2018年湖北省天门市中考数学试卷(解析版)

合集下载

[首发]湖北省天门市2018届九年级毕业考试数学答案

[首发]湖北省天门市2018届九年级毕业考试数学答案

天门数学答案(第1页)共6页 天 门 市 2018 年 初 中 生 毕 业 考 试数学参考答案及评分说明 说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分.一、选择题(每小题3分,共30分)1--5 ABCDB 6--10 CDACD二、填空题(每小题3分,共18分)11. -2 ; 12. 8; 13. 34;14. 50; 15. 4; 16. ()2n +1ab . 三、解答题(共72分)17.(5分)原式=a1a ))1a )(1a (2a 1a 2(-⨯-++++ =a1a )1a )(1a ()2a ()1a (2-⨯-+++- =1a 3+ ………………………………3分 当a =2-1时,原式=11-23+=223 ………… …………………………… 5分18.(5分)解: ……………… 5分21B B 21C C天门数学答案(第2页)共6页19.(6分) 解:(1)将x =1代入方程x 2+ax +a ﹣2=0得,1+a +a ﹣2=0,解得,a =;方程为x 2+x ﹣=0, …………2分即2x 2+x ﹣3=0,设另一根为x 1,则x 1=﹣. …………3分(2 ) ∵△=a 2﹣4(a ﹣2)=a 2﹣4a +8=a 2﹣4a +4+4=(a ﹣2)2+4 > 0, ……5分∴不论a 取何实数,该方程都有两个不相等的实数根. ……6分20.(8分)解:(1)本次调查的学生数=10÷50%=20(名); ………………1分(2)C 类学生数=20×25%=5,则C 类女生数=5﹣2=3(名); ……………2分D 类学生数=20﹣3﹣10﹣5=2(名),则D 类男生有1名, …………3分条形统计图为:…………4分(3)画树状图为:…………………6分共有15种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为7种, 所以所选同学中恰好是一位男同学和一位女同学的概率=. …………………8分21.(8分)解:(1)由题意得:A (-2,n )在一次函数221+-=x y 的图象上, 则n =-×(-2)+2=3, 故点A 的坐标为A (﹣2,3). …………2分天门数学答案(第3页)共6页点A (﹣2,3)在反比例函数x m y =的图象上,则=3,解得m =﹣6. 故该反比例函数的解析式为y =﹣; ………………4分(2)设点P 的坐标是(a ,b ). ∵一次函数221+-=x y 的图象与x 轴交于点B , ∴当y =0时,﹣x +2=0, 解得x =4.∴点B 的坐标是(4,0),即OB =4. ∴BC =6. …………………………6分 ∵△PBC 的面积等于18,∴×BC ×|b |=18,解得:|b |=6, ∴b 1=6,b 2=﹣6,∴点P 的坐标是(﹣1,6),(1,﹣6). …………………………8分22.(9分)(1)证明:如图1,连接OD ,OE ,E D .∵BC 与⊙O 相切于一点D ,∴OD ⊥BC , ∴∠ODB =90°=∠C , ∴OD ∥AC ,∵∠B =30°, ∴∠A =60°,∵OA =OE , ∴△AOE 是等边三角形,∴AE =AO =OD ,∴四边形AODE 是平行四边形,∵OA =OD , ∴四边形AODE 是菱形. ……………………4分(2)解:如图2,连接OD 、DF .设⊙O 的半径为r . ∵OD ∥AC ,∴△OBD ∽△AB C . ∴, 即10106r r -=, 解得r =, ∴⊙O 的半径为. …………………………6分∵OD ∥AC , ∴∠DAC =∠ADO ,∵OA =OD , ∴∠ADO =∠DAO ,∴∠DAC =∠DAO ,∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C ,天门数学答案(第4页)共6页∴△ADC ∽△AFD , ∴, ∴AD 2=AC •AF , ∵AC =6,AF =,∴AD 2=×6=45, ∴AD ==3. ………………………9分23.(9分)解:(1)设y 与x 函数关系式为y =kx +b ,把点(40,160),(120, 0)代入得, 40160,1200.k b k b +=⎧⎨+=⎩解得 2,240.k b =-⎧⎨=⎩ ………………………3分 ∴y 与x 函数关系式为y =-2x +240(40120x ≤≤ ). ……………………4分【说明:没写(40120x ≤≤)不扣分】(2)由题意,销售成本不超过3000元,即40(-2x +240)≤ 3000.解不等式得,82.5x ≥. ∴82.5120x ≤≤.根据题意列方程得(x -40)(-2x +240)=2400. ………………………7分即:216060000x x -+=.解得 160x = , 2100x =. ………………………8分∵60<82.5,故160x =舍去.∴销售单价应该定为100元. ………………………………………9分24.(10分)(1)证明:①∵△OCD 旋转到△OC ′D ′,∴OC =OC ′,OD =OD ′,∠AOC ′=∠BOD ′,∵OA =OB ,C ,D 分别为OA ,OB 的中点,∴OC =OD , ∴OC ′=OD ′,在△AOC ′和△BOD ′中,,∴△AOC ′≌△BOD ′(SAS ), ∴AC ′=BD ′; …………………………4分/千克)天门数学答案(第5页)共6页② 延长AC ′交BD ′于E ,交BO 于F ,如图1所示:∵△AOC ′≌△BOD ′, ∴∠OAC ′=∠OBD ′,又∠AFO =∠BFE , ∴∠BEA =∠OAB =90°,∴AC ′⊥BD ′; ……………………………………6分(2)解:∠AEB =θ 成立,理由如下:如图2所示:∵△OCD 旋转到△OC ′D ′,∴OC =OC ′,OD =OD ′, ∠AOC ′=∠BOD ′,∵CD ∥AB , ∴, ∴,∴, 又∠AOC ′=∠BOD ′,∴△AOC ′∽△BOD ′, ………………………………8分∴∠OAC ′=∠OBD ′,又∠AFO =∠BFE ,∴∠AEB =∠AOB =θ. ……………………………………10分 25.( 12分)解:(1)如图,由题意,设抛物线的解析式为:2y a x 4a 0k =-+≠()()∵抛物线经过(2,0)A ,C (0,2), 22(24)0(04)2a k a k ⎧-+=⎪∴⎨-+=⎪, 解得:a =16,23k =-.A天门数学答案(第6页)共6页。

2018年湖北省天门市中考数学试卷

2018年湖北省天门市中考数学试卷

2018年湖北省天门市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1. 8的倒数是()A.−8B.8C.−18D.182. 如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3. 2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104. 如图,AD // BC,∠C=30∘,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30∘B.36∘C.45∘D.50∘5. 点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是( )A.|b|<2<|a|B.1−2a>1−2bC.−a<b<2D.a<−2<−b6. 下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7. 一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120∘B.180∘C.240∘D.300∘8. 若关于x 的一元一次不等式组{6−3(x +1)<x −9,x −m >−1的解集是x >3,则m 的取值范围是( )A.m >4B.m ≥4C.m <4D.m ≤49. 如图,正方形ABCD 中,AB =6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是( )A.1B.1.5C.2D.2.510. 甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/ℎ的速度行驶1ℎ后,乙车才沿相同路线行驶.乙车先到达B 地并停留1ℎ后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(ℎ)之间的函数关系如图所示.下列说法:①乙车的速度是120km/ℎ;②m =160;③点H 的坐标是(7, 80);④n =7.5.其中说法正确的有( )A.4个B.3个C.2个D.1个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)在“Wisℎ you success ”中任选一个字母,这个字母为“s ”的概率为________.计算:√3+|√3−2|−(12)−1=________.若一个多边形的每个外角都等于30∘,则这个多边形的边数为________.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 区的物资比B 区的物资的1.5倍少1000件,则发往A 区的生活物资为________件.我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A ,C 附近捕鱼作业,已知海岛C 位于海岛A 的北偏东45∘方向上.在渔船B 上测得海岛A位于渔船B 的北偏西30∘的方向上,此时海岛C恰好位于渔船B的正北方向18(1+√3)n mile处,则海岛A,C之间的距离为________n mile.如图,在平面直角坐标系中,△________.三、解答题(本大题共9个小题,满分72分.)化简:4a+4b5ab ⋅15a2b a2−b2.图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,以AB为斜边画一个Rt△ABC,使点C在格点上.在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了________名教师,m=________;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.已知关于x的一元二次方程x2+(2m+1)x+m2−2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1−x2)2+m2=21,求m的值.如图,在平面直角坐标系中,直线y=−12x与反比例函数y=kx(k≠0)在第二象限内的图象相交于点A(m, 1).(1)求反比例函数的解析式;(2)将直线y=−12x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为32,求直线BC的解析式.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?问题发现:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90∘得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为________;类比探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;实际应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45∘.若BD=9,CD=3,求AD的长.抛物线y=−23x2+73x−1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<2524)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为________,________,________;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t 的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析2018年湖北省天门市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.【答案】D【考点】倒数【解析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】8的倒数是1,82.【答案】A【考点】几何体的展开图【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】观察图形可知,这个几何体是三棱柱.3.【答案】B【考点】科学记数法–表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选B.4.【答案】D【考点】平行线的判定与性质【解析】本题主要考查了平行线的性质.【解答】解:∵AD // BC,∠C=30∘,∴ ∠ADC =150∘,∠ADB =∠DBC ,∵ ∠ADB:∠BDC =1:2,∴ ∠ADB =13×150∘=50∘,∴ ∠DBC 的度数是50∘.故选D .5.【答案】C【考点】在数轴上表示实数绝对值【解析】根据图示可以得到a 、b 的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】A ,|b|<2<|a|,正确;B ,a <b ,则2a <2b ,由不等式的性质知1−2a >1−2b ,正确;C ,a <−2<b <2,则−a >2>b ,错误;D ,a <−2<b <2且|a|>2,|b|<2.则a <−2<−b ,正确;故选C .6.【答案】C【考点】全面调查与抽样调查中位数众数方差【解析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】A 、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B 、数据3,5,4,1,1的中位数是:3,故此选项错误;C 、数据5,3,5,4,1,1的众数是1和5,正确;D 、甲、乙两人射中环数的方差分别为s 甲2=2,s 乙2=3,说明甲的射击成绩比乙稳定. 7.【答案】B【考点】圆锥的计算【解析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】设母线长为R ,底面半径为r ,∴ 底面周长=2πr ,底面面积=πr 2,侧面面积=πrR ,∵ 侧面积是底面积的2倍,∴ 2πr 2=πrR ,∴ R =2r ,设圆心角为n ,则nπR 180=2πr =πR ,解得,n =180∘,8.【答案】D【考点】解一元一次不等式组【解析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:{6−3(x +1)<x −9,x −m >−1,∵ 解不等式①得:x >3,解不等式②得:x >m −1,又∵ 关于x 的一元一次不等式组{6−3(x +1)<x −9x −m >−1,的解集是x >3, ∴ m −1≤3,解得:m ≤4,故选D .9.【答案】C【考点】翻折变换(折叠问题)正方形的性质【解析】根据翻折变换的性质和正方形的性质可证Rt △AFE ≅Rt △ADE ;在直角△ECG 中,根据勾股定理即可求出DE 的长.【解答】如图,连接AE ,∵ AB =AD =AF ,∠D =∠AFE =90∘,在Rt △AFE 和Rt △ADE 中,∵{AE=AEAF=AD,∴Rt△AFE≅Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6−x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.10.【答案】B【考点】一次函数的应用【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/ℎ.①正确;由图象第2−6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1ℎ时,甲前进80km,则H点坐标为(7, 80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)【答案】27【考点】概率公式【解析】此题暂无解析【解答】解:在“Wisℎ you success”中共14个字母,其中有字母“s”的个数为4个,故其概率为414=27.故答案为:27.【答案】【考点】负整数指数幂二次根式的混合运算【解析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】原式=√3+2−√3−2=0【答案】12【考点】多边形内角与外角【解析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30∘,又∵多边形的外角和等于360∘,∴多边形的边数是360=12.30故答案为:12.【答案】3200【考点】一元一次方程的应用——工程进度问题【解析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x−1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x−1000)件,根据题意得:x+1.5x−1000=6000,解得:x=2800,∴ 1.5x−1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【答案】18√2【考点】解直角三角形的应用-方向角问题【解析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=√22x,则CD=√22x,在Rt△ABD中,BD=ADtan∠ABD =√62x,则√22x+√62x=18(1+√3),解得,x=18√2,答:A,C之间的距离为18√2海里.故答案为:18√2【答案】P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3, 3),P2,P3,…均在直线y=−13x+4上设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018942017【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类一次函数图象上点的坐标特点【解析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3, 3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a, a),将点P2坐标代入y=−13x+4,得:−13(6+a)+4=a,解得:a=32,同理求得P 3E =34、A 2A 3=32,∵ S 1=12×6×3=9、S 2=12×3×32=94、S 3=12×32×34=916、…… ∴ S 2018=942017,三、解答题(本大题共9个小题,满分72分.) 【答案】 原式=4(a+b)5ab⋅15a 2b(a+b)(a−b)=12aa−b .【考点】分式的乘除运算 【解析】先将分子、分母因式分解,再约分即可得. 【解答】 原式=4(a+b)5ab⋅15a 2b(a+b)(a−b)=12aa−b .【答案】解:(1)如图所示,射线OP 即为所求. (2)如图所示,点C 即为所求.【考点】已知一直角边和斜边作直角三角形 作角的平分线【解析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求.【答案】60,5D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P一男一女=1018=59答:所选派的两名教师恰好是1男1女的概率为59【考点】频数(率)分布表条形统计图列表法与树状图法【解析】(1)根据:某组的百分比=该组人数总人数×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100−10−20−25−30−10=5故答案为:60,5D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P一男一女=1018=59答:所选派的两名教师恰好是1男1女的概率为59【答案】根据题意得△=(2m+1)2−4(m2−2)≥0,解得m≥−9,4所以m的最小整数值为−2;根据题意得x1+x2=−(2m+1),x1x2=m2−2,∵(x1−x2)2+m2=21,∴(x1+x2)2−4x1x2+m2=21,∴(2m+1)2−4(m2−2)+m2=21,整理得m2+4m−12=0,解得m1=2,m2=−6,∵m≥−9,4∴m的值为2.【考点】根的判别式根与系数的关系【解析】(1)利用判别式的意义得到△=(2m+1)2−4(m2−2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=−(2m+1),x1x2=m2−2,再利用(x1−x2)2+m2=21得到(2m+1)2−4(m2−2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】根据题意得△=(2m+1)2−4(m2−2)≥0,,解得m≥−94所以m的最小整数值为−2;根据题意得x1+x2=−(2m+1),x1x2=m2−2,∵(x1−x2)2+m2=21,∴(x1+x2)2−4x1x2+m2=21,∴ (2m +1)2−4(m 2−2)+m 2=21,整理得m 2+4m −12=0,解得m 1=2,m 2=−6, ∵ m ≥−94, ∴ m 的值为2. 【答案】解:(1)∵ 直线y =−12x 过点A(m, 1), ∴ −12m =1,解得m =−2, ∴ A(−2, 1).∵ 反比例函数y =kx (k ≠0)的图象过点A(−2, 1), ∴ k =−2×1=−2,∴ 反比例函数的解析式为y =−2x ; (2)设直线BC 的解析式为y =−12x +b ,∵ 三角形ACO 与三角形ABO 面积相等,且△ABO 的面积为32, ∴ △ACO 的面积=12OC ⋅2=32, ∴ OC =32, ∴ b =32,∴ 直线BC 的解析式为y =−12x +32. 【考点】一次函数图象上点的坐标特点 反比例函数与一次函数的综合 待定系数法求一次函数解析式 三角形的面积 函数的综合性问题待定系数法求反比例函数解析式 【解析】(1)将A 点坐标代入直线y =−12x 中求出m 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中求出k 的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC 的解析式为y =−12x +b ,由同底等高的两三角形面积相等可得△ACO 与△ABO 面积相等,根据△ABO 的面积为32列出方程12OC ⋅2=32,解方程求出OC =32,即b =32,进而得出直线BC 的解析式. 【解答】∴−12m=1,解得m=−2,∴A(−2, 1).∵反比例函数y=kx(k≠0)的图象过点A(−2, 1),∴k=−2×1=−2,∴反比例函数的解析式为y=−2x;(2)设直线BC的解析式为y=−12x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为32,∴△ACO的面积=12OC⋅2=32,∴OC=32,∴b=32,∴直线BC的解析式为y=−12x+32.【答案】CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90∘,∵AB为直径,∴∠ACB=90∘,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90∘,∴∠OCM=90∘,∴OC⊥CM,∴CM为⊙O的切线;∵∠1+∠3+∠4=90∘,∠5+∠3+∠4=90∘,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴MF=ME−EF=6−83=103.【考点】圆周角定理直线与圆的位置关系【解析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90∘,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90∘,从而得到∠OCM=90∘,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME−EF即可.【解答】CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90∘,∵AB为直径,∴∠ACB=90∘,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90∘,∴∠OCM=90∘,∴OC⊥CM,∴CM为⊙O的切线;∵∠1+∠3+∠4=90∘,∠5+∠3+∠4=90∘,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴ MF =ME −EF =6−83=103.【答案】设y 1与x 之间的函数关系式为y 1=kx +b , ∵ 经过点(0, 168)与(180, 60), ∴ {b =168180k +b =60 ,解得:{k =−35b =168,∴ 产品销售价y 1(元)与产量x(kg)之间的函数关系式为y 1=−35x +168(0≤x ≤180);由题意,可得当0≤x ≤50时,y 2=70; 当130≤x ≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx +n , ∵ 直线y 2=mx +n 经过点(50, 70)与(130, 54), ∴ {50m +n =70130m +n =54 ,解得{m =−15n =80 ,∴ 当50<x <130时,y 2=−15x +80.综上所述,生产成本y 2(元)与产量x(kg)之间的函数关系式为y 2={70(0≤x ≤50)−15x +80(50<x <130)54(130≤x ≤180); 设产量为xkg 时,获得的利润为W 元,①当0≤x ≤50时,W =x(−35x +168−70)=−35(x −2453)2+120053,∴ 当x =50时,W 的值最大,最大值为3400;②当50<x <130时,W =x[(−35x +168)−(−15x +80)]=−25(x −110)2+4840, ∴ 当x =110时,W 的值最大,最大值为4840;③当130≤x ≤180时,W =x(−35x +168−54)=−35(x −95)2+5415, ∴ 当x =130时,W 的值最大,最大值为4680.因此当该产品产量为110kg 时,获得的利润最大,最大值为4840元. 【考点】二次函数的应用 【解析】(1)根据线段EF 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;130时,设y 2与x 之间的函数关系式为y 2=mx +n ,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x 的取值范围列出有关x 的二次函数,求得最值比较可得.【解答】设y 1与x 之间的函数关系式为y 1=kx +b ,∵ 经过点(0, 168)与(180, 60),∴ {b =168180k +b =60 ,解得:{k =−35b =168, ∴ 产品销售价y 1(元)与产量x(kg)之间的函数关系式为y 1=−35x +168(0≤x ≤180);由题意,可得当0≤x ≤50时,y 2=70;当130≤x ≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx +n ,∵ 直线y 2=mx +n 经过点(50, 70)与(130, 54),∴ {50m +n =70130m +n =54 ,解得{m =−15n =80, ∴ 当50<x <130时,y 2=−15x +80.综上所述,生产成本y 2(元)与产量x(kg)之间的函数关系式为y 2={70(0≤x ≤50)−15x +80(50<x <130)54(130≤x ≤180);设产量为xkg 时,获得的利润为W 元,①当0≤x ≤50时,W =x(−35x +168−70)=−35(x −2453)2+120053,∴ 当x =50时,W 的值最大,最大值为3400;②当50<x <130时,W =x[(−35x +168)−(−15x +80)]=−25(x −110)2+4840, ∴ 当x =110时,W 的值最大,最大值为4840;③当130≤x ≤180时,W =x(−35x +168−54)=−35(x −95)2+5415,∴ 当x =130时,W 的值最大,最大值为4680.因此当该产品产量为110kg 时,获得的利润最大,最大值为4840元.【答案】BC =DC +EC【考点】四边形综合题【解析】(1)证明△BAD ≅△CAE ,根据全等三角形的性质解答;(2)连接CE ,根据全等三角形的性质得到BD =CE ,∠ACE =∠B ,得到∠DCE =90∘,根据勾股定理计算即可;(3)作AE ⊥AD ,使AE =AD ,连接CE ,DE ,证明△BAD ≅△CAE ,得到BD =CE =9,根据勾股定理计算即可.【解答】解:问题发现:BC =DC +EC ,理由如下:∵∠BAC=∠DAE=90∘,∴∠BAC−∠DAC=∠DAE−∠DAC, 即∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC,∠BAD=∠CAE, AD=AE,∴△BAD≅△CAE.∴BD=CE.∴BC=BD+DC=EC+DC.故答案为:BC=DC+EC.类比探索:BD2+CD2=2AD2,理由如下:连接CE,由于△BAD≅△CAE.∴BD=CE,∠ACE=∠B,∵∠B+∠ACB=90∘,∴∠ACE+∠ACB=90∘,∴∠DCE=90∘,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴DE=√2AD,∴CE2+CD2=BD2+CD2=DE2=(√2AD)2=2AD2,∴BD2+CD2=2AD2;实际应用:线段AC绕A点逆时针旋转90∘,连接CE,DE,如图∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,{AB=AC,∠BAD=∠CAE, AD=AE.∴ △BAD ≅△CAE(SAS),∴ BD =CE =9,∵ ∠ADC =45∘,∠EDA =45∘,∴ ∠EDC =90∘,∴ DE =√CE 2−CD 2=6√2∵ ∠DAE =90∘,∴ AD =AE =√22DE =6. 【答案】(12, 0),(3, 0),(74, 2524) ∵ 点E 、点D 关于直线y =t 对称,∴ 点E 的坐标为(74, 2t −2524). 当x =0时,y =−23x 2+73x −1=−1,∴ 点C 的坐标为(0, −1).设线段BC 所在直线的解析式为y =kx +b ,将B(3, 0)、C(0, −1)代入y =kx +b ,{3k +b =0b =−1 ,解得:{k =13b =−1, ∴ 线段BC 所在直线的解析式为y =13x −1.∵ 点E 在△ABC 内(含边界),∴ {2t −2524≤02t −2524≥13×74−1 , 解得:516≤t ≤2548.当x <12或x >3时,y =−23x 2+73x −1;当12≤x ≤3时,y =23x 2−73x +1.假设存在,设点P 的坐标为(12m, 0),则点Q 的横坐标为m .(方法一)①当m <12或m >3时,点Q 的坐标为(m, −23m 2+73m −1)(如图1), ∵ 以CQ 为直径的圆与x 轴相切于点P ,∴ CP ⊥PQ ,∴ CQ 2=CP 2+PQ 2,即m 2+(−23m 2+73m)2=14m 2+1+14m 2+(−23m 2+73m −1)2,整理,得:5m 2−28m +12=0,解得:m 1=14−2√345,m 2=14+2√345, ∴ 点P 的坐标为(7−√345, 0)或(7+√345, 0);②当12≤m ≤3时,点Q 的坐标为(m, 23m 2−73m +1)(如图2),∵ 以CQ 为直径的圆与x 轴相切于点P ,∴ CP ⊥PQ ,∴ CQ 2=CP 2+PQ 2,即m 2+(23m 2−73m +2)2=14m 2+1+14m 2+(23m 2−73m +1)2,整理,得:11m 2−28m +12=0,解得:m 3=611,m 4=2,∴ 点P 的坐标为(311, 0)或(1, 0).(方法二)过点Q 作QN ⊥x 轴于点N ,画出简图,如图3所示.∵ ∠CPQ =90∘,∴ ∠OPC +∠NPQ =90∘.又∵ ∠OPC +∠OCP =90∘,∴ ∠OCP =∠NPQ ,∴ tan∠OCP =tan∠NPQ ,即OP OC =NQ PN .①当m <12或m >3时,点Q 的坐标为(m, −23m 2+73m −1),∴ 12m 1=23m 2−73m+112m ,整理,得:5m 2−28m +12=0,解得:m 1=14−2√345,m 2=14+2√345, ∴ 点P 的坐标为(7−√345, 0)或(7+√345, 0); ②当12≤m ≤3时,点Q 的坐标为(m, 23m 2−73m +1),∴ 12m 1=12m −23m 2+73m−1,整理,得:11m 2−28m +12=0,解得:m 3=611,m 4=2,∴ 点P 的坐标为(311, 0)或(1, 0).综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 的坐标为(7−√345, 0)、(311, 0)、(1, 0)或(7+√345, 0).【考点】二次函数综合题【解析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(12m, 0),则点Q的横坐标为m,(方法一)分m<12或m>3及12≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标;(方法二)过点Q作QN⊥x轴于点N,由等角的余角相等结合正切的定义可得出OPOC =NQPN,分m<12或m>3及12≤m≤3两种情况找出点Q的坐标,结合OPOC =NQPN可得出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标【解答】当y=0时,有−23x2+73x−1=0,解得:x1=12,x2=3,∴点A的坐标为(12, 0),点B的坐标为(3, 0).∵y=−23x2+73x−1=−23(x2−72x)−1=−23(x−74)2+2524,∴点D的坐标为(74, 2524).故答案为:(12, 0);(3, 0);(74, 2524).∵ 点E 、点D 关于直线y =t 对称,∴ 点E 的坐标为(74, 2t −2524). 当x =0时,y =−23x 2+73x −1=−1,∴ 点C 的坐标为(0, −1).设线段BC 所在直线的解析式为y =kx +b ,将B(3, 0)、C(0, −1)代入y =kx +b ,{3k +b =0b =−1 ,解得:{k =13b =−1, ∴ 线段BC 所在直线的解析式为y =13x −1.∵ 点E 在△ABC 内(含边界),∴ {2t −2524≤02t −2524≥13×74−1 , 解得:516≤t ≤2548.当x <12或x >3时,y =−23x 2+73x −1;当12≤x ≤3时,y =23x 2−73x +1.假设存在,设点P 的坐标为(12m, 0),则点Q 的横坐标为m . (方法一)①当m <12或m >3时,点Q 的坐标为(m, −23m 2+73m −1)(如图1), ∵ 以CQ 为直径的圆与x 轴相切于点P ,∴ CP ⊥PQ ,∴ CQ 2=CP 2+PQ 2,即m 2+(−23m 2+73m)2=14m 2+1+14m 2+(−23m 2+73m −1)2,整理,得:5m 2−28m +12=0,解得:m 1=14−2√345,m 2=14+2√345, ∴ 点P 的坐标为(7−√345, 0)或(7+√345, 0); ②当12≤m ≤3时,点Q 的坐标为(m, 23m 2−73m +1)(如图2), ∵ 以CQ 为直径的圆与x 轴相切于点P ,∴ CP ⊥PQ ,∴ CQ 2=CP 2+PQ 2,即m 2+(23m 2−73m +2)2=14m 2+1+14m 2+(23m 2−73m +1)2,整理,得:11m 2−28m +12=0,解得:m 3=611,m 4=2,∴ 点P 的坐标为(311, 0)或(1, 0).(方法二)过点Q 作QN ⊥x 轴于点N ,画出简图,如图3所示. ∵ ∠CPQ =90∘,∴ ∠OPC +∠NPQ =90∘.又∵ ∠OPC +∠OCP =90∘,∴ ∠OCP =∠NPQ ,∴ tan∠OCP =tan∠NPQ ,即OP OC =NQ PN .①当m <12或m >3时,点Q 的坐标为(m, −23m 2+73m −1), ∴ 12m 1=23m 2−73m+112m ,整理,得:5m 2−28m +12=0,解得:m 1=14−2√345,m 2=14+2√345, ∴ 点P 的坐标为(7−√345, 0)或(7+√345, 0); ②当12≤m ≤3时,点Q 的坐标为(m, 23m 2−73m +1),∴ 12m 1=12m −23m 2+73m−1,整理,得:11m 2−28m +12=0,解得:m 3=611,m 4=2,∴ 点P 的坐标为(311, 0)或(1, 0).综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 的坐标为(7−√345, 0)、(311, 0)、(1, 0)或(7+√345, 0).。

【精校】2018年湖北省天门市中考真题数学

【精校】2018年湖北省天门市中考真题数学

2018年湖北省天门市中考真题数学一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1. 8的倒数是( )A.-8B.8C.1 8D.1 8解析:根据倒数的定义,互为倒数的两数乘积为1,即可解答.8的倒数是18.答案:D2.如图是某个几何体的展开图,该几何体是( )A.三棱柱B.三棱锥C.圆柱D.圆锥解析:侧面为三个长方形,底边为三角形,故原几何体为三棱柱.观察图形可知,这个几何体是三棱柱.答案:A3. 2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为( )A.3.5×102B.3.5×1010C.3.5×1011D.35×1010解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.数350亿用科学记数法表示为3.5×1010.答案:B4.如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是( )A.30°B.36°C.45°D.50°解析:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=13×150°=50°,∴∠DBC的度数是50°.答案:D5.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是( )A.|b|<2<|a|B.1-2a>1-2bC.-a<b<2D.a<-2<-b解析:根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1-2a>1-2b,故本选项不符合题意;C、如图所示,a<-2<b<2,则-a>2>b,故本选项符合题意;D、如图所示,a<-2<b<2且|a|>2,|b|<2.则a<-2<-b,故本选项不符合题意.答案:C6.下列说法正确的是( )A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定解析:直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C 、数据5,3,5,4,1,1的众数是1和5,正确;D 、甲、乙两人射中环数的方差分别为s 甲2=2,s 乙2=3,说明甲的射击成绩比乙稳定. 答案:C7.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是( ) A.120° B.180° C.240° D.300°解析:设母线长为R ,底面半径为r ,∴底面周长=2πr ,底面面积=πr 2,侧面面积=πrR , ∵侧面积是底面积的2倍,∴2πr 2=πrR , ∴R=2r ,设圆心角为n , 则180n Rπ=2πr=πR , 解得,n=180°. 答案:B8.若关于x 的一元一次不等式组()63191x x x m -+-⎧⎪⎨--⎪⎩<>的解集是x >3,则m 的取值范围是( )A.m >4B.m ≥4C.m <4D.m ≤4解析:先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.()63191x x x m -+-⎧⎪⎨--⎪⎩<①>②, ∵解不等式①得:x >3, 解不等式②得:x >m-1, 又∵关于x 的一元一次不等式组()63191x x x m -+-⎧⎪⎨--⎪⎩<>的解集是x >3,∴m-1≤3,解得:m ≤4. 答案:D9.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是( )A.1B.1.5C.2D.2.5解析:根据翻折变换的性质和正方形的性质可知AB=AD=AF ,∠D=∠AFE=90°, 在Rt △ABG 和Rt △AFG 中,AE AEAF AD =⎧⎨=⎩, ∴Rt △AFE ≌Rt △ADE , ∴EF=DE ,设DE=FE=x ,则EC=6-x. ∵G 为BC 中点,BC=6, ∴CG=3,在Rt △ECG 中,根据勾股定理,得:(6-x)2+9=(x+3)2, 解得x=2. 则DE=2. 答案:C10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m=160;③点H 的坐标是(7,80);④n=7.5.其中说法正确的是( )A.①②③B.①②④C.①③④D.①②③④解析:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h.①正确;由图象第2-6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.答案:A二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.在“Wish you success”中,任选一个字母,这个字母为“s”的概率为 .解析:根据概率公式进行计算即可.任选一个字母,这个字母为“s”的概率为:42 147=.答案:2 712.1122-⎛⎫-=⎪⎝⎭+ .解析:根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.原式220==.答案:013.若一个多边形的每个外角都等于30°,则这个多边形的边数为 .解析:根据已知和多边形的外角和求出边数即可.∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是36030︒︒=12.答案:1214.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.解析:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x-1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程:x+1.5x-1000=6000,解得:x=2800,∴1.5x-1000=3200.答:发往A区的生活物资为3200件.答案:320015.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向mile处,则海岛A,C之间的距离为 nmile.解析:作AD ⊥BC 于D ,设AC=x 海里,在Rt △ACD 中,AD=AC ×sin ∠ACD=2x ,则CD=2x ,在Rt △ABD 中,tan AD BD x ABD ==∠,则(12182x x ⎛⎫=+ ⎪ ⎪⎝⎭+,解得,,答:A ,C 之间的距离为海里.答案:16.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P3A2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y=13-x+4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2018= .解析:如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且△P 1OA 1是等腰直角三角形, ∴OC=CA 1=P 1C=3, 设A 1D=a ,则P 2D=a , ∴OD=6+a ,∴点P 2坐标为(6+a ,a),将点P 2坐标代入y=13-x+4,得:13-(6+a)+4=a , 解得:a=32, ∴A 1A 2=2a=3,P 2D=32, 同理求得P 3E=34,A 2A 3=32, ∵139126S =⨯⨯=,23139224S =⨯⨯=,3133224916S =⨯⨯=,……∴S 2018=201794.答案:201794三、解答题(本大题共9个小题,满分72分.)17.化简:22244155a b a bab a b+-g . 解析:先将分子、分母因式分解,再约分即可得.答案:原式()()()2415125a b a b aab a b a b a b+==+--g.18.图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP.(2)在图②中,画一个Rt△ABC,使点C在格点上.解析:(1)构造全等三角形,利用全等三角形的性质即可解决问题.(2)利用菱形以及平行线的性质即可解决问题;答案:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求.19.在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m= .解析:(1)根据:某组的百分比=该组人数总人数×100%,所有百分比的和为1,计算即可.由条形图知,C组共有15名,占25%,所以本次共随机采访了15÷25%=60(名),m=100-10-20-25-30-10=5.答案:(1)60,5(2)补全条形统计图.解析:(2)先计算出D、F组的人数,再补全条形统计图.答案:(2)D组教师有:60×30%=18(名),F组教师有:60×5%=3(名).补充条形统计图:(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.解析:(3)列出树形图,根据总的情况和一男一女的情况计算概率.答案:(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P(一男一女)105 189 ==,答:所选派的两名教师恰好是1男1女的概率为59.20.已知关于x的一元二次方程x2+(2m+1)x+m2-2=0.(1)若该方程有两个实数根,求m的最小整数值.解析:(1)利用判别式的意义得到△=(2m+1)2-4(m2-2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可.答案:(1)根据题意得△=(2m+1)2-4(m2-2)≥0,解得m≥94 -,所以m的最小整数值为-2.(2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.解析:(2)利用根与系数的关系得到x1+x2=-(2m+1),x1x2=m2-2,再利用(x1-x2)2+m2=21得到(2m+1)2-4(m2-2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.答案:(2)根据题意得x1+x2=-(2m+1),x1x2=m2-2,∵(x1-x2)2+m2=21,∴(x1+x2)2-4x1x2+m2=21,∴(2m+1)2-4(m2-2)+m2=21,整理得m2+4m-12=0,解得m1=2,m2=-6,∵m≥94 -,∴m的值为2.21.如图,在平面直角坐标系中,直线12y x=-与反比例函数kyx=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式.解析:(1)将A点坐标代入直线12y x=-中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式.答案:(1)∵直线12y x=-过点A(m,1),∴12-m=1,解得m=-2,∴A(-2,1).∵反比例函数kyx=(k≠0)的图象过点A(-2,1),∴k=-2×1=-2,∴反比例函数的解析式为2yx =-.(2)将直线12y x=-向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为32,求直线BC的解析式.解析:(2)根据直线的平移规律设直线BC的解析式为12y x b=-+,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为32列出方程22213OC=g,解方程求出OC=32,即b=32,进而得出直线BC的解析式.答案:(2)设直线BC的解析式为12y x b =-+,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为32,∴13222ACOOCS==Vg,∴OC=32,∴b=32,∴直线BC的解析式为1322y x-+ =.22.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC 于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由.解析:(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线.答案:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线.(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.解析:(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME-EF即可.答案:(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴EF CE CFCE ME CM==,即466EF CECE==,∴CE=4,EF=83,∴810633 MF ME EF=-=-=.23.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式.解析:(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可.答案:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴16818060bk b=⎧⎨+=⎩,解得:35168kb⎧=-⎪⎨⎪=⎩,∴产品销售价y 1(元)与产量x(kg)之间的函数关系式为131685y x =-+(0≤x ≤180).(2)直接写出生产成本y 2(元)与产量x(kg)之间的函数关系式.解析:(2)显然,当0≤x ≤50时,y 2=70;当130≤x ≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx+n ,利用待定系数法确定一次函数的表达式即可. 答案:(2)由题意,可得当0≤x ≤50时,y 2=70, 当130≤x ≤180时,y 2=54,当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx+n , ∵直线y 2=mx+n 经过点(50,70)与(130,54),∴507013054m n m n +=⎧⎨+=⎩,解得1580m n ⎧=-⎪⎨⎪=⎩,∴当50<x <130时,21805y x =-+. 综上所述,生产成本y 2(元)与产量x(kg)之间的函数关系式为()()()27005018050130554130180x y x x x ≤≤⎧⎪⎪=-+⎨⎪⎪≤≤⎩<<.(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?解析:(3)利用:总利润=每千克利润×产量,根据x 的取值范围列出有关x 的二次函数,求得最值比较可得.答案:(3)设产量为xkg 时,获得的利润为W 元,①当0≤x ≤50时,23324512005168705533W x x x ⎛⎫⎛⎫=-+-=--+⎪ ⎪⎝⎭⎝⎭g , ∴当x=50时,W 的值最大,最大值为3400; ②当50<x <130时,()2312168801104840555W x x x x ⎛⎫⎛⎫=-+--+=--+ ⎪ ⎪⎝⎭⎝⎡⎤⎢⎥⎣⎭⎦g ,∴当x=110时,W 的值最大,最大值为4840; ③当130≤x ≤180时,()2331685495541555W x x x ⎛⎫=-+-=--+ ⎪⎝⎭g ,∴当x=130时,W 的值最大,最大值为4680.因此当该产品产量为110kg 时,获得的利润最大,最大值为4840元.24.回答下列问题.问题:如图①,在Rt △ABC 中,AB=AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 . 解析:等量关系式为BC=DC+EC.证明△BAD ≌△CAE ,根据全等三角形的性质解答. 答案:BC=DC+EC ,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE , 在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE , ∴BD=CE ,∴BC=BD+CD=EC+CD. 故答案为:BC=DC+EC.探索:如图②,在Rt △ABC 与Rt △ADE 中,AB=AC ,AD=AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论.解析:关系式为BD 2+CD 2=2AD 2.连接CE ,根据全等三角形的性质得到BD=CE ,∠ACE=∠B ,得到∠DCE=90°,根据勾股定理计算即可.答案:BD 2+CD 2=2AD 2. 理由如下:连接CE ,由(1)得,△BAD ≌△CAE , ∴BD=CE ,∠ACE=∠B , ∴∠DCE=90°,∴CE 2+CD 2=ED 2,在Rt △ADE 中,AD 2+AE 2=ED 2,又AD=AE ,∴BD 2+CD 2=2AD 2.应用:如图③,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长. 解析:作AE ⊥AD ,使AE=AD ,连接CE ,DE ,证明△BAD ≌△CAE ,得到BD=CE=9,根据勾股定理计算即可.答案:作AE ⊥AD ,使AE=AD ,连接CE ,DE ,∵∠BAC+∠CAD=∠DAE+∠CAD , 即∠BAD=∠CAD ′, 在△BAD 与△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE(SAS), ∴BD=CE=9,∵∠ADC=45°,∠EDA=45°, ∴∠EDC=90°,∴DE ==, ∵∠DAE=90°, ∴AD=AE=2DE=6.25.抛物线213237y x x =-+-与x 轴交于点A ,B(点A 在点B 的左侧),与y 轴交于点C ,其顶点为D.将抛物线位于直线l :y=t(t <2524)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象.(1)点A ,B ,D 的坐标分别为 , , .解析:(1)利用二次函数图象上点的坐标特征可求出点A 、B 的坐标,再利用配方法即可找出抛物线的顶点D 的坐标. 答案:(1)当y=0时,有2710323x x -+-=, 解得:x 1=12,x 2=3, ∴点A 的坐标为(12,0),点B 的坐标为(3,0).∵222725132227271332434x x y x x x x ⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝=-+-=-=-⎭,∴点D 的坐标为(74,2524). 故答案为:(12,0);(3,0);(74,2524).(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围.解析:(2)由点D 的坐标结合对称找出点E 的坐标,根据点B 、C 的坐标利用待定系数法可求出直线BC 的解析式,再利用一次函数图象上点的坐标特征即可得出关于t 的一元一次不等式组,解之即可得出t 的取值范围.答案:(2)∵点E 、点D 关于直线y=t 对称,∴点E 的坐标为(74,22524t -). 当x=0时,2711323y x x =-+-=-,∴点C 的坐标为(0,-1).设线段BC 所在直线的解析式为y=kx+b , 将B(3,0)、C(0,-1)代入y=kx+b ,301k b b +=⎧⎨=-⎩,解得:311k b ⎧=⎪⎨⎪=-⎩,∴线段BC所在直线的解析式为311y x=-. ∵点E在△ABC内(含边界),∴2520242572124413tt⎧-≤⎪⎪⎨⎪-≥⨯-⎪⎩,解得:525 1648t≤≤.(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.解析:(3)假设存在,设点P的坐标为(12m,0),则点Q的横坐标为m,分m<12或m>3及12≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.答案:(3)当x<12或x>3时,213237y x x=-+-;当12≤x≤3时,213237y x x=-+-.假设存在,设点P的坐标为(12m,0),则点Q的横坐标为m.①当m<12或m>3时,点Q的坐标为(m,223713m m-+-)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即22 2222277121123133443m m m m m m m ⎛⎫⎛⎫+-+=+++-+-⎪ ⎪⎝⎭⎝⎭,整理,得:m1=145-,m2=145+,∴点P 的坐标为(75-,0)或(75+,0); ②当12≤m ≤3时,点Q 的坐标为(m ,273312m m -+)(如图2), ∵以CQ 为直径的圆与x 轴相切于点P , ∴CP ⊥PQ ,∴CQ 2=CP 2+PQ 2,即2222222772112112344333m m m m m m m ⎛⎫⎛⎫+-+=+++-+ ⎪ ⎪⎝⎭⎝⎭,整理,得:11m 2-28m+12=0,解得:m 3=611,m 4=2, ∴点P 的坐标为(311,0)或(1,0).综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 的坐标为(75,0),(311,0),(1,0)或(75+,0). 考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

湖北省天门市中考数学试卷解析

湖北省天门市中考数学试卷解析

湖北省天门市中考数学试卷—解析版一、选择题(本大题共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1、(2011•江汉区)的倒数是()A、B、﹣3C、3D、考点:倒数。

专题:计算题。

分析:根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣3)=1.解答:解:根据倒数的定义得:﹣×(﹣3)=1,因此倒数是﹣﹣3.故选B.点评:此题考查的是倒数,关键是要明确倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•江汉区)如图所示,该几何体的俯视图是()A、B、C、D、考点:简单组合体的三视图。

专题:几何图形问题。

分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是中间一个正方形,两边两个矩形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、(2011•江汉区)第六次人口普查的标准时间是2010年11月1日零时.普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.这个数用科学记数法表示为(保留三个有效数字)()A、1.33×1010B、1.34×1010C、1.33×109D、1.34×109考点:科学记数法与有效数字。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1339724852=1.339724852×109≈1.34×109.故选D.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4、(2011•江汉区)某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A、B、C、D、考点:在数轴上表示不等式的解集。

湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学试题(含解析)【推荐】.doc

湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学试题(含解析)【推荐】.doc

2018年湖北省江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1=.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B 两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO 于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you su ccess”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3.00分)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B 两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,==∴P一男一女答:所选派的两名教师恰好是1男1女的概率为20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO 于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。

2018湖北天门中考试卷及答案

2018湖北天门中考试卷及答案

天门市2018年中考试卷数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.满分120分.考试时间120分钟.2.答第Ⅰ卷前,考生务必用钢笔(圆珠笔)将自己的姓名,用2B 铅笔将准考证号、考试科目写或涂在答题卡上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用4B 橡皮擦干净后,再涂选其它答案.答案写在第Ⅰ卷上无效.4.答第Ⅱ卷时,将答案直接写在试卷上.5.考试结束后,考生须将第Ⅰ卷、第Ⅱ卷、答题卡一并交回.第Ⅰ卷(选择题 共36分)一.选择题(本大题共有12个小题,每小题3分,共36分) 01.43-的倒数是( ).A 、43B 、34-C 、34D 、43-02.一个几何体的三视图如图所示,则这个几何体是( ).03.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A 、1B 、-1C 、1或-1D 、2104.初三(1)班10名同学体育测试成绩如右表,那么这10名同学体育测试成绩的众数和中位数分别是( ). A 、38,36 B 、38,38 C 、36,37 D 、38,3705.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),这个容器的形状是图中( ).06.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( ). A 、75° B 、65° C 、55° D 、50°07.下列命题中,真命题是( ). A 、一组对边平行且有一组邻边相等的四边形是平行四边形 B 、顺次连结四边形各边中点所得到的四边形是矩形 C 、等边三角形既是轴对称图形又是中心对称图形 D 、对角线互相垂直平分的四边形是菱形08.如图,为了测量河两案A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于( ).A B C D 主视图 左视图俯视图(第02题图)A B C D A1 2 3 (第06题图)a bABCa α (第08题图)A 、a ·sin αB 、a ·tan αC 、a ·cos αD 、αtan a09.将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( ).A 、51 B 、41 C 、31 D 、2110.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( ).A 、(4π+8)cm 2B 、(4π+16)cm 2C 、(3π+8)cm 2D 、(3π+16)cm 2 11.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③a -b +c <0;④a +c >0,其中正确结论的个数为( ). A 、4个 B 、3个 C 、2个 D 、1个12.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,则B ’点的坐标为( ).A 、(2,32) B 、(23,32-) C 、(2,324-) D 、(23,324-)第Ⅱ卷(非选择题 共84分)二.填空题(本大题有4个小题,每小题4分,共16分) 13.已知不等式组⎩⎨⎧--++1m 1x n m 2x <>的解集为-1<x <2,则(m +n)2018=_______________. 14.如图,已知AE =CF ,∠A =∠C ,要使△ADF ≌△CBE ,还需添加一个条件______________________(只需写一个).15.某公园门票价格如下表,有27名中学生游公园,则最少应付费______________元.(游16根火柴棒.(用含n的代数式表示)三.解答题(本大题共有8个小题,共68分) 17.(本小题满分6分)计算:02)722(60sin 41122-+︒-+--π(第10题图)AB CDEF(第14题图)4根12根24根n =1 n =2 n =3(第16题图)18.(本小题满分7分)先化简,后求值:2x 1x +-·1x 11x 2x 4x 222-÷+--,其中x 2-x =0.19.(本小题满分7分)如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B 被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率; (2)游戏公平吗?若不公平,请你设计一个公平的规则.A B (第19题图)20.(本小题满分7分)现将四个全等的直角梯形透明纸片,分别放在方格纸中,方格纸的每个小正方形的边长均为1,并且直角梯形的每个顶点与小正方形的顶点重合.请你仿照例①,按如下要求拼图.要求:①用四个全等的直角梯形,按实际大小拼成符合要求的几何图形;②拼成的几何图形互不重叠,且不留空隙;③拼成的几何图形的各顶点必须与小正方形的顶点重合.21.(本小题满分8分)如图,直线y =x +1与双曲线x2y 交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3. (1)求A 、B 、C 三点的坐标; (2)在坐标平面内.....,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接..写出点P 的坐标,若不存在,请说明理由.(第20题图) 例①:矩形 矩形(不同于例①)平行四边形(非矩形) 梯形22.(本小题满分10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠BAC 的平分线交⊙O于点D ,过D 点作EF ∥BC 交AB 的延长线于点E ,交AC 的延长线于点F . (1)求证:EF 为⊙O 的切线;(2)若sin ∠ABC =54,CF =1,求⊙O 的半径及EF 的长.23.(本小题满分11分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出) (1)求y 与x 的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?(第22题图)24.(本小题满分12分)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,5个单位长度的速度向终点B运动.设运动了x 动点N从点A出发沿AB方向以每秒3秒.(1)点N的坐标为(________________,________________);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形?(3)如图②,连结ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和此(第24题图)天门市2018年中考试卷 数学试题参考答案及评分意见一、选择题(每小题3分,共36分)1.B 2.C 3.B 4.D 5.A 6.B 7.D 8.B 9.D 10.A 11.C 12.C 二、填空题(每小题4分,共16分)13.1 14.AD=BC 或∠D =∠B 或∠AFD =∠CEB 15.240 16.2n(n+1) 三.解答题(本大题共有8个小题,共68分) 17.(本小题满分6分)解:原式=1|2341|324+⨯-+-- =1321324++--- =4-18.(本小题满分7分) 解:∵02=-x x∴0)1(=-x x∴1,021==x x原式=)1)(1()1()2)(2(212-+⋅--+⋅+-x x x x x x x =)1)(1()1()2)(2(212-+⋅--+⋅+-x x x x x x x =)1)(2(+-x x(1)当0=x 时原式=)1)(2(+-x x =2)10)(20(-=+- (2)当1=x 时原式=)1)(2(+-x x =2)11)(21(-=+-19.(本小题满分7分) 解:(1)列表法:树形图法12 3456745 6 74567开始A B32128)(==小明胜P 31124)(==小飞飞P (2)∵3132> ∴不公平,小明胜的机会大规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相加,如果和为偶数,小明胜,否则小飞胜.或规则如下:把图A 中的数字2改为奇数(比如5)然后按题目中的规则进行比赛:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(方法不唯一,正确即可。

2018年中考数学卷精析版——湖北天门卷

2018年中考数学卷精析版——湖北天门卷

2018年中考数学卷精析版——天门卷(本试卷满分120分,考试时间120分钟)一、选择题(共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分3.(2018湖北天门、仙桃、潜江、江汉油田3分)吸烟有害健康.据中央电视台2018年5月30日报道,全世界每因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为【】A.0.6×107 B.6×106 C.60×105 D.6×105【答案】B。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。

600万=6000000一共7位,从而600万=6000000=6×106。

故选B。

4.(2018湖北天门、仙桃、潜江、江汉油田3分)不等式组x12x4<≥-⎧⎨⎩的解集在数轴上表示正确的是【】A .B .C .D .【答案】C 。

【考点】解一元一次不等式组,在数轴上表示不等式的解集【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此,由2x <4得x <2,∴不等式组的解集为﹣1≤x <2。

不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

湖北省江汉油田、潜江市、天门市、仙桃市中考数学真题试题(含解析)

湖北省江汉油田、潜江市、天门市、仙桃市中考数学真题试题(含解析)

湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题一、选择题(本大题共10个小题,每小题3分,满分30分、在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分。

)1、(分)8的倒数是( )A、﹣8B、8ﻩC、﹣D、2。

(分)如图是某个几何体的展开图,该几何体是( )A、三棱柱B、三棱锥ﻩC、圆柱D、圆锥3、(分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题、此次大会成功签约项目350余亿元、数350亿用科学记数法表示为( )A、×102ﻩB、×1010ﻩC、×1011ﻩD、35×10104、(分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是( )A。

30°B、36° C、45°ﻩD、50°5、(分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是( )A、|b|<2<|a|B、1﹣2a>1﹣2bC、﹣a<b<2ﻩD。

a〈﹣2<﹣b6、(分)下列说法正确的是( )A、了解某班学生的身高情况,适宜采纳抽样调查B。

数据3,5,4,1,1的中位数是4C。

数据5,3,5,4,1,1的众数是1和5D。

甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7、(分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是( ) A、120°B、180°C、240°ﻩD、300°8。

(分)若关于x的一元一次不等式组的解集是x〉3,则m的取值范围是( )A、m>4ﻩB。

m≥4 C。

m〈4ﻩD、m≤49、(分)如图,正方形ABCD中,AB=6,G是BC的中点、将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )A、1ﻩB、ﻩC、2ﻩD、10。

湖北省潜江市江汉油田、、天门市、仙桃市2018年中考数学试卷及参考答案

湖北省潜江市江汉油田、、天门市、仙桃市2018年中考数学试卷及参考答案
(1) 求反比例函数的解析式; (2) 将直线y=﹣ x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为 , 求直线BC的解析式. 22. 如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M 是GE的中点,连接CF,CM.
湖北省潜江市江汉油田、、天门市、仙桃市2018年中考数学试卷
一、选择题 1. 8的倒数是( ) A . ﹣8 B . 8 C . ﹣ D . 2. 如图是某个几何体的展开图,该几何体是( )
A . 三棱柱 B . 三棱锥 C . 圆柱 D . 圆锥 3. 2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成 功签约项目350余亿元.数350亿用科学记数法表示为( ) A . 3.5×102 B . 3.5×1010 C . 3.5×1011 D . 35×1010 4. 如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是( )
三、解答题
17. 化简:


18. 图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,
请仅用无刻度直尺在网格中完成下列画图.
⑴在图①中,画出∠MON的平分线OP; ⑵在图②中,画一个Rt△ABC,使点C在格点上. 19. 在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问
A . 1 B . 1.5 C . 2 D . 2.5 10. 甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地 并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间 的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法 正确的是( )

【K12教育学习资料】[学习]湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题(含解

【K12教育学习资料】[学习]湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题(含解

湖北省江汉油田、潜江市、天门市、仙桃市2018年中考数学真题试题一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1= .13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m= ;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3.00分)计算:+|﹣2|﹣()﹣1= 0 .【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12 .【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60 名教师,m= 5 ;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC ;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。

专题5.9 湖北天门(试题解读)-2018中考数学真题之名师立体解读高端精品

专题5.9 湖北天门(试题解读)-2018中考数学真题之名师立体解读高端精品

一、纵观全局,试卷评价
(一)准确把握对数学知识与技能的考查
从知识点上看,在命题方向上,没有太多的起伏;从内容上看,对这些知识点的考查并不放在对概念、性质的记忆上,而是对概念、性质的理解与运用上,通过现实生活来体验数学的妙趣。

如第7题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键;第8题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.
(二)着重考查学生数学思想的理解及运用
数学能力是学好数学的根本,主要表现为数学的思想方法。

其中数形结合思想、方程与函数思想、分类讨论思想等几乎是历年中考试卷考查的重点,必须引起足够重视。

1)分类讨论思想:当面临的问题不宜用统一方法处理时,就得把问题按照一定的原则或标准分为若干类,然后逐类进行讨论,再把结论汇总,得出问题的答案。

例如:今年中考数学题对分类讨论思想特别重视,如综合题第25题如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况。

(三)关注数学知识解决实际问题的考查
数学来源于生活,同时也运用于生活,学数学就是为了解决生活中所碰到的问题。

如第19题
(四)注重数学活动过程的考查
这几年不仅关注对学生学习结果的评价,也关注对他们数学活动过程的评价;不仅关注数学思想方法的考查,还关注他们在一般性思维方法与创新思维能力的发展等方面的评价,尤其是注重对学生探索性思维能力和创新思维能力的考查;不仅关注知识的教学,更多的是要关注对学生数学思维潜力的开
发与提高。

二、明晰试题,看明细表
=
<及。

2018年湖北省天门市中考数学试卷及解析

2018年湖北省天门市中考数学试卷及解析

2018年湖北省天门市中考数学试卷及解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1=.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省天门市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【解答】解:8的倒数是,故选:D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3.00分)计算:+|﹣2|﹣()﹣1=0.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【解答】解:原式=•=.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P==一男一女答:所选派的两名教师恰好是1男1女的概率为20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖北省天门市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.8的倒数是()A.﹣8 B.8 C.﹣D.2.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b6.下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°8.若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m =160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个二、填空题(共6小题)11.在“Wishyousuccess”中,任选一个字母,这个字母为“s”的概率为.12.计算:+|﹣2|﹣()﹣1=.13.若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)nmile处,则海岛A,C之间的距离为nmile.16.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(共9小题)17.化简:•.18.图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO 的面积为,求直线BC的解析式.22.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省天门市中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【知识点】倒数2.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【知识点】几何体的展开图3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【知识点】科学记数法—表示较大的数4.【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【知识点】平行线的性质5.【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【知识点】绝对值、实数与数轴6.【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【知识点】方差、众数、中位数、全面调查与抽样调查7.【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【知识点】圆锥的计算8.【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【知识点】解一元一次不等式组9.【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【知识点】正方形的性质、翻折变换(折叠问题)10.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【知识点】一次函数的应用二、填空题(共6小题)11.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【知识点】概率公式12.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【知识点】二次根式的混合运算、负整数指数幂13.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【知识点】多边形内角与外角14.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【知识点】一元一次方程的应用15.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【知识点】解直角三角形的应用-方向角问题16.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【知识点】一次函数图象上点的坐标特征、规律型:点的坐标三、解答题(共9小题)17.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【知识点】分式的乘除法18.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【知识点】作图—应用与设计作图、菱形的性质19.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为【知识点】列表法与树状图法、频数(率)分布表、条形统计图20.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【知识点】根与系数的关系、根的判别式21.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【知识点】反比例函数与一次函数的交点问题22.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【知识点】圆周角定理、直线与圆的位置关系23.【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【知识点】二次函数的应用24.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【知识点】四边形综合题25.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣m2+m﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,m2﹣m+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).【知识点】二次函数综合题。

相关文档
最新文档