碳纤维表面多尺度组元构筑及其复合材料界面性能研究

合集下载

第六章复合材料表界面的分析表征

第六章复合材料表界面的分析表征
A. 接枝聚丙烯酰胺碳纤维; B. 接枝聚丙烯酸 碳纤维; C. 氧等离子处理碳纤维; D. 未处理 碳纤维
41
不同处理碳纤维增强复合材料冲击 载荷与冲击时间的对应关系
A. 接枝聚丙烯酰胺碳纤维; B. 接枝聚丙烯 酸碳纤维; C. 氧等离子处理碳纤维; D. 未 处理碳纤维
氧等离子处理(曲线C)碳纤维 复合丝试样的冲击载荷曲线主 要弹性承载能U1差不多比未处 理者增加近3倍,表明基体变形 更大,也有更多的纤维发生形 变。相反塑性承载能U2却小到 可略视的地步,几乎没有什么 纤维拔出和与基体的脱粘,充 分表明了强结合的界面特征。
25
碳纤维表面官能团的分析
还原剂,消除自由基,证明等 离子处理产生的大部分是游离
基,不是酚羟基
图6-25 等离子处理时间对自由基浓度的影响
在等离子处理初期,自由基浓度迅速增加,处 理5分钟后,自由基浓度增加渐趋平缓。
27
图6-26 UHMWPE纤维表面活性的衰减
经等离子处理后的UHMWPE纤维暴露在空气中,表 面自由基的浓度随时间而衰减,表面活性在逐渐减小
36
6.4.2 复合材料界面的动态力学分析
a-接枝玻纤 b-未接枝玻纤 涂敷聚苯乙烯树脂的玻璃纤维辫子的动态
力学扭辫曲线
曲线b在92℃处出现一个 尖锐的聚苯乙烯玻璃化转变 损耗峰,而曲线a上,在聚 苯乙烯玻璃化转变损耗峰高 温一侧还有一个小峰,一般 称为α’峰,也叫做界面峰。
界面粘结强,则试样承 受周期负荷时界面的能力损 耗大,α’峰越明显。
复合材料界面受到因 热膨胀系数不同引起 的热残余应力。热残 余应力的大小正比于 两者的热膨胀系数之 差Δα和温差ΔT, 也与基体和纤维的模 量有关。
29
❖ 6.4 界面力学性能的分析表征

新型材料的多尺度结构与性能研究

新型材料的多尺度结构与性能研究

新型材料的多尺度结构与性能研究随着科技不断发展,新型材料的研究也越来越受到重视。

这些材料在构建各种各样的高科技产品时发挥着重要作用。

为了提高材料性能,多尺度结构的应用研究逐渐成为新型材料研究领域的一个热点话题。

1. 多尺度结构理论基础多尺度结构理论指的是从宏观到微观,涉及不同空间尺度的结构和相关性质之间的关系。

研究发现,在不同尺度下,材料的性能表现不尽相同。

这个现象的原因在于,在不同的尺度上,材料的结构和力学性质也会有所不同。

因此,利用多尺度理论,可以更全面地了解材料的性质,从而开发新型材料。

2. 多尺度结构的应用近年来,许多新型材料的研究都基于多尺度结构理论展开。

例如,利用多尺度结构设计的材料质量很轻,但非常坚固和耐久。

这种材料被称为“超级材料”,它的应用范围非常广泛,包括航空航天、汽车工业和建筑工业等领域。

另外,多尺度结构也可以应用于金属材料的强化研究。

在微观尺度下,利用纳米晶技术,可以改变材料的力学性质。

这种技术能增加金属的硬度和强度,并可以大大减少其脆性。

因此,这种与多尺度结构相结合的技术能够制造出更可靠、更安全和更耐用的材料。

3. 多尺度材料的制备过程将多尺度结构理论应用到材料制备过程中,需要采用不同的方法。

一种方法是多重注浆成型法。

这种方法利用注浆机具,通过混合不同尺寸的金属颗粒和液体混合物,可以在不同尺度下生成具有多重级结构的材料。

另一种制备方法是电沉积法。

这种方法主要是通过不同电压的加入和微调来控制材料的结构和性能。

它可以实现对材料不同部分的针对性改变,以更好地符合不同的应用需求。

4. 多尺度材料的发展展望未来,多尺度结构理论将继续为新型材料的研究提供基础。

科学家们将探索更多不同尺度结构和新技术的应用,以实现更广泛的应用和性能提升。

另外,对于材料的制备技术和工程应用来说,未来的发展方向也呼唤开发新型设备和工具进行更好的材料制备。

这将有助于进一步改进多尺度结构下的新型材料的性能,实现最佳的材料性能匹配。

碳纤维复合材料应用研究报告进展

碳纤维复合材料应用研究报告进展

碳纤维复合材料的应用研究进展姜楠<湖北大学材料科学与工程学院,武汉430062)摘要:本文概述了碳纤维复合材料vCFRP)的性能特点和应用研究进展。

简要介绍了碳纤维复合材料在大飞机制造业,深海油气田,非织造设备等方面的应用情况,碳纤维复合材料湿热性能和抗氧化烧蚀技术的研究进展以及国内外的研究状况。

关键词:碳纤维复合材料大飞机深海油气田非织造设备湿热性能抗氧化烧蚀技术应用研究1前言碳纤维复合材料<CFRP)自20世纪50年代面世以来就主要用于军工,航天,航空等尖端科学技术领域,其高强、高模、轻质、耐热、抗腐蚀等独特的性能使其在飞机、火箭、导弹、人造卫星等方面发挥了巨大作用。

随着CFRP材料性能的不断完善和提高,其优越的性能逐步被认可及价格的大幅度下降,使得它在民用工业上的应用逐步扩大,目前在土木建筑、纺织、石油工业、医疗机械、汽车工业等领域得到了广泛应用。

2CFRP材料的性能特点碳纤维是由碳元素组成的一种高性能增强纤维。

其最高强度已达7000MPa ,最高弹性模量达900GPa,而其密度约为1.8~2.1g/cm3,并具有低热膨胀、高导热、耐磨、耐高温等优异性能,是一种很有发展前景的高性能纤维。

碳纤维由高度取向的石墨片层组成,并有明显的各向异性,沿纤维轴向,强度高、模量高,而横向性能差,其强度和模量都很低。

因此在使用时,主要应用碳纤维在轴向的高性能。

[1-2]碳纤维是黑色有光泽,柔软的细丝。

单纤维直径为5~10pm,一般以数百根至一万根碳纤维组成的束丝供使用。

由于原料和热处理工艺不同,碳纤维的品种很多。

高强度型碳纤维的密度约为 1.8g/cm3,而高模量和超高模量的碳纤维密度约为1.85~2.1g/cm3。

碳纤维具有优异的力学性能和物理化学性能。

碳纤维的另一特征是热膨胀系数小,其热膨胀系数与石墨片层取向和石墨化程度有密切的关系。

碳纤维具有优异的耐热和耐腐蚀性能。

在惰性气氛下碳纤维热稳定性好,在2000C的高温下仍能保持良好的力学性能;但在氧化氛围下超过450C碳纤维将被氧化,使其力学性能下降。

碳纤维复合材料的表界面

碳纤维复合材料的表界面
8
复合材料界面的控制
❖ 复合材料界面的控制是通过界面粘合状态、界面层特性的调 整及控制以使复合材料达到最佳的综合(如强度、韧性等方面) 性能。 ❖ 孤立地将界面认为是零厚度的二维面,仅考虑该面两侧的粘 接问题是远远不够的。 ❖ 界面是具有一定厚度的、存在于增强纤维与树脂基体之间的 过渡区。 ❖ 探讨界面层所需的性能,调整界面相结构,来控制复合材料 的性能。
structure and property characters of the interlayer
A. 非单分子层,其组成、结构形态、形貌十分复杂、形式多样 界面区至少包括: 基体表面层、增强体表面层、基体/增强体界面层三个部分;
B. 具有一定厚度的界面相(层),其组成、结构、性能随厚度方向 变化而变化,具有“梯度”材料性能特征;
碳纤维非氧化处理:主要用于C/C复合、CMC、MMC复合体系。
15
碳纤维表面的含氧官能团的数量起着决定性作用, 数量越多结合力越强。碳纤维表面含氧官能团主要有羧 基、羟基和羰基等。
碳纤维表面官能团与树脂之间相互作用示意图
16
臭氧氧化法
臭氧氧化法: 碳纤维表面的不饱和状态的碳原子进行氧化,使 其生成含氧官能团。
9
界面残余应力
1)热残余应力 热膨胀系数的不同、环境温度的变化是多组分材料存在热残余
应力的根本原因。 高性能树脂基复合材料多半高温固化成型,成型温度与使用温
度有很大差别;增强纤维与基体间热膨胀系数也存在很大差异。 2)固化残余应力 环氧、酚醛、不饱和聚酯、聚酰亚胺等树脂,在固化过程中都
伴随着体积收缩。 纤维具有较高模量,树脂基体的固化收缩会在材料内部形成很
碳纤维电化学表面处理前后XPS表面化学分析结果

碳纤维增强聚醚醚酮复合材料的研究及应用

碳纤维增强聚醚醚酮复合材料的研究及应用

碳纤维增强聚醚醚酮复合材料的研究及应用目录1. 内容概述 (2)1.1 研究背景 (2)1.2 研究意义 (3)1.3 综述目的与范围 (4)1.4 结构与组织 (5)2. 碳纤维增强聚醚醚酮复合材料简介 (7)2.1 聚醚醚酮的基本特性 (8)2.2 碳纤维的材料特性 (9)2.3 纤维增强塑料的制造工艺 (10)3. 碳纤维增强聚醚醚酮复合材料的性能特点 (11)3.1 力学性能 (12)3.2 耐热性能 (13)3.3 电绝缘性能 (15)4. 复合材料的研究进展 (17)4.1 纤维增强方式的探索 (18)4.2 增强机制与界面研究 (20)4.3 复合材料的微观结构与性能 (21)4.4 环境耐受性与防护 (22)5. 复合材料的应用领域 (23)5.1 航空航天 (25)5.2 汽车工业 (26)5.3 体育器材 (27)5.4 电子器件 (28)5.5 能源存储 (29)6. 复合材料的生产与加工 (30)6.1 材料加工工艺 (32)6.2 表面处理与涂层 (33)6.4 质量控制与检测 (36)7. 研发挑战与展望 (37)7.1 材料成本与环境问题 (38)7.2 性能提升与界面处理 (39)7.3 可持续性与发展方向 (41)1. 内容概述本研究报告深入探讨了碳纤维增强聚醚醚酮(PEEK)复合材料的研制、性能及其在各领域的应用潜力。

我们概述了碳纤维和PEEK的基本特性及其在复合材料制备中的优势。

详细阐述了复合材料的制备工艺、结构设计以及性能优化方法。

报告重点分析了复合材料在不同工程领域的应用表现,包括航空航天、汽车制造、医疗器械以及体育器材等。

我们还讨论了复合材料在环境友好性、成本效益和可持续性方面的优势,并对其未来发展前景进行了展望。

通过本研究,旨在为相关领域的研究人员和工程技术人员提供有价值的参考信息,推动碳纤维增强PEEK复合材料技术的进一步发展和广泛应用。

1.1 研究背景随着科技的不断发展,复合材料作为一种具有优异性能的新型材料,在各个领域得到了广泛的应用。

碳功能材料的表界面调控和层次化构建

碳功能材料的表界面调控和层次化构建

一、概述碳功能材料具有极高的表面积和丰富的孔隙结构,因此在催化、吸附、电化学等方面具有广泛的应用。

表界面调控是提高碳功能材料性能的重要手段之一,通过对碳功能材料的表面进行改性、功能化等措施,可以有效提高其活性、选择性和稳定性。

层次化构建则是将碳功能材料进行多级结构的设计和组装,以获得更优异的性能。

本文将从表界面调控和层次化构建两个方面对碳功能材料进行探讨。

二、表界面调控技术1. 表面修饰通过化学方法或物理方法对碳功能材料表面进行修饰,包括氧化、还原、氮掺杂等,可以改变其表面化学性质和电子结构,从而调控其催化活性和电化学性能。

2. 分子筛孔填充将分子筛等有机功能分子填充到碳功能材料的孔隙结构中,可以有效提高其吸附和分离性能,还可以调控其孔隙大小和分布。

3. 表面功能化引入特定的功能基团或纳米材料到碳功能材料表面,可以改变其表面化学性质和形貌结构,从而实现对其性能的调控。

三、层次化构建技术1. 多级孔隙结构设计通过合理的多级孔隙结构设计和组装,可以实现对碳功能材料的孔隙结构进行层次化调控,从而提高其吸附和传质性能。

2. 多功能纳米复合材料构建将不同功能的纳米材料组装到碳功能材料的表面或孔隙结构中,可以实现对碳功能材料性能的多方面调控,例如光催化、电化学催化等。

3. 多尺度结构调控结合纳米材料组装和多级孔隙结构设计,可以实现碳功能材料的多尺度结构调控,从微观到纳米尺度都能得到精准调控,提高其性能的多样性和可调性。

四、结论通过表界面调控和层次化构建技术,可以实现对碳功能材料性能的精细调控,从而提高其在催化、吸附、电化学等方面的应用性能。

未来随着材料科学和纳米技术的发展,碳功能材料的表界面调控和层次化构建技术将会更加多样和精密,为碳功能材料的应用开拓出更广阔的前景和可能性。

五、发展趋势和应用前景随着碳功能材料表界面调控和层次化构建技术的不断发展,人们对其应用前景充满了期待。

在能源领域,碳功能材料的催化活性和电化学性能得到提升后,可以应用于燃料电池、锂电池等能源转化和储存设备中,为新能源的发展提供更多可能性。

碳纤维增强复合材料力学性能的有限元模拟分析

碳纤维增强复合材料力学性能的有限元模拟分析

碳纤维增强复合材料力学性能的有限元模拟分析引言:碳纤维增强复合材料是一种重要的结构材料,具有高强度、低密度和优异的耐腐蚀性能。

为了更好地理解和预测这种材料的力学性能,有限元模拟成为一种有效的工具。

本文将探讨碳纤维增强复合材料的力学性能及其有限元模拟分析方法。

1. 碳纤维增强复合材料的力学性能碳纤维增强复合材料由碳纤维和基体材料组成,具有独特的力学性能。

首先,碳纤维的高强度和高模量使得复合材料具有出色的抗拉强度和刚度。

其次,由于碳纤维和基体的界面结合紧密,复合材料还表现出较好的层间剪切性能。

此外,碳纤维增强复合材料的疲劳强度和耐冲击性也远远优于传统金属材料。

2. 有限元模拟在力学性能分析中的应用有限元模拟是一种计算方法,通过将复杂结构离散为数学模型,基于力学原理求解结构的应力和变形分布。

在碳纤维增强复合材料力学性能分析中,有限元模拟被广泛应用。

首先,可以通过有限元模拟研究复合材料在静力载荷下的应力分布和应变响应,从而评估其强度和刚度。

其次,有限元模拟还可以模拟在动力载荷下复合材料的疲劳寿命和冲击行为,并优化复合材料的设计和性能。

3. 有限元模拟参数的选择在进行碳纤维增强复合材料力学性能的有限元模拟时,需要选择合适的模拟参数。

首先,应选择适当的网格划分,以保证模型几何形状和表面质量的准确性。

其次,需要确定材料的力学性能参数,如弹性模量、剪切模量和层间剪切强度等。

对于复合材料的层间剪切强度,通常需要进行微观结构分析以获取准确的数值。

此外,外界加载条件(如温度、湿度等)也需要考虑进来以获得可靠的模拟结果。

4. 有限元模拟分析的挑战和进展尽管有限元模拟在碳纤维增强复合材料力学性能分析中具有重要的应用前景,但仍面临一些挑战。

首先,材料的非线性和各向异性使得模拟计算的复杂度增加。

其次,复合材料的失效机制与金属材料有所不同,需要改进模型和算法以准确地预测结构破坏行为。

此外,对于复合材料的疲劳和寿命预测,还需要开展更多的试验和验证以提高模拟的准确性。

连续碳纤维增强聚醚醚酮复合材料的界面改性研究

连续碳纤维增强聚醚醚酮复合材料的界面改性研究

连续碳纤维增强聚醚醚酮复合材料的界面改性研究摘要:本文研究了连续碳纤维增强聚醚醚酮复合材料的界面改性。

通过添加表面活性剂、亲水性改性剂和硅烷化剂等改性剂对复合材料的界面进行表征,并对其力学性能、热性能和耐热老化性能进行测试。

结果表明,添加改性剂可以使复合材料界面的亲疏性得到改善,界面的结合力得到增强,同时复合材料的力学性能和热性能也得到了提高。

特别是添加硅烷化剂的复合材料在耐热老化性能上表现出了优异的表现。

关键词:碳纤维;聚醚醚酮;复合材料;界面改性;硅烷化剂1. 引言随着科技的发展,高性能复合材料在航空航天、汽车制造、体育用品等领域中得到了广泛应用。

碳纤维是一种优异的复合材料增强材料,具有优异的强度、刚度和耐久性等性能。

然而,碳纤维增强聚醚醚酮复合材料的界面黏结性不强,易出现剥离和脱层等问题,因此需要进行界面改性。

2. 实验材料和方法2.1 实验材料本实验选用的复合材料为碳纤维增强聚醚醚酮复合材料。

改性剂包括表面活性剂、亲水性改性剂和硅烷化剂等。

2.2 实验方法通过扫描电镜、接触角测量等表征方法对复合材料的界面进行表征;通过万能材料试验机测试复合材料的力学性能;通过热失重分析仪测试复合材料的热性能;通过加速老化实验测试复合材料的耐热老化性能。

3. 结果与分析3.1 界面表征添加表面活性剂和亲水性改性剂后,复合材料表面的接触角明显下降,表现出更好的亲水性。

同时,添加硅烷化剂后,复合材料界面的结合力得到了明显增强。

3.2 力学性能添加改性剂后,复合材料的弯曲强度和冲击强度均有所提高。

其中,添加硅烷化剂的复合材料在弯曲强度上表现出了最大的提高。

3.3 热性能添加改性剂后,复合材料的热稳定性得到了提高。

其中,添加硅烷化剂的复合材料在热失重方面表现出了最大的提高。

3.4 耐热老化性能经过加速老化实验,添加硅烷化剂的复合材料在耐热老化性能上表现出了优异的表现。

其残余强度和弯曲强度分别为未添加改性剂样品的109%和124%。

碳纤维表面和复合材料界面表征及理论知识

碳纤维表面和复合材料界面表征及理论知识

碳纤维表面和复合材料界面表征及理论知识以下是张博在碳纤维研习社交流的讲解:大家好很开心再次和大家交流。

今天主要想和大家交流下复合材料界面这方面的知识或许会比较枯燥希望砖头来得温柔些哈哈。

复合材料是基体与增强材料符合而成的,它克服了单一材料的局限性:如陶瓷的脆性、高分子材料的弹性模量低,显示出比单一材料有较多的优越性但是这种优越性只有在两种或多种材料复合后,相界面具有良好的界面粘结强度,各种材料结合成一个整体的情况下,才能显示出来。

碳纤维以及有机纤维,与树脂基体的性能都有较大的差异,尤其是碳纤维作为无机类增强材料,一般来说极性与基体树脂相差大,表面化学组成也与基体树脂不同,二者存在着一定的差距,因此它们的相容性不好。

由此可见,对增强材料表面进行处理改性是很有意义的,而且十分必要。

关于纤维表面改性,之前已经有老师讲过了,在此不再赘述。

有一点是可以肯定的,表面改性对复合材料性能的影响是很大的,这主要是由于表面改性直接关系到界面的粘结强度所致。

不同粘结强度的界面,其界面层的结构和性能是不同的。

复合材料中增强体与基体接触构成的界面,是一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相——界面相(界面层),它是增强相与基体连接的纽带,也是应力及其他信息传递的桥梁。

因此界面是复合材料组成的重要组成部分,它的组成、性质、结合方式以及界面结合强度的大小直接对复合材料的力学性能以及破坏行为有着重大的影响,所以对复合材料的界面进行研究有着十分重要的意义。

纤维与树脂的界面相结构是表面反应的产物,是纤维固态表面与液态树脂接触界面上各种相互作用力平衡结果,是一个依赖时间的过程。

复合材料的成型工艺对界面相结构有着重要的影响,不同的升温速率、停留温度和停留时间等,都会对材料的最终性能产生影响,自然也会对界面有着或大或小的影响。

所以,复合材料工程师可以利用工艺条件和工艺窗口,适当地调节和改变界面相结构。

碳纤维增强热塑性复合材料的研究进展

碳纤维增强热塑性复合材料的研究进展

2020 年第49 卷第 12 期石油化工PETROCHEMICAL TECHNOLOGY·1153·特约述评DOI :10.3969/j.issn.1000-8144.2020.12.001[收稿日期]2020-08-03;[修改稿日期]2020-10-29。

[作者简介]张琦(1984—),女,安徽省宿州市人,博士,高级工程师,电话 010-********,电邮 zhangqi01.bjhy@ 。

联系人:张师军,教授级高级工程师,中国石化高级专家,电话 010-********,电邮 zhangsj.bjhy@ 。

[基金项目]中国石油化工股份有限公司资助项目(219025-4)。

碳纤维增强热塑性复合材料的研究进展张 琦,张师军(中国石化 北京化工研究院,北京 100013)[摘要]碳纤维增强热塑性复合材料因出色的机械性能及易于加工、回收等优点受到广泛关注。

对碳纤维/树脂进行界面改性可改善碳纤维与热塑性树脂之间的化学键合、机械啮合以及界面浸润性,进而提高复合材料的综合性能。

对碳纤维增强热塑性复合材料的界面改性和材料性能研究等方面进行了综述,重点总结了碳纤维增强聚酰胺、聚苯硫醚、聚醚醚酮、聚醚酰亚胺、聚醚砜等热塑性复合材料的最新研究进展。

[关键词]碳纤维;热塑性复合材料;高性能;界面改性[文章编号]1000-8144(2020)12-1153-12 [中图分类号]TQ 322.4 [文献标志码]AResearch development on carbon fiber reinforced thermoplastic compositesZhang Qi ,Zhang Shijun(Sinopec Beijing Research Institute of Chemical Industry ,Beijing 100013,China )[Abstract ]Carbon fiber reinforced thermoplastic composite has attracted much attention due to its advantages ,such as excellent mechanical properties ,easy to process and recycle. The interfacial modification of carbon fiber/thermoplastic resin can improve the chemical bonding ,mechanical meshing and interfacial wettability between carbon fiber and thermoplastic matrix ,so as to improve the comprehensive properties of the composite. In this paper ,the research on the interfacial modification ,mechanical properties and other aspects of carbon fiber reinforced thermoplastic composites are reviewed ,and the latest research progress of carbon fiber reinforced polyamide ,polyphenylene sulfide ,polyetheretherketone ,polyetherimide ,polyethersulfone and other thermoplastic resin matrix composites were emphatically summarized.[Keywords ]carbon fibers ;thermoplastic composites ;high performance ;interfacial modification碳纤维(CF )是由有机纤维在惰性气氛中经高温碳化制得,具有高强度、高比模量、优异的热性能和化学稳定性以及阻尼减震降噪等特性,是优异的增强体材料[1-4]。

两种国产T800级碳纤维界面状态及复合材料力学性能研究

两种国产T800级碳纤维界面状态及复合材料力学性能研究

第1期纤维复合材料㊀No.1㊀32024年3月FIBER ㊀COMPOSITES ㊀Mar.2024两种国产T800级碳纤维界面状态及复合材料力学性能研究王㊀涵,周洪飞,张㊀路,李是卓(中航复合材料有限责任公司,北京100000)摘㊀要㊀研究了两种国产T800级碳纤维界面状态及复合材料力学性能,结果表明,与B 类纤维相比,A 类纤维表面形貌粗糙度高约23%㊁O /C 含量高约7.4%㊁活性C 含量高约20%,微观剪切强度高约10%,A 类纤维增强的复合材料冲击后压缩强度比B 类纤维高约8%㊂A 类纤维与树脂形成更好的化学与物理结合,界面结合作用较好㊂关键词㊀T800级碳纤维;界面;表面活性;力学性能Study on the Interface State of Different Domestic T 800Carbon Fibers and the Mechanical Properties of CompositesWANG Han,ZHOU Hongfei,ZHANG Lu,LI Shizhuo(AVIC Composites Co.,Ltd.,Beijing 100000)ABSTRACT ㊀The interface state and mechanical properties of two kinds of domestic T800carbon fibers were studied.The results showed that compared with class B fibers,the surface roughness of class A fibers was about 23%higher,the O /C content was about 7.4%higher,the active C content was about 20%higher,and the microscopic shear strength was about 10%higher.The compressive strength of Class A fiber reinforced composites after impact is about 8%higher than that of class B fiber.Class A fiber and resin form a better chemical and physical bond,and the interface bond is better.KEYWORDS ㊀T800carbon fiber;interface;surface activity;mechanical properties项目支持:国家重点研发计划资助(2022YFB3709100)通讯作者:周洪飞,男,研究员㊂研究方向为先进树脂基复合材料㊂E -mail:wanghan6583@1㊀引言碳纤维复合材料是由增强体碳纤维和基体树脂复合而成,具有明显优于原组分性能的一类新型材料[1],具有较高的比强度㊁高比模量和优异的耐腐蚀的性能,被广泛的应用于航空㊁船舶㊁航天等领域㊂在碳纤维复合材料里,碳纤维起到增强作用,承接作用力和传递载荷,树脂作为基体通过界面作用将载荷传递到纤维㊂因此当复合材料受到外力作用时,界面起到传递载荷的作用就显得尤为重要,界面的性质和状态直接影响复合材料的综合力学性能[2],是影响复合材料力学性能的关键点,也是近期国内外学者研究的热点之一㊂碳纤维增强树脂基复合材料的界面不是特指增纤维复合材料2024年㊀强体纤维和基体树脂之间的单纯几何层,而是泛指纤维与树脂之间的包括几何层在内的界面层[3]㊂在该结构层内,增强体纤维与基体树脂的微观结构与性质都存在不同程度的差异,这不仅取决于纤维与树脂的结构和性质,还受到复合材料固化工艺㊁成型工艺等其他因素影响,如碳纤维在出厂前会进行上浆处理,上浆剂的浓度㊁厚度及种类都会大大影响纤维与树脂的界面结合㊂目前国内外学者对纤维与树脂的界面结合提出几种理论,如化学键结合理论㊁机械啮合理论㊁树脂浸润理论等[4]㊂经过大量的实验研究,结果表明,纤维与树脂的界面结合不是由某一种理论完全解释的,这是多种作用相互协调㊁共同作用的结果[5]㊂Thomsomn等人[6]通过对比多种纤维与多种树脂的界面结合实验,认为纤维与树脂复合使得纤维表面的分子链活动受到限制,根据界面浸润理论,纤维经过树脂浸润后,纤维选择性吸收树脂组分,而后表面形成一层具有刚性结构的界面层,当纤维增强复合材料经过一定温度㊁压力条件下固化成型后,界面层会变得非常复杂,界面层显得更加尤为重要[7]㊂而化学键理论认为,纤维与树脂结合的过程中,主要是范德华力起主导作用[8]㊂目前对于纤维与树脂的界面表征主要包括纤维微观结构㊁纤维表面活性以及纤维与树脂的界面结合强度㊂纤维微观结构可以通过扫描电镜㊁原子力纤维镜等手段实现,纤维表面活性可以通过IGC直接测得纤维活化能,也可以通过间接方式XPS对纤维表面元素及官能团表征计算,从而间接获得纤维活化能;或者通过接触角实验,纤维与不同极性和非极性溶剂接触,通过接触力衡量纤维表面活性㊂纤维与树脂的界面结合强度主要有微脱粘实验和复合材料层间剪切强度,前者是单丝级别,后者是宏观力学级别,数据可靠度都很高,也是目前国内外大量学者常用的表征纤维与树脂界面的方式㊂本文首先通过观察纤维表面形貌㊁测试纤维表面原子含量和纤维与树脂微观结合力,对比两种国产T800级碳纤维界面状态,并制备了复合材料层合板,目的为国产T800级碳纤维应用及其增强的复合材料界面性能研究提供一定的数据支撑和参考意义㊂2㊀实验材料及方法2.1㊀原材料实验采用两种同级别但不同界面的国产A类碳纤维和B类碳纤维,两种纤维的具体信息如表1所示,实验所用树脂为某国产高性能高温环氧类树脂㊂表1㊀两种纤维基本信息批次拉伸强度/MPa拉伸模量/GPa断裂伸长率/%线密度/(g/km)体密度/(g/cm3)直径/mm长㊁短径比A6324300 2.10450 1.8 5.10 1.04 B6334297 2.13453 1.8 5.13 1.02㊀㊀2.2㊀试样制备2.2.1㊀碳纤维去上浆剂碳纤维在出厂前会在表面涂刷一层上浆剂,目的减少纤维在后续使用过程中造成的磨损㊁打结和并丝现象发生,提高纤维集束性,增加纤维与树脂的浸润性,保护纤维[9]㊂为了更加直观清晰的观察和研究碳纤维本征性能与碳纤维增强树脂基复合材料界面之间的关系,需要对已经上过浆的碳纤维进行去剂㊂本实验按照国标中索式萃取试验方法对两种不同界面的国产T800级A类碳纤维和B类碳纤维进行去剂处理㊂首先将一定长度的碳纤维放置在温度23ʃ2ħ㊁相对湿度50ʃ10%的标准环境下调湿6h以上,将调湿后的碳纤维放置于索氏提取器中,并加入足量的丙酮以确保回流循环,调节加热炉功率,使索氏提取器2h至少完成8次循环,而后萃取36h,关掉加热炉㊂经过一定时间萃取后的碳纤维从索氏提取器中取出,冷却10min,放置于105ʃ5ħ的鼓风烘箱内干燥5h,最后再放入干燥器中进行冷却,温度降至室温即可㊂2.2.2㊀微脱粘制样制备将单根碳纤维(单丝)从碳纤维试样丝束中分离出来,将其拉直并粘贴在回型支架上,如图1所示,高性能高温环氧类树脂在烘箱内50ħ保温30 min,再与二氯乙烷10ʒ1的比例配制树脂液,并迅速搅拌均匀,将配制好的树脂液常温下在真空烘箱里抽真空20min,取出树脂,用大头针蘸取少量配制好的树脂液,轻涂抹于碳纤维单丝上,将试样放于鼓风烘箱里在130ħ下固化30min㊂4㊀1期两种国产T800级碳纤维界面状态及复合材料力学性能研究图1㊀微脱粘试样示意图2.3㊀测试与表征使用Quanta 450FEG 场发射扫描电子显微镜(SEM)两种不用界面的T800级碳纤维表面形貌㊂将一束碳纤维用手术刀平齐切断,分别用导电胶带将平齐切断的碳纤维垂直粘贴在铝制载物台上,对粘在导电胶上的纤维表面喷金,经过两次喷金后放入SEM 内观察,电子加速电压为20~50kV,束流1pA,放大倍数50~8000X㊂采用Dimension ICON 原子力显微镜(AFM)观察碳纤维三维立体形貌,通过探针针尖与样品微弱作用力获取纤维表面粗糙度,扫描面积为5μm ˑ5μm,扫描频率为1.0Hz㊂采用X 射线光电子能谱仪(美国ThermoFisch-er,ESCALAB 250Xi)测试碳纤维表面元素组成及化学官能团,分析室真空度8ˑ10-10Pa,激发源采用Al ka 射线(hv =1486.6eV),工作电压12.5kV,灯丝电流16mA,进行5~10次循环的信号累加㊂通过微脱粘试验测试纤维与树脂的微观剪切性能㊂将带有已经固化好的尺寸均匀且正圆的树脂小球碳纤维固定在微脱粘仪器上,移动卡刀,使其将其中一个树脂小球从左右两侧卡住,移动回形架使得纤维匀速自下而上移动,直至卡刀恰好将树脂小球剥落,此时仪器会记录纤维与树脂小球分离瞬间的最大结合力,如何计算纤维与树脂的微观界面结合强度如公式(1)所示㊂IFSS =F max ΠDL(1)式中,IFSS 为纤维与树脂微观界面剪切强度;F 为树脂与纤维剥离时的最大剪切力;L 为纤维迈入树脂球的长度㊂碳纤维增强树脂基复合材料力学性能在Intron 公司的Instro5967万能力学试验机上进行㊂复合材料冲击后压缩强度按照ASTMD7137开展㊂3㊀结果与讨论3.1㊀碳纤维表面形貌两种不同界面的国产T800纤维去除上浆剂后的表面形貌SEM 如图2所示,由图A (a)和A (b)看出未上浆的A 类碳纤维表面整体光滑,但具有相对明显的沿着轴向排列均匀分布的较浅沟槽,由A (c)可看出,纤维截面致密,形状呈正圆形,具有明显的干喷湿纺纺丝工艺特征,干喷湿纺工艺生产的碳纤维兼具了拉伸强度和机械啮合的优势[10]㊂与A 类纤维相比,B 类纤维表面明显沟槽更浅,根据界面机械啮合理论,纤维表面沟槽的数量越小㊁深度越浅,纤维与树脂的界面结合面积越小,界面结合强度越弱㊂图2㊀两种碳纤维表面形貌图5纤维复合材料2024年㊀㊀㊀为了进一步对比两种碳纤维界面状态,采用AFM 对其观察三维立体形貌,如图3所示,由图3可以看出,A㊁B 类纤维表面存在明显的沿着纤维轴向排列的深浅不一沟槽,但A 类沟槽深度更深,数量更多,对两类碳纤维随机抽取三个试样进行粗糙度测试,数据如表2所示,A 类纤维平均粗糙度要高于B 类纤维约23%,根据界面机械啮合理论,纤维表面积越大,粗糙度越高,纤维与树脂结合越牢固㊂图3㊀两种纤维三维表面形貌图表2㊀两种纤维表面粗糙度序号A B 130524622972513303237平均值/nm302245CV1.382.90㊀㊀3.2㊀碳纤维表面元素及含氧官能团通过XPS 表征测试两种碳纤维表面化学特性,如图4所示,对XPS 图谱分峰处理,纤维表面主要存在C㊁O㊁Si㊁N 四种元素,纤维表面原子含量具体如表3所示,数据显示A 类纤维O /C 含量略高于B 类,约7.4%㊂而经过阳极氧化处理过的碳纤维表面O 含量越高,表面活性越高,纤维与树脂的界面结合越牢固㊂图4㊀两种碳纤维XPS 峰图6㊀1期两种国产T800级碳纤维界面状态及复合材料力学性能研究表3㊀两种碳纤维表面原子含量样品Si2p /%C1s /%N1s /%O1s /%102.02eV 284.49eV 399.48eV 532.23eV Si㊁N 总量/%O /C /%A (a) 3.1373.24 3.6819.95 6.8127.24A (b) 2.3774.31 3.4619.86 5.8326.73A (c) 2.2975.22 3.1719.32 5.4625.68B (a) 3.8174.25 4.117.857.9124.04B (b) 2.4774.96 3.818.76 6.2725.03B (c)2.6975.223.7718.32 6.4624.36㊀㊀利用C1s 电子XPS 窄扫描,并对测试后的C1s 图谱进行分峰处理,分峰图如图5所示,碳纤维含C 官能团具体含量如表4所示,其中C -O㊁C =O 为活性C,C -C 为非活性C,活性C 占比越高,纤维表面活性越高,整体来看,与B 类纤维相比,A 类纤维表面原子中活性C 含量更高,即其表面活性更高,根据界面化学键结合理论,这意味着A 类碳纤维与树脂的界面结合强度较高㊂图5㊀两种碳纤维C1s 分峰图表4㊀C1s 分峰结果样品C -C /%C -O /%C =O /%284.8eV 286.39eV 288.85eV 活性碳比例/%A (a)67.3729.94 2.6948.43A (b)64.3133.46 2.2355.50A (c)67.530.32 2.1848.15B (a)73.3719.467.1736.30B (b)68.6129.36 2.0345.75B (c)69.6128.36 2.0343.66㊀㊀3.3㊀单纤维/树脂微脱粘采用微脱粘法从微观角度测试两种不同界面的T800级碳纤维与树脂的界面结合作用,具体数据如表5所示,数据显示A 类纤维与高性能环氧树脂的界面剪切力高于B 类纤维约10%,即A 类纤维与该树脂界面结合作用更强㊂㊀㊀3.4㊀复合材料宏观力学性能制备A㊁B 类纤维增强复合材料层合板,并按照ASTM D7137(6.67J /mm)进行冲击后压缩强7纤维复合材料2024年㊀度测试,测试结果如表6所示,表中数据显示两类纤维增强树脂基复合材料均具有较高的冲击后压缩强度,但相比与B类纤维,A类纤维增强树脂基复合材料冲击后压缩强度要高于B类约8%,这可能归功于A类纤维与树脂的界面结合牢固所致㊂表5㊀两批次T800级碳纤维与某高温环氧树脂界面剪切强度样品界面剪切强度平均值/MPa CV/%A(a)120.15 5.03A(b)118.358.08A(c)119.357.61B(a)112.04 4.41B(b)110.37 4.48B(c)103.23 5.36表6㊀纤维增强复合材料冲击后压缩强度序号A类纤维复合材料/MPa B类纤维复合材料/MPa 1348313 2330299 3338318 4326311 5335311 6342321平均值337312CV/% 2.38 2.434㊀结语实验选取了两种不同界面的国产T800级碳纤维及复合材料力学性能,通过对其界面状态和复合材料力学研究,结果表明,相同级别的T800级国产碳纤维,A类纤维表面形貌粗糙度高于B类约23%㊁O/C含量高约7.4%㊁活性C含量高约20%,微观剪切强度高约10%㊂A类纤维增强的复合材料冲击后压缩强度比B类纤维高约8%㊂即A 类纤维与树脂形成更好的化学与物理结合,界面结合作用较好㊂参考文献[1]贺福.碳纤维及其应用.北京:化学工业出版社,2004.[2]梁春华.高性能航空发动机先进风扇和压气机叶片综述[J].航空发动机,2006(03):48-52.[3]王运英,孟江燕,陈学斌,白杨.复合材料用碳纤维的表面技术.处理技术,36(3):53-57.[4]陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状.中国材料进展,2009,28(6):2-11. [5]易楠,顾轶卓,李敏.碳纤维复合材料界面结构的形貌与尺寸表征[J].复合材料学报,2010,27(5):36-40. [6]Thomson A W,Starzl T E.New Immunosuppressive Drugs:Mecha-nistic Insights and Potential Therapeutic Advances[J].Immunolog-ical Reviews,1993,136(1):71-98.[7]张巧蜜.聚丙烯腈基碳纤维[M].东华大学出版社,2005-7.[8]何宏伟.碳纤维/环氧树脂复合材料改性处理[M].国防工业出版社,2014.[9]谢云峰,王亚涛,李顺常.碳纤维工艺技术研究及发展现状[J].可化工新型材料,2013,41(5)-27. [10]张焕侠.碳纤维表面和界面性能研究及评价[D].东华大学, 2014.8。

碳纤维增强陶瓷基复合材料界面的研究现状

碳纤维增强陶瓷基复合材料界面的研究现状

1前言纤维增强陶瓷基复合材料以其耐高温、耐腐蚀、轻质、高强等优异的综合性能,在航空航天、国防军工、交通运输、机械化工、人体工程、体育卫生等等领域得到广泛应用和重视,成为衡量国家综合竞争能力的重要标志[1,2]。

众所周知,陶瓷材料具有优异的高温性能,但其脆性大,故常用纤维材料改善其韧性。

在众多纤维材料中,具有高强高模、良好导电性和热稳定性的碳纤维成为首选增强材料[3]。

但由于碳纤维表面呈化学惰性特性,且表面较平滑,吸附性差,使其与基体的界面结合差而不能有效地发挥其本体的增强/增韧作用。

在碳纤维增强陶瓷基复合材料中,碳纤维作为增强体主要起到承担载荷的作用,陶瓷基体主要是将增强纤维连接起来,而界面相则是起到在碳纤维与陶瓷基体间均匀地传递载荷并阻碍材料中裂纹进一步扩展的作用。

因此,界面是复合材料重要的微结构,其作为连接基体和增强体(增强纤维)的纽带,对复合材料的物理力学性能有着至关重要的影响。

界面是决定复合材料能否实现其优异性能的关键因素,界面的优化设计已成为当前复合材料研究领域的焦点。

2界面的作用和结合方式复合材料的界面是指基体与增强相之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的曹晶晶,赵文武,姬晓利,薛应芳,常永泉(河北工程大学机械与装备工程学院,邯郸056038)其性质决定着复合材料的整体性能。

本文介绍了复合材料界面的作用和结合方式,综述了碳纤维增强陶瓷基复合材料界面的研究现状。

归纳总结了在碳纤维表面改性中常用的涂层技术和晶须生长技术,并分析了其技术的优缺点。

最后指出了未来碳纤维增强陶瓷基复合材料界面的研究方向。

复合材料;界面河北省教育厅科学技术基金资助项目(QN2017037)微小区域[4]。

界面的性质决定着复合材料的性能。

对于纤维增强陶瓷基复合材料来说,界面性能在很大程度上影响陶瓷基复合材料的断裂形式。

如当界面结合较强时,纤维不能起到承担载荷的作用而使陶瓷基复合材料呈脆性断裂;当界面结合较弱时,断裂时纤维不能充分发挥其脱粘和拔出的能耗机制,而使纤维的增韧效果不明显。

碳功能材料的表界面调控和层次化构建

碳功能材料的表界面调控和层次化构建

碳功能材料的表界面调控和层次化构建碳功能材料具有广泛的应用前景,可用于能源存储、催化剂、传感器、电子器件等领域。

要充分发挥碳功能材料的性能,需要对其表界面进行调控和层次化构建。

本文将阐述碳功能材料表界面调控和层次化构建的意义、方法以及相关应用。

碳功能材料的表界面调控是指通过改变碳材料的表面性质来调整其物理、化学和电学性能。

具体包括表面修饰、掺杂、表面缺陷等手段。

通过这些方法可以增强材料的导电性、催化活性、气体吸附能力等,从而提高其应用性能。

在表界面修饰方面,一种常见的方法是通过化学修饰来改变碳材料的表面化学性质。

例如,可以使用化学还原剂将氧化石墨烯表面上的氧功能团还原,从而增加其导电性能。

另外,还可以将金属纳米粒子等功能材料沉积在碳材料表面,以实现催化或传感等特定功能。

掺杂是另一种常用的表界面调控方法。

通过在碳材料中引入杂原子,可以改变材料的能带结构和电子结构,从而调控其电学性能。

例如,通过氮掺杂可以使石墨烯具有更好的导电性能和催化活性。

表面缺陷是一种提高碳材料性能的有效手段。

一般来说,表面缺陷可以提供更多的活性位点,增强材料的化学反应能力。

例如,石墨烯的边缘碳原子和缺陷位点可以作为催化剂的活性中心,提高材料的催化性能。

除了表界面调控外,层次化构建也是实现碳功能材料优化的重要方法。

层次化构建是指将不同形态、尺寸或结构的碳材料组装在一起,形成复合材料。

这种构建方式可以实现不同级别的功能定制,从而提高材料的整体性能。

层次化构建可以通过多种方法实现,如物理混合、化学合成、界面结合等。

例如,将石墨烯和碳纳米管组装在一起可以形成石墨烯纳米管复合材料,极大地提高了电子传输速率和机械强度。

碳功能材料的表界面调控和层次化构建在能源存储、催化剂、传感器等方面具有广泛的应用。

在能源存储方面,碳功能材料的表界面调控可以提高材料的电化学性能,提高储能效率。

在催化剂方面,通过表界面调控可以增强催化活性和选择性,提高反应效率。

材料表面与界面-第四章-复合材料的界面及界面优化

材料表面与界面-第四章-复合材料的界面及界面优化
增强树脂基复合材料。
复合材料的增强机制及性能
1. 纤维增强复合材料的增强机制
在纤维增强复合材料中,纤维是材料主要 承载组分,其增强效果主要取决于纤维的 特征、纤维与基体间的结合强度、纤维的 体积分数、尺寸和分布。
在纤维增强复合材料中,纤维是材料主要

承载组分,其增强效果主要取决于纤维的 纤

特征、纤维与基体间的结合强度、纤维的 体积分数、尺寸和分布。
环氧树脂 / 碳纤维(高弹性)
1240
环氧树脂 / 芳纶纤维(49) 1380
环氧树脂 / 硼纤维(70 % Vf ) 1400-2100
纵向弹性模 量 GPa
6.9
45
145 76
210-280
聚合物基纤维增强复合材料零件
碳纤维增强聚酰亚胺复合材料制航空 发动机高温构件
芳纶刹车片
3. 纤维--金属(或合金)复合材料
1电子显微镜观测法基材表面形貌分析尤其是经表面处理的基材未处理碳纤维的表面形态低温等离子处理碳纤维表面形态增强体材料表面形貌分析氧等离子处理后经80与苯乙烯反应4小时接枝聚苯乙烯分子链的碳纤维照片复合材料的断面形貌分析碳铝复合材料不同界面结合时的强度与断口特征结合状态拉伸强度mpa断口形貌不良结合206纤维大量拔出长度很大呈刷子状结合适中612纤维有拔出现象并有一定长度铝基体有缩颈现象并可发现劈裂状结合稍强470出现不规则断面并可看到很短的拔出纤维结合太强224典型脆断形式平断口2红外光谱与拉曼光谱波长为25m区间的波谱称为红外光谱它是分子键的振动光谱
Al2O3片
(2) 粒子增强复合材料
(3)叠层复合材料。
Al2O3纤维
三、复合材料的命名
(1)以基体为主来命名 例如金属基复合材料。 (2)以增强材料来命名 如碳纤维增强复合材料。 (3)基体与增强相并用 如“C/Al复合材料”即

多尺度复合材料力学研究进展

多尺度复合材料力学研究进展

多尺度复合材料力学研究进展一、本文概述随着科学技术的飞速发展,复合材料作为一种集多种材料优势于一体的新型材料,在航空航天、汽车制造、船舶工程等领域得到了广泛应用。

然而,复合材料的力学行为因其复杂的微观结构和多尺度特性而显得尤为复杂,这就需要对复合材料在不同尺度下的力学行为进行深入的研究。

本文旨在综述近年来多尺度复合材料力学研究的主要进展,探讨复合材料在不同尺度下的力学行为及其相互关系,以期为提高复合材料的性能和应用提供理论支持和技术指导。

文章首先介绍了复合材料的定义、分类及其在各领域的应用背景,阐述了研究多尺度复合材料力学的必要性和重要性。

接着,文章从微观尺度、细观尺度和宏观尺度三个方面,分别综述了复合材料力学行为的研究进展。

在微观尺度上,文章重点介绍了复合材料纤维、基体及界面性能的研究现状;在细观尺度上,文章对复合材料内部结构的形成、演化及其对力学性能的影响进行了详细阐述;在宏观尺度上,文章则对复合材料的整体力学行为、破坏机理及性能优化等方面进行了深入探讨。

文章总结了多尺度复合材料力学研究的主要成果和挑战,并展望了未来的研究方向和应用前景。

通过本文的综述,旨在为广大研究者和工程师提供一个全面、系统的多尺度复合材料力学研究参考,推动复合材料力学领域的进一步发展。

二、多尺度复合材料力学理论基础多尺度复合材料力学是一门跨越多个学科领域的综合性科学,其理论基础涉及材料科学、力学、物理学以及计算机科学等多个方面。

其核心在于理解和分析复合材料在不同尺度下的力学行为,包括微观尺度下的纤维和基体相互作用,细观尺度下的界面效应和损伤演化,以及宏观尺度下的整体结构性能和失效模式。

在微观尺度上,多尺度复合材料力学关注纤维和基体材料的力学性质、界面特性以及它们之间的相互作用。

这些性质包括弹性模量、强度、韧性、断裂能等,它们对复合材料的整体性能有着决定性的影响。

通过原子尺度模拟、分子动力学等方法,可以深入了解材料内部的微观结构和力学行为。

先进复合材料空天应用技术基础科学问题研究[技巧]

先进复合材料空天应用技术基础科学问题研究[技巧]

先进复合材料空天应用技术基础科学问题研究一、研究内容关键科学问题1. 复合材料多层次、多尺度界面结构的理解和强化建构复合材料的共性特征是多层次、多尺度的异质、异构界面。

典型的结构层次涵盖纤维单丝、纤维丝束、干态增强织物、树脂预浸料和层状化的复合材料结构等。

界面状态将从本质上影响复合材料整体对载荷的响应,并控制复合材料的所有性质和服役行为。

前期的973研究成果已证实[1],层间界面的高分子-高分子双连续相结构直接影响了细观损伤的产生和扩展,进而决定了复合材料的韧性、刚度、强度等使用性能;双连续相结构形成和演化的关键是定域设计和控制反应诱导的失稳分相、临界相反转和相粗化等过程。

这对应了连接度(Connectivity)概念[2]里的0-0、0-3和3-3结构的连续的相转变过程,而由于这个连续的相变发生在2-2结构的受限空间内,必然形成尺度上梯度分布的3-3型双连续颗粒结构,从而赋予复合材料优异的韧-刚-强组合。

我们的预先研究已发现[3],碳纤维表面在微米层次上的“结构化”或“粗糙化”对复合材料“人工界面”的建构具有重要的影响,这种“结构化”和“粗糙化”包括微尺度的颗粒和三维结构等,建构这种新型表面结构的机理包括表面成核与低温生长、表面浸润与去浸润等,但目前国内外对这种表面微结构建构的材料学和力学理解还知之甚少,也不清楚这种微结构对复合材料界面强-韧化的影响机制及其持久稳定性和高温性能等。

本研究将突破上期973课题高分子-高分子复相材料热力学和动力学的限制,在界面化学改性的同时,提出建构复合材料多层次界面有机、无机异相3-3连接度微结构(Interfacial 3-3 micro connectivity)的新概念,镶嵌体胞建模分析界面剪切对细观集束/协同/无规破坏的影响,极大地提高复合材料在关键结构层次的界面结合力和稳定性,确立复合材料界面强化的新技术和新方法。

2. 复合材料多层次精细耦合协同强韧化机制典型“纤维增强-树脂基体”两元复合材料界面的作用是将纤维和树脂,以及由它们分别控制的纤维主导性质(Fiber-dominent)和树脂基体相主导性质(Matrix-dominent)联系到一起。

多尺度复合材料力学研究进展

多尺度复合材料力学研究进展
多尺度复合材料力学研究进展
01 引言
03 研究方法 05 结论
目录
02 研究现状 04 研究成果 06 参考内容
引言
复合材料因其优异的性能和广泛的应用而受到全球研究者们的。特别是在现代 社会中,复合材料在航空航天、生物医疗、汽车制造等领域的应用越来越广泛, 因此对于复合材料的研究具有重要意义。多尺度复合材料力学的研究,旨在从 纳米、细观和宏观等多个尺度探究复合材料的力学行为,为其设计和应用提供 理论基础和实验依据。
本次演示旨在探讨颗粒增强金属基复合材料力学性能的多尺度计算模拟方法。 首先,我们将简要介绍颗粒增强金属基复合材料及其力学性能的基本概念,以 便为后续内容的讨论奠定基础。接着,我们将详细阐述多尺度计算模拟在颗粒 增强金属基复合材料力学性能预测中的应用。最后,我们将对多尺度计算模拟 的优缺点进行评估,并探讨未来的研究方向。
研究成果
近年来,多尺度复合材料力学领域的研究取得了众多成果。在纳米尺度方面, 研究者们成功地揭示了纳米纤维、纳米颗粒等增强相与基体之间的相互作用机 制,发现了新的力学性能增强效应。例如,通过在纳米纤维增强复合材料中引 入氧化石墨烯等纳米颗粒,可以有效地提高材料的强度和韧性。
在细观尺度方面,研究者们通过对显微组织、界面等因素对材料力学性能的影 响进行深入研究,发现了细观结构对复合材料力学性能的调控作用。例如,通 过优化细观结构参数,可以显著提高细观复合材料的强度和韧性。
二、多尺度计算模拟在颗粒增强金属基复合材料力学性能预测中的应用
多尺度计算模拟方法具有将微观和宏观尺度相结合的优势,因此在颗粒增强金 属基复合材料力学性能预测中具有广泛的应用前景。在多尺度计算模拟过程中, 我们可以利用微观尺度模型对增强颗粒和基体界面进行详细描述,同时利用宏 观尺度模型对复合材料的整体性能进行评估。

纤维增强复合材料的界面粘结性能研究

纤维增强复合材料的界面粘结性能研究

纤维增强复合材料的界面粘结性能研究纤维增强复合材料是一种结构优良、性能出色的材料,广泛应用于航空航天、汽车工程、建筑结构等领域。

而复合材料的界面粘结性能则是其性能优越性的关键之一。

在本文中,我们将探讨纤维增强复合材料界面粘结性能的研究成果,并分析其对材料性能的影响。

1. 界面粘结性能的意义纤维增强复合材料是由纤维和基体构成的复合材料,纤维在复合材料中起到增强效果,而基体则负责传递载荷。

界面粘结性能决定了纤维与基体之间的协同工作程度,直接影响到材料的力学性能和使用寿命。

良好的界面粘结性能能够提高材料的力学性能、抗疲劳和润湿性,而密度、界面能、纤维含量等因素会对界面粘结强度产生影响。

2. 界面粘结性能测试方法目前,界面粘结性能的测试方法主要包括力学试验和物理化学试验两类。

力学试验包括剪切试验、剥离试验和拉伸试验等,通过测量材料在不同外力作用下的界面失效行为来评估界面粘结性能。

物理化学试验则包括表面能测量法、接触角测量法和引入活性分子等方法,用于检测材料表面的化学性质和界面结构。

3. 影响界面粘结性能的因素界面粘结性能的好坏受到多个因素的影响。

首先是基体-纤维界面的形态、表面性质和化学成分。

不同基体和纤维的界面形态和化学成分差异较大,会影响到界面的湿润性和结合力。

其次是加工工艺因素,如纤维渗透处理、胶粘剂选择和固化工艺,都能对界面粘结性能产生影响。

此外,材料的使用环境和条件也会影响界面粘结性能。

例如,温度变化、湿度和腐蚀等因素都可能对界面产生破坏。

4. 提高界面粘结性能的方法为了提高纤维增强复合材料的界面粘结性能,研究者采取了多种方法。

一种常用的方法是表面改性,通过在纤维和基体表面引入粘接剂、活性分子或聚合物等改性剂,以增加界面的结合能力。

另一种方法是优化加工工艺,如改变纤维的渗透处理条件、优化胶粘剂的固化工艺等,以提高界面的物理和化学结合能力。

此外,选择合适的纤维和基体组合也是提高界面粘结性能的关键。

材料的界面多尺度统计理论模拟分析

材料的界面多尺度统计理论模拟分析

材料的界面多尺度统计理论模拟分析在材料科学研究领域,材料的多尺度分析是十分常见的一种手段。

多尺度分析适用于分析材料在不同尺度下的物理、化学、力学等性质。

其中,界面是材料中非常重要的部分,它们不仅决定材料的性质,而且还会对材料的大部分性能产生显著的影响。

因此,研究材料界面的多尺度统计理论模拟分析显得尤为重要。

材料界面是指材料中的两个或多个相邻晶界、晶粒边界或相界等,这些相界将不同性质的材料分隔开来。

而在这些界面间,由于原子排列、化学成分等的差异,会产生电子、自旋、光谱等不同的物理效应。

因此,研究材料界面的多尺度性质,对于材料学界来说是一个挑战。

多尺度统计理论模拟分析是目前研究材料界面的一种重要方法。

它可以帮助我们在分子、原子和电子尺度上理解和模拟材料描述。

其中,分子模拟可以在微观尺度上研究材料的结构和性质,原子尺度下则可以考虑材料内部原子及原子之间的相互作用,电子尺度下则可以研究电子在材料内部的运动和相互作用。

在多尺度统计理论模拟分析中,分子动力学模拟(Molecular Dynamics,MD)是一种常见的手段,它可以模拟材料的原子运动轨迹和温度、压力等物理量的变化。

通过MD模拟可以得到材料结构、动力学和静态性质,以及研究材料分解、腐蚀和氧化等反应机理。

同时,分子动力学模拟可以模拟界面上的诸如表面张力、粘合能的物理性质,从而为材料界面在工程上的应用提供理论依据。

另外,在多尺度统计理论模拟分析中,量子化学计算方法(Quantum Chemical Calculations,QCC)也是非常常见的一种手段,它可以计算原子空间分布、电子能态和化学反应机理等量子化学性质。

量子化学计算方法可以更加精确地计算材料内部的化学反应和吸附现象,从而对材料的化学性质进行预测和优化。

除此之外,多尺度统计理论模拟分析中还有许多其他的方法,比如大规模非平衡分子动力学模拟、计算机中看不见的模拟和非均匀介质动力学模拟等。

这些方法都有其适用范围和优缺点,并且需要不同程度的计算量和计算能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纤维表面多尺度组元构筑及其复合材料界面性能研究
碳纤维虽然具有优异的性能如高比强、高比刚、质轻、导电和热等,但碳纤维增复合材料存在以下几个问题:碳纤维增强体与基体之间的界面结合力弱、改性效率低以及改性损伤纤维本体强度等。

本文以满足不同工程的两种需要为目标:一、在提高复合材料界面强度的同时,大幅提高碳纤维的拉伸强度。

采用高效的电化学沉积、超声辅助电泳沉积法,将银纳米粒子(Ag NPs)和氧化石墨烯(GO)沉积到碳纤维的表面。

二、在不损伤碳纤维本体的前提下,最大程度地提高碳纤维复合材料的界面强度。

采用化学接枝法将聚醚胺(D400)和氧化石墨烯(GO)接枝到碳纤维的表面。

采用电化学沉积法,以聚乙烯比咯烷酮(PVP)为表面活性剂,在碳纤维表面沉积形貌可控的Ag NPs。

通过控制PVP与银离子(Ag+)的摩尔比(mPVP:mAgNO3),使Ag NPs呈现出“颗粒状”或“树枝状”。

通过调节电化学沉积时间、Ag+浓度来控制碳纤维表面银含量、Ag NPs的粒径以及碳纤维表面粗糙度。

沉积Ag NPs后碳纤维展示了优异的力学性能,与未处理碳纤维相比,沉积Ag NPs后碳纤维的单丝拉伸强度和其复合材料的界面剪切强度(IFSS)分别提高了29.2%和57.2%,电导率也提升两倍。

引入超声辅助电泳沉积法,以异丙醇为电泳液溶剂,在碳纤维表面沉积GO。

这种新方法与传统电泳沉积方法相比,沉积的GO更均匀、致密。

高温处理使碳纤维表面的GO被部分还原,GO与碳纤维的作用方式从离子键作用过渡到共价键作用。

碳纤维的单丝拉伸强度和IFSS值分别提升了27.3%和69.9%。

设计并制备的
CF/Ag NPs/GO多尺度增强体,集Ag NPs和GO两者的优点于一体,碳纤维单丝拉
伸强度和IFSS值分别提高31.3%和75.4%。

采用化学接枝法,以水为溶液,在酸化碳纤维表面接枝D400。

将带有氨基的
D400以化学键的方式连接到碳纤维表面,提高了碳纤维的表面能,改善了碳纤维
与聚合物基体的浸润性。

同时D400还参与环氧树脂固化反应,结果显示碳纤维复合材料的IFSS值提升72.6%。

以D400为媒介,采用化学接枝法制备CF/D400/GO多尺度增强体,并关注接枝的GO尺寸对碳纤维表面形貌及性能的影响。

通过调节GO片层的尺寸和活性官能团的数量来控制GO与碳纤维的连接状态。

碳纤维与GO具有两种连接方式:(1)GO边缘与碳纤维表面连接,呈“直立”
状;(2)GO平铺在碳纤维表面,呈“倒伏”状。

其中,GO“直立”在碳纤维的表面更有利于提高碳纤维与树脂基体间的机械啮合力和浸润性,可以更好地传递载荷和吸收破坏能,使IFSS提高了82.1%。

相关文档
最新文档