数学分析8不定积分总练习题

合集下载

不定积分典型例题

不定积分典型例题

不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式. 例1、求 dx x x x ∫−)11(2解 原式= C x x dx x x ++=−∫−41474543474)(例2、求 dx e e x x ∫++113解 原式= C x e e dx e e x xx x ++−=+−∫2221)1( 例3、求 dx xx ∫22cos sin 1解 原式 ∫∫∫+=+=dx x dx x dx x x x x 222222sin 1cos 1cos sin cos sin C x x +−=cot tan 例4、 ∫dx x2cos 2 解 原式= C x x dx x ++=+∫2sin 2cos 1 例5、 dx xx ∫+221 解 原式∫∫+−=+−+=dx x dx x x )111(111222C x x +−=arctan 注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)C x G Cu G duu g dxx x g dx x f ux ++====∫∫∫=)]([)()()(')]([)()(ϕϕϕϕ还原求出令凑成在上述过程中,关键的一步是从被积函数)(x f 中选取适当的部分作为)('x ϕ,与dx 一起凑成 )(x ϕ的微分 du x d =)(ϕ且 ∫du u g )(易求.例1、求 ∫dx xxcos tan 解 原式= ∫∫−=x x xd dx x x x cos cos cos cos cos sin C xx d x +=−=−∫cos 2cos )(cos 23 例2、求 ∫−dx xx x 2arcsin解 原式)()(1arcsin 211arcsin 2x d x x dx xxx ∫∫−=⋅−=C x x d x +==∫2)(arcsin )(arcsin arcsin 2注)(21x d dx x= 例3、求 ∫−−dx xx 2491解 原式∫∫−−+−=−)49()49(81)2(3)2(21221222x d x x x dC x x x x x d +−+=−+−=∫222494132arcsin 214941)32(1)32(21例4、求 ∫+⋅+dx xx x 2211tan解 原式= C x x d x ++−=++∫|1cos |ln 11tan 222例5、求 dx x x x ∫−−12解 原式= ∫∫∫−+=−−−+dx x x dx x dx x x x x x 1)1()1(22222 C x x x d x x +−+=−−+=∫2323223)1(313)1(1213例6、求 ∫+dx xtan 11解 原式= ∫∫+−+=+dx xx xx dx x x x sin cos sin cos 1(21cos sin cos C x x x x x d x x x +++=⎥⎦⎤⎢⎣⎡+++=∫|)sin cos |ln (21)sin (cos sin cos 121 例7、求 ∫−+−dx xxx 11ln 112 解 原式=C xx x x d x x +−+=−+−+∫11ln 41)11(ln 11ln 212 例8、求 ∫+dx e x11解 原式= ∫∫∫+−=+−+dx e e dx dx e e e x x x xx 111 C e x e d edx xx x++−=++−=∫∫)1ln()1(11例9、求 ∫−+dx e e xx 1解 原式= C e e d e dx e e x x x x x +=+=+∫∫arctan )()(11122 例10、求 ∫+dx xxsin 1sin解 原式= ∫∫∫−−=+−dx xxdx dx x 2cos sin 1)sin 111( dx xxdx x x ∫∫+−=22cos sin cos 1C x x x ++−=sec tan 例11、求 ∫−xx dxln 32解 原式 )(ln )ln 32(21x d x −∫−=C x x d x +−+−⋅−=−−−=∫−2121)ln 32(121131)ln 32()31()ln 32( C x +−−=ln 3232例 12、求 ∫+dx xb x a 2222cos sin 1解 原式= ∫∫+=+)tan ()tan (111)(tan tan 12222x badx ba ab x d xa b C x baab +=)tan arctan(1 例13、求 ∫++dx x x 1164解 原式=∫∫∫+++−=+++−dx x x dx x x x dx x x x x 232322226224)(1)(1)(11 C x x dx x dx x ++=+++=∫∫33232arctan 31arctan )(113111 例14、求 ∫+dx x x )1(18解 原式=∫∫∫+−=+−+dx x x dx x dx x x x x 8788811)1(1C x x ++−=)1ln(81||ln 8例15、求 ∫+−−dx x x x 54232解 原式= dx x x x x x x d ∫∫+−++−+−541454)54(23222∫+−−++−=1)2()2(4|54|ln 2322x x d x x C x x x +−++−=)2arctan(4|54|ln 232 注 由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形如 ∫++dx cbx ax 21的积分(将分母配方,再凑微分). 例16、已知 2ln )1(222−=−x x x f ,且 x x f ln )]([=ϕ,求 ∫dx x )(ϕ.解 因为 1111ln )1(222−−+−=−x x x f ,故 11ln )(−+=x x x f ,又因为x x x x f ln 1)(1)(ln)]([=−+=ϕϕϕ,得x x x =−+1)(1)(ϕϕ,解出11)(−+=x x x ϕ,从而C x x dx x dx x x dx x +−+=−+=−+=∫∫∫|1|ln 2)121(11)(ϕ 例17、求 ∫dx x4cos 1解 原式C x x x d x x xd ++=+==∫∫322tan 31tan tan )tan 1(tan sec例18、求 ∫++dx x x x2)ln (2ln 1 解 原式=C x x x x x x d +=+∫)2ln arctan(21)ln (2)ln (2三、第二类换元法设 )(t x ϕ=单调可导,且0)('≠t ϕ,已知 C t F dt t t f +=∫)()(')]([ϕϕ,则C x F Ct F dt t t f dxx f x t t x ++==−===∫∫−)]([)()(')]([)(1)()(1ϕϕϕϕϕ还原令选取代换 )(t x ϕ=的关键是使无理式的积分化为有理式的积分(消去根号),同时使 dt t t f ∫)(')]([ϕϕ易于计算.例1、求 ∫−+221)1(xx xdx解 令 tdt dx t x cos ,sin ==原式=∫∫−−=+t td t t tdt t 22cos 2cos cos )1(sin cos sin t d tt cos )cos 21cos 21(221∫++−−= C xx C t t +−−−+−=+−+−=221212ln 221cos 2cos 2ln 221例2、求 ∫+241xxdx解 令 tdt dx t x 2sec ,tan ==原式=t d t t t d ttt tdt t t tdt sin )sin (sin sin sin sin 1sin cos sec tan sec 24424342∫∫∫∫−−−=−==⋅ C xx x x C t t ++++−=++−=)1(3)1(sin 1sin 13123323 例3、求 dx x x ∫−229解 令 t x sec 3=,则 tdt t dx tan sec 3⋅=原式= ∫∫∫−==⋅⋅dt t t dt tttdt t t t )cos (sec sec tan tan sec 3sec 9tan 3221sin |tan sec |ln C t t t +−+=12222ln C xa x a a x a x +−−−+=C xa x a x x +−−−+=2222ln 例4、求 ∫+dx x x )2(17解 令 t x 1=,则dt tdx 21−=,原式∫∫∫++−=+−=−+=)21(21114121)1(2777627t d t dt t t dt t ttC x x C t +++−=++−=||ln 21|2|ln 141|21|ln 14177 注 设n m ,分别为被积函数的分子,分母关于x 的最高次数,当1>−m n 时,可用倒代换求积分.例5、求 dx x xx ∫−+1122解 令t x 1=,dt tdx 21−=原式 ∫∫−+−=−−+=dt t t dt t t t t 222211)1(11111∫∫−−+−−=22212)1(11t t d dt tC xx x C t t +−−=+−+−=1arcsin 11arcsin 22例6、求 dx xx x∫−432解 原式 ∫∫∫−⋅=−=⋅−==dt t t t dt t t dt t t t t tx dt t dx 11211212541051411386121211令∫∫−++=⋅−+−=5554510)111(51211112dt t t dt t t t C t t t +−++=|1|ln 51251210125510 C x x x +−++=1ln 5125125612512565例7、求 ∫+xedx 1解 令t e x =+1,12−=t e x ,dt t tdx 122−=原式= C t t dt t dt t t t ++−=−=−⋅∫∫11ln 11212122C e e x x +++−+=1111ln例8、求 ∫+dx xx xln 1ln解 令x t ln 1+=原式∫∫−=+=dt tt x d x x 1ln ln 1lnC x x C t t dt tt ++−=+−=−=∫ln 1)2(ln 32232)1(2123例9、求 dx x x ∫++−+1111 解 令 tdt dx t x t x 2,1,12=−==+因为原式dx xx x x dx x x x ∫∫+−+=+−+=12||ln 2122而 ∫∫∫−+=−=+dt t t dt t dx x x 111(2121222 C x x x C t t t +++−+++=++−+=1111ln 1211ln2原式=C x x x x x +++−+−+−+1111ln214||ln 2=C x x x +++++−11ln 414四、分部积分法分部积分公式为 ∫∫−=vdx u uv dx uv ''使用该公式的关键在于 ',v u 的选取,可参见本节答疑解惑4. 例1、求 ∫dx e x x 3解 原式=x x x x x x de x e x e x de x e x de x ∫∫∫+−=−=63323233 C e xe e x e x x x x x +−+−=66323 例2、求 ∫dx xx 2cos 22 解 原式∫∫+=+=xdx x x dx x x cos 2161)cos 1(21232 ∫∫−+=+=xdx x x x x x d x x sin sin 2161sin 21612323 ∫∫−++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323 C x x x x x x +−++=sin cos sin 216123 例3、求 ∫dx e x 3解 原式C e te e t det dt e t t t t tttx dtt dx ++−==∫∫==66333222332令C eex ex xxx++−=333663332例4、求 ∫dx x )cos(ln解 原式 ∫+=dx x x x )sin(ln )cos(ln∫−+=dx x x x x x )cos(ln )sin(ln )cos(ln移项,整理得原式C x x x++=)]sin(ln )[cos(ln 2注 应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:∫∫xdx e xdx e xx ββααsin cos 或例5、求 ∫++dx x x )1ln(2解 原式 dx x x x x x ∫+−++=221)1ln(C x x x x ++−++=221)1ln(例6、求 ∫dx xx23ln解 原式= ∫∫−−=−=1(ln 3ln )1(ln 233xxd x x x xdC x x x x x x x x xd xx x x +−−−−=⎥⎦⎤⎢⎣⎡+−−=∫6ln 6ln 3ln )1(ln 2ln 3ln 2323 例7、推导 ∫+dx a x n)(122的递推公式 解 令 ∫+=dx a x I nn )(122∫++−+++=dx a x a a x n a x x I n n n 12222222)(2)(∫++−++=dx a x na nI a x x n n n 122222)(122)(122222)(+−++=n n nI na nI a x x ⎥⎦⎤⎢⎣⎡−++=+n nn I n a x xna I )12()(212221 ⎥⎦⎤⎢⎣⎡−++−=−−11222)32()()1(21n n n I n a x xa n I 例8、推导 ∫=xdx I n n tan 的递推公式.解 ∫⋅=−xdx x I n n 22tan tan ∫−⋅=−dx x x n )1(sec tan 22∫∫−−−⋅=xdx xdx x n n 222tan sec tan 2122tan 11)(tan tan −−−−−−=−=∫n n n n I x n I x xd 注 应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式. 例9、已知)(x f 的一个原函数是 2x e −,求 ∫dx x xf )(' 解 原式C e x xf dx x f x xf x xdf x +−=−==−∫∫2)()()()( 例10、求 ∫+dx x x x )1ln(arctan 2解 因为 ∫+dx x x )1ln(2∫++=)1()1ln(2122x d x C x x x +−++=22221)1ln()1(21 所以 原式= ∫⎥⎦⎤⎢⎣⎡−++22221)1ln()1(21arctan x x x xd[]∫⎥⎦⎤⎢⎣⎡+−+−−++=2222221)1ln(21arctan )1ln()1(21x x x x x x x []C x x xx x x x +++−−−++=23)1ln(23)1ln()1(arctan 212222 注 本题是三类函数相乘的形式,这类问题大多采用本题的方法.例11、求 ∫+dx x xe x)1(2arctan 解 令 tdt dx t x 2sec ,tan ==原式dt e t t dt tte t t t ∫∫=⋅=cos sin sec sec tan 42 C t t e dt te t t+−==∫)2cos 2(sin 1012sin 21C x x x e x ++−+=)1(5)1(22arctan 例12、求 xdx x x arctan 122∫+ 解 原式= xdx x arctan )111(2∫+−∫∫+−=xdx x dx x arctan 11arctan 2 C x x x x +−+−=22)(arctan 21)1ln(21arctan例13、求 ∫−+⋅dx x x x x 22211arcsin 解 令 tdt dx t x t x cos ,arcsin ,sin ===,原式 ∫∫∫+=⋅+=tdt dt t ttdt tt t t 222sin cos cos sin )sin 1(2221cot cot 21)cot (t tdt t t t t td ∫∫++−=+−= C t t t t +++−=221|sin |ln cosC x x x x x +++−−=22)(arcsin 21||ln arcsin 1注 直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用. 五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分: (1) C a x A dx ax A+−=−∫||ln (2) )1()(11)(1≠+−−−=−−∫n C a x n A dx a x A n n (3) ∫=∫∫+⎥⎦⎤⎢⎣⎡−++=+++−n upx ap q nna u dup q p x dxdx q px x dx )(44)2()(2224422222=令=令 (4) ∫∫++−+++−−=+++−n n n q px x dxp a q px x n dx q px x dx a x )()2()(1)1(21)()(2122,其中 042<−q p .这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的. 例1、求 ∫+−322x x dx解 原式= C x x x d x dx +−=−+−=+−∫∫21arctan 21)1(2)1(2)1(22例2、求 ∫++++dx x x x x 4545242 解 原式= ∫∫++++++dx x x xdx x x x )4)(1(5)4)(1(422222 2222222)4111(65arctan )4)(1(251dx x x x x x dx x dx ∫∫∫+−++=++++= C x x x ++++=41ln 65arctan 22 本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,设 41454522242+++++=++++x DCx x B Ax x x x x ,通分后应有 )1)(()4)((45222+++++=++x D Cx x B Ax x x比较等式两端x 的同次幂的系数,得0=+C A ,0=+D B ,54=+C A ,44=+D B 由此, 1,35,1,35−=−===D C B A故原式= dx x x x x ∫⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−+++4135113522C x x x ++++=arctan 41ln 6522 例3、求 ∫−13x xdx解 设11123++++−=−x x C Bx x A x x ,通分后应有)1)(()1(2−++++=x C Bx x x A x 比较等式两端x 的同次幂的系数,得0 ,1 ,0=−=+−=+C A C B A B A ,由此,31,31,31=−==C B A故原式= dx x x x x ∫⎥⎦⎤⎢⎣⎡++−−−)1(31)1(312∫∫∫+++++++−−=43)21()21(211126113122x x d dx x x x x dx C x x x x +++++−=312arctan 311)1(ln 6122例4、求 ∫−)1(42x x dx解 原式= dx x x dx x x dx x x x x ∫∫∫+−−−=−−+)1)(1(1)1(1)1()1(22224222 dx x x dx x x ∫∫++−−−+=)1111(21)111(2222 ∫∫+−−+−=dx x dx x x 22112111211 C x x x x +−−++−=arctan 2111ln411 注:本题若用待定系数法,应当将被积函数分解为)1)(1)(1(1)1(12242x x x x x x ++−=−22111x F Ex x D x C x B x A +++++−++= 然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.例5、求 ∫++dx x x dxx 334811 解 令u x =4,则dx x du 34=,于是,原式∫∫+−++=++=du u u du u u u )24111(41234122 )|2|ln 4|1|ln (41C u u u ++−++=C x x x ++−++=)2ln()1ln(414444例6、求 ∫+dx x x 325)32( 解 令 dt xdx t x t x =−==+4,23,3222,从而, 原式= ∫∫+−=⋅−dt tt t dt t t 961(16144)3(3232 C t t t +−+=296||(ln 1612C x x x ++−+++=)32(29326|32|[ln 1612222 例7、求 ∫++dx x x x 45244解 45)45(145242244+++−+=++x x x x x x 设 4145)45(222211242+++++=+++−x B x A x B x A x x x ,通分后应有)1)(()4)(()45(2222112+++++=+−x B x A x B x A x由此, 316,0,31,02211−====B A B A ,故原式= dx x x ∫⎥⎦⎤⎢⎣⎡+−++)4(316)1(31122C xx x +−+=2arctan 38arctan 31例8、求 ∫+210)1(x x dx解 由于2109102101010210)1()1(1)1(1)1(1+−+=+−+=+x x x x x x x x x x 2109109)1()1(1+−+−=x x x x x 原式= dx x x x x x ∫⎥⎦⎤⎢⎣⎡+−+−2109109)1()1(1∫∫++−++−=210101010)1()1(1011)1(101||ln x x d x x d x C x x x ++++−=)1(101)1ln(101||ln 1010C x x x ++++=)1(1011ln 101101010注 对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分 ∫dx x x R )cos ,(sin 可通过万能代换2tan xt =化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,然后再求解. 例1、求 ∫xx dx4cos sin 解 原式= ∫∫∫+=+x x dxdx x x dx x x x x 24422cos sin cos sin cos sin cos sin ∫∫∫++−=x dx dx x x x d xsin cos sin )(cos cos 124 ∫+−=|2tan |ln cos )(cos cos 3123x x x d x C x x x +++=|2tan |ln cos 1cos 313例2、求 ∫+dx x sin 1解 原式= ∫++dx x x x x 2cos 2sin 22cos 2sin 22∫∫+=+=dx xx dx x x )2cos 2(sin )2cos 2(sin2 C x x ++−=2sin 22cos 2例3、求 ∫+−5cos sin 2x x dx解 令2tan x t =,则222212,11cos ,12sin tdtdx t t x t t x +=+−=+=,于是 原式=C x C t t t dt +⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+=+⎟⎠⎞⎜⎝⎛+=++∫512tan 3arctan 51513arctan 512232 例4、求 ∫+dx xxsin 1sin解 原式= ∫−dx x x x 2cos )sin 1(sin dx x xdx x x ∫∫−−=222cos cos 1cos sin C x x x++−=tan cos 1例5、求 ∫+dx xx xcos sin sin解 原式=dx x x x x dx x x x x x x ∫∫⎟⎠⎞⎜⎝⎛+−+=+−++cos sin cos sin 121cos sin cos sin cos sin 21 C x x x x x x x d x ++−=++−+=∫|)cos sin |ln (21cos sin )cos (sin 2121 例6、求 ∫xdx x cos 5sin解 原式=C x x dx x x +−−=+∫6cos 1214cos 81]6sin 4[sin 21 注 积化和差公式])cos()[cos(21cos cos ])cos()[cos(21sin sin ])sin()[sin(21cos sin x x x x x x x x x x x x βαβαβαβαβαβαβαβαβα−++=⋅+−−=⋅−++=⋅例7、求 ∫+xx dxcos )sin 2(2解 令 dt xdx t x ==cos ,sin于是原式= dt t t t t t t dt∫∫−+−++=−+)1)(2()1()2(31)1)(2(222222C tt t t dt t dt ++−+=++−=∫∫2arctan(23111ln 6123113122 C x x x ++−+=2sin arctan(231sin 1sin 1ln 61注 形如∫dx x x R )cos ,(sin 的有理函数的积分,一般可利用代换 t x=2tan 化为有理函数的积分.(i) 若 )cos ,(sin )cos ,sin (x x R x x R −=−或)cos ,(sin )cos ,(sin x x R x x R −=− 成立,最好利用代换 t x =cos 或对应的 t x =sin .(ii) 若等式 )cos ,(sin )cos ,sin (x x R x x R =−−成立,最好利用代换t x =tan .例8、求 ∫+dx xx x33cos sin sin21 解 令 t x =tan ,则 dt xdx =2sec ,于是原式= ∫∫∫∫+−+−+=+−++−−+=+t dt dt t t t dt t t t t t t dt t t 1311131)1)(1()1()1(31122223 = C t t t t ++−−++−|1|ln 31)312arctan(31)1ln(612 =C x x x x +−+++−31tan 2arctan(31)tan 1(1tan tan ln 6122。

(完整版)不定积分习题与答案

(完整版)不定积分习题与答案

不定积分(A)求下列不定积分dx~~2X(x 2)2dxdx2) xV x2x .2dx 4) 1 x1、1) 3)5)7) 2、1) 3) 5) 7) 9) 11) 13) 15) 17)2 3X 53^△dx cos2x2 ;~2~dx6)cos xsin xX 3(2e )dxx求下列不定积分(第一换元法)(1 —y^'xYxdX8) x3(3 2x) dxsin t ..dtxtdxcosxsin xdx2) 32 3xdx,) xl n x In (I n x)xcos(x2)dxsinx , 厂dxcos xdx2x2 1sin 2xcos3xdxdxx x6) e e“、cos3xdx12)tan3x secxdx14)3x9 x2dx16)______ 13cos2 x—dx4sin x10 2arccosxdxarctan x ,dx 18) x(1 x)3、求下列不定积分(第二换元法)1) 2)sinxdx3) 4)2x----------- d x, (a 0)2 2.a x5)7) 4、1) 3) 5)7) 5、1)2)3)dx6)dx1 \2xdxx -J x28)dx1 T x2求下列不定积分(分部积分法)xSnxdxx2In xdxx2arcta nxdxIn2xdx求下列不定积分(有理函数积分)3xdxx 32x 32x 3xdxx(x21)1、一曲线通过点方程。

2、已知一个函数2)4)6)8)arcs inxdxe 2x sin -dx2x2cosxdx2 2 xx cos dx2(B)(M,3),且在任一点处的切线斜率等于该点的横坐标的倒数,F(x)的导函数为1 x2,且当x 1时函数值为2求该曲线的,试求此函数。

3、证明:若f(x)dx F(x)c,则f (ax b)dx 丄F(axa b) c,(a 0)o sin x4、设f(x)的一个原函数为求xf(x)dx。

数学分析有答案的套题

数学分析有答案的套题

七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭ 为开区间集,则H 是(0, 1 )的开复盖. 2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间 [],a b , 若,x S ∈则x 必为S 的聚点.4. 4. 若lim nn a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃= , 则闭区间套定理成立. 8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续. 9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明:sin ()xf x x =在()0,+∞上一致连续.7. 证明: {}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 s u pi n f A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a b x A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤00,:b xx b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 l i m ()x b f x c -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x E ε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-< 显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有 12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续. 5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一.(2) 再证{}n x 上确界存在且等于聚点ξ. ()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有n x ξ>, 取00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续. 7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}kn x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x > 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列, 故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂,故 []0,x a b ∈. 一方面, 由于()f x 在0x 连续有0l i m ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1. ()()_________x ex dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C =-+⎰, 则()()___________.n f x =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =>, 则 2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x xx x +++=++--- 7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C =+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()xx A f x dx f x Bf edx f e C ''==+⎰⎰221..(1)(1)2C f dx f C D xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ) .4s i n 2.2c o s 2.4s i n 2.2A x B x C x Dx-- 3.若21()(0),f x x x '=>则()f x =( ).2.l n A x CB x CxCC ++++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x x A xe dx de B dx d x x ==++21.a r c t a n .c o s 2s i n 21C x d x d D x d xd x x ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x CB f x CC f x CD f x C++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+ 8. 函数cos (0)ax a ≠的一个原函数是 ( )111.s i n .s i n .s i n .s i n A x B a xC a xD a xa a a-9. 若()21xf x dx x C =+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.a r c s i n ,1,a r cx xC xe dx u x v eD xdx u v x --''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. x ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6. 7.221(1)(1)x dxx x ++-⎰. 8. 11sin cos dxx x ++⎰9. 2(1)xx xe dx e +⎰.10.2答案:1. 1. 原式=ln(x x dx+-⎰21ln(2x x =-ln(x x C =+.2. 2.原式21122x =221124x =21arctan 2x C=3. =(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=+7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x Cx =-+++++211ln 121x Cx =-+++.8.tan222121sin cos 211111x u dxdu x xu u uu u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰⎰22sin 2()arcsin 222a u a x u C C a =-+=+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xa dt t f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 2219、下列关系中正确的有( )(A )dxe dx e x x ⎰⎰≤1102(B )dxe dx e x x ⎰⎰≥112(C )dxe dx e x x⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)e (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令 (C)10tan x t=⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰20πxdx⎰2s i n πx d x.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dxx f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -+=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x =⎰,则()1f x dx =⎰ ;12、=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+ 8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx 3、dxx x x ⎰+-20232=()()⎰⎰⎰-+-=-2121111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅202cos πxdx e x=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x x x=2-πe则 ⎰⋅202c o s πx d x e x =()251-πe7、⎰-⋅ππxdxx sin 4解: x x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫ ⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x ⎰+301arcsin dx x x =⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d t t ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx ee⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x x d x =()dt t ⎰-312581 =13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx=20arctan 1xdx x x +=1ln 1ln 2323x -+=- 15、20π⎰20cos 2x dx π20c o s c o s 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈= 外,即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈ 可设 0121n n x a x x x b x +=≤<<<≤= 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知 ()()()(),S T S T s T s T ''≤≥。

不定积分 计算题

不定积分 计算题

计算题(共 200 小题) 1、⎰⎰+=.d )( , sin d )()(x x f c x x x f n 求设 2、⎰'>+=.d )(),0()(2x x f x x x x f 试求设 3、.d x x ⎰求4、.)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ⎩⎨⎧>≤= 5、已知,求它的原函数.f x x F x ()()=-1 6、.d x x ⎰求 7、⎰-233d x x 求 8、 .,d 2是常数其中求 a x x a ⎰9、.0,,d >⎰a a x e a x x 是常数其中求 10、.d tan csc 22x x x ⋅⎰求11、⎰⋅x x x d cot sec 22求 12、⎰+22d x x 求 13、⎰+82d 2x x求 14、⎰-9d 2x x 求 15、⎰-.63d 2x x 求 16、 ⎰+232d x x 求 17、.d 2432x xx x ⎰-求 18、x x x d ⎰⋅求 19、.d )1(23x x x ⎰+求 20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ⎰+ 21、⎰x x d cot 2求22、.d 11)(3x x x ⎰++求 23、.d x x x x ⎰求 24、⎰+.d )arccos (arcsin x x x 求 25、[].d )1(cos cos )1(sin sin x x x x x ⎰+++求 26、⎰⋅.d 2sin 22x x 求 27、⎰.d 2cos 22x x 求 28、.d sin 1sin 423x x x ⎰-求 29、⎰+.d )32(2x x x 求 30、.d 3273x x x ⎰--求 31、.d 22222x x x x ⎰-+-求 32、⎰---.d )31)(21)(1(x x x x 求 33、x x x x d )1(21222⎰++求 34、.d 323x xx e x x x ⎰+-求 35、.d )1()1(22x x x x ⎰++求 36、⎰+.d )sec (tan 22x x x 求 37、.d )csc (cot 22x x x +⎰求 38、.d sin sin 2222⎰+x xx x x 求 39、.d 122x xx ⎰+求40、⎰-.d 122x x x 求 41、.d 1322x x x ⎰-+求 42、.d 111422x x x x ⎰--++求 43、 .d 111422x x x x ⎰---+求44、 .d 2cos 1sin 12x xx ⎰-+求 45、.d 1cos sin 122x x x ⎰--求 46、.d cos sin d 22x xx x ⎰求 47、 ⎰++.d 2cos 1cos 12x xx 求 48、.d sin cos 2cos x xx x ⎰-求 49、 ).20(d 2sin 1π≤≤+⎰x x x 求 50、x xx x d sin cos 2cos 22⎰求 51、 ⎰+x x x 2sin 2cos d 求 52、求⎰++++x xx x x x d 13323。

不定积分习题及答案

不定积分习题及答案

不定积分习题及答案9.求()()()()()dx x f x f x f x f x f ⎰⎥⎦⎤⎢⎣⎡'''-'32。

10.()d x x x ⎰1,,max 23。

第四章 不定积分(A 层次)1.⎰xx dx cos sin解:原式()()⎰⎰+===C tgx tgxtgx d dx tgx x ln sec 2 2.⎰--dx xx 2112解:原式()⎰⎰+---=-----=C x x x dx x x d arcsin 1211122223.()()⎰-+21x x dx解:原式()()[]⎰+--+-=⎪⎭⎫ ⎝⎛--+-=C x x dx x x 2ln 1ln 31211131 C x x +⎪⎭⎫⎝⎛+-=12ln 314.⎰xdx x 7sin 5sin 解:原式()⎰⎰⎰-=--=xdx xdx dx x x 12cos 212cos 212cos 12cos 21C x x +-=12sin 2412sin 41 5.()⎰+dx x x x arctg 1解:原式()()()⎰⎰+==+=C xarctg x arctg d x arctg dx x x arctg 222126.⎰-+21xx dx解:⎰⎰⎰+-++=+=-+dt tt tt t t t t tdt t x x x dx sin cos sin cos sin cos 21cos sin cos sin 12令()()C t t t t t t t d dt +++=+++=⎰⎰cos sin ln 2121cos sin cos sin 2121 ()C x x x ++-+=21ln 21arcsin 21 7.⎰arctgxdx x 2 解:原式()⎪⎭⎫ ⎝⎛+-==⎰⎰dx x x arctgx x x arctgxd 2333113131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 6161318.()⎰dx x ln cos解:原式()()[]⎰+=dx x x x x x 1ln sin ln cos ()()⎰+=dx x x x ln sin ln cos()()()[]⎰-+=x xd x x x x ln sin ln sin ln cos ()()()⎰-+=dx x x x x x x ln cos ln sin ln cos 故()()()[]C x x x x dx x ++=⎰ln sin ln cos 21ln cos 9.⎰--+dx xx x x 3458解:原式()⎰⎰--++++=dx xx x x dx x x 32281⎰⎰⎰--+-+++=dx x dx x dx x x x x 131******** ()()C x x x x x x +--+-+++=1ln 31ln 4ln 821312310.()⎰+dx x x 2831解:原式()()()⎰⎰⎰=+=+=t tdt tgt u u du u x x x d 42224284sec sec 41141141令令 ()⎰⎰+==dt t tdt 2cos 181cos 412C t t ++=2sin 16181C uu u arctgu ++⋅++=221118181 ()C x x arctgx +++=844188111.⎰xdx x 2cos解:原式⎰⎪⎭⎫⎝⎛+=dx x x 22cos 1[]()⎰⎰⎰+=+=x xd x xdx x xdx 2sin 41412cos 212 ⎰-+=xdx x x x 2sin 412sin 41412C x x x x +++=2cos 812sin 4141212.⎰dx e x 3解:令t x =3,则3t x =,dt t dx 23=原式[]⎰⎰⎰-===t d t e e t de t dt t e t t t t 2333222[]⎰⎰--=-=dt e te e t tde e t ttttt 636322C e te e t t t t ++-=6632 ()C x x e x++-=2223332313.⎰xx x dxln ln ln解:原式()()[]()()[]C x x x d x x x d +===⎰⎰ln ln ln ln ln ln ln ln ln ln ln 14.()⎰+21x e dx解:()()()()⎰⎰⎰⎰+-+=+-+=+222111111t dtdt t t t t t t t e e dxx x令 ()()C t t t t t d dt t t ++++=++-⎪⎭⎫ ⎝⎛+-=⎰⎰111ln 111112()C e e x C e e e xxx x x ++++-=++++=111ln 111ln15.()⎰+dx exe xx21解:原式()()⎰⎰⎪⎭⎫⎝⎛+-=++=11112x xx e xd ee xd()()⎰⎰⎪⎭⎫ ⎝⎛+-++-=+++-=x x x x x x x x e d e e e x dx e e e e x 111111()C e e e xx x x++-++-=1ln ln 1()C e e xe x xx++-+=1ln 116.dx x ⎰3sin解:令t x =3,则3t x =,dt t dx 23= 原式⎰⎰-=⋅=t d t dt t t cos 33sin 22⎰⎰+-=⋅+-=t td t t tdt t t t sin 6cos 32cos 3cos 322 ⎰-+-=tdt t t t t sin 6sin 6cos 32 C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3 17.⎰-dx xx 1arcsin解:令u x sin =,则u x 2sin =,udu u dx cos sin 2= 原式⎰=udu u uucos sin 2cos ()⎰⎰--=-=udu u u u d u cos cos 2cos 2C x x x C u u u ++--=++-=2arcsin 12sin 2cos 218.()⎰+dx x x 321ln解:原式()⎰⎪⎭⎫⎝⎛+-=-22211ln x d x()⎰+++-=dx xx x x x 2222122121ln ()()⎰+++-=2222212121ln x x dx x x ()⎰⎪⎭⎫ ⎝⎛+-++-=222221112121ln dx x x x x ()()[]C x x xx ++-++-=22221ln ln 2121ln ()()C x x xx ++-++-=2221ln 21ln 21ln 19.⎰+-dx xx xx sin 2cos 5sin 3cos 7解:原式()()⎰+-++=dx x x x x x x sin 2cos 5sin 5cos 2sin 2cos 5dx x x x x ⎰⎪⎭⎫⎝⎛+-+=sin 2cos 5sin 5cos 21C x x x +++=sin 2cos 5ln 20.()⎰++dx x xx 21ln解:原式()⎰⎪⎭⎫ ⎝⎛+-+=x d x x 11ln⎰+++++-=dx x x x x x 1111ln ⎰+++-=dx x x x x 11ln C x xxx ++++-=ln 1ln 21.⎰xdx x 35cos sin解:原式⎰=xdx x x cos cos sin 25()x d x x sin sin 1sin 25⎰-=C x x +-=86sin 81sin 6122.⎰dx x x tgxsin cos ln解:原式()⎰⎰==tgx d tgx tgxdx xtgxtgx ln cos ln 2 ()()⎰+==C tgx tgx tgxd 2ln 21ln ln 23.dx xx ⎰-2arccos 2110解:原式()⎰-=x d x arccos 21021arccos 2 C C x x ar +-=+-=arccos 2cos 21010ln 211010ln 12124.⎰arctgxdx x 2 解:原式()⎰=331x arctgxd ⎪⎭⎫⎝⎛+-=⎰dx x x arctgx x 2331131 dx xxx x arctgx x ⎰+-+-=23313131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 61613125.⎰-+dx x xx 1122解:令t x 1=,dt tdx 21-=原式dt t t t t ⎰⎪⎭⎫ ⎝⎛--+=222111111⎰⎰⎰----=-+-=dt tt tdt dt tt 2221111C t t +-+-=21arcsinC xx x+-+-=11arcsin 2 26.dx x a x ⎰+222 解:令atgt x =,tdt a dx 2sec = 原式dt t a ttg a t a ⎰=222sec sec ⎰⎰+==dt tt tt t t dt cos sin cos sin cos sin 2222dt tttdt ⎰⎰+=2sin cos sec C t tgt t +-+=sin 1sec lnC xx a a x a x a ++-++=2222lnC x a x a x ++-++=2222ln 27.()dx tgx e x 221⎰+解:原式()⎰+=dx tgx x e x 2sec 22 ⎰⎰+=tgxdx e xdx e x x 2222sec ⎰⎰+=tgxdx e dtgx e x x 222dx tgx e dx e tgx tgx e x x x ⎰⎰+⋅-=22222C t g xe x +=2 28.()()()⎰+++321x x x xdx解:原式⎥⎦⎤⎢⎣⎡+-+-+=⎰⎰⎰3312421x dx x dx x dx()()()[]C x x x ++-+-+=1ln 3ln 32ln 421()()()C x x x ++++=34312ln2129.()⎰+xx dxsin cos 2解:令t x tg =2,则arctgt x 2=,212t dt dx +=,212sin t tx +=,2211cos t t x +-=,于是原式()⎰++=dt tt t 3122⎰⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=dt t t t 313322()⎰⎰+++=dt tt t d 131333122 ()C t t ++=3ln 313C x tg x tg +⎪⎭⎫⎝⎛+=232ln 31330.dx xxx x ex⎰-23sin cos sin cos 。

华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 不定积分)【圣才出品】

华东师范大学数学系《数学分析》(第4版)(上册)(课后习题  不定积分)【圣才出品】

第8章 不定积分§1 不定积分概念与基本积分公式1.验证下列等式,并与(3)、(4)两式相比照(1)(2)(3)式为(4)式为解:(1)因为,所以它是对f(x)先求导再积分,等于f(x)+C,(3)式是对f(x)先积分再求导,则等于(2)因为,由(1)可知它是对f(x)先微分后积分,则等于f(x)+C;而(4)式是对f(x)先积分后微分,则等于f(x)dx.2.求一曲线y=f(x),使得在曲线上每一点(x,y)处的切线斜率为2x,且通过点(2,5).解:由题意,有f'(x)=2x,即又由于y=f(x)过点(2,5),即5=4+C,故C=1.因而所求的曲线为y=f(x)=x2+1.3.验证是|x|在(-∞,+∞)上的一个原函数.证明:因为所以而当x =0时,有即y'(0)=0.因而即是在R 上的一个原函数.4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解:设x 0为f (x )在区间I 上的第一类间断点,则分两种情况讨论.(1)若x 0为可去间断点.反证法:若f (x )在区间I上有原函数F (x ),则在内由拉格朗日中值定理有,ξ在x 0和x 之间.而这与x 0为可去间断点是矛盾的,故F (x )不存在.(2)若x 0为跳跃间断点.反证法:若f(x )在区间I 上有原函数F (x ),则亦有成立.而这与x0为跳跃间断点矛盾,故原函数仍不存在.5.求下列不定积分:解:6.求下列不定积分:解:(1)当x≥0时,当x<0时,由于在上连续,故其原函数必在连续可微.因此即,因此所以(2)当时,由于在上连续,故其原函数必在上连续可微.因此,即,因此所以7.设,求f(x).解:令,则即8.举例说明含有第二类间断点的函数可能有原函数,也可能没有原函数.解:x=0是此函数的第二类间断点,但它有原函数另外,狄利克雷函数D(x),其定义域R上每一点都是第二类间断点,但D(x)无原函数.§2 换元积分法与分部积分法1.应用换元积分法求下列不定积分:。

数学分析课本(华师大三版)-习题及答案08

数学分析课本(华师大三版)-习题及答案08

第八章 不定积分习题§1 不定积分概念与基本积分公式1. 验证下列等式,并与(3)、(4)两式相比照:(1)()()C x f dx x f +=⎰/; (2)()()C x f x df +=⎰2. 求一曲线()x f y =,使得在曲线上每一点()y x ,处的切线斜率为x 2,且通过点()5,2.3. 验证x x y sgn 22=是x 在()+∞∞-,上的一个原函数. 4. 据理说明为什么每一个含有第一类间断点的函数没有原函数? 5. 求下列不定积分:(1)⎰⎪⎪⎭⎫ ⎝⎛-+-dx x x x 32311; (2)⎰⎪⎪⎭⎫ ⎝⎛-dx x x 21; (3)⎰gxdx 2; (4)()⎰+dx x x232;(5)⎰-dx x2443; (6)()⎰+dx x x 2213; (7)⎰xdx 2tan ; (8)⎰xdx 2sin ;(9)⎰-dx x x x sin cos 2cos ; (10)⎰⋅dx x x x22sin cos 2cos ;(11)⎰•dt t t 2310; (12)⎰dx x x x ;(13)⎰⎪⎪⎭⎫⎝⎛+-+-+dx x x x x 1111; (14)()⎰+dx x x 2sin cos ; (15)()⎰•dx x x 2cos cos ; (16)()⎰--dx e e x x 3§2 换元积分法与分部积分法1. 应用换元积分法求下列不定积分:(1)()⎰+dx x 43cos ; (2)⎰dx xex 22;(3)⎰+dx x 121; (4)()⎰+dx x n1;(5)⎰⎪⎪⎭⎫⎝⎛-+-dx x x 2231131; (6)⎰+dx x 322;(7)⎰-dx x 38; (8)⎰-dx x3571; (9)⎰dx x x 2sin ; (10)⎰⎪⎭⎫ ⎝⎛+dx x 42sin 12π;(11)⎰+dx x cos 11; (12)⎰+dx x sin 11;(13)⎰xdx csc ; (14)⎰-dx xx 21;(15)⎰+dx x x 44; (16)⎰dx x x ln 1;(17)()⎰-dx x x 3541; (18)⎰-dx x x 283; (19)()⎰+dx x x 11; (20)⎰xdx cot ;(21)⎰xdx 5cos ; (22)⎰dx x x cos sin 1;(23)⎰-+dx e e xx 1; (24)⎰+--dx x x x 83322;(25)()⎰++dx x x 3212; (26)⎰+dx ax 221;(27)()⎰+dx ax23221; (28)⎰-dx xx 251;(29)⎰-dx xx31; (30)⎰++-+dx x x 1111.2. 应用分部积分法求下列不定积分:(1)⎰xdx arcsin ; (2)⎰xdx ln ; (3)⎰xdx x cos 2; (4)⎰dx x x3ln ;(5)()⎰dx x 2ln ; (6)⎰dx x arctan ; (7)()⎰⎥⎦⎤⎢⎣⎡+dx x x ln 1ln ln ; (8)()⎰dx x 2arcsin ;(9)⎰xdx 3sec ; (10)()⎰>±022a dx a x .3. 求下列不定积分:(1)()[]()()⎰-≠1/ααdx x f x f ; (2)()()[]⎰+dx x f x f2/1;(3)()()⎰dx x f x f /; (4)()()⎰dx x f e x f /.4. 证明:(1)若 ,3,2,tan ==⎰n xdx I n n ,则21tan 11----=n n n I x n I ; (2)若()⎰=xdx x n m I n m sin cos ,,则当0≠+n m 时,()()(),3,2,,2,1sin cos ,21sin cos ,1111=-+-++-=-+-++=-++-m n n m I nm n n m x x n m I nm m n m x x n m I n m n m5. 利用上题的递推公式计算:(1)⎰xdx 3tan ; (2)⎰xdx 4tan ;(3)⎰xdx x 42sin cos .6. 导出下列不定积分对于正整数n 的递推公式:(1)⎰=dx e x I kx n n ; (2)()⎰=dx x I nn ln ; (3)()⎰=dx x I n n arcsin ; (4)⎰=xdx e I nx n sin α. 7. 利用上题的递推公式计算:(1)⎰dx e x x 23; (2)()⎰dx x 3ln ; (3)()⎰dx x 3arcsin ; (4)⎰xdx e x 3sin . §3有理函数和可化为有理函数的不定积分1. 求下列不定积分:(1)⎰-dx x x 13; (2)⎰+--dx x x x 12722; (3)⎰+dx x 113; (4)⎰+dx x 114;(5)()()⎰+-dx xx 22111; (6)()⎰++-dx x xx 221222.2. 求下列不定积分:(1)⎰-dx x cos 351; (2)⎰+dx x 2sin 21;(3)⎰+dx x tan 11; (4)⎰-+dx xx x 221;(5)⎰+dx x x 21; (6)⎰+-dx xxx 1112. 总练习题求下列不定积分: (1)⎰--dx xx x 4312; (2)⎰xdx x arcsin ; (3)⎰+dx x 11; (4)⎰xdx e x 2sin sin ;(5)⎰dx ex; (6)⎰-dx x x 112;(7)⎰+-dx x x tan 1tan 1; (8)()⎰--dx x xx 322; (9)⎰dx x 4cos 1; (10)⎰xdx 4sin ; (11)⎰+--dx x x x 43523; (12)()⎰+dx x 1arctan ; (13)⎰+dx x x 247; (14)⎰++dx x x x1tan tan tan 2; (15)()⎰-dx x x 10021; (16)⎰dx xx2arcsin ; (17)⎰⎪⎭⎫⎝⎛-+dx x x x 11ln (18) ⎰dx xx 7cos sin 1; (19)⎰⎪⎭⎫⎝⎛+-dx x x e x 211;(20)⎰=dx uv I n n ,其中x b a v x b a u 2211,+=+=,求递推形式解.习题答案§1 不定积分概念与基本积分公式2.12+=x y .5.(1)C x x x x +-+-342342; (2)C x x x +-+3334ln 3; (3)C gx+2; (4)C x x x +•++6ln 629ln 94ln 4; (5)C x +arcsin 23; (6)()C x x +-arctan 31; (7)C x x +-tan ; (8)()C x x +-2sin 241;(9)C x x +-cos sin ; (10)C x x +--cot tan ;(11)C t+90ln 90; (12)C x +815158; (13)C x +arcsin 2; (14)C x x +-2cos 21; (15)C x x +⎪⎭⎫ ⎝⎛+3sin 31sin 21; (16)C e e e e x xx x ++----33313331; §2 换元积分法与分部积分法1.(1)()C x ++43sin 31; (2)C e x +2241; (3)C x +-12ln 21; (4)()C n x n ++++111;(5)()C x x++3arcsin 313arcsin ;(6)C x ++2ln 222; (7)()C x +--33892; (8)()C x +--3257103; (9)C x +-2cos 21; (10)C x +⎪⎭⎫ ⎝⎛+-42cot 21π;(11)C x+2tan; (12)C x x +-sec tan ; (13)C x x ++-cot csc ln ; (14)C x +--21;(15)C x +2arctan412; (16)C x +ln ln ;(17)()C x +--251101; (18)C x x ++-22ln28144;(19)C xx+-1ln; (20)C x +sin ln ; (21)C x x x ++-53sin 51sin 32sin ;(22)C x +tan ln ; (23)C e x+arctan ; (24)C x x ++-83ln 2; (25)()C x x x ++-+++2123121ln ;(26)C a x x +++22ln ; (27)C ax ax ++222;(28)()()()C x x x+---+--2522322121511321;(29)C x x x x x x ++------11ln 3625676616161216567; (30)C x x x +++++-11ln414.2.(1)C x x x +-+21arcsin ; (2)C x x x +-ln ; (3)C x x x x x +-+sin 2cos 2sin 2;(4)()C x x ++-1ln 2412; (5)()C x x x x x ++-2ln 2ln 2; (6)()C xx x +-+2arctan 1212;(7)()C x x +ln ln ; (8)()C x x x x x +--+2arcsin 12arcsin 22;(9)()C x x x x +++tan sec ln tan sec 21; (10)C x a x a a x x +⎪⎭⎫ ⎝⎛+±±±22222ln 21.3.(1)()()C x f +++111αα; (2)()()C x f +arctan ; (3)()C x f +ln . 5.(1)C x x ++cos ln tan 212; (2)C x x x ++-tan tan 313;(3)C x x x x +--4sin 641sin cos 611633. 6.(1)11--=n kx n n I kn e x k I ; (2)()1ln --=n nn nI x x I ;(3)()()()2121arcsin 1arcsin -----+=n n nn I n n x x n x x I ;(4)()()[]21221cos sin sin 1---+-+=n n ax n I n n x n x a x e an I . 7.(1)C x x x e x+⎪⎭⎫⎝⎛-+-83434321232;(2)()()[]C x x x x +-+-6ln 6ln 3ln 23;(3)()()C x x x x x x x +----+222316arcsin 6arcsin 13arcsin ;(4)()C x x x x x e x+-+-cos 3sin 3cos sin 3sin 10123. §3有理函数和可化为有理函数的不定积分1.(1)C x x x x +-+++1ln 2323; (2)()C x x +--34ln 2; (3)()C x x x x +-++-+312arctan 3111ln 6122; (4)C x x x x x x +-++-++22212arctan 421212ln 82; (5)()()C x x x x x ++---+--141arctan 211ln 811ln 4122; (6)()()C x x x x ++-+++-12arctan 251222352; 2.(1)C x +⎪⎭⎫ ⎝⎛2tan 2arctan 21; (2)C x +⎪⎪⎭⎫ ⎝⎛tan 26arctan 66; (3)C xx x +++2sin cos ln 21; (4)C x x x x +-++--21432512arcsin87; (5)C x x x ++++221ln ; (6)C x x x x +---+22111ln. 总练习题(1)C x x x +--4312134534132454; (2)C x x x x x +-+-22141arcsin 41arcsin 21; (3)()C x x ++-1ln 22; (4)()C x e x +-1sin 2sin ;(5)()C x ex+-12; (6)C x+1arccos ;(7)C x x ++sin cos ln ; (8)()C x x x +-----221232ln ; (9)C x x ++3tan 31tan ; (10)C x x x ++-4sin 3212sin 4183; (11)C x x x +-++-2112ln 32; (12)()C x x x x x ++++-+22ln 1arctan ;(13)()C x x ++-2ln 214144; (14)C x x +⎪⎪⎭⎫ ⎝⎛+-31tan 2arctan 32; (15)()()()C x x x +-+------979899197114911991; (16)C xx x x +-+--211lnarcsin 1; (17)C x x x x ++⎪⎭⎫ ⎝⎛-+-11ln 212; (18)C x x +⎪⎭⎫⎝⎛+5tan 511tan 2; (19)C xe x++21; (20)()()[]121121122--++=n n n I b a b a n u v b n I典型习题解答1.(§1 第5题(13))求⎰⎪⎪⎭⎫ ⎝⎛+-+-+dx x x x x 1111 解:C x dx x xx x dx x x x x +=⎪⎪⎭⎫⎝⎛--+-+=⎪⎪⎭⎫⎝⎛+-+-+⎰⎰arcsin 211111111222.(§2 第1题(21))求⎰xdx 5cos解:()C x x x x d x xdx ++-=-=⎰⎰53225sin 51sin 32sin sin sin 1cos3.(§2 第1题(23))求⎰-+dx e e x x 1解:C e e de dx e e xx x x x+=+=+⎰⎰-arctan 112 4.(§2 第2题(9))求⎰xdx 3sec()C x x x x xdx xdxxdx x x xdxx x x xdxx x x x xd xdx +++=∴+-=--=-==⎰⎰⎰⎰⎰⎰⎰tan sec ln 21tan sec 21sec sec sec tan sec sec 1sec tan sec sec tan tan sec tan sec sec 33223解:5.(§2 第题(2))若()⎰=xdx x n m I n m sin cos ,,则当0≠+n m 时,()()(),3,2,,2,1sin cos ,21sin cos ,1111=-+-++-=-+-++=-++-m n n m I nm n n m x x n m I nm m n m x x n m I n m n m证明:()()()()()()()2,1sin cos ,,21sin cos ,cos sin 11cos sin 111sin cos cos cos 1sin 111sin cos sin cos 11sin 1sin cos 1sin cos ,11112112211211111-+-++-=-+-++=∴+--+-++=-+-++=-+++=+=-++--+--+--++-+-⎰⎰⎰⎰⎰n m I n m n n m x x n m I n m I nm m n m x x n m I xdx x n m xdx x n m n x x xdx x x n m n x x xdx x m n xn x x n x xd n m I n m n m mn m n n m m n n m m n n m n m 同理, 6.(§3 第1题(4))求⎰+dx x 114解:()()⎰⎰⎰⎰-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=+--+=+211211211112111224224x x x x d x x x x d dx x x x dx xC xx x x x x +++-+--=2121ln 24121arctan221。

不定积分和定积分习题

不定积分和定积分习题


f ( x) f ( x)dx f x df x 1 2 f x C 2
1 cos x sin 2 x C 2 2 1 x sin x
2
不定积分 dx 2 x x 1
u x 1
1 3 ln x 1dx 3
2 x ln x 1 dx

不定积分

e cos 2 x 2 e sin 2 xdx
x x
e
x
cos 2 xdx cos 2 xde
x
e x cos 2 x 2 sin 2 xde x
2 d x x 1 1 3 dx 2 2 2 x x 1 2 x x 1 3 1 dx 2 ln x x 1 2 2 2 2 3 1 x 2 2
......


不定积分


e
3 x
x 3 ue
练习题(不定积分、定积分)
y f x 0
a
0
x
x+dx
b
不定积分

sin x 已知 f ( x) 的一个原函数为 ,求 f ( x) f ( x)dx 1 x sin x 2 sin x cos x sin x 解: f x 2 1 x sin x 1 x sin x
x
sin x cos x 1 d sin x 1 sin 4 x dx 2 1 sin 2 x 2 1 2 arctan sin x C 2 x 2 dx dx 2 x 2 x 2 x 2 1

数学分析习题集

数学分析习题集

数学分析习题集 武汉科技学院理学院目 录第一章 实数集与函数 3 第二章 数列极限 5 第三章 函数极限 8 第四章 函数的连续性 10 第五章 导数与微分 12 第六章 微分中值定理及其应用 14 第七章 实数的完备性 18 第八章 不定积分 20 第九章 定积分 22 第十章 定积分的应用 25 第十一章 反常积分 26第一章 实数集与函数一:典型习题.1. 设a 为有理数,为无理数. 证明:x xa 为无理数.2. 证明: 对任何有R x ∈4|3||2||1|||≥−+−+−+x x x x .3. 设集合},21|{+∈==N n x x S n . 求的上、下确界,并用确界的定义加以证明.S 4. 证明:若数集E 的上(下)确界存在,则它必唯一存在. 5. 设是非空数集,证明: R B A ⊂, ⑴ B A B B A sup inf inf ≤≤⇒⊂; ⑵ 如果ε<−∈∀∈∀||,,b a B b A a ,则 ε≤−|sup sup |B A ,ε≤−|inf inf |B A . 6. 设在区间f I 上有界. 记)(sup x f M Ix ∈=,)(inf x f m Ix ∈=.证明: m M x f x f Ix x −=′′−′∈′′′|)()(|sup,.7.证明伯努利不等式,nx x n +≥+1)1(1−>x . 8. 设为n 个正实数,证明:n x x x ,,,21")(1111212121n n n nx x x nx x x x x x n+++≤≤+++""".二:考研荟萃.1. (中国人民大学) 设249)3lg(1)(x x x f −+−=,求的定义域和.)(x f )]7([−f f 2.(南京邮电大学,兰州铁道学院) 已知21)(xx x f +=,设=)(x f n(个),求.]}))(([{""x f f f n f )(x f n 3.(清华大学) 设函数在)(x f ),(+∞−∞上是奇函数,且对任何值均有a f =)1(x )2()()2(f x f x f =−+.⑴试用a 表示与;)2(f )5(f ⑵问a 取何值时,是以2为周期的周期函数. )(x f 4.(北京科技大学) 叙述数集A 的上确界的定义.并证明:对任意有界数列,总有}{},{n n y x }sup{}sup{}sup{n n n n y x y x +≤+.第二章 数列极限一:典型习题.1. 利用数列极限的定义证明0)sin(lim2=∞→nn n π. 2. 证明:02lim =∞→n n n,02lim 2=∞→n n n ,02lim 3=∞→n n n . 3. 设对于数列,有}{n x a x nn =∞→2lim ,a x n n =+∞→12lim ,证明.a x n n =∞→lim 4.求下列极限:⑴32221limn n n +++∞→";⑵)211()211)(211(lim 242nn +++∞→"; ⑶)2122321(lim 2nn n −+++∞→"; ⑷)2(42)12(31lim n n n ⋅⋅⋅−⋅⋅⋅∞→""; ⑸)cos 1(cos limn n n −+∞→.5. 证明下列各题:⑴若,则0,0>>b a ),max(lim b a b a nn n n =+∞→;⑵若是正实数数列,}{n x 0lim >=∞→a x nn ,则有a x x x nx x x n n n nn ==+++∞→∞→""2121lim lim; ⑶数列不存在极限.}{sin n6. 利用单调有界性证明:⑴若101<<x ,且",2,1),1(1=−=+n x x x n n n ,则;1lim =∞→nn nx ⑵设,且0,011≥=≥=b y a x ",2,1),(21,11=+==++n y x y y x x n n n n n n , 则n n nn y x ∞→∞→=lim lim .二:考研荟萃.1.(北京大学) 求⑴;⑵2)!(lim −∞→n n n ,1lim n n n a +∞→a 为正实数; ⑶n n n n n n)12()1(1lim −+∞→"". 2.(武汉大学,华中师范大学) 设22,2,10211nn a c a c a c +==<<+,证明:数列收敛,并求其极限.}{n a 3.(北京师范大学) 设}|)(sup{b x a x f ≤≤=α.证明:存在 b x a n ≤≤ 使成立. a x f n n =∞→)(lim 4.(华中师范大学) 求∑=∞→++nk n kn n k12lim .5.(北京航空航天大学) 叙述数列收敛的柯西原理,并证明: 数列∑==nk k n k x 12sin ,为收敛数列.),2,1("+n 6.(华中科技大学)(有界变差数列收敛定理) 若数列满足条件:}{n x M x x x x x x n n n n ≤−++−+−−−−||||||12211",)3,2("=n ,则称为有界变差数列.试证明:有界变差数列一定收敛.}{n x 7.(四川大学)(压缩变差数列收敛定理) 若数列满足条件:,}{n x ||||211−−−−≤−n n n n x x r x x )10;,4,3(<<=r n ",则称为压缩}{n x变差数列(简称为压缩数列).试证明:任意压缩数列一定收敛.8.(浙江大学) 求)(sin lim 22n n n +∞→π.9.(清华大学) 设R 中数列满足}{},{n n b a ",2,1,1=−=+n qa b a n n n , 其中.证明:⑴若有界,则有界; 10<<q }{n b }{n a ⑵若收敛,则收敛. }{n b }{n a第三章 函数极限一:典型习题.1. 用定义证明:⑴19167lim21=−→x x ;⑵2312lim 22=−+∞→x x x . 2. 求极限:⑴)211(lim 23x x x x x −−+++∞→;⑵xx x x n n x ∆−∆++∞→)(lim ;⑶2tan )1(lim 1x x x π−→; ⑷⎥⎦⎤⎢⎣⎡→x x x 1lim 0; ⑸1,0,111lim1≠>⎟⎟⎠⎞⎜⎜⎝⎛−−+∞→a a a a x xxx . 3. 讨论下列函数的极限是否存在,若存在,则求出其极限: ⑴||sin 12)(41x xee xf xx+++=,当时;0→x ⑵axx x g cos 1)(−=,π<<||0a ,当时.0→x 4. 若0)(6sin lim 30=⎟⎠⎞⎜⎝⎛+→xx xf x x ,求3)(6lim xx f x +→. 5. 求xx xx x x sin cos sin 1lim−+→.6. 设,sin 2sin sin )(21nx a x a x a x f n +++="其中是常数,且 n a a a ,,,21" ,有,证明:R x ∈∀|sin ||)(|x x f ≤1|2|21≤+++n na a a ".7. 求xxn xxx n a a a 1210lim ⎟⎟⎠⎞⎜⎜⎝⎛+++→".8. 已知51lim231=−++→x bax x x ,求的值. b a ,9. 设当时,0→x 1)1(312−+ax 与1cos −x 是等价无穷小,求常数. a二:考研荟萃.1.(武汉大学) 求极限20)1ln(limx x xe x x +−→. 2.(厦门大学) 求极限1tan 1tan 1lim 0−−−+→x x e xx .3.(中国科技大学) 求极限22116sin 41limxxx −−→π.4.(湖北大学,天津大学) 设函数在)(x f ),0(+∞上满足)()2(x f x f =,且.证明:A x f x =+∞→)(lim ),0(,)(+∞∈≡x A x f .5.(复旦大学) ⑴求极限⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+−+−→xx x x e x x x csc 22023sin sin lim ; ⑵当时,求是多少阶无穷小量(0→x )1ln()cos(sin 12x x ++−αα为参数).第四章 函数的连续性一:典型习题.1. 设函数对一切)(x f I x x ∈21,,满足等式)()()(2121x f x f x x f +=+,且)(x f 在连续,证明:在任意0=x )(x f I x ∈连续.2. 设函数在连续,且)(x f 0=x 0)0(=f ,已知|)(||)(|x f x g ≤,证明:函数在也连续.)(x g 0=x 3. 证明:若在内连续,且 存在,则 在内必有界.)(x f ),(+∞−∞)(lim x f x ∞→)(x f ),(+∞−∞4. 设对任意,有,且在和连续,证明:在)(x f ),(+∞−∞∈x )()(2x f x f =)(x f 0=x 1=x )(x f ),(+∞−∞为常数.5. 确定的值,使b a ,)1)(()(−−−=x a x be xf x 有无穷间断点0=x 和可去间断点.1=x 6. 设函数在上连续,且)(x f ]2,0[a )2()0(a f f =,证明:在上至少存在一点],0[a ξ,使)()(a x f f +=ξ.7. 证明:若函数在上连续,)(x f ],[b a b x x x a n <<<<<"21,则在上必有一点],[1n x x ξ,使nx f x f x f f n )()()()(21+++="ξ .8. 设函数在内一致连续,证明:)(x f ),(b a ⑴0>∃δ,使,当0x ∀),(),(00δδ+−∩∈x x b a x 时,; 1|)(||)(|0+≤x f x f ⑵在内有界. )(x f ),(b a9. 函数在区间)(x f I 上一致连续的充要条件是:I y x n n ⊂∀}{},{,当 0)(lim =−∞→n n n y x 时,有0)]()([lim =−∞→n n n y f x f .10. 证明:若函数在)(x f R 上连续,R y x ∈∀,,有10|,||)()(|<<−≤−k y x k y f x f ,则在)(x f R 上有唯一的不动点,即a a a f =)(.二:考研荟萃.1.(南开大学) ⑴叙述函数在区间)(x f I 上一致连续的定义; ⑵设,都在区间)(x f )(x g I 上一致连续且有界,证明:也在区间)()()(x g x f x F =I 上一致连续.2.(长沙铁道学院) 函数在上连续且恒大于零,按)(x f ],[b a δε−定义证明:)(1x f 也在上连续. ],[b a 3.(武汉大学) 证明:x y sin =在),0(+∞上一致连续.4.(吉林大学)(利普希次条件) 若函数在区间)(x f I 上满足利普希次条件:I x x x x L x f x f ∈∀−≤−212121,|,||)()(|,则在f I 上一致连续. 5.(北京大学) 设在)(x f ]2,[b a a +上连续,证明:存在,使得],[b a a x +∈)]()2([21)()(a f b a f x f b x f −+=−+.第五章 导数与微分一:典型习题.1. 证明:偶函数的导数是奇函数;奇函数的导数是偶函数.2. 设)(x ϕ在a x =连续,问:下列函数在a x =是否可导? ⑴);()()(x a x x f ϕ−= )(||)(x a x x g ϕ−=.3. 设在上有定义,且f ),0(+∞),0(,+∞∈∀y x ,都有,已知存在,求.)()()(y f x f xy f +=)1(f ′)(x f ′4. 已知存在,且)(a f ′0)(≠a f ,求极限nn n a f a f ⎦⎤⎢⎣⎡+∞→)((lim 1\,. +∈N n 5. 求下列函数的导数: ⑴;⑵xx x y =3)2)(1(32+++=x x x y ; ⑶x e x x y −=1sin . 6. 设满足)(x f xx f x f 312)(=⎟⎠⎞⎜⎝⎛+,求)(x f ′.7. 设)1()1(31lim )(−−∞→+++=x p x p x e b ax e x x f (为不等于零的常数),问为何值时,连续且可导.p b a ,)(x f 8. 设周期的函数在4=T ),(+∞−∞内可导,且12)1()1(lim−=−−→xx f f x .求曲线在点处的切线方程和法线方程. )(x f y =))5(,5(f 9. 设函数由方程确定,求)(x f y =4ln 22=+x y x y dxdy . 10. 设t y t x −=+=1,1确定函数)(x f y =,证明:3222,ydx yd y x dx dy −=−=.11. 求对数螺线在点ϕρe =⎟⎠⎞⎜⎝⎛=2,),(2πϕρπe 处的切线的直角坐标方程.12. 设,可微,求.)]()(sin[22x v x u y +=)(),(x v x u dy 13. 设函数的反函数及,都存在,且)(y f )(1x f −)]([1x f f −′)]([1x f f −′′0)]([1≠′−x ff ,证明:311212)]}([{)]([)(x f f x f f dx x f d −−−′′′−=.二:考研荟萃.1.(中国人民大学) 设2111arcsin )1()(xxe x x xf x +−++=−,求. )1(f ′2.(湖北大学) 设为可导函数,证明:若)(x f 1=x 时,有)()(22x f dxd x f dx d =. 3.(四川大学) 函数xe y −=,在0=x 处是否连续,是否可导,是否有极值,为什么?4.(武汉大学) 对于函数3sin )(x x f =,)1,1(−∈x . ⑴证明:)(x f ′′不存在;⑵说明点0=x 是不是)(x f ′′′的可去间断点.5.(厦门大学) 已知,k 为常数,求的反函数二阶导数. x ke x f =′)()(x f6.(浙江大学) 求,其中(当时). )0()(n f 2)(,0)0(,,2,1−−===x e x f f n "0≠x第六章 微分中值定理及其应用一:典型习题.1. 设在内有二阶可导函数,且)(x f )1,0(0)1(=f ,又,证明:在内至少存在一点)()(2x f x x F =)1,0(ξ,使0)(=′′ξF .2. 设在内二阶可微,)(x f )1,0()1()0(),1()0(f f f f ′=′=,证明:存在)1,0(∈ξ使得2)(=′′ξf .3. 设,证明:0,>b a ),(b a ∈∃ξ,使. )()1(a b e be ae a b −−=−ξξ4. 设函数在点的某一邻域内可导,且其导数在处连续,而)(x f 0x x =)(x f ′0x ),2,1(0"=<<n x n n βα,当∞→n 时,00,x x n n →→βα.证明:)()()(lim0x f f f nn n n n ′=−−∞→αβαβ.5. 设函数在的某一邻域内阶可导,且)(x f 0=x n 0)0()0()0()1(===′=−n f f f ",证明:)1,0(,!)()()(∈=θθnn x n x f x f .6. 设函数在内连续且可导,有)(x f )1,0(0)(lim 0=′+→x f x x ,证明:f 在内一致连续. ]1,0(7. 求下列极限:⑴x arc x x cot )1ln(lim 1−+∞→+; ⑵15sin )(lim 2sin 22−−→x x e x x ππ; ⑶a x xa a x a x a x −−→lim ; ⑷xe x e x x x +−+∞→πarctan 2lim ;⑸⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x ; (6)23arctan 2lim x x x ⋅⎟⎠⎞⎜⎝⎛−+∞→π; ⑺; ⑻10lim −→+xx x x xx x 1arctan 2lim ⎟⎠⎞⎜⎝⎛−+∞→π; ⑼()xx x x x 13lim++∞→; ⑽. )1ln(0tan lim x x x −→+⑾xx nx xx n aa a 1210lim ⎟⎟⎠⎞⎜⎜⎝⎛+++→",其中.0,,0,021>>>n a a a "8. 设41)1ln(lim2=+++∞→cxce x x ,确定c .9. 利用泰勒公式求下列极限:⑴22220sin 112lim x x x x x +−+→; ⑵⎟⎠⎞⎜⎝⎛−−→11)2(tan lim 430x x e x x x . 10. 设有二阶导数,且)(x f )]()([21)(h x f h x f x f −++≤,试证:. 0)(≥′′x f 11. 设在)(x f R 上二阶可微,且有N x f M x f ≤′′≤)(,)(0.⑴写出)(),(h x f h x f −+关于的有拉格朗日余项的泰勒公式; h ⑵证明:0>∀h ,有2)(hNh M x f +≤; ⑶证明:MN x f 2)(≤′.12. 设在上连续,在)(x f ),[+∞a ),[+∞a 内可导,且0)(>>′k x f (为常数),又.证明:k 0)(<a f 0)(=x f 在⎟⎠⎞⎜⎝⎛−k a f a a )(,内有唯一的实根. 13. 设在)(x f ),(+∞−∞内恒满足方程:x e x f x x f x −−=′−+′′−131)]()[1(2)()1(.⑴若在处取得极值,则必为极小值; )(x f )1(≠=a a x ⑵若在处取得极值,是否为极小值?)(x f 1=x14. (詹森不等式)证明;若为上凸函数,f ],[b a 0],,[>∈∀i i b a x λ,),2,1("=i ,且,则:.∑==ni i 11λ∑∑==≤⎟⎠⎞⎜⎝⎛ni i i n i i i x f x f 11)(λλ15. 利用函数的凸性,证明:y x ee e y x y x ≠>++,)(212.二:考研荟萃.1.(华中师范大学) 设在上二阶可导,过点与点)(x f ],[b a ))(,(a f a A ))(,(b f b B 的直线与曲线)(x f y =相交于,其中.))(,(c f c C b c a <<证明:在中至少存在一点),(b a ξ,使0)(=′′ξf .2.(中国科学院) 设10<<<y x 或y x <<1,则y xxy x y >.3.(厦门大学) 设在)(x f ),0[+∞上具有连续二阶导数,又设, 0)0(>f .则在区间),0[,0)(,0)0(+∞∈<′′<′x x f f ⎟⎟⎠⎞⎜⎜⎝⎛′−)0()0(,0f f 内至少存在一个ξ, 使0)(=ξf .4.(中山大学) 证明:)20(,2tan sin π<<>+x x x x .5.(北京大学) 设在)(x f ),0[+∞上可微,且满足不等式:),0(,112ln)(02+∞∈∀+++≤≤x xx x x f .试证明:存在一点),0(+∞∈ξ,使得211122)(ξξξ+−+=′f . 6.(东北师范大学) 若在)(x f ),(+∞a 内可导,且A x f x =′+∞→)(lim ,则A xx f x =+∞→)(lim.7.(华中科技大学) 设在上连续,在内可微,,)(x f ]1,0[)1,0(0)(>′x f 0)0(),10(=<<f x .证明:存在)1,0(,∈µλ,使得µµλλµλ)()(,1f f ′=′=+.8.(浙江大学) 设在上连续,在内可微,且 )(),(x g x f ],[b a )(x g ),(b a 0)(=a g ,若有实数0≠λ,使得),(,)()()()(b a x x g x g x f x g ∈≤′+λ成立, 证明:.0)(≡x g 9.(复旦大学) 设定义在)(x f )(],,0[x f c ′存在且单调下降,.请 0)0(=f 用拉格朗日定理证明:对于c b a b a ≤+≤≤≤0,恒有)()()(b f a f b a f +≤+.10.(北京科技大学) 设在上连续,在内可微.证明:存在)(x f ]2,1[)2,1()2,1(∈ξ,使得)(21)1()2(2ξξf f f ′=−.第七章 实数的完备性一:典型习题.1. 证明:为有界数列的充要条件是的任一子列都存在其收敛子列.}{n x }{n x 2. 设在内连续,且f ),(b a 0)(lim )(lim ==−+→→x f x f b x a x .证明:在内有最大值或最小值.f ),(b a 3. 设在内连续,又有,使f ],[b a ],[}{b a x n ⊂A x f n n =∞→)(lim .证明:存在,使得.],[0b a x ∈A x f =)(04. 设函数和都在区间f g I 上一致连续.⑴若I 为有限区间,证明g f ⋅在I 上一致连续;⑵若I 为无限区间,举例说明g f ⋅在I 上不一定一致连续. 5. 设定义在上.证明:若对内任一收敛数列,极限f ),(b a ),(b a }{n x )(lim n n x f ∞→都存在,则在上一致连续.f ),(b a 6. 设函数在上连续,且有斜渐近线,即有数和,使得:f ),[+∞a b c 0])([lim =−−+∞→c bx x f x .证明:在上一致连续. f ),[+∞a二:考研荟萃.1.(哈尔滨工业大学) 设在上有定义,且在每一点处极限存在.证明:在上有界.)(x f ],[b a )(x f ],[b a 2.(北京科技大学) 证明:若一组开区间覆盖区间,则存在一正数]1,0[δ,使得中任何两点]1,0[x x ′′′,,满足 δ<′′−′x x 时,必属于某一区间.n I 3.(华中师范大学) 设函数定义在区间)(x f I 上,如果对任何, I x x ∈21, 及)1,0(∈λ,恒有)()1()(])1([2121x f x f x x f λλλλ−+≤−+. 证明:在区间I 上的任何闭子区间上有界.)(x f 4.(武汉大学) 设函数在区间上无界,试证:在上至少存在一点,使得在此点的邻域无界. )(x f ],[b a )(x f ],[b a )(x f第八章 不定积分一:典型习题.1. 一曲线通过点,且在曲线上任一点处切线的斜率都等于该点横坐标的倒数,求该曲线的方程.)3,(2e 2. 证明:[]c x f x f dx x f x f x f x f x f +⎦⎤⎢⎣⎡′=⎥⎦⎤⎢⎣⎡′′′−′∫222)()(21)()()()()(. 3. 设的原函数,且)(x f 0)(>x F 1)0(=F .当时,有 0≥x x x F x f 2sin )()(2= 求.)(x f 4. 已知的一个原函数为)(x f xx xsin 1sin +,计算∫′dx x f x f )()(.5. 已知,计算c x dx x f +=∫2)(dx x xf )1(2∫−.6. 计算下列积分: ⑴dx x∫2sin 12; ⑵dx x x ∫+)cos (sin 44;⑶dx x ea e xx x ∫⎟⎟⎠⎞⎜⎜⎝⎛−−−21; ⑷∫++dx e e x x 113; ⑸∫−+−−+dx x x x x x 221232; (6)dx x x x ∫⎟⎠⎞⎜⎝⎛−211; ⑺; ⑻dx x a x )sin(sin +∫∫dx x x x )ln(ln ln 1;⑼dx xxx2211tan ++∫; ⑽∫+−dx x x n n 112; ⑾∫+dx x x xcos sin sin ; ⑿∫+++dx x x x x e x 1)1(ln 22arctan ; ⒀dx xa x ∫−222; ⒁dx xa x ∫+221;⒂dx a x x∫−2221; ⒃dx x ∫++111;⒄dx ee xx ∫−++111; ⒅dx xx x ∫+ln 1ln ;⒆dx x x ∫+)1(128; ⒇∫xdx x arcsin 2. 7. 计算不定积分:[][]∫′′+′′+dx x f x f x f x f x f )()()()(ln )(ln 2. 8. 建立下列不定积分的递推公式:⑴; ⑵xdx x I n n cos ∫=dx x I n n ∫=arcsin . 9. 计算下列不定积分: ⑴()dx x xx ∫+−22223; ⑵()dx xx ∫+2311;⑶()dx x x x∫−+43sin cos 1sin ; ⑷∫++dx x x 1222.二:考研荟萃.1.(北京大学) 试求不定积分()∫−dx x x 44sin cos 与()∫+dx x x 44sin cos ,进而求出不定积分与∫xdx 4cos ∫xdx 4sin .2.(华东师范大学) 计算:dx xxx ∫+23cos 1sin cos .3.(复旦大学) 求不定积分dx xxx ∫−+11ln. 4.(山东大学) 求积分. dx x ∫4tan 5.(清华大学) 计算∫>−)1(2x dx e xe xx .6.(上海交通大学) 求⑴dx x x x ∫++2211; ⑵∫++dx xxx cos 1sin .第九章 定积分一:典型习题.1. 证明:若函数在上无界,则在上不可积. )(x f ],[b a )(x f ],[b a2. 证明:若函数在上黎曼可积,且,则∃区间 )(x f ],[b a ∫>ba dx x f 0)( ],[],[b a ⊂βα,在[]βα,上.0)(>x f 3. 设函数在上可积,证明:在上可积. )(x f ],[b a )(x f e ],[b a 4. 利用定积分求下列极限:⑴⎟⎟⎠⎞⎜⎜⎝⎛++++++∞→2222212111lim n n n nn "; ⑵⎟⎠⎞⎜⎝⎛−+++∞→nn n n n n 4)1(tan 42tan 4tan 1lim πππ"; ⑶n n n n f n f n f n ⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛∞→"211lim,其中在上连续,且; )(x f ]1,0[0)(>x f ⑷∑=∞→+ni n n i n 1)cos(21sinlim ππ. 5. 比较下列定积分的大小:⑴∫+101dx xx和; ∫+10)1ln(dx x ⑵∫和.−π02cos 2xdx ex ∫−π202cos 2xdx e x 6. 设,证明:存在0>x 10<<θ,使,且∫=xx t xe dt e 0θ1lim =+∞→θx .7. 设函数在上非负连续,证明:)(x f ],[b a )(max )(lim x f dx x f bx a nban n ≤≤∞→=∫.8. 设函数在上连续,且单调递增,证明:)(x f ],[b a ∫∫+≥ba badx x f b a dx x xf )(2)(.9. 证明:若函数和在上有相同的单调性,则:)(x f )(x g ]1,0[∫∫∫≤1101)()()()(dx x g x f dx x g dx x f .10.(赫尔德积分不等式)证明:若函数和在上非负连续,且)(x f )(x g ],[b a 1111,,1=+>>qpq p ,则有不等式: [][]b a q pbab a p dx x g dx x f dx x g x f 11)()()()(⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=∫∫∫. 11.(施瓦茨积分不等式)设函数和在上证明:)(x f )(x g ],[b a [][]21212)()(|)()(|⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=∫∫∫b a bab a dx x g dx x f dx x g x f . 12.(闵可夫斯基积分不等式)证明:若函数和在上非负)(x f )(x g ],[b a 连续,且,则有不等式:1>p [][][]pb a p pb a p pb a p dx x g dx x f dx x g x f 111)()()()(⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛≤⎟⎠⎞⎜⎝⎛+∫∫∫.13.求下列极限:⑴dt e t xe xt xx ∫−∞→0222lim; ⑵dx x nnn ∫⎟⎟⎠⎞⎜⎜⎝⎛+∞→111ln 1lim; ⑶∫∫−→x x x dtt t t dtt 0230)sin (lim2.14.确定,使得:c b a ,,()[])0(/1ln sin lim20≠=+−∫→c c tdtt xax xbx .15.求下列函数的导数: ⑴;()d t t xx ∫cos sin 2cos π ⑵,,求du u x t ∫=202sin 4cos t y =dxdy .第十章 定积分的应用1. 求内摆线所围成的图形的面积.)0(sin ,cos 33>==a t a y t a x 2. 求两椭圆12222=+b y a x 与)0,0(12222>>=+b a ay b x 所围公共部分的面积.3. 导出曲边梯形b x a x f y ≤≤≤≤),(0绕轴旋转所得立体的体积公式为 .y ∫=ba dx x xf V )(2π4. 求由平面曲线π20),0)(cos 1(),sin (≤≤>−=−=t a t a y t t a x ,绕轴旋转所围成立体的体积.x 5. 求平面曲线πθθ30),0(3sin 3≤≤>=a a r 的弧长.6. 求的值,使椭圆b a ,t b y t a x sin ,cos ==的周长等于正弦函数在xy sin =π20≤≤x 上一段的长.7. 求平面曲线,绕轴旋转所得旋转曲面的面积.)()(222a r r a y x <≤−+x 8. 设平面光滑曲线由试求方程)0)(],,0[],([),(≥⊂≤≤=θπβαβθαθr r r给出,试求它绕极轴旋转所得旋转曲面的面积计算公式. 9. 试求试求曲线(双纽线) 绕极轴旋转所得旋转曲面的面积. )0(2cos 222>=a a r θ第十一章 定积分的应用1. 计算下列非正常积分: ⑴∫+∞++021xx dx; ⑵; ∫+∞∞−−−dx e x x x ||)|(| ⑶∫20sin ln πxdx ; ⑷∫−−101)2(xx dx ;⑸∫−312lndx xπ.2. 证明:∫+∞+01cos dx xx收敛,且11cos 0≤+∫∞+dx xx. 3.讨论下列非正常积分的收敛性: ⑴)0(sin 1>∫+∞p dx x xp ; ⑵)0(112≠⎟⎟⎠⎞⎜⎜⎝⎛+−+∫∞+p dx x p p x x ; ⑶∫; ⑷+∞−>0)0(cos k xdx ekxdx x xm∫∞+02sin . 4. 设在)(x f ),1[+∞上连续,),1[+∞∈∀x ,有,且0)(>x f λ−=+∞→x x f x ln )(ln lim. 证明:若1>λ,则收敛.∫+∞1)(dx x f 5. 设且单调减少,证明:与的敛散性相同.0)(>x f ∫+∞a dx x f )(∫+∞a xdx x f 2sin )(6. 设dt tx f x∫=01cos )(,求)0(f ′.7. 设)(x φ为有界的周期函数,周期为T ,且∫=Tc dx x T)(1φ.证明:c dt t t n nn =∫+∞+∞→2)(lim φ.。

不定积分习题及答案

不定积分习题及答案
不定积分习题及答案
(A层次)
rdx
」sinxcosx
Jsin5xsinIxdx;
7.
Jx^arctgxdx;
10.
13.
rdx
」xln xln Inx
16.
|sin>[xdx;
19.
r7cosx-3sinxfdx;
J 5cosx + 2sinx
22.
」cosxsinx
25.『干三如
-1
28
fxdx
• J(x + lX"2Xx + 3);
“ r arccosx .
10.
JVl-x2
12.
15.
dx
sinx ,dx;1 + si nx + cosx
arcsin
—dx;
1 + x
dx
13.
—~ dx;
COS~Xtg X
a...;19.| x/gxsec4xdx;
£Z2cos2x + A2sin2xJ
(C层次)
1.设F(x)为/(x)的一个原函数,F(0)=l, F(x)>0,且当尤》0时,有
(B层次)
第四章不定积分
2.
5.
8.
17.
arctg長
Jxcos2xdx;
20.
23.
26.
29. J
3.
6.
9.
dx
15.
\ + ex]
arcsinVxf
|Q2arccojiv
dx
(2 + cosx)sin x
18.
f6/A
rdx
X+yj\-X2

山东师大 数学分析试题精选.docx

山东师大 数学分析试题精选.docx

(1 + \[xj = 1 + 5x^ +10% + 10Q + 5x 2+ ,因此有f(l + Vxpx = x + —+5x 2+4/ +-X 3+-x ?+C v 73 3 7解法二利用换元积分法,令\ + 4x =t ,则x = (,-l )2, dx = 2(t - l )dt,于是有f(l + 0 dx = 2 (f _ 1)出=2 W6 -t> A= ;(f 伺+C说明 第(2)题解法二的优点在于当被积函数这个二项式的指数较大时(如求 J (l + V7)'°°dx),处理起来不会增加任何困难;但若仍用解法一去计算,那将是十分繁琐的; 更何况当不定积分变为J (1+五)"dx, a 为任意实数时,只能用解法二来计算。

注意 第(2)题的两种解法所得结果在形式上虽不相同,但它们之间至多相差一个常 数,可被容纳在积分常数C 之内。

例2用第一换元积分法求下列不定积分: (1) \—e xdx ;第八章不定积分1基本积分公式与换元积分法例1求下列不定积分: X 4 + X 2 +1 Jax ; ⑴ 1 x 4+x 2解(1)由于x 4+ x 2+1 x 4+x 2+/ 1 =l +±-^-X 2+ 1) X 2 X 2 +1因此得到 4X + X x 4 +x 22+1 j c - r dx c dx dx = J dx + J —-— J ----------------- --X X +1 =x ------arctan x + Cx(2) 解法一山于(2) J sin nx cos mxdx ;(令-2)解(1) x = asint,\t\^ — ,dx = a cos tdt, ez >- 0 ,于是 1 123 . ?7, f a sin cos t , Q s 小 \,dx = J --------- dt = — J(1 - cos 2t )dt= J―SeC—dt = \ esc tdt xy/x 2+1 tanfsecfa 2 t — — sin 2/)+ C*(3) arctan Vx . —— - !—— dx ; (4) J(2)Jsin nxcos mxdx = ? j[sin(n + m)x + sin(n 一 m)x\dx-----cos(n + m)x n + m ---- cos(n 一 m)x + C n — m(4)-3 /故=J —7 丁-2 3.x 3-2A -3 - 2 +2A'3-2?.Y 3-2用。

数学分析8.3有理函数可化为有理函数的不定积分

数学分析8.3有理函数可化为有理函数的不定积分

第八章 不定积分3 有理函数可化为有理函数的不定积分一、有理函数的不定积分有理函数:由两个多项式函数的商所表示的函数,其一般形式为:R(x)=)(Q )P(x x =n1-m 1m 0n1-n 1n 0βx βx βαx αx α+⋯+++⋯++, 其中n,m 为非负整数,α0,α1,…αn 与β0,β1,…βn 都是常数,且α0β0≠0. 若m>n ,则称它为真分式;若m ≤n ,则称它为假分式.注:1、假分式可化为整式与真分式的和;2、真分式可表示为若干个部分分式之和(称为部分分式分解);3、分解部分分式的一般步骤:第一步:对分母Q(x)在实系数内作标准分解:(分解前先化β0=1) Q(x)=(x-a 1)1λ…(x-a s )sλ(x 2+p 1+q 1)1μ…(x 2+p t +q t )tμ,其中λi ,μj (i=1,2,…,s ;j=1,2,…,t)均为自然数,而且∑=s1i iλ+2∑=t1j j μ=m ;p j 2-4q j <0, j=1,2,…,t.第二步:根据分母各因式分别写出与之相应的部分分式。

对于每个形如(x-a)k 的因式,它所对应的部分分式是:a -x A 1+22a)-(x A +…+k k a)-(x A ;对于每个形如(x 2+px+q)k 的因式,它所对应的部分分式是:q px x C x B 211++++2222q)px (x C x B ++++…+k2kk q)px (x C x B +++.第三步:确定待定系数。

将所有部分分式通分相加,所得分式的分母即为原分母Q(x),分子与原分子P(x)恒等。

根据同幂项系数相等,可得一组关于待定系数的线性方程,方程组的解就是需要确定的系数。

例1:对R(x)=8-x 4x 2x 5x x 10-x 9x 4x 2x 2345234+--+++-作部分分式分解.解:Q(x)=x 5+x 4-5x 3-2x 2+4x-8=(x-2)(x+2)2(x 2-x+1), R(x)=2-x A 0+2x A 1++222)(x A ++1x x C Bx 2+-+,两边乘以Q(x)得:2x 4-x 3+4x 2+9x-10 ≡A 0(x+2)2(x 2-x+1)+A 1(x 2-4)(x 2-x+1)+A 2(x-2)(x 2-x+1)+(Bx+C)(x-2)(x+2)2. 根据等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-10.=8C -2A -4A -4A ,9=4C -8B -3A +4A ,4=2C +4B -3A -3A -A ,-1=C +2B +A +A -3A ,2=B +A +A 2102121021010 解得:A 0=1, A 1=2, A 2=-1, B=-1, C=1. ∴对R(x)作部分分式分解的结果为:R(x)=2-x 1+2x 2+-22)(x 1+-1x x 1-x 2+-.注:对以上待定系数法有时可运用简便方法,如将x=2代入恒等式得: 32-8+16+18-10≡A 0·(2+2)2(4-2+1),∴A 0=1,将x=-2代入恒等式得: 32+8+16-18-10≡A 2(-2-2)(4+2+1),∴A 2=-1,于是化简恒等式得: x 4-3x 3+12+16≡A 1(x 2-4)(x 2-x+1)+(Bx+C)(x-2)(x+2)2,分别令x=0,1,-1可得:⎪⎩⎪⎨⎧+ 8.=C +B -3A 2,=3C 3B +A 4,=2C +A 111 解得:A 1=2, B=-1, C=1.小结:求有理真分式的不定积分可归为以下两种形式的不定积分:(1)∫k a)-(x dx =⎪⎩⎪⎨⎧>+=+ 1.k ;C a)-k)(x -(111,k C ;|a -x |ln 1-k (2)∫k 2q)px (x M Lx +++dx=∫k 22)r (t N Lt ++dt=L ∫k 22)r (t t +dt+N ∫k22)r (t dt+,其中 t=x+2p ,r 2=q-4p 2,N=M-4p L.当k=1时,原式=L ∫22r t t +dt+N ∫22rt dt +=2L ln(t 2+r 2)+ r N arctan r t +C. 当k ≥2时,∫k 22)r (t t +dt =1-k 22)r (t )k 1(21+-+C. I k =∫k 22)r (t dt +=2r 1∫k 22222)r (t t -)r (t ++dt=2r 1I k-1-2r 1∫k 222)r (t t +dt=2r 1I k-1+)1k (2r 12-∫td ⎥⎦⎤⎢⎣⎡+1-k 22)r (t 1=2r 1I k-1+)1k (2r 12-⎥⎦⎤⎢⎣⎡-+1-k 1-k 22I )r (t t=1-k 21-k 222I )1k (2r 3-2k )r (t )1k (2r t -++-.重复计算直至归为计算I 1. 最后换元为x ,就得到最终的结果.例2:求∫2222)2x -(x 1x ++dx. 解:2222)2x -(x 1x ++=2222)2x -(x 1)-x 2(2)x 2(x +++-=22x -x 12++222)2x -(x 1-x 2+∫22x -x dx2+=∫11)-(x 1)-d(x 2+dx=arctan(x-1)+C.∫222)2x -(x 1-x 2+dx=∫2222)2x -(x 2)2x -d(x +++∫221)]1)-[(x 1)-d(x +=-222)2x -(x 1++∫22)1t (dt +. ∫22)1t (dt +=1)2(t t 2++21∫1t dt 2+=1)2(t t 2++21arctant+C=2)2x -2(x 1-x 2++21arctan(x-1)+C. ∴原式= arctan(x-1)-222)2x -(x 1++2)2x -2(x 1-x 2++21arctan(x-1)+C=2)2x -2(x 3-x 2++23arctan(x-1)+C.二、三角函数有理式的不定积分:由u(x),v(x)及常数经过有限次四则运算所得到的函数称为关于u(x),v(x)的有理式,并用R(u(x),v(x))表示.∵sinx=2x tan 12x2tan2+=2t12t +, cosx=2x tan 12xtan -122+=22t 1t -1+, (t=tan 2x ); ∴∫R(sinx,cosx)dx=∫R(2t 12t +,22t 1t -1+)d(2arctant)=∫R(2t 12t +,22t 1t -1+)2t12+d(t). 例3:求∫cosx )sinx (1sinx1++dx.解:∫cosx )sinx (1sinx 1++dx=∫22222t 12)t1t -1(1t 12t t 12t 1+⋅+++++dt =21∫(t+2+t 1)dt=4t 2+t+21ln|t|+C=41tan 22x + tan 2x +21ln|tan 2x|+C.例4:求∫xcos b x sin a dx2222+(ab ≠0).解:∫x cos b x sin a dx 2222+=∫2222b x tan a x sec +dx=∫222b x tan a dtanx +=∫222b t a dt+=ab 1∫1b at bat d 2+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ab 1arctan b at +C=ab 1arctan batanx +C.三、某些无理根式的不定积分: 1、∫R(x,nd cx b ax ++)dx 型不定积分(ad-bc ≠0),只需令t=n dcx bax ++,化为有理函数的不定积分. 例5:求∫2x 2x x1-+dx. 解:令t=2x 2x -+,则x=1t 22t 22-+,原式=∫22t 1)t(t 22+-d 1t 22t 22-+=∫2222221)2)(t (2t 2)]2t(2t -1)1)[4t(t t(t -++--dt=-2∫1)1)(t (t 2t 222-+dt=-2∫(1t 12++1t 12-)dt=-2arctant-∫(1t 1--1t 1+)dt=ln 1t 1t -+-2arctant +C =ln12x 2x 12x 2x --++-+-2arctan 2x 2x -++C=ln 2x 2x 2x 2x --+-++-2arctan2x 2x -++C =ln 44x 2x 22-+-2arctan 2x 2x -++C=ln|2x+24x 2-|-2arctan 2x 2x -++C.例6:求∫2xx 2x)(1dx-++.解:∫2x x 2x)(1dx-++=∫)x 1)(x 2(x)(1dx+-+=∫x2x1x)(112-++dx. 令t=x 2x 1-+,则x=1t 1-2t 22+,dx=22221)(t 1)-2t(2t -1)4t(t ++dt=221)(t t 6+dt. 1+x=1+1t 1-2t 22+=1t 3t 22+,2x )(11+=422t 91)(t +.原式=∫224221)(t t6t 91)t(t +⋅+dt=32∫t -2dt=-t 32+C=x 1x 232+--+C.2、∫R(x,c bx ax 2++)dx 型不定积分(a>0时b 2-4ac ≠0, a<0时b 2-4ac>0),由于ax 2+bx+c=a[(x+a 2b )2+22a 4b -4ac ],若记u=x+a 2b , k 2=22a4b -4ac ,则此二次三项式必属于以下三种情形之一:|a|(u 2±k 2),|a|(k 2-u 2). 因此上述无理根式的不定积分可化为以下三种类型之一:∫R(u,22k u ±)du ,∫R(u,22u k -)du.分别令u=ktant, u=ksect, u=ksint ,则都化为三角有理式的不定积分.例7:求I=∫3x 2x x dx 2--.解法一:令u=x-1=2sec θ, t=tan 2θ, 则t=1x 3-x +. I=∫41)-(x x 1)-d(x 2-=∫4u )1(u du 2-+=∫1θsec )1(2sec θdsec θ2-+=∫)1θ(2secθtan tan θanθs+d θ=∫12sec θsec θ+d θ=∫cos θ21+d θ=∫222t 1t -12t 12+++dt=2∫3t 12+dt=32∫13t 12+⎪⎪⎭⎫ ⎝⎛d ⎪⎪⎭⎫ ⎝⎛3t=32arctan ⎪⎪⎭⎫⎝⎛3t +C=32arctan ⎪⎪⎭⎫ ⎝⎛+33x 3-x +C. 解法二:令3x 2x 2--=x-t, 则x=)1t (23t 2-+, dx=22)1t (23-t 2t --dt. I=∫⎪⎪⎭⎫ ⎝⎛--+-+--t )1t (23t )1t (23t )1t (23-t 2t 2222dt=-2∫3t 12+dt=-32arctan ⎪⎪⎭⎫ ⎝⎛3t +C =32arctan ⎪⎪⎭⎫⎝⎛---3x 3x 2x 2+C.注:一般地,二次三项式ax 2+bx+c 中若a>0,则可令c bx ax 2++=a x ±t ;若c>0,也可令c bx ax 2++=xt ±a ,这类变换称为欧拉变换.习题求下列不定积分:(1)∫1-x x 3dx ;(2)∫127x -x 2-x 2+dx ;(3)∫3x 1dx +;(4)∫4x1dx+;(5)∫221)1)(x -(x dx +; (6)∫22)1x 2(2x 2-x ++dx ;(7)∫x cos 35dx -;(8)∫xsin 2dx 2+;(9)∫x tan 1dx+; (10)∫22x x 1x -+dx ;(11)∫xx dx 2+;(12)∫x1x-1x 12+dx. 解:(1)∫1-x x 3dx=∫1-x 11x 3+-dx=∫(x 2+x+1)dx+∫1-x 1dx=3x 3+2x 2+x+ln|x-1|+C.(2)127x -x 2-x 2+=4)-3)(x -(x 2-x ≡3-x A +4-x B ;∴x-2≡A(x-4)+B(x-3).当x=3时,解得A=-1;当x=4时,解得B=2.∴原式=∫4-x 2dx-∫3-x 1dx=2ln|x-4|-ln|x-3|+C=ln 3-x 4)-(x 2+C.(3)3x11+=1)x 1)(x (x 12+-+≡1x A ++1x -x C Bx 2++;∴A(x 2-x+1)+(Bx+C)(x+1)≡1. 当x=-1时,解得A=31;由A+B=0,得B=-31;由A+C=1,得C=32. ∴原式=31∫1x 1+dx-31∫1x -x 2-x 2+dx=31ln|x+1|-61∫1x -x 3-1-2x 2+dx=31ln|x+1|-61∫1x -x 1)x -d(x 22+++21∫1x -x 12+dx=61ln 1x -x 1)+(x 22++21∫4321-x 12+⎪⎭⎫ ⎝⎛dx =61ln 1x -x 1)+(x 22++31∫121-x 3221-x 32d 2+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=61ln 1x -x 1)+(x 22++31arctan 31-x 2+C. (4)∫4x 1dx +=21∫422x 11x -1x +++dx=21∫42x 11x ++dx -21∫42x 11x +-dx=21∫222x 1x x 11++dx-21∫222x 1x x 11+-dx=21∫2x 1x x 1x d 2+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--21∫2x 1x x 1x d 2-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+ =42arctan x 21-x 2-82∫)2x 1(x x 1x d ++⎪⎭⎫ ⎝⎛++82∫)2x 1(x x 1x d -+⎪⎭⎫ ⎝⎛+=42arctan x 21-x 2-82ln 1x 2x 1x 2x 22+-+++C. (5)由221)1)(x -(x 1+≡1-x A +1x C Bx 2+++221)(x EDx ++得:A(x 2+1)2+(Bx+C)(x-1)(x 2+1)+(Dx+E)(x-1)≡1. 当x=1时,解得A=41. ∴41x 4+21x 2+41+Bx 4-Bx 3+Cx 3+Bx 2-Cx 2-Bx+Cx-C+Dx 2-Dx+Ex-E=(41+B)x 4-(B-C)x 3+(21+B-C+D)x 2-(B-C+D-E)x-(C+E-41)≡1. ∴B=-41,C =-41,D=-21,E=-21. 原式=41∫1-x dx -41∫1x 1x 2++dx-21∫221)(x 1x ++dx =41ln|x-1|-81∫1x 1)d(x 22++-41∫1x dx 2+-41∫2221)(x 1)d(x ++-21∫221)(x dx + =81ln 1x 1)(x 22+--41arctanx+)1x (412+-21∫221)(x dx +又∫221)(x dx +=∫221)t (tan dtant +=∫cos 2tdt=21∫(cos2t+1)dt=41∫cos2td2t +21∫dt =41sin2t+21t+C=)1t (tan 2tant 2++21arctanx+C=)1x (2x 2++21arctanx+C.∴原式=81ln 1x 1)(x 22+--41arctanx+)1x (412+-)1x (4x 2+-41arctanx+C=81ln 1x 1)(x 22+--21arctanx+)1x (4x -12++C.(6)∫22)1x 2(2x 2-x ++dx=41∫222)1x 2(2x )1x 2d(2x ++++-25∫22)1x 2(2x dx ++=-)1x 24(2x 12++-5∫22)]11)[(2x 1)d(2x +++=-)1x 24(2x 12++-45[1x 22x 12x 2++++2arctan(2x+1)]+C =-)1x 22(2x 3x 52+++-25arctan(2x+1)+C.(7)∫x cos 35dx -=∫222t 1)t 3(15t 12+--+dt=21∫1t)2(d2t 2+=21arctan2t+C=21arctan(2tan 2x )+C.(8)方法一:∫x sin 2dx 2+=∫22t 1t 22t 12+++dt=∫1t t dt 2++=32∫13132t 3132t d 2+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+ =32arctan ⎪⎭⎫ ⎝⎛+3132t +C=32arctan ⎪⎪⎪⎪⎭⎫ ⎝⎛+3132x 2tan +C. 方法二:∫x sin 2dx 2+=∫x tan x sec 2x dx sec 222+=∫2x tan 3dtanx 2+dt=66∫1x tan 23tanx23d2+=66arctan(tanx 23)+C.(9)∫x tan 1dx +=∫x tanx sec x sec x dx sec 222+=∫1tanx x tan x tan dtanx23+++ =21(∫1tanx dtanx +-∫1x tan tanxdtanx 2++∫1x tan dtanx 2+)=21(ln|tanx+1|-21∫1x tan )1x d(tan 22+++x) =21(ln 1x tan |1tanx |2+++x)+C=21(ln|cosx+sinx|+x)+C. (10)I=∫22xx 1x -+dx=-∫22xx 1x x 1-+-+dx+∫2xx 11)dx (x -++=-∫2x x 1-+dx+∫2xx 11)dx (x -++=-x 2x x 1-+-∫22xx 12x -x 2-+dx+∫2xx 11)dx (x -++=-x 2xx 1-+-I+21∫2xx 1x -+dx+∫2xx 11)dx (x -++=-x 2x x 1-+-I+23∫2xx 132x -++dx. ∴I=-2x x 12x -++43∫2x x 132x -++dx.又∫2x x 132x -++dx=-21∫2x x 1x 21-+-dx+67∫2x x 1dx -+ =-2x x 1-++67∫251-2x 151-2x d ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2x x 1-++67∫arcsin 51-2x +C. ∴原式=-2x x 12x -+-432x x 1-++87∫arcsin 51-2x +C. (11)令t-x=x x 2+,则x=12t t 2+,dx=d 12t t 2+=21)(2t 1)t(t 2++dt. ∫x x dx 2+=∫12t t t 1)(2t 1)t(t 222+-++dt=∫12t 1)d(2t ++=ln|2t+1|+C=ln|2x x 2++2x+1|+C. (12) ∫x 1x -1x 12+dx=-∫1x11-x 1+d x 1=-∫1t 1-t +dt=-∫1t 1-t 2-dt=-∫1t tdt 2-+∫1t dt 2- =-1t 2-+ln|t+1t 2-|+C=-x x 12-+ln x x 112-++C.。

高等数学—不定积分练习题

高等数学—不定积分练习题

第三章复习X.1 积分换元的几种形式1. 利用三角函数代换,变根式积分为三角有理式积分求⎰-dx x x 229解 令t x sec 3=,则tdt t dx tan sec 3⋅= 于是⎰-dx x x 229⎰⎰=⋅=dt tttdt t t t sec tan tan sec 3sec 9tan 322.9|9|ln 9|393|ln sin |tan sec |ln )cos (sec 221221C xx x x C xx x xC t t t dt t t +---++---+=+-+=-=⎰练习 求⎰-+221)1(xxxdx2. 倒代换(即令tx1=) 设n m ,分别为被积函数的分子、分母关于x 的最高次数,当1>-m n 时,可以考虑使用倒代换。

求⎰>+)0(222a xa xdx解 令tx 1=,则dt t dx 21-=,于是原式⎰⎰⎰++-=+-=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛+=12)1(1111122222222222t a t a d a t a tdt dt t t a tC xa a x C a t a ++-=++-=2222221 练习⎰-+dx x xx 11223. 指数代换(适用于被积函数)(x f 由x a 所构成的代数式)令t ax=,.ln 1tdt a dx ⋅=求⎰++xx x dx 4212解 令t x=2,t dt dx ⋅=2ln 1 原式⎰⎰++=⋅⋅++=43)21(2ln 12ln 1122t dtt dt t t t CC t C t t t d x ++=++=++⋅=⎪⎪⎭⎫⎝⎛+++=+⎰312arctan 2ln 32312arctan 2ln 322321arctan 322ln 123)21()21(2ln 1122练习 求⎰+++6321x x xee e dxX.2 有理函数的积分一、有理函数的积分形为mm m m nn n n b x b x b x b a x a x a x a x Q x P ++++++++=----11101110)()( , (1)其中m 和n 都是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a 。

华东师范大学数学分析第8章习题答案

华东师范大学数学分析第8章习题答案

华东师范⼤学数学分析第8章习题答案第⼋章⼀:不定积分概念与基本积分公式(教材上册P181) 1. 验证下列(1)、(2)等式并与(3)、(4)两试相⽐照: (1)'()()f x dx f x c =+?; (2) ()()df x f x c =+?; (3) [()]'()f x dx f x =?; (4) ()()()d f x d x f x dx =?;解: (1)'0(())''()'()'()()c f x c f x c f x f x dx f x c=∴+=+=∴=+? 与(3)相⽐(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差⼀个常数但仍为原不定积分,该常数⽤c 表⽰,称为积分常数.(2)()'()()'()()df x f x dxdf x f x dx f x c===+??与(4)相⽐: (2)是先求导再积分,因此包含了⼀个积分常数,(4)是先积分再求导,因此右侧不含积分常数.2. 求⼀曲线y=f (x),使得在曲线上的每⼀点(x,y)处的切线斜率为2x,且通过点(2,5). 解:222dy xdxy dy xdx x c====+??将(x,y)=(2,5)代⼊得: 5=22+cC=1该曲线为21y x =+3. 验证2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数. 解:x>0时,y ’=2()'||2x x x ==x<0时,2'()'||2x y x x =-=-=x=0时,22000sgn 022'lim lim lim 002x x x x x x x y x x ++++→→→-====- 2200sgn 02'lim lim()0||02x x x x x y x x --→→-==-==- 因此'''0||y y y x +-====综上得2'(sgn )'||,(,)2x y x x x ==?∈+∞-∞2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数.4. 据理说明为什么每⼀个含有第⼀类间断点的函数都没有原函数?解: 设0x 是 f (x)的第⼀类间断点,且 f (x)在0()U x 上有原函数 F (x),则0'()(),()F x f x x U x =∈.从⽽由导数极限定理得00lim ()lim '()'()()x x x x f x F x F x f x +++→→=== 同理 000lim ()'()()x x f x F x f x -→==.可见0()f x x 点连续,推出⽭盾.⼆: 换元积分法与部分积分法(教材上册P188) 1. 应⽤换元积分法求下列积分 (1) cos(34)x dx +?; (2) 22xxe dx ?;(3) 21dx x +?; (4) (1)n x dx +?;(5)dx ?; (6) 232x dx +?;(7);(8)(9)2sin x x dx ?; (10) 2sin (2)4dxxx +?;(11) 1cos dx x +?; (12) 1sin dx x+?;(13)csc xdx ?;(14);(15)44xdx x +?; (16)ln dx x x ?;(17) 453(1)x dx x +?; (18) 382x dx x -?;(19)(1)dxx x +?; (20) cot xdx ?; (21) 5cos xdx ?; (22)sin cos dxx x ?;(23)x xdx e e -+?; (24) 22338x dx x x --+?; (25) 252(1)x dx x ++?;(26) (a>0);(27) 223/2(0)()dxa x a >+?;(28) 5;(29)(30).解: (1)34cos(34)cos 3t x t x dx d =++=11sin sin(34)33t c x c =+=++ (2) 22112222()'()22t x x t txe dx e d ==??112211()()()22224t t t t t ed e dt ==?? 221144t x e c e c =+=+ (3)21111ln ||ln |21|21222t x dx t d t c x c x t =+==+=+++??(4)①当1n ≠-时,111(1)(1)11n n t x nnt x x dx t dt c c n n ++=+++== +=+++?? ②当1n =-时,(1)ln |1|n x dx x c +=++?(5)dx =?c =+ (6)232323231212122222ln22ln 22ln2t x x t x x tt dx d c c c ++=++==+=+=+?(7)332222222()(83)3399t t td t dt t c x c -=-=-+=--+?(8)322/31333()(75)551010t t d tdt t c x c t -=-=-+=--+? (9)211112222211sin sin sin sin 22t x x x dx t tdt t t t dt tdt =-===211cos cos 22t c x c =-+=-+ (10)2422111cot cot(2)224sin (2)sin 42t x dxt c x c x t x tdππ=+==-+=-+++?? (11)222(2)12sec tan tan()1cos 1cos 22cos 2t x dx d t x dt tdt t c c x t t =====+=+++ (12) 22 1sin (sec sec tan )tan sec 1sin dx xdx x x x dx x x c x cos x-==-=-++ (13)2111csc sin sin cos tan cos2222xdx dx dx x x x x x ===?α2ln |tan |2tan 2x d x c x ==+? (14)21(1)2x c =--=(15)22242111()arctan()442421()2x x x dx d c x x ==+++??(16)ln 11ln ||ln |ln |ln t x t t dx de dt t c x c x x e t t====+=+ (17)4555253535311111(1)(1)(1)5(1)5(1)10x dx dx d x x c x x x -==--=-++--(18)4344888111|242816112x dx dx d c x x x ===-+----(19)11()ln ||ln |1|ln ||(1)11dx xdx x x c c x x x x x=-=-++=++++?? (20)cos cot ln ||ln |sin |sin xxdx dx t c x c x ==+=+??(21)52224cos (1sin )sin (12sin sin )sin xdx x d x x x d x =-=-+?sin 2sin sin 53x x x c =-++ (22)2cos tan ln |tan |sin cos sin cos tan dx xdx d x x c x x x x x ===+ (23)22arctan 1()1()x xx x x x x dx e de dx e c e e e e -===++++ (24)222223(38)ln(38)3838x d x x dx x x c x x x x --+==-++-+-+?? (25)2221533232(1)223123()(1)t x x t t t dx dt dt dt x t t t t t =++-+-+===-++ 222323 ln ||ln |1|(1)212t t c x x c t x --=+-+=++-+++(26)1()ln |x t ax t c a====+?1ln |ln |x c x c a =+=+(27)令tan x a θ=,sec 22t a tdt ππ-<<223/23322s e c 11c o t s i n ()s e c d xa t d t t d t tx a a t a a ===++??c =+ (28)55sin 42sin sin (cos 2cos 1)cos x d d cos θθθθθθθ===--+??35322121cos cos cos (1)535c xc θθθ=-+-+=--(29)32256642226666111t t t t dt t dt t dt t dt t t t ===-+--- 6 42266661tt t dt t dt t dt dt dt t =---+-?75366126ln ||751t t t t t c t+=----++- 165116661263ln ||751x x x x x c x +=----++- (30)1121t t tdt t -→=+?222(2)44ln |1|1t t dt t t tc t =-+=-++++?14ln |1|x c =+-+ 4ln |1|'x c =-+ 2. 应⽤分部积分法求下列不定积分 (1) arcsin xdx ?; (2) ln xdx ?;(3) 2cos x xdx ?; (4)3ln xdx x ?;(5) 2(ln )x dx ?; (6)tan xarc xdx ?;(7) 1[ln(ln )]ln x dx x+?;(8) 2(arcsin )x dx ? (9)3secxdx ?; (10)(0)a >.解 (1)arcsin arcsin arcsin arcsinxdx x x xd x x x =-=-122arcsin (1)x x x c =+++ (2)1ln ln ln ln ln xdx x x xd x x x xdx x x x c x=-=-=-+(3)222cos sin 2sin sin 2cos x xdx x x x xdx x x xd x =-=+?2sin 2cos 2cos x x x x xdx =+-?2sin 2cos 2sin x x x x x c =+-+(4)2223ln 11ln [ln (ln )]22x dx xdx x x x d x x ---=-=-- 222ln 11(ln 1)244x c x c x x x=--+=-++(5)2221(ln )(ln )2ln (ln )2ln x dx x x x x dx x x xdx x=-=-(参考(2)结果)2(ln )2ln 2x x x x x c =-++(6)2222111tan tan arctan 2221x xarc xdx arc xdx x x dx x ==-+ 221111arctan 2221x x dx dx x =-++?? 2111arctan arctan 222x x x x c =-++(7)11111[ln(ln )]ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x x dx dx x x x x x +=+=-+ ln(ln )x x c =+ (8)12222(arcsin )(arcsin)2arcsin (1)x dx x x x x dx -=--??12222(sin )arcsin (1)(1)x arx x x x d x -=+--?1222(arcsin )2arcsin (1)x x xd x =+-?1222(arcsin )2(1)arcsin 2x x x x dx =+--?1222(arcsin )2(1)arcsin 2x x x x x c =+--+(9) 令3sec I xdx =?s e c t a ns e ct a nt a n s e c I x d x x x x x x d x==-?23sec tan (1cos )sec sec tan sec x x x xdx x x I xdx =--=-+??11sec tan sec 22I x x xdx =+?1(sec tan ln |sec tan |)2x x x x c =+++(10)11222222222(0)()2()I a x x a xdx x a x -=>=±=+-1122222222()()()x x x a I ax x a I a a =±-±=±-±则122222111()()(ln ||)222x I x x a a a x c a =±±=+ 3. 求下列不定积分(1)[()]()'(1)f x f x dx αα≠?; (2)2'()1[()]f x dx f x +?;(3)'()()f x dx f x ?; (4)()'()f x e f x dx ?. 解: (1)11[()]()'[()]()[()]1f x f x dx f x df x f x c αααα+==++?(2)122'()1()arctan[()](arccot[()])1[()]1[()]f x dx df x f x c f x c f x f x ==+=-+++??(3)'()1()ln |()|()()f x dx df x f x c f x f x ==+?? (4)()()()'()()f x f x f x ef x dx e df x e c ==+?三. 有理函数和可化为有理函数的不定积分(教材上册P198) 1. 求下列不定积分(1)31x dx x -?; (2)22712x dx x x --+?;(3)31dx x +?; (4)41dxx +?;(5)22(1)(1)dx x x -+?; (6)222(221)x dx x x -++?;解: (1)3321111111x x x x x x x -+==+++--- 3232111(1)ln |1|1132x dx x x dx x x x x c x x =+++=+++-+--?? (2)2223111712(3)(4)(3)(4)4(3)(4)x x x x x x x x x x x x ---+===+-+-------22211(4)7124712x dx d x dx x x x x x -=-+-+--+211(4)2(27)4(27)d x d x x x =-+---??2ln |4|ln |3|x x c =---+ (3)设321111A Bx Cx x x x +=+++-+ 则21(1)()(1)A x x Bx C x =-++++ 2()()A B x B C A x A C =+++-++, 则⽐较两端系数,得1 21,,333B C A =-== 321121311dx x dx x x x x -??=-++-+221111(1)31311d x d d x =+-+++?221(1)ln 61x c x x +=+-+(4)22422221111()11()21x d x x x x dx dx x x x x x x -+-+===++-+-+11x c -=+2224222211111||1()2x x xdx dx c x x x x x---===++++-则234441111112121x x dx dx dx x x x +-=-+++|c =++ (5)设1122222221(1)(1)11(1)B xC B x C A x x x x x ++=++-+-++ 则22211221(1)()(1)(1)()(1)A x B x C x x B x C x =+++-+++-432111112121212()()(2)()()A B x C B x AC B B x C C B B x A C C=++-+-++++--+-- ⽐较两边系数得到12211111,,,,44422A B C B C ==-=-=-=- 22222111111(1)(1)(1)(1)418141dx d x d x dx x x x x x =--+--+-++ 222221111(1)4(1)2(1) d x dx x x -+-++?? 2222111(1)2(1)21x dx dx x x x =++++?? 222111ln |1|ln(1)arctan (1)(1)482dx x x x x x ∴=--+--+?211(1)4x -++ 211(1)4x x c --++。

数学分析8不定积分总练习题

数学分析8不定积分总练习题

第八章 不定积分总练习题求下列不定积分: (1)∫43x1x 2x --dx ;(2)∫xarcsinxdx ;(3)∫x1dx +;(4)∫e sinx sin2xdx ;(5)∫xe dx ;(6)∫1x x dx2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x-x dx ; (9)∫x cos dx 4;(10)∫sin 4xdx ;(11)∫4x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫1002x)-(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ⎪⎭⎫ ⎝⎛+x -1x 1dx ;(18)∫xsinx cos dx 7;(19)∫e x 22x 1x -1⎪⎭⎫ ⎝⎛+dx ; (20)I n =∫uv n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解.解:(1)∫43x 1x 2x --dx=∫41x dx-2∫121x dx-∫41x-dx =5445x -13241213x -34∫43x +C.(2)∫xarcsinxdx=-21∫arcsinxd(1-x 2)=-21(1-x 2)arcsinx+21∫(1-x 2)darcsinx=-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21∫t sin -12dsint=-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +41sintcost+C =2x 2arcsinx-41arcsinx +2x -14x+C. (3)∫x 1dx+=∫t 1dt 2+=∫t12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C=2x -2ln|1+x |+C.(4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx=2e sinx sinx-2e sinx +C.(5)∫x e dx=∫e t dt 2=2∫tde t =2te t -2∫e t dt=2e t (t-1)+C=2x e (x -1)+C.(6)方法一:令t-x=1x 2-,则x=2t 1t 2+,dx=222t1t -dt ;∫1x x dx 2-=∫⎪⎪⎭⎫ ⎝⎛++-2t 1t -t 2t 1t 2t 1t 2222dt=2∫1t dt 2+=2arctant+C=2arctan(1x 2-+x)+C. 方法二:∫1x x dx 2-=-∫2x 11x 1d-=arccos x1+C.(7)方法一:∫x tan 1x tan 1+-dx=∫t 1t 1+-darctant=∫)t t)(11(t 12++-dt=∫t 1dt+-∫2t1t +dt =ln|1+t|-21∫22t 1dt +=ln|1+t|-21ln|1+t 2|+C= ln 2t 1|t 1|+++C= ln ttan 1|tant 1|2+++C. 方法二:∫x tan 1x tan 1+-dx=∫x sin x cos x sin x cos +-dx=∫xsin x cos x)sin x (cos d ++=ln|cosx+sinx|+C.(8)∫32)2-x (x-x dx=∫2-x dx +3∫22)-(x dx +2∫32)-(x dx =ln|x-2|-2-x 3-22)-(x 1+C.(9)∫xcos dx 4=∫sec 2xdtanx=∫(tan 2x+1)dtanx=31tan 3x+tanx+C. (10)∫sin 4xdx=41∫(1-cos2x)2dx=41(∫dx -∫cos2xd2x+∫cos 22xdx)=41x -41sin2x+81∫(cos4x+1)dx=41x -41sin2x+321∫cos4xd4x +81∫dx =41x -41sin2x+321sin4x +81x+C=83x -41sin2x+321sin4x +C. (11)由4x 3x 5-x 23+-=)1x (2)-x (5-x 2+≡2-x A +22)-x (B +1x C+得:x-5≡A(x-2)(x+1)+B(x+1)+C(x-2)2.当x=2时,B=-1;当x=-1时,C=-32;由A+C=0,得A=32.∴∫4x 3x 5-x 23+-dx=32∫2-x dx -∫22)-x (dx -32∫1x dx +=32ln 1x 2-x ++2-x 1+C. (12)令t=1+x ,则x=t 2-2t+1,dx=2t-2. ∫arctan(1+x )dx=xarctan(1+x )-∫xdarctan(1+x )=xarctan(1+x )-∫]1)x 1[(x 2x2++dx=xarctan(1+x )-∫)1t )(1-(t 21)-1)(t 2t -2(t 22++dt =xarctan(1+x )-∫1t 1)2t -(t 22++dt=xarctan(1+x )-∫dt+∫1t dt 22+=xarctan(1+x )-t+ln(t 2+1)+C=xarctan(1+x )-1-x +ln(x+2x +2)+C =xarctan(1+x )-x +ln(x+2x +2)+C 1.(13)∫2x x 47+dx=∫2x x 2x 437++dx-∫2x x 243+dx=∫x 3dx-21∫2x dx 44+=41x 4-21ln(x 4+2)+C.(14)∫x tan tanx 1tanx 2++dx=∫2tt 1t++darctant=∫)t (1)t t (1t 22+++dt =∫2t 1dt +-∫2t t 1dt ++=arctant-32∫131t 32t32d2+⎪⎪⎭⎫⎝⎛+=x-32arctan ⎪⎪⎭⎫ ⎝⎛+31t 32+C =x-32arctan312tanx ++C.(15)方法一:∫1002x)-(1x dx=991∫x 2d 99x )-(11=991[992x)-(1x -∫992x)-(1dx ]=991[992x)-(1x -2∫99x )-(1x dx]=992x)-99(1x -98992⨯∫xd 98x )-(11 =992x)-99(1x -98x )-98(1992x ⨯+98992⨯∫98x )-(11dx =992x)-99(1x -98x )-98(1992x ⨯+9798992⨯⨯∫d 97x )-(11=992x)-99(1x -98x )-98(1992x ⨯+97x )-97(198992⨯⨯+C =992x)-99(1x -98x )-(19499x ⨯+97x )-97(194991⨯⨯+C. 方法二:∫1002x)-(1x dx=∫1002x)-(1x)-(1dx-2∫100x )-(1x )-(1dx+∫100x )-(1dx=∫98x )-(1dx dx-2∫99x )-(1dx +∫100x )-(1dx =97x )-97(11-98x )-49(11+99x )-99(11+C. (16)令arcsinx=t ,则x=sint ,dx=costdt.∫2x arcsinx dx=∫tsin tcost 2dt=-∫td sint 1=-sint t +∫sint 1dt=-sint t +∫2t 2tan2t sec 2dt =-sint t +∫2t tan 2t dtan dt=-sint t +ln|tan 2t |+C =-sint t +ln sint cost -1+C =-xarcsinx+ln x x -1-12+C.(17)∫xln ⎪⎭⎫⎝⎛+x -1x 1dx=21∫ln ⎪⎭⎫ ⎝⎛+x -1x 1dx 2=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-21∫x 2dln ⎪⎭⎫ ⎝⎛+x -1x 1 =21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-∫22x -1x dx=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1+∫dx-∫2x -1dx=21x 2ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx-21ln ⎪⎭⎫ ⎝⎛+x -1x 1+C=21(x 2-1)ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx+C. (18)∫xsinx cos dx 7=2∫31)x sin2x(cos2d2x +=2∫322221t 1t -1·t 1t 2t 12⎪⎪⎭⎫ ⎝⎛++++dt=∫tt 12+dt=∫t1dt+∫3t dx=2t +525t +C=2tanx +52x tan 5+C.(19)∫e x 22x 1x 1⎪⎭⎫ ⎝⎛+-dx=∫e x 222)x (1x2x 1+-+dx=∫2x x 1e +dx-2∫22x )x (1e +dx=∫2x x 1de ++∫e x d 2x 11+=2x x 1e +-∫e x d 2x 11++∫e x d 2x 11+=2x x 1e ++C. (20)I n =∫u v ndx=1b 1∫uv n du=1b 2∫v n d u =1b 2v n u -1b 2∫u dv n=1b 2v n u -12b 2nb ∫v n-1u dx=1b 2v nu -12b 2nb ∫uuv 1-n dx. 又∫uuv 1-n dx=∫ux )v b +(a 1-n 11dx=21b b ∫ux)v b +(a b b 1-n 1112dx=21b b ∫ux)v b +b b a (1-n 2121dx=21b b ∫uv )a b b a (x)v b +a (1-n 21211-n 22-+dx=21b b I n +)b ba a (2121-I n-1 =2b 1[b 1I n +(a 1b 2-a 2b 1)I n-1]. ∴I n =1b 2v n u -1b 2n [b 1I n +(a 1b 2-a 2b 1)I n-1]=1b 2v n u -2nI n +1b 2n(a 1b 2-a 2b 1)I n-1. 即I n =)1n 2(b 21+v n u +)1n 2(b 2n1+(a 1b 2-a 2b 1)I n-1.。

不定积分例题及答案

不定积分例题及答案

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 不定积分总练习题求下列不定积分: (1)∫43x1x 2x --dx ;(2)∫xarcsinxdx ;(3)∫x1dx +;(4)∫e sinx sin2xdx ;(5)∫xe dx ;(6)∫1x x dx2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x-x dx ; (9)∫x cos dx 4;(10)∫sin 4xdx ;(11)∫4x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫1002x)-(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ⎪⎭⎫ ⎝⎛+x -1x 1dx ;(18)∫xsinx cos dx 7;(19)∫e x 22x 1x -1⎪⎭⎫ ⎝⎛+dx ; (20)I n =∫uv n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解.解:(1)∫43x 1x 2x --dx=∫41x dx-2∫121x dx-∫41x-dx =5445x -13241213x -34∫43x +C.(2)∫xarcsinxdx=-21∫arcsinxd(1-x 2)=-21(1-x 2)arcsinx+21∫(1-x 2)darcsinx=-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21∫t sin -12dsint=-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +41sintcost+C =2x 2arcsinx-41arcsinx +2x -14x+C. (3)∫x 1dx+=∫t 1dt 2+=∫t12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C=2x -2ln|1+x |+C.(4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx=2e sinx sinx-2e sinx +C.(5)∫x e dx=∫e t dt 2=2∫tde t =2te t -2∫e t dt=2e t (t-1)+C=2x e (x -1)+C.(6)方法一:令t-x=1x 2-,则x=2t 1t 2+,dx=222t1t -dt ;∫1x x dx 2-=∫⎪⎪⎭⎫ ⎝⎛++-2t 1t -t 2t 1t 2t 1t 2222dt=2∫1t dt 2+=2arctant+C=2arctan(1x 2-+x)+C. 方法二:∫1x x dx 2-=-∫2x 11x 1d-=arccos x1+C.(7)方法一:∫x tan 1x tan 1+-dx=∫t 1t 1+-darctant=∫)t t)(11(t 12++-dt=∫t 1dt+-∫2t1t +dt =ln|1+t|-21∫22t 1dt +=ln|1+t|-21ln|1+t 2|+C= ln 2t 1|t 1|+++C= ln ttan 1|tant 1|2+++C. 方法二:∫x tan 1x tan 1+-dx=∫x sin x cos x sin x cos +-dx=∫xsin x cos x)sin x (cos d ++=ln|cosx+sinx|+C.(8)∫32)2-x (x-x dx=∫2-x dx +3∫22)-(x dx +2∫32)-(x dx =ln|x-2|-2-x 3-22)-(x 1+C.(9)∫xcos dx 4=∫sec 2xdtanx=∫(tan 2x+1)dtanx=31tan 3x+tanx+C. (10)∫sin 4xdx=41∫(1-cos2x)2dx=41(∫dx -∫cos2xd2x+∫cos 22xdx)=41x -41sin2x+81∫(cos4x+1)dx=41x -41sin2x+321∫cos4xd4x +81∫dx =41x -41sin2x+321sin4x +81x+C=83x -41sin2x+321sin4x +C. (11)由4x 3x 5-x 23+-=)1x (2)-x (5-x 2+≡2-x A +22)-x (B +1x C+得:x-5≡A(x-2)(x+1)+B(x+1)+C(x-2)2.当x=2时,B=-1;当x=-1时,C=-32;由A+C=0,得A=32.∴∫4x 3x 5-x 23+-dx=32∫2-x dx -∫22)-x (dx -32∫1x dx +=32ln 1x 2-x ++2-x 1+C. (12)令t=1+x ,则x=t 2-2t+1,dx=2t-2. ∫arctan(1+x )dx=xarctan(1+x )-∫xdarctan(1+x )=xarctan(1+x )-∫]1)x 1[(x 2x2++dx=xarctan(1+x )-∫)1t )(1-(t 21)-1)(t 2t -2(t 22++dt =xarctan(1+x )-∫1t 1)2t -(t 22++dt=xarctan(1+x )-∫dt+∫1t dt 22+=xarctan(1+x )-t+ln(t 2+1)+C=xarctan(1+x )-1-x +ln(x+2x +2)+C =xarctan(1+x )-x +ln(x+2x +2)+C 1.(13)∫2x x 47+dx=∫2x x 2x 437++dx-∫2x x 243+dx=∫x 3dx-21∫2x dx 44+=41x 4-21ln(x 4+2)+C.(14)∫x tan tanx 1tanx 2++dx=∫2tt 1t++darctant=∫)t (1)t t (1t 22+++dt =∫2t 1dt +-∫2t t 1dt ++=arctant-32∫131t 32t32d2+⎪⎪⎭⎫⎝⎛+=x-32arctan ⎪⎪⎭⎫ ⎝⎛+31t 32+C =x-32arctan312tanx ++C.(15)方法一:∫1002x)-(1x dx=991∫x 2d 99x )-(11=991[992x)-(1x -∫992x)-(1dx ]=991[992x)-(1x -2∫99x )-(1x dx]=992x)-99(1x -98992⨯∫xd 98x )-(11 =992x)-99(1x -98x )-98(1992x ⨯+98992⨯∫98x )-(11dx =992x)-99(1x -98x )-98(1992x ⨯+9798992⨯⨯∫d 97x )-(11=992x)-99(1x -98x )-98(1992x ⨯+97x )-97(198992⨯⨯+C =992x)-99(1x -98x )-(19499x ⨯+97x )-97(194991⨯⨯+C. 方法二:∫1002x)-(1x dx=∫1002x)-(1x)-(1dx-2∫100x )-(1x )-(1dx+∫100x )-(1dx=∫98x )-(1dx dx-2∫99x )-(1dx +∫100x )-(1dx =97x )-97(11-98x )-49(11+99x )-99(11+C. (16)令arcsinx=t ,则x=sint ,dx=costdt.∫2x arcsinx dx=∫tsin tcost 2dt=-∫td sint 1=-sint t +∫sint 1dt=-sint t +∫2t 2tan2t sec 2dt =-sint t +∫2t tan 2t dtan dt=-sint t +ln|tan 2t |+C =-sint t +ln sint cost -1+C =-xarcsinx+ln x x -1-12+C.(17)∫xln ⎪⎭⎫⎝⎛+x -1x 1dx=21∫ln ⎪⎭⎫ ⎝⎛+x -1x 1dx 2=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-21∫x 2dln ⎪⎭⎫ ⎝⎛+x -1x 1 =21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-∫22x -1x dx=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1+∫dx-∫2x -1dx=21x 2ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx-21ln ⎪⎭⎫ ⎝⎛+x -1x 1+C=21(x 2-1)ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx+C. (18)∫xsinx cos dx 7=2∫31)x sin2x(cos2d2x +=2∫322221t 1t -1·t 1t 2t 12⎪⎪⎭⎫ ⎝⎛++++dt=∫tt 12+dt=∫t1dt+∫3t dx=2t +525t +C=2tanx +52x tan 5+C.(19)∫e x 22x 1x 1⎪⎭⎫ ⎝⎛+-dx=∫e x 222)x (1x2x 1+-+dx=∫2x x 1e +dx-2∫22x )x (1e +dx=∫2x x 1de ++∫e x d 2x 11+=2x x 1e +-∫e x d 2x 11++∫e x d 2x 11+=2x x 1e ++C. (20)I n =∫u v ndx=1b 1∫uv n du=1b 2∫v n d u =1b 2v n u -1b 2∫u dv n=1b 2v n u -12b 2nb ∫v n-1u dx=1b 2v nu -12b 2nb ∫uuv 1-n dx. 又∫uuv 1-n dx=∫ux )v b +(a 1-n 11dx=21b b ∫ux)v b +(a b b 1-n 1112dx=21b b ∫ux)v b +b b a (1-n 2121dx=21b b ∫uv )a b b a (x)v b +a (1-n 21211-n 22-+dx=21b b I n +)b ba a (2121-I n-1 =2b 1[b 1I n +(a 1b 2-a 2b 1)I n-1]. ∴I n =1b 2v n u -1b 2n [b 1I n +(a 1b 2-a 2b 1)I n-1]=1b 2v n u -2nI n +1b 2n(a 1b 2-a 2b 1)I n-1. 即I n =)1n 2(b 21+v n u +)1n 2(b 2n1+(a 1b 2-a 2b 1)I n-1.。

相关文档
最新文档