《直线与方程》单元测试
数学第三章《直线与方程》测试(1)(新人教A版必修2)
![数学第三章《直线与方程》测试(1)(新人教A版必修2)](https://img.taocdn.com/s3/m/b35b26263186bceb18e8bb8a.png)
第三章 直线与方程 单元测试一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 3.直线x a yb221-=在y 轴上的截距是( )A .bB .2b -C .b 2D .±b4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行B .垂直C .斜交D .与,,a b θ的值有关6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4B 21313C 51326 D 710207.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤二、填空题1.方程1=+y x 所表示的图形的面积为_________。
2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。
3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。
5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 . 三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
高中数学必修2第三章《直线与方程》单元检测卷含解析
![高中数学必修2第三章《直线与方程》单元检测卷含解析](https://img.taocdn.com/s3/m/2263887e68eae009581b6bd97f1922791688bef9.png)
高中数学必修2第三章《直线与方程》单元检测卷含解析必修2第三章《直线与方程》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是()A。
30° B。
45° C。
60° D。
90°2.如果直线ax+2y+2=与直线3x-y-2=平行,则系数a为()A。
-3 B。
-6 C。
-2/3 D。
2/33.下列叙述中不正确的是()A。
若直线的斜率存在,则必有倾斜角与之对应。
B。
每一条直线都有唯一对应的倾斜角。
C。
与坐标轴垂直的直线的倾斜角为0°或90°。
D。
若直线的倾斜角为α,则直线的斜率为tanα。
4.在同一直角坐标系中,表示直线y=ax与直线y=x+a的图象(如图所示)正确的是(选项不清晰,无法判断)5.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于()A。
2 B。
3 C。
9 D。
-96.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是()A。
x+y+1=0 B。
4x-3y=0 C。
4x+3y=0 D。
4x+3y=0或x+y+1=07.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是()A。
4 B。
13 C。
15 D。
178.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB 相交,则l的斜率k的取值范围是()A。
k≥3/4或k≤-4/3 B。
-4/3≤k≤3/4 C。
-3≤k≤4 D。
以上都不对9.已知直线l1:ax+4y-2=与直线l2:2x-5y+b=互相垂直,垂足为(1,c),则a+b+c的值为()A。
-4 B。
20 C。
必修2第三章 直线与方程单元测试卷
![必修2第三章 直线与方程单元测试卷](https://img.taocdn.com/s3/m/02bf51d8b9f3f90f76c61bc8.png)
必修2第三章 《直线与方程》过关检测时间:100分钟 满分:100分制卷:王小凤 学生姓名一.选择题(本题共10个小题,每小题5分,共50分) 1.直线()为常数a a y x 03=+-的倾斜角为( ) A .3π B .6π C .32π D .65π2.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A . 0≠m B . 23-≠mC . 1≠mD . 1≠m ,23-≠m ,0≠m3.若两条直线x +(1 + m )y + m -2 = 0与mx + 2y + 8 = 0平行,则( ) A .m = 1或-2 B .m = 1 C .m =-2 D .32=m 4.以()1,3A ,()5,1B -为端点的线段的垂直平分线方程是( ) A .380x y --= B .340x y ++= C .360x y -+= D .320x y ++=5.若点()1,1+-m m A ,()m m B ,关于直线l 对称,则直线l 的方程是( ) A .01=-+y x B .01=+-y x C .01=++y x D .01=--y x6.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyO7.若直线0=++c by ax 在第一、二、三象限,则( )A .0,0>>bc abB .0,0<>bc abC .0,0><bc abD .0,0<<bc ab8.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A . 4B .C .D .9.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=010.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A . 34k ≥ B . 324k ≤≤C . 324k k ≥≤或 D . 2k ≤ 二、填空题:(本题共4小题,每小题5分,共20分)11.若三点A (-2,3),B (3,-2),C (21,m )共线,则m 的值为 .12.两直线230x y k +-=和120x ky -+=的交点在y 轴上,则k 的值是 .13.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是_______________.14.已知直线l 与直线3470x y +-=平行,并且与两坐标轴围成的三角形的面积为24,则直线l 的方程为________________ (用一般式表示)三、解答题:(本题共3小题,每小题10分,共30分)15.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:①l在x轴上的截距是-3;②斜率为1.16.求经过点(1,2)P,且使点(2,3)A,(0,5)B-到它的距离相等的直线方程。
人教新课标版数学高一人教A版必修二测评 第三章 直线与方程
![人教新课标版数学高一人教A版必修二测评 第三章 直线与方程](https://img.taocdn.com/s3/m/5d9c439fcf84b9d529ea7a5c.png)
单元测评(三) 直线与方程(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:依题意得-3n =-3,-mn =tan120°=-3,∴m =3,n =1.答案:D2.直线2x +3y -k =0和直线x -ky +12=0的交点在x 轴上,则k 的值为( )A .-24B .24C .6D .±6解析:直线2x +3y -k =0与x 轴的交点为⎝ ⎛⎭⎪⎫k 2,0.直线x -ky +12=0与x 轴的交点为(-12,0).∵直线2x +3y -k =0和直线x -ky +12=0的交点在x 轴上,∴k2=-12,即k =-24.答案:A3.直线y =mx +(2m +1)恒过一定点,则此点是( ) A .(1,2)B .(2,1)C.(1,-2) D.(-2,1)解析:y=mx+(2m+1)=m(x+2)+1,∴当x=-2时,不论m取何值,y恒等于1.∴恒过定点(-2,1).答案:D4.已知直线l1:ax+2y-1=0,直线l2:8x+ay+2-a=0,若l1∥l2,则实数a的值为()A.±4 B.-4C.4 D.±2解析:由a2-2×8=0,得a=±4.当a=4时,l1:4x+2y-1=0,l2:8x+4y-2=0,l1与l2重合.当a=-4时,l1:-4x+2y-1=0,l2:8x-4y+6=0,l1∥l2.综上所述,a=-4.答案:B5.与直线2x+y-3=0平行,且距离为5的直线方程是() A.2x+y+2=0B.2x+y-8=0C.2x+y+2=0或2x+y-8=0D.2x+y-2=0或2x+y+8=0解析:设所求直线方程为2x+y+C=0,则|C+3|5=5,∴|C+3|=5,C=2或C=-8.所以所求直线方程为2x+y+2=0或2x+y-8=0.答案:C6.直线l 过点A (3,4),且与点B (-3,2)的距离最远,则直线l 的方程为( )A .3x -y -5=0B .3x -y +5=0C .3x +y +13=0D .3x +y -13=0解析:当l ⊥AB 时,符合要求,∵k AB =4-23+3=13,∴l 的斜率为-3.∴直线l 的方程为y -4=-3(x -3),即3x +y -13=0.答案:D7.与直线2x +3y -6=0关于点A (1,-1)对称的直线为( ) A .3x -2y -6=0 B .2x +3y +7=0 C .3x -2y -12=0D .2x +3y +8=0解析:设直线上点P (x 0,y 0)关于点(1,-1)对称的点为P ′(x ,y ),则⎩⎪⎨⎪⎧x +x 02=1,y +y 02=-1,⎩⎨⎧x 0=2-x ,y 0=-2-y .代入2x 0+3y 0-6=0得2(2-x )+3(-2-y )-6=0,得2x +3y +8=0.答案:D8.已知直线l 的方程是y =2x +3,则l 关于y =-x 对称的直线方程是( )A .x -2y +3=0B .x -2y =0C .x -2y -3=0D .2x -y =0解析:在直线l 上取两点A (0,3),B (-2,-1),则点A ,B 关于直线y =-x 的对称点为A ′(-3,0),B ′(1,2),所以所求直线的方程是y 2=x +31+3,即x -2y +3=0.答案:A9.(2012·许昌高一检测)如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是( )A. B.C. D.解析:当a >0时,A 、B 、C 、D 均不成立; 当a <0时,只有C 成立. 答案:C10.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)解析:设B 点坐标为(x ,y ), 根据题意知⎩⎨⎧k AC ·k BC =-1,|BC |=|AC |,∴⎩⎪⎨⎪⎧3-43-0×y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解之,得⎩⎨⎧x =2,y =0,或⎩⎨⎧x =4,y =6.答案:A第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分. 11.a 、b 、c 是两两不等的实数,则经过P (b ,b +c )、C (a ,c +a )两点的直线的倾斜角为__________.解析:k =c +a -(b +c )a -b =a -ba -b =1,∴直线的倾斜角为45°. 答案:45°12.已知点(m,3)到直线x +y -4=0的距离等于2,则m 的值为__________.解析:由点到直线的距离得|m +3-4|2= 2.解得m =-1,或m =3. 答案:-1或313.已知直线l 在y 轴上的截距是-3,它被两坐标轴截得的线段的长为5,则此直线的方程为__________.解析:设直线在x 轴上的截距为a ,则a 2+32=5,解得a =4或-4,所求直线方程为3x -4y -12=0或3x +4y +12=0.答案:3x -4y -12=0或3x +4y +12=014.直线l 和两条直线l 1:x -3y +10=0,及l 2:2x +y -8=0都相交,且这两个交点所成的线段的中点是P (0,1),则直线l 的方程是__________.解析:设两交点坐标分别为A (3y 1-10,y 1)、B (x 2,-2x 2+8),∵AB 的中点是P (0,1),得⎩⎨⎧x 2+3y 1-10=0,-2x 2+y 1+8=2,解得y 1=2,x 2=4.∴A ,B 两点坐标分别为A (-4,2),B (4,0). ∴过A ,B 两点的直线方程是x +4y -4=0. 答案:x +4y -4=0三、解答题:本大题共4小题,满分50分.15.(12分)求经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线方程.解:由⎩⎨⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75.(6分)又因为所求直线与直线3x +y -1=0平行,所以所求直线为y +75=-3⎝ ⎛⎭⎪⎫x +35.(10分)化简得:3x +y +165=0.(12分)16.(12分)(1)求与直线3x +4y -7=0垂直,且与原点的距离为6的直线方程;(2)求经过直线l 1:2x +3y -5=0与l 2:7x +15y +1=0的交点,且平行于直线x +2y -3=0的直线方程.解:(1)设所求的直线方程为4x -3y +c =0. 由已知|c |42+32=6,解得c =±30,故所求的直线方程为4x -3y ±30=0.(6分) (2)设所求的直线方程为 2x +3y -5+λ(7x +15y +1)=0, 即(2+7λ)x +(3+15λ)y +λ-5=0. 由已知-2+7λ3+15λ=-12,解得λ=1.故所求的直线方程为9x +18y -4=0.(12分)17.(12分)直线l 过点(1,0)且被两条平行直线l 1:3x +y -6=0和l 2:3x +y +3=0所截得的线段长为91010,求直线l 的方程.解:方法一:当直线l 与x 轴垂直时,方程为x =1,由⎩⎨⎧x =1,3x +y -6=0,得l 与l 1的交点为(1,3).由⎩⎨⎧x =1,3x +y +3=0,得l 与l 2的交点为(1,-6),此时两交点间的距离d =|-6-3|=9≠91010. ∴直线l 与x 轴不垂直.(4分) 设l 的方程为y =k (x -1)(k ≠-3),解方程组⎩⎨⎧ y =k (x -1),3x +y -6=0,得l 与l 1交点的坐标为⎝ ⎛⎭⎪⎫k +6k +3,3k k +3, 同理,由⎩⎨⎧y =k (x -1),3x +y +3=0,得l 与l 2的交点坐标为⎝ ⎛⎭⎪⎫k -3k +3,-6k k +3.(8分) 由题意及两点间距离公式得 91010=⎝ ⎛⎭⎪⎫k -3k +3-k +6k +32+⎝ ⎛⎭⎪⎫-6k k +3-3k k +32, 即9k 2-6k +1=0,∴k =13,∴直线l 的方程为y =13(x -1), 即x -3y -1=0.(12分)方法二:由两平行线间的距离公式可得l 1与l 2间的距离d =|-6-3|32+12=91010.(4分) 而l 被l 1,l 2截得的线段长恰为91010.(6分)∴l 与l 1垂直,由l 1的斜率k 1=-3知,l 的斜率k =13,(10分) ∴l 的方程为y =13(x -1), 即x -3y -1=0.(12分)18.(14分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在的直线方程为y =0.若点B 的坐标为(1,2),求点A 和点C 的坐标.解:由方程组⎩⎨⎧x -2y +1=0,y =0,解得点A 的坐标为(-1,0).(2分)又直线AB 的斜率k AB =1,x 轴是∠A 的平分线,所以k AC =-1,则AC 边所在的直线方程为y =-(x +1).① 又已知BC 边上的高所在直线的方程为x -2y +1=0, 故直线BC 的斜率k BC =-2,(8分)所以BC 边所在的直线方程为y -2=-2(x -1).②解①②组成的方程组得⎩⎨⎧x =5,y =-6,(12分)即顶点C 的坐标为(5,-6).(14分)。
高中数学必修2第三章《直线与方程》单元测试题(共两套)
![高中数学必修2第三章《直线与方程》单元测试题(共两套)](https://img.taocdn.com/s3/m/a2c228f2b8f67c1cfad6b846.png)
高中数学必修2 第三章 《直线与方程》单元检测题(一)一、选择题1.若直线x =1的倾斜角为 α,则 α( ).A .等于0B .等于πC .等于2πD .不存在 2.图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ).A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 23.已知直线l 1经过两点(-1,-2)、(-1,4),直线l 2经过两点(2,1)、(x ,6),且l 1∥l 2,则x =( ).A .2B .-2C .4D .14.已知直线l 与过点M (-3,2),N (2,-3)的直线垂直,则直线l 的倾斜角是( ).A .3πB .32π C .4π D .43π 5.如果AC <0,且BC <0,那么直线Ax +By +C =0不通过( ).A .第一象限B .第二象限C .第三象限D .第四象限6.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=07.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ).A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =08.直线l 1:x +a 2y +6=0和直线l 2 : (a -2)x +3ay +2a =0没有公共点,则a 的值是( ).A .3B .-3C .1D .-19.将直线l 沿y 轴的负方向平移a (a >0)个单位,再沿x 轴正方向平移a +1个单位得直线l',此时直线l' 与l 重合,则直线l' 的斜率为( ).A .1+a a B .1+-a aC .aa 1+ D .aa 1+-10.点(4,0)关于直线5x +4y +21=0的对称点是( ).A .(-6,8)B .(-8,-6)C .(6,8)D .(-6,-8)二、填空题(第2题)11.已知直线l 1的倾斜角 1=15°,直线l 1与l 2的交点为A ,把直线l 2绕着点A 按逆时针方向旋转到和直线l 1重合时所转的最小正角为60°,则直线l 2的斜率k 2的值为 . 12.若三点A (-2,3),B (3,-2),C (21,m )共线,则m 的值为 . 13.已知长方形ABCD 的三个顶点的坐标分别为A (0,1),B (1,0),C (3,2),求第四个顶点D 的坐标为 .14.求直线3x +ay =1的斜率 .15.已知点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,则P 点坐标为 . 16.与直线2x +3y +5=0平行,且在两坐标轴上截距的和为6的直线方程是 . 17.若一束光线沿着直线x -2y +5=0射到x 轴上一点,经x 轴反射后其反射线所在直线的方程是 . 三、解答题18.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6(m ∈R ,m ≠-1),根据下列条件分别求m 的值:①l 在x 轴上的截距是-3; ②斜率为1.19.已知△ABC 的三顶点是A (-1,-1),B (3,1),C (1,6).直线l 平行于AB ,交AC ,BC 分别于E ,F ,△CEF 的面积是△CAB 面积的41.求直线l 的方程.(第19题)20.一直线被两直线l1:4x+y+6=0,l2:3x-5y-6=0截得的线段的中点恰好是坐标原点,求该直线方程..21.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.高中数学必修2 第三章 《直线与方程》单元检测题(二)时间:90分钟 满分120分一、选择题(共10小题,每小题5分,共50分)1.点A (2,-3)关于点B (-1,0)的对称点A ′的坐标是( )A .(-4,3)B .(5,-6)C .(3,-3) D.⎝⎛⎭⎫12,-32 2.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( )A .30°B .45°C .60°D .135°3. 点(1,1)到直线x +y -1=0的距离为( )A .1B .2 C.22D. 2 4.若直线l 与直线y =1,x =7分别交于P 、Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .3D .-3 5.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=06.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =17.和直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=08.若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于( )A .2B .3C .9D .-99.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是( )A .(4,-2)B .(4,-3) C.⎝⎛⎭⎫3,32 D .(3,-1) 10.设点A (2,-3),B (-3,-2),直线l 过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A .k ≥34,或k ≤-4B .-4≤k ≤34C .-34≤k ≤4 D .以上都不对二、填空题(共4小题,每小题5分,共20分)11.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 12.经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是________. 13.过点A (2,1)的所有直线中,距离原点最远的直线方程为____________.14.已知点A (4,-3)与B (2,-1)关于直线l 对称,在l 上有一点P ,使点P 到直线4x +3y -2=0的距离等于2,则点P 的坐标是____________.三、解答题(共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤)15.(满分12分)已知直线l的倾斜角为135°,且经过点P(1,1).(1)求直线l的方程;(2)求点A(3,4)关于直线l的对称点A′的坐标.16.(满分12分)已知两条直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0 ,当m为何值时,l1与l2(1)相交;(2)平行;(3)重合?17.(满分12分)如图,已知点A(2,3),B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x-2y+2=0上.(1)求AB边上的高CE所在直线的方程;(2)求△ABC的面积.18.(满分14分)如图所示,在△ABC中,BC边上的高所在直线l的方程为x-2y+1=0,∠A的平分线所在直线的方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.高中数学必修2 第三章 《直线与方程》单元检测题(一)参考答案一、选择题 1.C解析:直线x =1垂直于x 轴,其倾斜角为90°. 2.D解析:直线l 1的倾斜角 α1是钝角,故k 1<0;直线l 2与l 3的倾斜角 α2,α3 均为锐角且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D .3.A解析:因为直线l 1经过两点(-1,-2)、(-1,4),所以直线l 1的倾斜角为2π,而l 1∥l 2,所以,直线l 2的倾斜角也为2π,又直线l 2经过两点(2,1)、(x ,6),所以,x =2. 4.C解析:因为直线MN 的斜率为1-=2-3-3+2,而已知直线l 与直线MN 垂直,所以直线l 的斜率为1,故直线l 的倾斜角是4π. 5.C 解析:直线Ax +By +C =0的斜率k =BA-<0,在y 轴上的截距B C D =->0,所以,直线不通过第三象限.6.A解析:由已知得点A (-1,0),P (2,3),B (5,0),可得直线PB 的方程是x +y -5=0. 7.D 8.D 9.B解析: 结合图形,若直线l 先沿y 轴的负方向平移,再沿x 轴正方向平移后,所得直线与l 重合,这说明直线 l 和l ’ 的斜率均为负,倾斜角是钝角.设l ’ 的倾斜角为 θ,则tan θ=1+-a a. 10.D解析:这是考察两点关于直线的对称点问题.直线5x +4y +21=0是点A (4,0)与所求点A'(x ,y )连线的中垂线,列出关于x ,y 的两个方程求解.二、填空题11.-1.解析:设直线l 2的倾斜角为 α2,则由题意知: 180°-α2+15°=60°,α2=135°,∴k 2=tan α2=tan (180°-45°)=-tan45°=-1. 12.21. 解:∵A ,B ,C 三点共线, ∴k AB =k AC ,2+213-=2+33-2-m .解得m =21. 13.(2,3).解析:设第四个顶点D 的坐标为(x ,y ), ∵AD ⊥CD ,AD ∥BC , ∴k AD ·k CD =-1,且k AD =k BC . ∴0-1-x y ·3-2-x y =-1,0-1-x y =1. 解得⎩⎨⎧1=0=y x (舍去)⎩⎨⎧3=2=y x所以,第四个顶点D 的坐标为(2,3). 14.-a3或不存在. 解析:若a =0时,倾角90°,无斜率.若a ≠0时,y =-a 3x +a1 ∴直线的斜率为-a3. 15.P (2,2).解析:设所求点P (x ,2),依题意:22)12()2(-++x =22)22()1(++-x ,解得x =2,故所求P 点的坐标为(2,2).16.10x +15y -36=0.解析:设所求的直线的方程为2x +3y +c =0,横截距为-2c ,纵截距为-3c ,进而得c = -536. 17.x +2y +5=0.解析:反射线所在直线与入射线所在的直线关于x 轴对称,故将直线方程中的y 换成-y . 三、解答题 18.①m =-35;②m =34. (第11题)解析:①由题意,得32622---m m m =-3,且m 2-2m -3≠0.解得 m =-35. ②由题意,得123222-+--m m m m =-1,且2m2+m -1≠0.解得 m =34. 19.x -2y +5=0.解析:由已知,直线AB 的斜率 k =1311++=21. 因为EF ∥AB ,所以直线EF 的斜率为21. 因为△CEF 的面积是△CAB 面积的41,所以E 是CA 的中点.点E 的坐标是(0,25). 直线EF 的方程是 y -25=21x ,即x -2y +5=0. 20.x +6y =0.解析:设所求直线与l 1,l 2的交点分别是A ,B ,设A (x 0,y 0),则B 点坐标为 (-x 0,-y 0).因为A ,B 分别在l 1,l 2上,所以⎪⎩⎪⎨⎧0=6-5+3-0=6++40000y x y x①+②得:x 0+6y 0=0,即点A 在直线x +6y =0上,又直线x +6y =0过原点,所以直线l 的方程为x +6y =0.21.2x +y -4=0和x +y -3=0.解析:设直线l 的横截距为a ,由题意可得纵截距为6-a .∴直线l 的方程为1=-6+aya x .∵点(1,2)在直线l 上,∴1=-62+1a a ,a 2-5a +6=0,解得a 1=2,a 2=3.当a =2时,直线的方程为142=+y x ,直线经过第一、二、四象限.当a =3时,直线的方程为133=+yx ,直线经过第一、二、四象限.综上所述,所求直线方程为2x +y -4=0和x +y -3=0.①②高中数学必修2 第三章 《直线与方程》单元检测题(二)答案与解析一、选择题(共10小题,每小题5分,共50分)1.点A (2,-3)关于点B (-1,0)的对称点A ′的坐标是( )A .(-4,3)B .(5,-6)C .(3,-3)D.⎝⎛⎭⎫12,-32 解析:选A设A ′(x ′,y ′),由题意得⎩⎪⎨⎪⎧2+x ′2=-1,-3+y ′2=0,即⎩⎪⎨⎪⎧x ′=-4,y ′=3.2.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( )A .30°B .45°C .60°D .135°解析:选D 由题意知k =-1,故倾斜角为135°. 3. 点(1,1)到直线x +y -1=0的距离为( )A .1B .2 C.22D. 2解析:选C 由点到直线的距离公式d =|1+1-1|12+12=22.4.若直线l 与直线y =1,x =7分别交于P 、Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .3D .-3解析:选B 设P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2.∴⎩⎪⎨⎪⎧a =-5,b =-3,故直线l 的斜率为-3-17+5=-13.a =-5.5.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0解析:选A ∵直线x -2y +3=0的斜率为12,∴所求直线的方程为y -3=12(x +1),即x -2y +7=0.6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 依题意得-3n =-3,-mn =tan 120°=-3,得m =3,n =1.7.和直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.8.若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于( )A .2B .3C .9D .-9解析:选D 由题意知k AB =k BC 即b -1-2-3=11-b8+2,解得b =-9. 9.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是( )A .(4,-2)B .(4,-3) C.⎝⎛⎭⎫3,32 D .(3,-1)解析:选A 由已知知以(10,0)和(-6,8)为端点的线段的垂直平分线的方程为y =2x ,则(-4,2)关于直线y =2x 的对称点即为所求点.设所求点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-2x 0+4=-12,y 0+22=2·x 0-42,解得⎩⎪⎨⎪⎧x 0=4,y 0=-2.10.设点A (2,-3),B (-3,-2),直线l 过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A .k ≥34,或k ≤-4B .-4≤k ≤34C .-34≤k ≤4D .以上都不对解析:选A 由题意知k AP =-3-12-1=-4, k BP =-2-1-3-1=34.由斜率的特点并结合图形可知k ≥34,或k ≤-4. 二、填空题(共4小题,每小题5分,共20分)11.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________.解析:BC 中点为⎝⎛⎭⎪⎫-2+02,3+12即(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10. 答案:1012.经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是________.解析:当直线过原点时,满足要求,此时直线方程为x -y =0;当直线不过原点时,设直线方程为x a +y a=1,由于点(1,1)在直线上,所以a =2,此时直线方程为 x +y -2=0.答案:x -y =0或x +y -2=013.过点A (2,1)的所有直线中,距离原点最远的直线方程为____________.解析:如右图,只有当直线l 与OA 垂直时,原点到l 的距离最大,此时k OA =12,则k l =-2,所以方程为y -1=-2(x -2),即2x +y -5=0.答案:2x +y -5=014.已知点A (4,-3)与B (2,-1)关于直线l 对称,在l 上有一点P ,使点P 到直线4x +3y -2=0的距离等于2,则点P 的坐标是____________.解析:由题意知线段AB 的中点C (3,-2),k AB =-1,故直线l 的方程为y +2=x -3,即y =x -5.设P (x ,x -5),则2=|4x +3x -17|42+32, 解得x =1或x =277. 即点P 的坐标是(1,-4)或⎝⎛⎭⎫277,-87. 答案:(1,-4)或⎝⎛⎭⎫277,-87 三、解答题(共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)(2012·绍兴高二检测)已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解:(1)∵k =tan 135°=-1,∴l :y -1=-(x -1),即x +y -2=0.(2)设A ′(a ,b ),则⎩⎪⎨⎪⎧ b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).16.(本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0 ,当m 为何值时,l 1与l 2(1)相交;(2)平行;(3)重合?解:当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2.当m =2时,l 1:x +4y +6=0,l 2:3y +2=0,∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m 23m 得m =-1或m =3,由1m -2=62m,得m =3. 故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交.(2)当m =-1或m =0时,l 1∥l 2.(3)当m =3时,l 1与l 2重合.17.(本小题满分12分)如图,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程;(2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点,∴E (3,2),且k CE =-1k AB=1, ∴CE 所在直线方程为:y -2=x -3,即x -y -1=0. (2)由⎩⎪⎨⎪⎧ x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC , ∴S △ABC =12|AC |·|BC |=2.18.(本小题满分14分)如图所示,在△ABC 中,BC 边上的高所在直线l 的方程为x -2y +1=0,∠A 的平。
完整版高中数学必修2直线与方程单元测试题
![完整版高中数学必修2直线与方程单元测试题](https://img.taocdn.com/s3/m/ddafc671bceb19e8b9f6ba74.png)
必修2第3章《直线的方程》单元测试题一、选择题(?11),l,则它的倾斜角是()1. 直线经过原点和点3?5?5????A.或D.B.C.44444aa bb2,)(,-1,的值是()2. 斜率为三点,则的直线过(3,5),( ,7)4??b?0aa?43??bA.B.,,3b?a??4a?43??bD.,C.,A(2,?3)B(?3,?2)P(11),kABl的取值范围是(,设点的斜率且与线段)相交,则,直线过3.333?≤k≤4≥k≤k?4≤4?k≤D.以上都不对B.C.或A.444a?0?2??(2a?3)ya)y?3?0(a?1)x(1(a?2)x??(与直线)4. 直线互相垂直,则3?111??A.C.B.D.2??2A,1ll的斜率的取值范围是( 5. 直线)过点,????,0,0,010,2A.D.C.B.????且不过第四象限,那么直线11????22????3x?4y?5?05x?12y?13?0P(x,y)必定满足方程(到两条直线6. 与的距离相等的点)x?4y?4?07x?4y?0B.A.x?4y?4?04x?8y?9?07x?4y?032x?56y?65?0D.C.或或3x?2y?3?06x?my?1?0互相平行,则它们之间的距离是(和) 7. 已知直线2135713134B.A.C.D.1326263x?y?2?0C(3,?2)ABC,则两条直角边,直角顶点是的斜边所在的直线是8. 已知等腰直角三角形ACBC的方程是(,)3x?y?5?0x?2y?7?02x?y?4?0x?2y?7?0A.,B.,2x?y?4?02x?y?7?03x?2y?2?02x?y?2?0,C.,D.lll y x0??2xy?3上,则上,经过入射光线线在直线9. :轴反射到直线轴反射到直线上,再经过132l)直线的方程为(3.06??y?y?3?02x3?02x?y?3?02x?yx?2?D.A.B.C.05??y?x??3x?kxyxyz)=10.已知(,+4满足的最小值为-6,且,则常数=2??0?y?kx??3D.C.0 A.2 B.9二、填空题k),(53),(2,?3)(4k.,的值是及 11. 已知三点在同一条直线上,则2(?,31)mm y t120的坐标为在轴上有一点,它与点.连成的直线的倾斜角为,则点12.x?3y?0x?3y?2?0PPPP坐标13. 设点的距离相等,则点在直线到原点的距离与上,且到直线是.1xy?0??5?y?40x?3y2x?ll的方程的交点,且垂直于直线,则直线14. 直线与过直线2.是x?y?3?0??x?y?1?0y?kx kyx的取值范围是若,满足,则.,设 15.??3x?y?5?0?三、解答题5x?3y?3?07x?3y?5?0ABC?,求边上的中线方程分别是16. 已知和A(1,2)中,点,AB边和ACBC所在的直线方程的一般式。
直线与方程同步单元测试题
![直线与方程同步单元测试题](https://img.taocdn.com/s3/m/7129a0ff0342a8956bec0975f46527d3240ca65a.png)
必修 2 第三章直线与方程测试题一、选择题(每题 5 分,共 60 分)1.直线 x+6y+2=0 在 x 轴和 y 轴上的截距分别是()A. 2,1B.2,1C.1,3D.-2,- 3332x+ y-1≥0,2.(2009 ·福建高考 ) 在平面直角坐标系中,若不等式组x-1≤0,( a为常数 ) 所ax- y+1≥0表示的平面地区的面积等于2,则a的值为() A.- 5B. 1C.2D. 33.直线过点 ( - 3, - 2) 且在两坐标轴上的截距相等,则这直线方程为()(A) 2x -3 =0;(B)++5=0;y x y(C) 2x -3 =0或x++ 5=0( D)++5或x-+5=0 y y x y yx+ y≥3,4.设变量x 、 y知足拘束条件x- y≥-1,则目标函数z=2x+3y的最小值为2x-y≤3,()A.6B. 7C. 8D. 235. 过点 A(1,2) 且与原点距离最大的直线方程是()A.x 2 y 5 0B .2x y 4 0C x 3y 7 0 D. 3x y 5 06.点( 1, 2)对于直线y =x 1的对称点的坐标是(A)( 3,2)( B)( 3, 2)( C)( 3, 2)(D)( 3, 2)7.点( 2,1)到直线 3x 4+2=0的距离是y(A)4(B)5(C)4(D)25 542548.点A( 1, 3),B( 5,- 2),点P 在 x轴上使 | AP| - | BP| 最大,则P的坐标为()A. (4,0)B. (13,0)C. (5,0)D. (1,0)9.与直线l :3x-4y+5=0对于 x 轴对称的直线的方程为(A) 3x+ 4y- 5= 0( B) 3x+ 4y+ 5= 0(C)- 3x+ 4y- 5= 0( D)- 3x+ 4y+ 5= 010.设a、 b、c 分别为ABC中A、B、C对边的边长,则直线x sin A+ ay+ c=0与直线- sin+sin= 0 的地点关系()(A)平行;(B)重合;( C)垂直;( D)订交但不垂直11.直线l沿 x 轴负方向平移 3 个单位,再沿y 轴正方向平 1 个单位后,又回到本来位置,那么l的斜率为()(A)-1; (B)-3;( C)1 ;(D)3 3312.直线kx y 13k , 当k 改动时,全部直线都经过定点()( A)( 0,0)( B)( 0, 1)( C)( 3,1)( D)( 2, 1)二. 填空题(每题 5 分,共20 分)13.假如三条直线mx+y+3=0, x y2=0,2 x y+2=0不可以成为一个三角形三边所在的直线,那么m的一个值是_______...14、若x, y知足拘束条件x+ y≥1,x- y≥-1,2x-y≤2,目标函数z= ax+2y仅在点(1,0)处获得最小值,则 a 的取值范围是A.( - 1,2)B.( -4,2)C(.( -4,0]D).( - 2,4)15.点 (3,1)和( - 4,6)在直线3x- 2y+a= 0 的双侧,则 a 的取值范围是________.16.已知点P2, 3 ,Q 3,2,直线 ax y 2 0与线段PQ 订交,则实数 a 的取值范围是____ ;三、解答题(共 70 分)17、( 10 分)依据以下条件,求直线方程(1)经过点A( 3,0)且与直线2x+y- 5=0 垂直(2)求经过 2x+3y-5=0 和 3x-2y-3=0 的交点且平行于 2x+y-3=0 的直线。
高中数学《直线与方程》单元测试
![高中数学《直线与方程》单元测试](https://img.taocdn.com/s3/m/afd697886bd97f192379e976.png)
D.第四象限
3.已知直线 y 3 x+2,则其倾斜角为
A.60° B.120°
C.60°或 120°
D.150°
4.已知直线 l1:2x+ay–3=0 与 l2:(a–1)x+y+1=0,若 l1∥l2,则 a=
A.2 B.1 C.2 或–1
D.2 或 1
5.过两点 A(1,m),B(2,0)的直线的倾斜角为 45 ,则实数 m=
,
9 2
),
a 3
b 9
设点 D(a,b),则 2 2, 2 3,
2
2
解得 a 5 ,b 3 ,所以点 D( 5 , 3 ),(8 分)
22
22
又直线 AC 的方程为 y–3 1 (x–2),即 x–3y+7=0, 3
x 3y 7 0
与直线
AB
的方程联立,得
x
y
3
0
,
x 1
解得
y
(2)BC 的中点为 D(2,3),(8 分)
由两点式求出
BC
边的中线所在直线
AD
的方程为
y 3
4 4
x 2
1 1
,
即 7x–y–11=0.(12 分) 19.【解析】(1)由题意,a≠0,
∵l1
与
l2
互相垂直,∴
1 a
1 2
1,解得
a
1 2
.(5
分)
(2)由题意,a≠0,
第4页共6页
∵l1 与
22.(本小题满分 12 分) 在平面直角坐标系中,已知菱形 ABCD 的顶点 A(–1,2)和 C(5,4),AB 所在直线的方程为 x–y+3=0, (1)求对角线 BD 所在直线的方程; (2)求 AD 所在直线的方程.
(完整版)人教版数学必修2直线与方程单元测试题
![(完整版)人教版数学必修2直线与方程单元测试题](https://img.taocdn.com/s3/m/6344f949842458fb770bf78a6529647d272834c6.png)
第三章《直线与方程》单元测试题一、选择题1. 直线l 经过原点和点( 1,1) ,则它的倾斜角是()A.34B.54C.4或54D.42. 斜率为2的直线过(3,5),( a,7),( -1,b) 三点,则a,b 的值是()A.a 4,b 0 B.a 4 ,b 3C.a 4,b 3 D.a 4 ,b 33. 设点A(2,3) ,B( 3,2) ,直线过P(1,1) 且与线段AB 订交,则l 的斜率k 的取值范围是()A. 3k ≥或k ≤ 4 B.434≤k ≤C.434≤k ≤4 D.以上都不对4. 直线(a 2)x (1 a) y 3 0 与直线(a 1)x (2a 3) y 2 0 相互垂直,则 a ()A. 1 B.1 C. 1 D.3 25. 直线l 过点A 1,2 ,且可是第四象限,那么直线l 的斜率的取值范围是()A.0,2 B.0,1 C.1,D.210,26. 到两条直线3x 4y 5 0 与5x 12y 13 0 的距离相等的点P( x,y) 必然知足方程()A.x 4y 4 0 B.7x 4y0C.x 4y 4 0或4x 8y9 0 D.7x 4y0 或32 x 56 y 65 07. 已知直线3x 2y 3 0 和6x my 1 0相互平行,则它们之间的距离是()A.4 B.21313C.52613 D.726138. 已知等腰直角三角形ABC的斜边所在的直线是3x y 2 0,直角极点是 C (3,2) ,则两条直角边AC,BC 的方程是()A.3x y 5 0 ,x 2y7 0 B.2x y 4 0 ,x 2y7 0C.2x y 4 0,2x y 7 0 D.3x 2y 2 0 ,2x y 2 09. 入射光芒线在直线l:2x y 3 0上,经过x 轴反射到直线l2 上,再经过y轴反射到直线1l 上,则直线l3 的方程为()3A.x 2y 3 0 B.2x y 3 0 C.2x y 3 0 D.2x y 6 0x y 5 010. 已知x,y 知足,且z=2x+4y 的最小值为-6 ,则常数k=()x 3x y k 0A.2 B.9 C. 3 D.0二、填空题k11. 已知三点(2,3) ,(4,3) 及(5,) 在同一条直线上,则k 的值是.212. 在y 轴上有一点m ,它与点( 3,1) 连成的直线的倾斜角为120t ,则点m 的坐标为.13. 设点P 在直线x 3y 0 上,且P到原点的距离与P 到直线x 3y 2 0的距离相等,则点P坐标是.14. 直线l 过直线2x y 4 0 与x 3y 5 0 的交点,且垂直于直线是.1y x ,则直线l 的方程2x y 3 015. 若x,y 知足,设y kx ,则k 的取值范围是.x y 1 03x y 5 0三、解答题16. 已知ABC 中,点A(1,2) ,AB 边和AC 边上的中线方程分别是5x 3y 3 0 和7x 3y 5 0,求BC所在的直线方程的一般式。
(完整版)必修二《直线与方程》单元测试题(含详细答案)
![(完整版)必修二《直线与方程》单元测试题(含详细答案)](https://img.taocdn.com/s3/m/a44d02cced630b1c58eeb582.png)
第三章《直线与方程》单元检测试题 时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )1 .已知点A (1 ,邓),B (-1, 3>/3),则直线AB 的倾斜角是()A. 60°B. 30°C. 120°D. 150°[答案]C2 .直线l 过点P ( —1,2),倾斜角为45° ,则直线l 的方程为()A. x —y+1=0B. x-y- 1 = 0C. x-y-3= 0D. x-y+3=0[答案]D3 .如果直线 ax+ 2y+2=0与直线3x —y —2=0平行,则a 的值为(A. - 3 C. [答案]B4 .直线二—1在y 轴上的截距为()a b2A. | b |B. — bC. b 2D. ± b[答案]B5 .已知点A (3,2) , B ( -2, a ), C (8,12)在同一条直线上,则 a 的值是( )A. 0B. - 4C. — 8D. 4[答案]C6 .如果 AB :0, B «0,那么直线 Ax+ By+ C= 0不经过( )A.第一象限B.第二象限C.第三象限D.第四象限[答案]D7 .已知点A (1 , —2), B ( m,2),且线段 AB 的垂直平分线的方程是 x+2y-2=0,则实数m 的值是()B. - 6 D.A. - 2 D. 1[答案]C8.经过直线l i : x —3y+4=0和l 2: 2x + y=5= 0的交点,并且经过原点的直线方程是 ()A. 19x-9y= 0B. 9x+19y=0C. 3x+ 19y =0D. 19x-3y=0[答案]C9.已知直线(3k-1)x+(k+2)y-k=0,则当k 变化时,所有直线都通过定点 ( )_ 1 2 A. (0,0) B. (7,-) 2 1 1 1 c (7,7) D (7, ―)[答案]C10 .直线x-2y+ 1 = 0关于直线x=1对称的直线方程是( )A. x + 2y-1 = 0B. 2x+y-1 = 0C. 2x+ y —3=0D. x+2y-3=0[答案]D11 .已知直线l 的倾斜角为135° ,直线11经过点A (3,2) , B(a, —1),且11与l 垂直, 直线 g 2x + by+1 = 0与直线l 1平行,则a+ b 等于()A. - 4B. - 2C. 0D. 2[答案]B12 .等腰直角三角形 ABC\ / C= 90。
第三章《直线与方程》测试题
![第三章《直线与方程》测试题](https://img.taocdn.com/s3/m/07bf3900fd0a79563d1e723d.png)
第三章《直线与方程》测试题一、选择题1.若直线与直线3mx+(m-1)y+7=0平行,则的值为( ) A .7B .0或7C .0D .42.已知直线l 过点(1,2)-且与直线2340x y -+=垂直,则l 的方程是( ) A .3210x y +-= B .3270x y ++= C .2350x y -+=D .2380x y -+=3.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = ) A .1B .1-C .2-或1D .2或14.已知直线1:l y kx b =+,2:l y bx k =+,则它们的图象可能为( )A .B .C .D .5.已知点()2, 2,,3()1A B -,若直线 10kx y --=与线段AB 有交点,则实数k的取值范围是( )A .3(,4),2⎛⎫-∞-+∞ ⎪⎝⎭B .34,2⎛⎫- ⎪⎝⎭ C .3(,4],2⎡⎫-∞-+∞⎪⎢⎣⎭D .34,2⎡⎤-⎢⎥⎣⎦6.当点(3,2)P 到直线120mx y m -+-=的距离最大时,m 的值为( ) A .3B .0C .1-D .17.已知直线3230x y --=和610x my ++=互相平行,则它们之间的距离是( ) A .4B .1313C .1326D .13268.一条直线经过点(2,3)A -,并且它的倾斜角等于直线30x -=倾斜角的2倍,则这条直线的方程是( )C.30x y--=D.3330x y--=9.若三条直线2380x y++=,10x y--=与直线0x ky+=交于一点,则k=()A.-2 B.2 C.12-D.1210.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( )A.25B.33C.6D.210 11.直线l过点(1,2)P,且(2,3)M、(4,5)N-到l的距离相等,则直线l的方程是( )A.460x y+-=B.460x y+-=C.3270x y+-=或460x y+-=D.2370x y+-=或460x y+-= 12.已知点A在直线210x y+-=上,点B在直线230x y++=上,线段AB的中点为00(,)P x y,且满足002y x>+,则0yx的取值范围为()A.11(,)25--B.1(,]5-∞-C.11(,]25--D.1(,0)2-二、填空题13.若三点共线则的值为________.14.设直线l的倾斜角是直线31y x=-+的倾斜角的12,且与y轴的交点到x 轴的距离是3,则直线l的方程是____________.15.在平面直角坐标系xOy中,设定点A(a,a),P是函数y=1x(x>0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.16.过点()16,作直线l ,若直线l 经过点()(),0,0,a b ,且,a N b N **∈∈,则可作直线l 的条数为__________.三、解答题17.已知直线1:60l x my ++=,2:(2)320l m x y m -++=. (1)若12l l ⊥,求m 的值; (2)若12l l //,求m 的值.18.过点(1,2)M 的直线l ,(1)当l 在两个坐标轴上的截距的绝对值相等时,求直线l 的方程; (2)若l 与坐标轴交于A 、B 两点,原点O 到l 的距离为1时,求直线l 的方程以及AOB ∆的面积.19.如图,已知三角形的顶点为A (2,4),B (0,-2),C (-2,3),求: (1)直线AB 的方程;(2)AB 边上的高所在直线的方程; (3)AB 的中位线所在的直线方程.20.已知一组动直线方程为()()11530k x k y k ++---=.(1) 求证:直线恒过定点,并求出定点P 的坐标;(2) 若直线与x 轴正半轴,y 轴正半分别交于点,A B 两点,求AOB ∆面积的最小值.21.在ABC ∆中,BC 边上的高所在直线的方程为210x y -+=,A ∠的平分线所在直线方程为0y =,若点B 的坐标为(1,2). (1)求点A 和点C 的坐标;(2)求AC 边上的高所在的直线l 的方程.22.已知直线l 经过点(6,4)P ,斜率为k(Ⅰ)若l 的纵截距是横截距的两倍,求直线l 的方程;(Ⅱ)若1k =-,一条光线从点(6,0)M 出发,遇到直线l 反射,反射光线遇到y 轴再次反射回点M ,求光线所经过的路程。
(完整版)直线与方程测试题(含答案)
![(完整版)直线与方程测试题(含答案)](https://img.taocdn.com/s3/m/a146b0b0af45b307e87197c5.png)
第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。
A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。
A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。
数学第3章《直线与方程》单元测试
![数学第3章《直线与方程》单元测试](https://img.taocdn.com/s3/m/908f822626d3240c844769eae009581b6ad9bd6f.png)
数学第3章《直线与方程》单元测试一、选择题(每小题1分,共20分)1.已知直线l过点A(2,3)和点B(4,5),则过点A且平行于直线l的直线斜率为()。
A.-1B.1C.2D.02.过点(3,-2)和点(-1,4)的直线方程为()。
A.y=6x-20B.y=6x+20C.y=-6x-20D.y=-6x+203.直线l1:2x+y-3=0,直线l2:3x-y+5=0,则直线l1和l2的交点为()。
A.(1,1)B.(-1,-1)C.(-1,1)D.(1,-1)4.直线2x-y-5=0与直线x-2y-1=0的夹角为()。
A.30°B.45°C.60°D.90°5.设直线过点(1,2)且与直线3x-4y+1=0垂直,则该直线方程为()。
A.y-2=4(x-1)B.y-2=-4(x-1)C.y+1=4(x-1)D.y+1=-4(x-1)二、填空题(每小题2分,共20分)1.过点(3,-4)且与直线2x-3y+5=0平行的直线方程为______________。
2.过点(1,2)且与直线4x+y-6=0垂直的直线方程为______________。
3.过点(1,-2)且与直线3x-4y+7=0垂直的直线方程为______________。
4.过点(2,1)且与直线x+2y-3=0垂直的直线方程为______________。
5.设直线过点(1,-3)且平行于直线2x-3y+4=0,直线方程为______________。
三、解答题(共60分)1.有两条直线,直线l1经过点A(1,3)和点B(2,4),直线l2经过点C(2,3)和点D(5,7)。
a)求直线l1和l2的斜率。
b)判断直线l1和l2是否平行,如果不平行,求出直线l1和l2的交点坐标。
2.判断直线y=3x+5与x轴和y轴的交点坐标,并求出与x轴和y轴分别呈45°角的直线方程。
3.直线l1经过点A(1,2)和点B(3,4),直线l2经过点C(0,1)和点D(2,3)。
高中数学 第三章 直线与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题
![高中数学 第三章 直线与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题](https://img.taocdn.com/s3/m/7fac8a3ceffdc8d376eeaeaad1f34693daef10c2.png)
第三章 单元质量测评对应学生用书P77 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.斜率为2的直线的倾斜角α所在的X 围是( ) A .0°<α<45° B.45°<α<90° C .90°<α<135° D.135°<α<180° 答案 B解析 ∵k=2>1,即tanα>1,∴45°<α<90°. 2.在x 轴上的截距为2且倾斜角为135°的直线方程为( ) A .y =-x +2 B .y =-x -2 C .y =x +2 D .y =x -2 答案 A解析 由题可知直线方程为y =tan135°·(x-2),即y =-x +2. 3.若三点A(4,3),B(5,a),C(6,b)共线,则下列结论正确的是( ) A .2a -b =3 B .b -a =1 C .a =3,b =5 D .a -2b =3 答案 A解析 由k AB =k AC 可得2a -b =3,故选A .4.若实数m ,n 满足2m -n =1,则直线mx -3y +n =0必过定点( ) A .⎝ ⎛⎭⎪⎫2,13 B .⎝ ⎛⎭⎪⎫-2,13C .⎝ ⎛⎭⎪⎫2,-13D .⎝ ⎛⎭⎪⎫-2,-13答案 D解析 由已知得n =2m -1,代入直线mx -3y +n =0得mx -3y +2m -1=0,即(x +2)m+(-3y -1)=0,由⎩⎪⎨⎪⎧x +2=0,-3y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =-13,所以此直线必过定点⎝⎛⎭⎪⎫-2,-13,故选D .5.设点A(-2,3),B(3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值X 围是( )A .⎝ ⎛⎦⎥⎤-∞,52∪⎣⎢⎡⎭⎪⎫43,+∞ B .⎝ ⎛⎭⎪⎫-43,52C .⎣⎢⎡⎦⎥⎤-52,43 D .⎝ ⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞ 答案 B解析 直线ax +y +2=0过定点C(0,-2),k AC =-52,k BC =43.由图可知直线与线段没有交点时,斜率-a 的取值X 围为-52<-a <43,解得a∈⎝ ⎛⎭⎪⎫-43,52.6.和直线5x -4y +1=0关于x 轴对称的直线方程为( ) A .5x +4y +1=0 B .5x +4y -1=0 C .-5x +4y -1=0 D .-5x +4y +1=0 答案 A解析 设所求直线上的任一点为(x′,y′),则此点关于x 轴对称的点的坐标为(x′,-y′).因为点(x′,-y′)在直线5x -4y +1=0上,所以5x′+4y′+1=0,即所求直线方程为5x +4y +1=0.7.已知直线x =2及x =4与函数y =log 2x 图象的交点分别为A ,B ,与函数y =lg x 图象的交点分别为C ,D ,则直线AB 与CD( )A .平行B .垂直C .不确定D .相交 答案 D解析 易知A(2,1),B(4,2),原点O(0,0),∴k OA =k OB =12,∴直线AB 过原点,同理,C(2,lg 2),D(4,2lg 2),k OC =k OD =lg 22≠12,∴直线CD 过原点,且与AB 相交.8.过点M(1,-2)的直线与x 轴、y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为 ( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P(x 0,0),Q(0,y 0).∵M(1,-2)为线段PQ 的中点,∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1,即2x -y -4=0.故选B .9.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n)到原点的距离的最小值为( )A . 5B . 6C .2 3D .2 5 答案 A解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2.把(1,2)代入mx +ny +5=0可得m +2n +5=0, ∴m=-5-2n ,∴点(m ,n)到原点的距离d = m 2+n 2=5+2n 2+n 2=5n +22+5≥5,当n =-2时等号成立,此时m =-1.∴点(m ,n)到原点的距离的最小值为5.故选A .10.点F(3m +3,0)到直线3x -3my =0的距离为( ) A . 3 B .3m C .3 D .3m 答案 A解析 由点到直线的距离公式得点F(3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3=3.11.若直线l 经过点A(1,2),且在x 轴上的截距的取值X 围是(-3,3),则其斜率的取值X 围是( )A .⎝⎛⎭⎪⎫-1,15 B .⎝⎛⎭⎪⎫-∞,12∪(1,+∞) C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 在平面直角坐标系中作出点A(1,2),B(-3,0),C(3,0),过点A ,B 作直线AB ,过点A ,C 作直线AC ,如图所示,则直线AB 在x 轴上的截距为-3,直线AC 在x 轴上的截距为3.因为k AB =2-01--3=12,k AC =2-01-3=-1,所以直线l 的斜率的取值X 围为(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞.12.已知△ABC 的边AB 所在的直线方程是x +y -3=0,边AC 所在的直线方程是x -2y +3=0,边BC 所在的直线方程是2x -y -3=0.若△ABC 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 联立直线方程,易得A(1,2),B(2,1).如图所示,当两条平行直线间的距离最小时,两平行直线分别过点A ,B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A ,B 两点的平行直线间的距离,易得|AB|=2,即两条平行直线间的距离的最小值是2.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P(3,3),则直线l 的方程为________.答案 x =3解析 直线y =x +1的斜率为1,倾斜角为45°.直线l 的倾斜角是已知直线y =x +1的倾斜角的2倍,所以直线l 的倾斜角为90°,直线l 的斜率不存在,所以直线l 的方程为x =3.14.直线x 3+y4=t 被两坐标轴截得的线段长度为1,则t =________.答案 ±15解析 直线与x ,y 轴的交点分别为(3t ,0)和(0,4t),所以线段长为3t2+4t2=1,解得t =±15.15.已知点A(2,4),B(6,-4),点P 在直线3x -4y +3=0上,若满足|PA|2+|PB|2=λ的点P 有且仅有1个,则实数λ的值为________.答案 58解析 设点P 的坐标为(a ,b).∵A(2,4),B(6,-4),∴|PA|2+|PB|2=[(a -2)2+(b -4)2]+[(a -6)2+(b +4)2]=λ,即2a 2+2b 2-16a +72=λ.又∵点P 在直线3x -4y +3=0上,∴3a-4b +3=0,∴509b 2-803b +90=λ.又∵满足|PA|2+|PB|2=λ的点P 有且仅有1个,∴Δ=⎝ ⎛⎭⎪⎫-8032-4×509×(90-λ)=0,解得λ=58.16.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则a 的值为________.答案 -12解析 因为y =|x -a|-1=⎩⎪⎨⎪⎧x -a -1,x≥a,-x +a -1,x<a ,所以该函数的大致图象如图所示.又直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则2a =-1,即a =-12.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知Rt△ABC 的顶点坐标A(-3,0),直角顶点B(-1,-22),顶点C 在x 轴上.(1)求点C 的坐标; (2)求斜边所在直线的方程.解 (1)解法一:依题意,Rt△ABC 的直角顶点坐标为B(-1,-22), ∴AB⊥BC,∴k AB ·k BC =-1.又∵A(-3,0),∴k AB =0+22-3--1=-2,∴k BC =-1k AB =22,∴边BC 所在的直线的方程为y +22=22(x +1),即x -2y -3=0. ∵直线BC 的方程为x -2y -3=0,点C 在x 轴上,由y =0,得x =3,即C(3,0). 解法二:设点C(c ,0),由已知可得k AB ·k BC =-1,即0+22-3--1·0+22c +1=-1,解得c =3,所以点C 的坐标为(3,0). (2)由B 为直角顶点,知AC 为直角三角形ABC 的斜边. ∵A(-3,0),C(3,0),∴斜边所在直线的方程为y =0.18.(本小题满分12分)点M(x 1,y 1)在函数y =-2x +8的图象上,当x 1∈[2,5]时,求y 1+1x 1+1的取值X 围. 解y 1+1x 1+1=y 1--1x 1--1的几何意义是过M(x 1,y 1),N(-1,-1)两点的直线的斜率.点M 在直线y =-2x +8的线段AB 上运动,其中A(2,4),B(5,-2).∵k NA =53,k NB =-16,∴-16≤y 1+1x 1+1≤53,∴y 1+1x 1+1的取值X 围为⎣⎢⎡⎦⎥⎤-16,53. 19.(本小题满分12分)已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S .解 (1)联立两直线方程⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,则两直线的交点为P(-2,2).∵直线x -2y -1=0的斜率为k 1=12,所求直线垂直于直线x -2y -1=0,那么所求直线的斜率k =-112=-2,∴所求直线方程为y -2=-2(x +2),即2x +y +2=0.(2)对于方程2x +y +2=0,令y =0则x =-1,则直线与x 轴交点坐标A(-1,0), 令x =0则y =-2,则直线与y 轴交点坐标B(0,-2), 直线l 与坐标轴围成的三角形为直角三角形AOB , ∴S=12|OA||OB|=12×1×2=1.20.(本小题满分12分)一条光线经过点P(2,3)射在直线l :x +y +1=0上,反射后经过点Q(1,1),求:(1)入射光线所在直线的方程; (2)这条光线从P 到Q 所经路线的长度.解 (1)设点Q′(x′,y′)为点Q 关于直线l 的对称点,QQ′交l 于点M .∵k l =-1,∴k QQ′=1, ∴QQ′所在直线的方程为y -1=1·(x-1), 即x -y =0.由⎩⎪⎨⎪⎧x +y +1=0,x -y =0,解得⎩⎪⎨⎪⎧x =-12,y =-12,∴交点M ⎝ ⎛⎭⎪⎫-12,-12,∴⎩⎪⎨⎪⎧1+x′2=-12,1+y′2=-12.解得⎩⎪⎨⎪⎧x′=-2,y′=-2,∴Q′(-2,-2).设入射光线与l 交于点N ,则P ,N ,Q′三点共线, 又∵P(2,3),Q′(-2,-2),∴入射光线所在直线的方程为y --23--2=x --22--2,即5x -4y +2=0.(2)|PN|+|NQ|=|PN|+|NQ′|=|PQ′| =[2--2]2+[3--2]2=41,即这条光线从P 到Q 所经路线的长度为41.21.(本小题满分12分)设直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.解 设直线x -y -1=0与l 1,l 2的交点分别为C(x C ,y C ),D(x D ,y D ),则⎩⎪⎨⎪⎧x C +2y C -1=0,x C -y C -1=0,解得⎩⎪⎨⎪⎧x C =1,y C =0,∴C(1,0)⎩⎪⎨⎪⎧x D +2y D -3=0,x D -y D -1=0,解得⎩⎪⎨⎪⎧x D =53,y D=23,∴D ⎝ ⎛⎭⎪⎫53,23. 则C ,D 的中点坐标为⎝ ⎛⎭⎪⎫43,13, 即直线l 经过点⎝ ⎛⎭⎪⎫43,13. 又直线l 经过点(-1,1),由两点式得直线l 的方程为 y -131-13=x -43-1-43,即2x +7y -5=0. 22.(本小题满分12分)已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2的方程等价于2x -y -12=0,所以两条平行线l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+-12=7510,即⎪⎪⎪⎪⎪⎪a +12=72.又因为a >0,解得a =3.(2)假设存在点P ,设点P(x 0,y 0),若点P 满足条件②,则点P 在与l 1,l 2平行的直线l′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪⎪⎪c +125,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若P 点满足条件③,由点到直线的距离公式, 得|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0. 若点P 满足条件①,则3x 0+2=0不合适. 解方程组⎩⎪⎨⎪⎧ 2x 0-y 0+132=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=-3,y 0=12.不符合点P 在第一象限,舍去.解方程组⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=19,y 0=3718.符合条件①.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程单元测试
一、选择题
1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) (A )30° (B )45° (C )60° (D ) 90°
2.如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= ( ) (A ) -3 (B )-6 (C )2
3
-
(D )3
2
3.点P (-1,2)到直线8x-6y+15=0的距离为( )
(A )2 (B )2
1 (C )1 (D )2
7
4.已知过点A (-2,m )和点B (m ,4)的直线与直线2x+y-1=0平行,则m 的值为( ) (A ) m =-8 (B ) m =0 (C ) m =2 (D ) m =10 ~
5.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( )
(A )3x-y-8=0 (B )3x+y+4=0 (C )3x-y+6=0 (D )3x+y+2=0
6.直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( ) (A )(-2,1) (B )(2,1) (C )(1,-2) (D )(1,2)
7.直线0202=++=++n y x m y x 和的位置关系是( ) (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定
8.如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( ) (A ) k 1<k 3<k 2 (B ) k 3<k 1<k 2
%
(C ) k 1<k 2<k 3 (D ) k 3<k 2<k 1
9.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在直线方程 为( )
(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0
10.直线ax+2y-4=0与直线x+y-2=0互相垂直,那么a=( ).
(A )1 (B )31
- (C )3
2- (D )-2
11.如果直线x+(1+m )y=2-m 与直线2mx+4y+16=0重合,则m=( )
(A )1 (B )2 (C )1或-2 (D )-2
12.过点M (2,1)的直线与x 轴,y 轴分别交于P,Q 两点,且|MP |=|MQ |,则L 的方程是( )
~
(A )x-2y+3=0 (B )2x-y-3=0 (C ) 2x+y-5=0 (D )x+2y-4=0 二、填空题.
13.直线3x+4y+4=0与直线6x+8y+3=0的距离是 . 14.三条直线2x+3y=1,3x+2y=1,ax-y=1相交与一点,则a= . 15.经过点A (-1,-5)和点B (2,13)的直线在x 轴上的截距为 . 16.过点P (1,2)且在x 轴,y 轴上截距相等的直线方程是 . 三、解答题.
17.①求平行于直线3x+4y-5=0,且与它的距离是2的直线的方程. ②求垂直于直线x+3y-5=0,且与点P(-1,0)的距离是105
2
的直线的方程.
】
18.已知A(7,8),B(10,4),C(2,-4)三点,求ABC
∆的面积.
】
19.直线x+m2y+6=0与直线(m-2)x+3my+2m=0,没有公共点,求实数m的值. !
20.求过直线x-2y+1=0和x+3y-1=0的交点且与直线x=y3垂直的直线方程.
^ 21.已知A(1,3)、B(-1,-5)两点,在直线2x+3y+1=0上有一点P,使|PA|=|PB|,
则P点坐标为
22.已知点)4,5
(-
A和),
2,3(
B则过点)2,1
(-
C且与B
A,的距离相等的直线方程为
23.直线5x+4y=2a+1与直线2x+3y=a的交点位于第四象限,求实数a的取值范围.
)
24.直线L与直线x-3y+10=0及2x-y+8=0分别交于M、N两点,如果MN的中点坐标是
(0,1),求直线L的方程.。