人教版九年级数学上册全册教案名师教学资料
新人教版初中数学九年级上册全册教案

新人教版初中数学九年级上册全册教案一. 教材内容概述本教案为新人教版初中数学九年级上册的全册教案。
该教材主要包括以下几个模块:- 整式与分式- 历史与人物- 概率与统计- 等比数列- 性质与运算二. 教学目标通过本教材的研究,学生应达到以下数学能力和知识:1. 掌握整式与分式的基础概念和运算方法;2. 了解数学发展历史和相关数学人物的贡献;3. 理解和应用概率与统计的基本概念与方法;4. 掌握等比数列的性质和求解方法;5. 熟悉数的性质与数的运算法则。
三. 教学重点与难点1. 教学重点:整式与分式的基础概念与运算方法,概率与统计的基本概念和应用,等比数列的性质和求解方法。
2. 教学难点:整式与分式的运算方法,概率与统计的应用,等比数列的推导和求解。
四. 教学方法和手段本教案将采用以下教学方法和手段,以培养学生的数学思维和解决问题能力:1. 导入法:通过引入学生已有的数学知识,激发学生对新知识的兴趣;2. 探究法:组织学生进行探索性研究,培养学生的自主研究和合作研究能力;3. 归纳法:引导学生总结、归纳已学的数学知识,提高他们的综合运用能力;4. 实践法:设计适当的练和实践任务,帮助学生将所学的数学知识应用到实际问题中。
五. 教学内容安排根据教材的章节划分,本教案将按照以下方式安排教学内容:- 第一单元:整式与分式- 第二单元:历史与人物- 第三单元:概率与统计- 第四单元:等比数列- 第五单元:性质与运算六. 教学评价方法为了准确评价学生的数学研究情况,本教案将采用以下评价方法:1. 测试:通过书面测试和口头测试,检查学生对教学内容的掌握情况;2. 实践任务评价:评估学生在实际问题中应用数学知识的能力;3. 个人报告评价:鼓励学生进行主题研究,并评估他们的表达和分析能力。
七. 教学资源准备为了有效开展教学活动,本教案将准备以下教学资源:1. 教材:新人教版初中数学九年级上册教材;2. 录像资料:教学视频和相关实验视频等;3. 教学工具:计算器、几何工具、教学演示软件等。
人教版九年级数学教案(全一册)

人教版九年级数学教案(全一册)第一单元有理数的认识与运算课时一:有理数的概述与绝对值- 教学目标:通过本节课的研究,学生能够了解有理数的概念及其特点,并掌握有理数的绝对值的计算方法。
- 主要内容:有理数的概述,有理数的绝对值的计算方法。
- 教学步骤:- 导入新课:通过引入实际生活中的例子,激发学生对有理数的兴趣。
- 知识点讲解:介绍有理数的定义、性质和表示方法,并具体介绍绝对值的概念和计算方法。
- 例题演示:通过一些例题的演示,引导学生掌握有理数绝对值的计算方法。
- 练巩固:设计一些练题目,让学生独立进行练,加深对所学知识的理解和掌握。
- 小结与展望:对本节课的重点知识进行小结,并展望下节课的内容。
- 教学重点:有理数的绝对值的计算方法。
- 教学难点:对有理数的绝对值进行理解和应用。
- 教学资源:教科书、黑板、多媒体设备等。
课时二:有理数的加减运算- 教学目标:通过本节课的研究,学生能够掌握有理数的加减运算方法,并能运用到实际问题中去。
- 主要内容:有理数的加法与减法运算方法,实例应用。
- 教学步骤:- 导入新课:复上节课的内容,引入有理数的加法与减法问题。
- 知识点讲解:介绍有理数的加法与减法运算规则和方法,并结合实际问题进行讲解。
- 例题演示:通过一些例题的演示,引导学生掌握有理数的加减运算方法。
- 练巩固:设计一些练题目,让学生独立进行练,加深对所学知识的理解和掌握。
- 小结与展望:对本节课的重点知识进行小结,并展望下节课的内容。
- 教学重点:有理数的加法与减法运算方法。
- 教学难点:对实际问题进行有理数的加减运算。
- 教学资源:教科书、黑板、多媒体设备等。
(以下课时内容省略,可以根据需要自行完善)。
人教版初中九年级数学上册全册完整教案

人教版初中九年级数学上册全册教案第二十一章一元二次方程第1课时一元二次方程教学目标1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材P32 练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2- =0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.•练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业教材P34 习题22.1 1(2)(4)(6)、2.第2课时一元二次方程教学目标1.了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.2. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点1.重点:判定一个数是否是方程的根;2.难点:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:x 1 2 3 4 5 6 7 8 9 10 11 …x2-8x+20 …问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44x 1 2 3 4 5 6 …x2+7x …列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材P33 思考题练习1、2.四、应用拓展例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,•这块铁片应该怎样剪?设长为xcm,则宽为(x-5)cm列方程x(x-5)=150,即x2-5x-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:x 10 11 12 13 14 15 16 17 …x2-5x-150(3)你知道铁片的长x是多少吗?分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,•但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2)x 10 11 12 13 14 15 16 17 ……x2-5x-150 -100 -84 -66 -46 -24 0 26 54 ……(3)铁片长x=15cm五、归纳小结本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业1.P34 复习巩固3、4 综合运用5、6、7 拓广探索8、9.第3课时直接开平方法教学目标1.理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3= ,x+3=-所以,方程的两根x1=-3+ ,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.三、巩固练习教材P36 练习.补充题:如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?老师点评:问题2:设x秒后△PBQ的面积等于8cm2则PB=x,BQ=2x依题意,得:x•2x=8x2=8根据平方根的意义,得x=±2即x1=2 ,x2=-2可以验证,2 和-2 都是方程x•2x=8的两根,但是移动时间不能是负值.所以2 秒后△PBQ的面积等于8cm2.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+ )2=2.56,即(x+ )2=2.56x+ =±1.6,即x+ =1.6,x+ =-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p (p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解六、布置作业P45 复习巩固1、2.第4课时配方法教学目标1.理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.2.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p (p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9(4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x- =0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38 讨论改为课堂练习,并说明理由.教材P39 练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)= ××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材P45 复习巩固2.3(1)(2)第5课时配方法教学目标1.了解配方法的概念,掌握运用配方法解一元二次方程的步骤.2.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点1.重点:讲清配方法的解题步骤.2.难点:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P39 练习2.(3)、(4)、(5)、(6).四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4= (6x+7)+ ,x+1= (6x+7)- ,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4= y+ ,x+1= y-依题意,得:y2(y+ )(y- )=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72,y4-y2=72(y2- )2=y2- =±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=- ,x2=- 例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.五、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
最新九年级数学上册全册导学案人教版含答案名师优秀教案

最新九年级数学上册全册导学案人教版含答案名师优秀教案一、绪论数学是一门抽象而又实用的学科,它在现代社会中扮演着不可或缺的角色。
作为九年级学生,我们即将接触到数学上册的内容,本导学案旨在帮助同学们了解全册的内容安排,为学习做好准备。
二、知识回顾在开始新的学习之前,我们需要回顾一下九年级数学上学期的知识,以便更好地理解新的内容。
1. 整式与分式在九年级上学期,我们学习了整式与分式的基本概念、运算法则以及同类项和合并同类项的方法。
这些概念在本册的学习中会经常出现,建议同学们再次复习并掌握。
2. 一元一次方程与不等式九年级上学期,我们学习了一元一次方程与不等式的解法,包括等式的加减消元法、代入法等,以及不等式的图解法和解集表示法。
这些知识将在本册的学习中得到延伸与应用,需要同学们熟练掌握。
3. 数与式的应用在上学期,我们学习了数与式的应用,包括线性函数与应用、三角形的面积等。
这些内容在本册中也会涉及到,需要同学们掌握并能够灵活运用。
三、本册内容安排本册的内容安排如下:1. 第一章:有理数2. 第二章:代数式3. 第三章:方程与不等式4. 第四章:平面直角坐标系5. 第五章:数与式的应用6. 第六章:平面图形的变换7. 第七章:统计四、学习方法指导为了更好地学习数学,我们需要掌握一些学习方法。
以下是几点指导:1. 独立思考与解决问题数学是一门注重逻辑推理和解决问题的学科,我们要培养独立思考和解决问题的能力。
在学习过程中遇到难题时,可以先独立思考,尝试寻找解决方法,如果仍然困难,可以寻求帮助。
2. 多做习题与总结数学需要不断的练习与巩固,所以请同学们多做习题,并总结出解题的方法和技巧。
对于一些难点和易错点,可以做一些专项练习,以加深理解。
3. 合理时间规划与集中精力数学的学习需要一定的时间和精力,同学们需要合理规划学习时间,并保证学习时的安静与集中。
避免分散注意力,提高学习效果。
五、答案与教案获取本册的答案和教案可以通过多种渠道获取。
2024年人教版九年级数学上册教案及教学反思全册第22章22.1.2 二次函数的图象和性质教案

22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质一、教学目标【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.【过程与方法】通过画出简单的二次函数探索出二次函数y=ax2的性质及图象特征.【情感态度与价值观】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课1.你们喜欢打篮球吗?(出示课件2)2.你们知道投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?学生自主思考.(二)探索新知探究一:二次函数y=ax2的图象的画法出示课件4:画出二次函数y=x2的图象.学生分组画y=x2的图象,教师巡视,对于不正确的给予指导.⑴列表:在y=x2中自变量x可以是任意实数,列表表示几组对应值:⑵描点:根据表中x,y的数值在坐标平面中描点(x,y)(出示课件5)⑶连线:如图,再用平滑曲线顺次连接各点,就得到y=x2的图象.当取更多个点时,函数y=x 2的图象如下:(出示课件6)教师归纳:二次函数y=x 2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y 轴对称,y 轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.出示课件7:画出二次函数y=-x 2的图象.学生分组画y=-x 2的图象,教师巡视,对于不正确的给予指导.⑴列表:⑵描点:⑶连线:x …-3-2-10123…y =-x 2……探究二:二次函数y=ax2的图象性质出示课件8:教师问:根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=x2的图象是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点(0,0);5.图象有最低点.出示课件9:教师问:说说二次函数y=-x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=-x2的图象是一条抛物线;2.图象开口向下;3.图象关于y轴对称;4.顶点(0,0);5.图象有最高点.教师归纳:(出示课件10)二次函数y=ax2的图象性质:1.顶点都在原点(0,0);2.图像关于y轴对称;3.当a>0时,开口向上;当a<0时,开口向下.师生共同探究:观察下列图象,抛物线y=ax2与y=-ax2(a>0)的关系是什么?(出示课件11)教师强调:二次项系数互为相反数,开口相反,大小相同,它们关于x轴对称.探究三:二次函数y=ax2的性质出示课件12:观察图形,y随x的变化如何变化?教师归纳:(出示课件13)对于抛物线y=ax2(a>0),当x>0时,y随x取值的增大而增大;当x<0时,y随x取值的增大而减小.师生共同探究:观察图形,y随x的变化如何变化?(出示课件14)教师归纳:(出示课件15)对于抛物线y =ax 2(a<0)当x>0时,y 随x 取值的增大而减小;当x<0时,y 随x 取值的增大而增大.出示课件16:在同一直角坐标系中,画出函数221,22y x y x ==的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ...-4-3-2-101234 (212)y x =······x ···-2-1.5-1-0.500.51 1.52···22y x =······出示课件17:师生共同探究:二次函数2221,,22y x y x y x ===的图象开口大小与a 的大小有什么关系?教师归纳:当a>0时,a 越大,开口越小.出示课件18:在同一直角坐标系中,画出函数221,22y x y x =-=-的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ···-4-3-2-101234···212y x =-······x ···-2-1.5-1-0.500.51 1.52···22y x =-······出示课件19:师生共同探究:二次函数2221,,22y x y x y x =-=-=-的图象开口大小与a 的大小有什么关系?教师归纳:当a<0时,a 越小(即a 的绝对值越大),开口越小.对于抛物线y=ax 2,|a|越大,抛物线的开口越小.师生共同完善认知:(出示课件20)出示课件21:填一填:(1)函数y=4x2的图象的开口,对称轴是,顶点是;(2)函数y=-3x2的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑶函数32的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑷函数y=-0.2x2的图象的开口,对称轴是,顶点是.学生独立思考后,口答如下:⑴向上;y轴;(0,0)⑵向下;y轴;(0,0);高⑶向上;y轴;(0,0);低⑷向下;y轴;(0,0)出示课件22:例已知y=(m+1)x m2+m是二次函数,且其图象开口向上,求m的值和函数解析式.学生自主思考后,师生共同解答如下:解:依题意有:解②,得m 1=-2,m 2=1.由①,得m>-1.因此m=1.此时,二次函数为y=2x 2.出示课件23:已知24(2)kk y k x +-=+是二次函数,且当x>0时,y 随x 增大而增大,则k=.学生独立思考后,自主解答如下:解:24(2)k k y k x+-=+是二次函数,即二次项的系数不为0,x 的指数等于2.又因当x>0时,y 随x 增大而增大,即说明二次项的系数大于0.因此,24220k k k ⎧+-=⎨+⎩>,解得k=2.探究四:二次函数y =ax 2的实际应用出示课件24:师生共同认知:二次函数y=ax 2是刻画客观世界许多现象的一种重要模型.出示课件25:例已知正方形的周长为Ccm,面积为Scm 2,(1)求S 与C 之间的二次函数关系式;(2)画出它的图象;(3)根据图象,求出当S=1cm 2时,正方形的周长;(4)根据图象,求出C 取何值时,S≥4cm 2.学生独立思考后,师生共同解答.(出示课件26)解:(1)∵正方形的周长为Ccm,∴正方形的边长为4Ccm,∴S 与C 之间的关系式为S=216C ;(2)作图如图:(3)当S=1cm 2时,C 2=16,即C=4cm;(4)若S≥4cm 2,即216C ≥4,解得C≥8,或c≤-8(舍去),因此C ≥8cm.出示课件27:已知二次函数y=2x 2.(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1_____y 2;(填“>”“=”或“<”);(2)如图,此二次函数的图象经过点(0,0),长方形ABCD 的顶点A、B 在x 轴上,C、D 恰好在二次函数的图象上,B 点的横坐标为2,求图中阴影部分的面积之和.学生独立思考后,自主解答:(出示课件28)(2)解:∵二次函数y=2x2的图象经过点C,∴当x=2时,y=2×22=8.∵抛物线和长方形都是轴对称图形,且y轴为它们的对称轴,∴OA=OB,∴在长方形ABCD内,左边阴影部分面积等于右边空白部分面积,∴S阴影部分面积之和=2×8=16.教师总结如下:(出示课件29)二次函数y=ax2的图象关于y轴对称,因此左右两部分折叠可以重合,在二次函数比较大小中,我们根据图象中点具有的对称性转变到同一变化区域中(全部为升或全部为降),根据图象中函数值高低去比较;对于求不规则的图形面积,采用等面积割补法,将不规则图形转化为规则图形以方便求解.(三)课堂练习(出示课件30-34)1.已知抛物线y=ax2(a>0)过点A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>02.函数y=2x2的图象的开口,对称轴,顶点是;在对称轴的左侧,y随x的增大而,在对称轴的右侧,y 随x 的增大而.3.函数y=-3x 2的图象的开口,对称轴,顶点是;在对称轴的左侧,y 随x 的增大而,在对称轴的右侧,y 随x 的增大而.4.如图,观察函数y=(k-1)x 2的图象,则k 的取值范围是.5.说出下列抛物线的开口方向、对称轴和顶点:6.已知二次函数y=x 2,若x≥m 时,y 最小值为0,求实数m 的取值范围.开口方向对称轴顶点坐标23x y =23x y -=231x y =231x y -=7.已知:如图,直线y=3x+4与抛物线y=x 2交于A、B 两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积.参考答案:1.C2.向上;y 轴;(0,0);减小;增大3.向下;y 轴;(0,0);增大;减小4.k>15.6.解:在二次函数y=x 2中,a=1>0因此当x=0时,y 有最小值.∵当x≥m 时,y 最小值=0,∴m≤0.7.解:由题意得234,,y x y x =+⎧⎨=⎩开口方向对称轴顶点坐标23x y =向上y 轴(0,0)23x y -=向下y 轴(0,0)231x y =向上y 轴(0,0)231x y -=向下y 轴(0,0)解得4,1,16,1,x x y y ==-⎧⎧⎨⎨==⎩⎩或因此两函数的交点坐标为A(4,16)和B(-1,1).∵直线y=3x+4与y 轴相交于点C(0,4),即CO=4.两交点与原点所围成的三角形面积S △ABO =S △ACO +S △BOC .在△BOC 中,OC 边上的高就是B 点的横坐标值的绝对值1;在△ACO 中,OC 边上的高就是A 点的横坐标值的绝对值4.因此S △ABO =S △ACO +S △BOC =12×4×1+12×4×4=10.(四)课堂小结1.画二次函数y=ax 2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax 2的性质的?3.本节课你还存在哪些疑问?.(五)课前预习预习下节课(22.1.3第1课时)的相关内容.七、课后作业1.教材41页习题22.1第3,4题2.配套练习册内容八、板书设计:九、教学反思:本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.。
(完整word版)人教版九年级数学上册全册教案集新课标推荐,推荐文档

第22章 二次根式22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) 2)3(4(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,________)(2=a才有意义。
(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义? ①43-x③2、(1)若有意义,则a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
2024年新人教版九年级数学上册全册精彩课件.

2024年新人教版九年级数学上册全册精彩课件.一、教学内容1. 第一章:二次函数1.1 二次函数的概念与性质1.2 二次函数的图像与方程1.3 二次函数的应用2. 第二章:勾股定理与平方根2.1 勾股定理2.2 平方根2.3 勾股定理与平方根的应用3. 第三章:概率初步3.1 随机事件与概率3.2 概率的计算3.3 概率的应用二、教学目标1. 掌握二次函数、勾股定理、平方根和概率的基本概念与性质。
2. 学会运用二次函数、勾股定理、平方根和概率解决实际问题。
3. 培养学生的逻辑思维能力和数学应用能力。
三、教学难点与重点1. 教学难点:二次函数的性质、勾股定理的证明、概率的计算。
2. 教学重点:二次函数的应用、平方根的计算、概率的实际应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入:通过生活中的实例,引出二次函数、勾股定理、平方根和概率的概念。
2. 例题讲解:详细讲解教材中的例题,引导学生理解和掌握知识点。
3. 随堂练习:针对每个知识点,设计相应的练习题,让学生及时巩固所学内容。
六、板书设计1. 用大号字体书写课题名称,如“二次函数的应用”。
2. 内容:列出本节课的主要知识点,用不同颜色粉笔标出重点和难点。
七、作业设计1. 作业题目:第一章:求给定二次函数的最大值、最小值,并画出图像。
第二章:证明给定三角形的勾股定理,并计算其面积。
第三章:计算给定概率问题,如掷骰子、抽签等。
答案:见附件。
八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性的练习题,如研究二次函数的性质、探索勾股定理的推广等,激发学生的兴趣和求知欲。
通过本课件的教学,希望学生能掌握九年级数学上册的核心知识点,提高数学素养和应用能力,为今后的学习打下坚实基础。
重点和难点解析1. 教学内容的详细性与针对性2. 教学目标的具体性与实用性3. 教学难点与重点的识别与处理4. 教学过程中的实践情景引入与随堂练习设计5. 板书设计的清晰性与结构性6. 作业设计的层次性与拓展性7. 课后反思与拓展延伸的实际操作一、教学内容的详细性与针对性教学内容的选择应紧密结合教材章节,确保覆盖所有核心知识点。
【人教版】九年级数学上册全册教案(精选)

【人教版】九年级数学上册全册教案(精选)第二十一章一元二次方程21.1一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.A.0B.1C.2D.3活动2探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是 2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p 转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5 解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程:(1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略.三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q <0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx +c =0(a ≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x 2=4 (2)(x -2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x 2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a(这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a)2 即(x +b 2a )2=b 2-4ac 4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2 直接开平方,得:x +b 2a =±b 2-4ac 2a即x =-b±b 2-4ac 2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac 2a就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x(3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x -2)(3x -5)=0三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11.21.2.4一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析、观察、归纳的能力和推理论证的能力.3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=c a(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0(2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x= 3(5)x2-1=0 (6)x2-2x+1=0例2不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3实际问题与一元二次方程(2课时)第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x +1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案

25.1随机事件与概率25.1.2概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所以我们可以用15表示每一个数字被抽到的可能性大小.出示课件7:活动2掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每一种点数出现的可能性大小.教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1. 5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1. 6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1. 2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1. 5出示课件14,15:教师归纳:一般地,如果一个试验有n 个可能的结果,并且它们发生的可能性都相等.事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m p A n=事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A 为必然事件时,P(A)=1,当A 为不可能事件时,P(A)=0.出示课件16:例1任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=63.教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1 6;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1 2;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1 3.出示课件19:例2袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)=;P(摸到白球)=;P(摸到黄球)=.学生独立思考后口答:19;1 3;59.出示课件21:例3如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=3 7;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5 7 ;(3)不指向红色有4种等可能的结果,P(不指向红色)=4. 7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是3 8;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772;由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P(小红胜)=9π4π59π9-=,P(小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为3 8 .你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.16解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.14;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=1 10 .7.解:⑴P(数字3)=1 7;⑵P(数字1)=2 7;⑶P(数字为奇数)=4 7.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:().mP An(0≤P(A)≤1)九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案

24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
最新九年级数学上册全册导学案(人教版含答案)名师优秀教案

九年级数学上册全册导学案(人教版含答案)---------------------------------------------------------------精品范文 ------------------------------------------------------------- 九年级数学上册全册导学案(人教版含答案) 本资料为WoRD文档,请点击下载地址下载全文下载地址第二十一章一元二次方程21(1 一元二次方程1.了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题(2(掌握一元二次方程的一般形式ax2,bx,c,0(a?0)及有关概念( 3(会进行简单的一元二次方程的试解;理解方程解的概念(重点:一元二次方程的概念及其一般形式;一元二次方程解的探索( 难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项(一、自学指导((10分钟)问题1:如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒(如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形,1 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 分析:设切去的正方形的边长为xcm,则盒底的长为__(100,2x)cm__,宽为__(50,2x)cm__(列方程__(100,2x)•(50,2x),3600__,化简整理,得__x2,75x,350,0__(?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场(根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛,分析:全部比赛的场数为__4×7,28__(设应邀请x个队参赛,每个队要与其他__(x,1)__个队各赛1场,所以全部比赛共x(x,1)2__场(列方程__x(x,1)2,28__,化简整理,得__x2,x,56,0__(?探究:(1)方程??中未知数的个数各是多少,__1个__((2)它们最高次数分别是几次,__2次__(归纳:方程??的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程( 1(一元二次方程的定义等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程( 2(一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式: ax2,bx,c,0(a?0)(2 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 这种形式叫做一元二次方程的一般形式(其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项( 点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号(二次项系数a?0是一个重要条件,不能漏掉(二、自学检测:学生自主完成,小组内展示,点评,教师巡视((6分钟)1(判断下列方程,哪些是一元二次方程,(1)x3,2x2,5,0; (2)x2,1;(3)5x2,2x,14,x2,2x,35;(4)2(x,1)2,3(x,1);(5)x2,2x,x2,1;(6)ax2,bx,c,0.解:(2)(3)(4)(点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程(2(将方程3x(x,1),5(x,2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项(解:去括号,得3x2,3x,5x,10.移项,合并同类项,得3x2,8x,10,0.其中二次项系数是3,一次项系数是,8,常数项是,10. 点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整(3 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((8分钟)1(求证:关于x的方程(m2,8m,17)x2,2mx,1,0,无论m取何值,该方程都是一元二次方程(证明:m2,8m,17,(m,4)2,1,?(m,4)2?0,?(m,4)2,1>0,即(m,4)2,1?0.?无论m取何值,该方程都是一元二次方程(点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2,8m,17?0即可(2(下面哪些数是方程2x2,10x,12,0的根,,4,,3,,2,,1,0,1,2,3,4.解:将上面的这些数代入后,只有,2和,3满足等式,所以x,,2或x,,3是一元二次方程2x2,10x,12,0的两根( 点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可(二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路((9分钟)1(判断下列方程是否为一元二次方程((1)1,x2,0;(2)2(x2,1),3y;(3)2x2,3x,1,0;(4)1x2,2x,0;4 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------(5)(x,3)2,(x,3)2;(6)9x2,5,4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是(2(若x,2是方程ax2,4x,5,0的一个根,求a的值( 解:?x,2是方程ax2,4x,5,0的一个根,?4a,8,5,0,解得a,,34.3(根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x; (2)一个长方形的长比宽多2,面积是100,求长方形的长x. 解:(1)4x2,25,4x2,25,0;(2)x(x,2),100,x2,2x,100,0. 学生总结本堂课的收获与困惑((2分钟) 1(一元二次方程的概念以及怎样利用概念判断一元二次方程( 2(一元二次方程的一般形式ax2,bx,c,0(a?0),特别强调a?0. 3(要会判断一个数是否是一元二次方程的根(学习至此,请使用本课时对应训练部分((10分钟)21(2 解一元二次方程21(2.1 配方法(1)1.使学生会用直接开平方法解一元二次方程(2.渗透转化思想,掌握一些转化的技能(5 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 重点:运用开平方法解形如(x,m)2,n(n?0)的方程;领会降次——转化的数学思想(难点:通过根据平方根的意义解形如x2,n(n?0)的方程,知识迁移到根据平方根的意义解形如(x,m)2,n(n?0)的方程(一、自学指导((10分钟)问题1:一桶某种油漆可刷的面积为1500dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗, 设正方体的棱长为xdm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2,1500__,由此可得__x2,25__,根据平方根的意义,得x,__?5__,即x1,__5__,x2,__,5__(可以验证__5__和,5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x,1)2,5及方程x2,6x,9,4?方程(2x,1)2,5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x,1,?5__,即将方程变为__2x6 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- ,1,5和__2x,1,,5__两个一元一次方程,从而得到方程(2x,1)2,5的两个解为x1,__1,52,x2,__1,52__(在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了(方程x2,6x,9,4的左边是完全平方式,这个方程可以化成(x,__3__)2,4,进行降次,得到__x,3,?2__,方程的根为x1,__,1__,x2,__,5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程(如果方程能化成x2,p(p?0)或(mx,n)2,p(p?0)的形式,那么可得x,?p或mx,n,?p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视((6分钟)解下列方程:(1)2y2,8; (2)2(x,8)2,50;(3)(2x,1)2,4,0;(4)4x2,4x,1,0.解:(1)2y2,8, (2)2(x,8)2,50,y2,4, (x,8)2,25,y,?2, x,8,?5,?y1,2,y2,,2; x,8,5或x,8,,5,?x1,13,x2,3;(3)(2x,1)2,4,0, (4)4x2,4x,1,0,(2x,1)2,,4<0, (2x,1)2,0,7 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- ?原方程无解; 2x,1,0,?x1,x2,12.点拨精讲:观察以上各个方程能否化成x2,p(p?0)或(mx,n)2,p(p?0)的形式,若能,则可运用直接开平方法解(一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((8分钟)1(用直接开平方法解下列方程:(1)(3x,1)2,7;(2)y2,2y,1,24;(3)9n2,24n,16,11.解:(1),1?73;(2),1?26;(3)4?113.点拨精讲:运用开平方法解形如(mx,n)2,p(p?0)的方程时,最容易出错的是漏掉负根(2(已知关于x的方程x2,(a2,1)x,3,0的一个根是1,求a的值( 解:?1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路((9分钟)用直接开平方法解下列方程:(1)3(x,1)2,6,0;(2)x2,4x,4,5;(3)9x2,6x,1,4;(4)36x2,1,0;(5)4x2,81;(6)(x,5)2,25;(7)x2,2x,1,4.8 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 解:(1)x1,1,2,x2,1,2;(2)x1,2,5,x2,2,5;(3)x1,,1,x2,13;(4)x1,16,x2,,16;(5)x1,92,x2,,92;(6)x1,0,x2,,10;(7)x1,1,x2,,3.学生总结本堂课的收获与困惑((2分钟)1(用直接开平方法解一元二次方程(2(理解“降次”思想(3(理解x2,p(p?0)或(mx,n)2,p(p?0)中,为什么p?0? 学习至此,请使用本课时对应训练部分((10分钟)21(2.1 配方法(2)1(会用配方法解数字系数的一元二次方程(2(掌握配方法和推导过程,能使用配方法解一元二次方程(重点:掌握配方法解一元二次方程(难点:把一元二次方程转化为形如(x,a)2,b的过程( (2分钟)1(填空:(1)x2,8x,__16__,(x,__4__)2;9 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------(2)9x2,12x,__4__,(3x,__2__)2;(3)x2,px,__(p2)2__,(x,__p2__)2.2(若4x2,mx,9是一个完全平方式,那么m的值是__?12__(一、自学指导((10分钟)问题1:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少米,设场地的宽为xm,则长为__(x,6)__m,根据矩形面积为16m2,得到方程__x(x,6),16__,整理得到__x2,6x,16,0__( 探究:怎样解方程x2,6x,16,0?对比这个方程与前面讨论过的方程x2,6x,9,4,可以发现方程x2,6x,9,4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2,6x,16,0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗, 解:移项,得x2,6x,16,两边都加上__9__即__(62)2__,使左边配成x2,bx,(b2)2的形式,得__x2__,6__x__,9,16,__9__,左边写成平方形式,得__(x,3)2,25__,开平方,得10 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- __x,3,?5__, (降次)即__x,3,5__或__x,3,,5__,解一次方程,得x1,__2__,x2,__,8__(归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程(问题2:解下列方程:(1)3x2,1,5; (2)4(x,1)2,9,0;(3)4x2,16x,16,9.解:(1)x,?2;(2)x1,,12,x2,52;(3)x1,,72,x2,,12.归纳:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax2,bx,c,0;(2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解(二、自学检测:学生自主完成,小组内展示,点评,教师巡视((8分钟)1(填空:(1)x2,6x,__9__,(x,__3__)2;11 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------(2)x2,x,__14__,(x,__12__)2;(3)4x2,4x,__1__,(2x,__1__)2. 2(解下列方程:(1)x2,6x,5,0;(2)2x2,6x,2,0;(3)(1,x)2,2(1,x),4,0.解:(1)移项,得x2,6x,,5,配方得x2,6x,32,,5,32,(x,3)2,4,由此可得x,3,?2,即x1,,1,x2,,5. (2)移项,得2x2,6x,,2,二次项系数化为1,得x2,3x,,1,配方得x2,3x,(32)2,(x,32)2,54,由此可得x,32,?52,即x1,52,32,x2,,52,32.(3)去括号,整理得x2,4x,1,0,移项得x2,4x,1,配方得(x,2)2,5,x,2,?5,即x1,5,2,x2,,5,2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式(一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((5分钟)12 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------如图,在Rt?ABc中,?c,90?,Ac,8m,cB,6m,点P,Q同时由A,B两点出发分别沿Ac,Bc方向向点c匀速移动,它们的速度都是1m/s,几秒后?PcQ的面积为Rt?ABc面积的一半,解:设x秒后?PcQ的面积为Rt?ABc面积的一半(根据题意可列方程:12(8,x)(6,x),12×12×8×6,即x2,14x,24,0,(x,7)2,25,x,7,?5,?x1,12,x2,2,x1,12,x2,2都是原方程的根,但x1,12不合题意,舍去( 答:2秒后?PcQ的面积为Rt?ABc面积的一半(点拨精讲:设x秒后?PcQ的面积为Rt?ABc面积的一半,?PcQ也是直角三角形(根据已知条件列出等式(二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路((8分钟)1(用配方法解下列关于x的方程:(1)2x2,4x,8,0; (2)x2,4x,2,0;(3)x2,12x,1,0;(4)2x2,2,5.解:(1)x1,1,5,x2,1,5;(2)x1,2,2,x2,2,2;13 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------(3)x1,14,174,x2,14,174;(4)x1,62,x2,,62.2(如果x2,4x,y2,6y,z,2,13,0,求(xy)z的值( 解:由已知方程得x2,4x,4,y2,6y,9,z,2,0,即(x,2)2,(y,3)2,z,2,0,?x,2,y,,3,z,,2.?(xy)z,[2×(,3)],2,136.学生总结本堂课的收获与困惑((2分钟)1(用配方法解一元二次方程的步骤(2(用配方法解一元二次方程的注意事项(学习至此,请使用本课时对应训练部分((10分钟)21(2.2 公式法1.理解一元二次方程求根公式的推导过程,了解公式法的概念(2.会熟练应用公式法解一元二次方程(重点:求根公式的推导和公式法的应用(难点:一元二次方程求根公式的推导((2分钟)用配方法解方程:(1)x2,3x,2,0; (2)2x2,3x,5,0.解:(1)x1,,2,x2,,1; (2)无解(14 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------一、自学指导((8分钟)问题:如果这个一元二次方程是一般形式ax2,bx,c,0(a?0),你能否用上面配方法的步骤求出它们的两根,问题:已知ax2,bx,c,0(a?0),试推导它的两个根x1,,b,b2,4ac2a,x2,,b,b2,4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去( 探究:一元二次方程ax2,bx,c,0(a?0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2,bx,c,0,当b2,4ac?0时,将a,b,c代入式子x,,b?b2,4ac2a就得到方程的根,当b2,4ac,0时,方程没有实数根((2)x,,b?b2,4ac2a叫做一元二次方程ax2,bx,c,0(a?0)的求根公式((3)利用求根公式解一元二次方程的方法叫做公式法( (4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根((5)一般地,式子b2,4ac叫做方程ax2,bx,c,0(a?0)的根的判别式,通常用希腊字母Δ表示,即Δ,b2,4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视((5分钟)15 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 用公式法解下列方程,根据方程根的情况你有什么结论, (1)2x2,3x,0;(2)3x2,23x,1,0;(3)4x2,x,1,0.解:(1)x1,0,x2,32;有两个不相等的实数根;(2)x1,x2,33;有两个相等的实数根;(3)无实数根(点拨精讲:Δ,0时,有两个不相等的实数根;Δ,0时,有两个相等的实数根;Δ,0时,没有实数根(一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((8分钟)1(方程x2,4x,4,0的根的情况是( B )A(有两个不相等的实数根B(有两个相等的实数根c(有一个实数根D(没有实数根2(当m为何值时,方程(m,1)x2,(2m,3)x,m,1,0, (1)有两个不相等的实数根,(2)有两个相等的实数根,(3)没有实数根,解:(1)m,14; (2)m,14; (3)m,14.3.已知x2,2x,m,1没有实数根,求证:x2,mx,1,2m必有两个16 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 不相等的实数根.证明:?x2,2x,m,1,0没有实数根, ?4,4(1,m),0,?m,0.对于方程x2,mx,1,2m,即x2,mx,2m,1,0,Δ,m2,8m,4,?m,0,?Δ,0,?x2,mx,1,2m必有两个不相等的实数根( 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路((10分钟)1(利用判别式判定下列方程的根的情况: (1)2x2,3x,32,0;(2)16x2,24x,9,0;(3)x2,42x,9,0;(4)3x2,10x,2x2,8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根(2(用公式法解下列方程:(1)x2,x,12,0; (2)x2,2x,14,0; (3)x2,4x,8,2x,11; (4)x(x,4),2,8x; (5)x2,2x,0; (6)x2,25x,10,0. 解:(1)x1,3,x2,,4;(2)x1,2,32,x2,2,32;(3)x1,1,x2,,3;17 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------(4)x1,,2,6,x2,,2,6;(5)x1,0,x2,,2;(6)无实数根(点拨精讲:(1)一元二次方程ax2,bx,c,0(a?0)的根是由一元二次方程的系数a,b,c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2,4ac?0的前提下,把a,b,c的值代入x,,b?b2,4ac2a(b2,4ac?0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根( 学生总结本堂课的收获与困惑((2分钟)1.求根公式的推导过程(2.用公式法解一元二次方程的一般步骤:先确定a,b,c的值,再算出b2,4ac 的值、最后代入求根公式求解(3.用判别式判定一元二次方程根的情况(学习至此,请使用本课时对应训练部分((10分钟)21(2.3 因式分解法1.会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程(2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性(重点:用因式分解法解一元二次方程(18 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 难点:理解因式分解法解一元二次方程的基本思想((2分钟)将下列各题因式分解:(1)am,bm,cm,(__a,b,c__)m;(2)a2,b2,__(a,b)(a,b)__;(3)a2?2ab,b2,__(a?b)2__(一、自学指导((8分钟)问题:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过xs物体离地的高度(单位:m)为10x,4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗,(精确到0.01s) 设物体经过xs落回地面,这时它离地面的高度为0,即10x,4.9x2,0, ?思考:除配方法或公式法以外,能否找到更简单的方法解方程?, 分析:方程?的右边为0,左边可以因式分解得:x(10,4.9x),0,于是得x,0或10,4.9x,0, ??x1,__0__,x2?2.04(上述解中,x2?2.04表示物体约在2.04s时落回地面,而x1,0表示物体被上抛离开地面的时刻,即0s时物体被抛出,此刻物体的高度是0m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方19 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法( (2)如果a•b,0,那么a,0或b,0,这是因式分解法的根据(如:如果(x,1)(x,1),0,那么__x,1,0或__x,1,0__,即__x,,1__或__x,1(二、自学检测:学生自主完成,小组内展示,点评,教师巡视((5分钟)1(说出下列方程的根:(1)x(x,8),0; (2)(3x,1)(2x,5),0.解:(1)x1,0,x2,8; (2)x1,,13,x2,52.2(用因式分解法解下列方程:(1)x2,4x,0;(2)4x2,49,0;(3)5x2,20x,20,0.解:(1)x1,0,x2,4;(2)x1,72,x2,,72;(3)x1,x2,2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((8分钟)1(用因式分解法解下列方程:(1)5x2,4x,0; (2)3x(2x,1),4x,2;(3)(x,5)2,3x,15.解:(1)x1,0,x2,45;20 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------(2)x1,23,x2,,12;(3)x1,,5,x2,,2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式(2(用因式分解法解下列方程:(1)4x2,144,0;(2)(2x,1)2,(3,x)2;(3)5x2,2x,14,x2,2x,34;(4)3x2,12x,,12.解:(1)x1,6,x2,,6;(2)x1,43,x2,,2;(3)x1,12,x2,,12;(4)x1,x2,2.点拨精讲:注意本例中的方程可以试用多种方法( 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路((10分钟)1(用因式分解法解下列方程:(1)x2,x,0;(2)x2,23x,0;(3)3x2,6x,,3;(4)4x2,121,0;(5)(x,4)2,(5,2x)2.解:(1)x1,0,x2,,1;(2)x1,0,x2,23;21 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------(3)x1,x2,1;(4)x1,112,x2,,112;(5)x1,3,x2,1.点拨精讲:因式分解法解一元二次方程的一般步骤: (1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解( 2(把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径(解:设小圆形场地的半径为xm.则可列方程2πx2,π(x,5)2.解得x1,5,52,x2,5,52(舍去)(答:小圆形场地的半径为(5,52)m.学生总结本堂课的收获与困惑((2分钟)1(用因式分解法解方程的根据由ab,0得a,0或b,0,即“二次降为一次”( 2(正确的因式分解是解题的关键(学习至此,请使用本课时对应训练部分((10分钟)21(2.4 一元二次方程的根与系数的关系1.理解并掌握根与系数的关系:x1,x2,,ba,x1x2,ca.22 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------2.会用根的判别式及根与系数的关系解题(重点:一元二次方程的根与系数的关系及运用( 难点:一元二次方程的根与系数的关系及运用(一、自学指导((10分钟)自学1:完成下表:方程x1x2x1,x2x1x2x2,5x,6,02356x2,3x,10,02,5,3,10问题:你发现什么规律,?用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项( ?x2,px,q,0的两根x1,x2用式子表示你发现的规律. 答:x1,x2,,p,x1x2,q.自学2:完成下表:方程x1x2x1,x2x1x22x2,3x,2,02,1232,13x2,4x,1,01314323 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------13问题:上面发现的结论在这里成立吗,(不成立) 请完善规律:?用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比(?ax2,bx,c,0的两根x1,x2用式子表示你发现的规律( 答:x1,x2,,ba,x1x2,ca.自学3:利用求根公式推导根与系数的关系((韦达定理) ax2,bx,c,0的两根x1,__,b,b2,4ac2a__,x2,__,b,b2,4ac2a__(x1,x2,,ba,x1x2,ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视((5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积((1)x2,3x,1,0; (2)2x2,3x,5,0;(3)13x2,2x,0.解:(1)x1,x2,3,x1x2,,1;(2)x1,x2,,32,x1x2,,52;(3)x1,x2,6,x1x2,0.24 / 45---------------------------------------------------------------精品范文 -------------------------------------------------------------一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((10分钟)1(不解方程,求下列方程的两根之和与两根之积((1)x2,6x,15,0;(2)3x2,7x,9,0;(3)5x,1,4x2.解:(1)x1,x2,6,x1x2,,15;(2)x1,x2,,73,x1x2,,3;(3)x1,x2,54,x1x2,14.点拨精讲:先将方程化为一般形式,找对a,b,c. 2(已知方程2x2,kx,9,0的一个根是,3,求另一根及k的值( 解:另一根为32,k,3.点拨精讲:本题有两种解法,一种是根据根的定义,将x,,3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答( 3(已知α,β是方程x2,3x,5,0的两根,不解方程,求下列代数式的值((1)1α,1β; (2)α2,β2; (3)α,β.解:(1),35;(2)19;(3)29或,29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路((8分钟)1(不解方程,求下列方程的两根和与两根积:(1)x2,3x,15;(2)5x2,1,4x2;(3)x2,3x,2,10;(4)4x2,144,0.25 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 解:(1)x1,x2,3,x1x2,,15;(2)x1,x2,0,x1x2,,1;(3)x1,x2,3,x1x2,,8;(4)x1,x2,0,x1x2,,36.2(两根均为负数的一元二次方程是( c )A(7x2,12x,5,0B(6x2,13x,5,0c(4x2,21x,5,0D(x2,15x,8,0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数(学生总结本堂课的收获与困惑((2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值( 1(先化成一般形式,再确定a,b,c.2(当且仅当b2,4ac?0时,才能应用根与系数的关系(3(要注意比的符号:x1,x2,,ba(比前面有负号),x1x2,ca(比前面没有负号)( 学习至此,请使用本课时对应训练部分((10分钟)21(3 实际问题与一元二次方程(1)1(会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解(26 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 2(能根据问题的实际意义,检验所得结果是否合理( 3(进一步掌握列方程解应用题的步骤和关键(重点:列一元二次方程解决实际问题(难点:找出实际问题中的等量关系(一、自学指导((12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人,分析:?设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x,1)__人患了流感; ?第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x,1)(x,1)__人患了流感( 则列方程:__(x,1)2,121__,解得__x,10或x,,12(舍)__,即平均一个人传染了__10__个人(再思考:如果按照这样的传染速度,三轮后有多少人患流感, 问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数( 分析:设原来的两位数的个位数字为__x__,则十位数字为__(6,27 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- x)__,则原两位数为__10(6,x),x,新两位数为__10x,(6,x)__(依题意可列方程:[10(6,x),x][10x,(6,x)],1008__,解得x1,__2__,x2,__4__,?原来的两位数为24或42. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视((5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为( ) A(x(x,1),2550B(x(x,1),2550c(2x(x,1),2550D(x(x,1),2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x,1)张相片,全班共送出x(x,1)张相片,可列方程为x(x,1),2550.故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((8分钟)1(某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支, 解:设每个支干长出x个小分支,则有1,x,x2,91,28 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 即x2,x,90,0,解得x1,9,x2,,10(舍去),故每个支干长出9个小分支(点拨精讲:本例与传染问题的区别(2(一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2,(x,4)2,10(x,4),x,4__(二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路((7分钟)1(两个正数的差是2,它们的平方和是52,则这两个数是( c ) A(2和4 B(6和8 c(4和6 D(8和10 2(教材P21第2题、第3题学生总结本堂课的收获与困惑((3分钟)1(列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量; (2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题(2.对于数字问题应注意数字的位置(29 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 学习至此,请使用本课时对应训练部分((10分钟)21(3 实际问题与一元二次方程(2)1.会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解(2(能根据问题的实际意义,检验所得结果是否合理( 3(进一步掌握列方程解应用题的步骤和关键(重点:如何解决增长率与降低率问题(难点:理解增长率与降低率问题的公式a(1?x)n,b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量(一、自学指导((10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大,(精确到0.01) 绝对量:甲种药品成本的年平均下降额为(5000,3000)?2,1000(元),乙种药品成本的年平均下降额为(6000,3600)?2,1200(元),显然,乙种药品成本的年平均下降额较大( 相对量:从上面的绝对量的大小能否说明相对量的大小呢,也就是能30 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 否说明乙种药品成本的年平均下降率大呢,下面我们通过计算来说明这个问题( 分析:?设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1,x)__元,两年后甲种药品成本为__5000(1,x)2__元( 依题意,得__5000(1,x)2,3000__(解得__x1?0.23,x2?1.77__(根据实际意义,甲种药品成本的年平均下降率约为__0.23__( ?设乙种药品成本的年平均下降率为y.则,列方程:__6000(1,y)2,3600__(解得__y1?0.23,y2?1.77(舍)__(答:两种药品成本的年平均下降率__相同__(点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格(二、自学检测:学生自主完成,小组内展示,点评,教师巡视((8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少,【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1,x)__元,12月份的营业额为__5000(1,x)(1,x)__元,即__5000(1,x)2__元( 由此就可列方程:__5000(1,x)2,7200__(31 / 45---------------------------------------------------------------精品范文 ------------------------------------------------------------- 点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比(增长率,增长数?基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1,x);二月(或二年)后产量为a(1,x)2;n月(或n年)后产量为a(1,x)n;如果已知n月(n年)后产量为m,则有下面等式:m,a(1,x)n. 解这类问题一般多采用上面的等量关系列方程(一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果((8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率((利息税20%)。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的定义、解法(直接开平方法、配方法、公式法)、根的判别式、根与系数的关系、实际应用等。
2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式及不等式组的解法、不等式的应用等。
3. 第十五章:图形的相似详细内容:相似图形的定义、性质、判定方法、相似图形的应用等。
4. 第十六章:锐角三角函数详细内容:锐角三角函数的定义、互化公式、解直角三角形等。
二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、图形的相似、锐角三角函数等基础知识。
2. 能够运用所学知识解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法、相似图形的判定与性质、锐角三角函数的应用。
2. 教学重点:一元二次方程的解法、不等式的性质与解法、相似图形的判定与性质、锐角三角函数的定义与互化公式。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。
2. 学具:课本、练习本、铅笔、圆规、三角板等。
五、教学过程1. 导入:通过实际情景引入新课,激发学生兴趣。
2. 新课讲解:详细讲解各章节知识点,结合例题进行讲解。
3. 随堂练习:针对新课内容,设计有针对性的练习题,巩固所学知识。
5. 课后作业:布置适量的课后作业,巩固所学知识。
六、板书设计1. 一元二次方程的解法2. 不等式与不等式组的解法3. 相似图形的判定与性质4. 锐角三角函数的定义与互化公式七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。
(2)解不等式组:2x 3 > 4,x + 5 < 3。
(3)证明:若两个三角形相似,则它们的对应角相等。
(4)计算:sin30°、cos45°、tan60°。
2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案)23.2.2 中心对称图形教案

23.2中心对称23.2.2中心对称图形一、教学目标【知识与技能】了解中心对称图形的定义及其特征,体会中心对称和中心对称图形之间的联系和区别.【过程与方法】经历观察、思考、探究、发现的过程,感受中心对称图形的特征,培养学生的观察能力和动手操作能力.【情感态度与价值观】通过对中心对称图形的探究和认知,体验图形的变化规律,感受图形的变换的美感,享受学习数学的乐趣和积累一定的审美经验.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】中心对称图形的有关概念及其性质.【教学难点】中心对称图形和中心对称的区别和联系五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问1:有四种形状的图形,将其中一个形状旋转180度后,跟原来形状一样吗?(出示课件2)学生思考并仔细分析图形特征,然后相互交流.(二)探索新知探究一中心对称图形的概念出示课件4,观察下面图形:教师问:这些图形有什么共同的特征?学生答:都是旋转对称图形.教师问:这些图形的不同点在哪?分别绕旋转中心旋转了多少度?学生答:第一个图形的旋转角度为120°或240°,第二个图形的旋转角度为72°或144°或216°或288°.后两个图形的旋转角度都为180°,第二,三个是轴对称图形.后两个图形都是旋转180°后能与自身重合.出示课件5:将下面的图形绕O点旋转,你有什么发现学生观察并口答.学生1:都绕一点旋转了180度.学生2:都与原图形完全重合.教师总结:中心对称图形的概念(出示课件6)把一个图形绕着某一个点旋转180°后,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.图中_______是中心对称图形,对称中心是_____,点A的对称点是______,点D的对称点是______.出示课件7:教师问:平行四边形是中心对称图形吗?如果是,请找出它的对称中心,并设法验证你的结论.学生答:平行四边形是中心对称图形,对称中心是两条对角线的交点.教师问:根据上面的过程,你能验证平行四边形的哪些性质?学生答:能验证平行四边形的对边相等、对角相等、对角线互相平分等性质.出示课件8:下列图形中哪些是中心对称图形?⑴⑵⑶⑷学生观察后口答:⑴⑵⑶是,⑷不是.教师问:在生活中,有许多中心对称图形,你能举出一些例子吗?(出示课件9)出示课件10:例1(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取1个涂上阴影,使4个阴影小正方形组成一个既是轴对称图形,又是中心对称图形.学生观察后尝试解决,教师举例如下:出示课件11,12:巩固练习:1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.下列图形中,是中心对称图形,但不是轴对称图形的是()A.正方形B.矩形C.菱形D.平行四边形3.下列图形中,是轴对称图形但不是中心对称图形的是()4.在线段、等腰梯形、平行四边形、矩形、正六边形、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个学生思考后口答:1.D 2.D 3.A 4.C出示课件13:例2如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.师生共同解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE 关于点O成中心对称,由此图中阴影部分的三个三角形就可以转化到直角△ADC中,易得阴影部分的面积为3.出示课件14:巩固练习:如图,点O是平行四边形的对称中心,点A、C关于点O对称,有AO=CO,那么OE=OF吗?学生自主解答:解:∵平行四边形是中心对称图形,O是对称中心.EF经过点O,分别交AB、CD于E、F.∴点E、F是关于点O的对称点.∴OE=OF.探究二探究中心对称图形的性质教师问:如图,你能得到什么结论?(出示课件15)学生答:(1)中心对称图形的对称点连线都经过对称中心;(2)中心对称图形的对称点连线被对称中心平分.教师归纳:中心对称图形上的每一对对称点所连成的线段都被对称中心平分.出示课件16:教师问:如何寻找中心对称图形的对称中心?学生答:连接任意两对对应点,连线的交点就是对称中心.画一画:1.下图是中心对称图形的一部分及对称中心,请你补全它的另一部分.生观察后独立操作,教师加以指导,如图所示.出示课件17:2.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎么画?生观察后独立操作,教师加以指导,如图所示.教师归纳:过对称中心的直线可以把中心对称图形分成面积相等的两部分.出示课件18-20:例请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎样画?师生共同操作如下:教师归纳:对于这种由两个中心对称图形组成的复合图形,平分面积时,关键找到它们的对称中心,再过对称中心作直线.出示课件21:巩固练习:从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有()A.1张B.2张C.3张D.4张学生观察后口答:A出示课件22,23,24:小组合作,讨论观察发现两种对称图形的区别后完成表格1、2、3.1.对比旋转对称图形与中心对称图形的异同点.2.对比中心对称与中心对称图形的异同点.3.对比轴对称图形与中心对称图形的异同点.(三)课堂练习(出示课件25-30)1.下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个2.下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是()A B C D3.下列图形中既是轴对称图形又是中心对称图形的是()A.角B.等边三角形C.线段D.平行四边形4.观察图形,并回答下面的问题:①哪些只是轴对称图形?②哪些只是中心对称图形?③哪些既是轴对称图形,又是中心对称图形?5.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性.请问以下三个图形中是轴对称图形的有,是中心对称图形的有.6.图中网格中有一个四边形和两个三角形,(1)请你先画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度与自身重合?参考答案:1.C2.B3.C4.解:①⑶⑷⑹②⑴③⑵⑸5.①②③;①③6.解:⑴如图所示:⑵如图所示,对称轴有4条;整体图形至少旋转90°与自身重合.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.2.3)的相关内容.七、课后作业1.教材67页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:本课通过学习中心对称图形,进一步认识几何图形的本质特征,通过学习中心对称图形与中心对称的区别联系,中心对称图形与轴对称图形的区别,进一步发展学生抽象概括的能力.。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案

22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
人教版九年级数学上册讲义(全册)

人教版九年级数学上册讲义(全册)第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的;它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥0)是一个非负数;2=a(a≥0)(a≥0).(3a≥0;b≥0);a≥0;b>0)a≥0;b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题;让学生探讨、分析问题;师生共同归纳;得出概念.•再对概念的内涵进行分析;得出几个重要结论;并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律;用不完全归纳法得出二次根式的乘(除)法规定;•并运用规定进行计算.(3)利用逆向思维;•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果;抓住它们的共同特点;•给出最简二次根式的概念.利用最简二次根式的概念;来对相同的二次根式进行合并;达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神;经过探索二次根式的重要结论;二次根式的乘除规定;发展学生观察、分析、发现问题的能力.教学重点1a≥0a≥0)是一个非负数;2=a(a≥0)(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥02=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力;突出重点;突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力;•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时;具体分配如下:21.1 二次根式3课时21.2 二次根式的乘法3课时21.3 二次根式的加减3课时教学活动、习题课、小结2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题;根据问题给出概念;应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x;那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图;在直角三角形ABC中;AC=3;BC=1;∠C=90°;那么AB边的长是__________.BA问题3:甲射击6次;各次击中的环数如下:8、7、9、9、7、8;那么甲这次射击的方差是S2;那么S=_________.老师点评:问题1:横、纵坐标相等;即x=y;所以x2=3.因为点在第一象限;所以所以所求点的坐标).问题2:由勾股定理得问题3:由方差的概念得S= .二、探索新知、;都是一些正数的算术平方根.像这样一些正数的算术平方根的式子;我们就a≥0)•的式子叫做二次根式;”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:(略)例1.下列式子;哪些是二次根式;1xx>0)、、1x y+x ≥0;y •≥0).分析”;第二;被开方数是正数或0.(x>0)、x ≥0;y ≥0)1x、1x y +.例2.当x 在实数范围内有意义?分析:由二次根式的定义可知;被开方数一定要大于或等于0;所以3x-1≥0;才能有意义. 解:由3x-1≥0;得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.四、应用拓展例3.当x +11x +在实数范围内有意义?分析11x +0和11x +中的x+1≠0. 解:依题意;得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知;求xy的值.(答案:2)(2);求a 2004+b 2004的值.(答案:25)五、归纳小结(学生活动;老师点评) 本节课要掌握:1(a ≥0)的式子叫做二次根式; 2.要使二次根式在实数范围内有意义;必须满足被开方数是非负数.六、布置作业1.教材P 8复习巩固1、综合应用5.2.选用课时作业设计. 3.课后作业:《同步训练》第一课时作业设计一、选择题1.下列式子中;是二次根式的是()A.BCD.x2.下列式子中;不是二次根式的是()ABCD.1x3.已知一个正方形的面积是5;那么它的边长是()A.5 BC.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒;其高为0.2m;按设计需要;•底面应做成正方形;试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4;求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B二、1(a≥0)23.没有三、1.设底面边长为x;则0.2x2=1;解答:2.依题意得:230xx+≥⎧⎨≠⎩;32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0x2在实数范围内没有意义.3.1 34.B5.a=5;b=-421.1 二次根式(2)第二课时教学内容1a≥0)是一个非负数;2.2=a(a≥0).教学目标a ≥0)2=a (a ≥0);并利用它们进行计算和化简.(a ≥0)是一个非负数;用具体数据结合算术平2=a (a ≥0);最后运用结论严谨解题.教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•)2=a (a ≥0).教学过程一、复习引入(学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0 老师点评(略).二、探究新知议一议:(学生分组讨论;提问解答)(a ≥0)是一个什么数呢?2=_______;2=_______;2=______;)2=_______;2=______;2=_______;)2=_______.4的算术平方根;是一个平方等于4的非负数;因此有)2=4.同理可得:)2=2;2=9;;2=72;)2=0;所以 例1 计算1.2 2.(2 3.2 4.)2分析)2=a (a ≥0)的结论解题.解:2 =32;(2 =32·2=32·5=45;2=56;2=22724=. 三、巩固练习计算下列各式的值:2 2 (4)2)2 ()222-四、应用拓展例2 计算1.2(x ≥0) 2.2 3.24. 2 分析:(1)因为x ≥0;所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的42=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0;所以x+1>02=x+1(2)∵a 2≥02=a 2 (3)∵a 2+2a+1=(a+1)又∵(a+1)2≥0;∴a 2+2a+1≥0 2+2a+1 (4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3) 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9 例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略)五、归纳小结本节课应掌握:1a ≥0)是一个非负数;2.2=a (a ≥0);反之:a=2(a ≥0).六、布置作业1.教材P 8 复习巩固2.(1)、(2) P 9 7.2.选用课时作业设计. 3.课后作业:《同步训练》第二课时作业设计 一、选择题1 ). A .4 B .3 C .2 D .12.数a 没有算术平方根;则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0二、填空题1.()2=________.2_______数.三、综合提高题1.计算(1)2 (2)-2 (3)(12)2 (4)(- 2(5) 2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3=0;求x y 的值. 4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)2=9 (2)-)2=-3 (3)(12)2=14×6=32(4)(-2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=()(x )(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)((x )(3)略21.1 二次根式(3)第三课时教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0);并利用这个结论解决具体问题.教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1(a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么;我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________. (老师点评):根据算术平方根的意义;我们可以得到:110=23=037. 例1(1 (2 (3 (4分析:因为(1)9=-3;(2)(-4)2=42;(3)25=5;(4)(-3)2=32(a ≥0)•去化简.解:(1 (2(3 (4 三、巩固练习教材P 7练习2.四、应用拓展例2 填空:当a ≥0;当a<0;•并根据这一性质回答下列问题.(1;则a 可以是什么数?(2;则a 可以是什么数?(3;则a 可以是什么数?分析(a ≥0);∴要填第一个空格可以根据这个结论;第二空格就不行;应变形;使“( )2”中的数是正数;因为;当a ≤0-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析;逆向思想;(3)根据(1)、(2│a │;而│a │要大于a ;只有什么时候才能保证呢?a<0.解:(1;所以a ≥0;(2;所以a ≤0;(3)因为当a ≥0;;即使a>a 所以a 不存在;当a<0;;即使-a>a ;a<0综上;a<0例3当x>2 分析:(略)五、归纳小结(a ≥0)及其运用;同时理解当a<0a 的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0).AC.二、填空题1.=________.2m的最小值是________.三、综合提高题1.先化简再求值:当a=9时;求的值;甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中;_______的解答是错误的;错误的原因是__________.2.若│1995-a│;求a-19952的值.(提示:先由a-2000≥0;判断1995-a•的值是正数还是负数;去掉绝对值)3. 若-3≤x≤2时;试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0;•a•≥2000所以a-1=1995;a-2000=19952;所以a-19952=2000.3. 10-x21.2 二次根式的乘除第一课时教学内容a≥0;b≥0)(a≥0;b≥0)及其运用.教学目标a≥0;b≥0)(a≥0;b≥0);并利用它们进行计算和化简a≥0;b≥0)并运用它进行计算;•利用逆向思维;得(a≥0;b≥0)并运用它进行解题和化简.教学重难点关键a≥0;b≥0)(a≥0;b≥0)及它们的运用.(a≥0;b≥0).关键:a<0;b<0)a b;教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1;(2=_______.(3.参考上面的结果;用“>、<或=”填空.2.利用计算器计算填空(1;(2(3(4;(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式;•并且把这两个二次根式中的数相乘;作为等号另一边二次根式中的被开方数.反过来:例1.计算(1(2(3(4分析:a≥0;b≥0)计算即可.解:(1(2(3(4例2 化简(1(2(3(4(5(a≥0;b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4(5三、巩固练习(1)计算(学生练习;老师点评)①②×(2) 化简:;教材P11练习全部四、应用拓展例3.判断下列各式是否正确;不正确的请予以改正:(1(2=4解:(1)不正确.×3=6(2)不正确.=五、归纳小结本节课应掌握:(1=(a≥0;b≥0)(a≥0;b≥0)及其运用.六、布置作业1.课本P151;4;5;6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题1;•那么此直角三角形斜边长是().A.cm B.C.9cm D.27cm2.化简).A B. D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是().A..C.× D.×二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度;它的值为10m/s2);若物体下落的高度为720m;则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水;•现将一部分水例入一个底面为正方形、高为10cm 铁桶中;当铁桶装满水时;容器中的水面下降了20cm;铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==;……通过上述探究你能猜测出:(a>0);并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x;则x2×10=30×30×20;x2=30×30×2;2.验证:==21.2 二次根式的乘除第二课时教学内容a≥0;b>0)(a≥0;b>0)及利用它们进行计算和化简.a≥0;b>0(a≥0;b>0)及利用它们进行运算.教学重难点关键a≥0;b>0)(a≥0;b>0)及利用它们进行计算和化简.1教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1;=________;(2;(3=________.(43.利用计算器计算填空:(1=_________;(2=_________;(3=______;(4=________.;。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
人教版数学九年级上册教案【优秀7篇】

人教版数学九年级上册教案【优秀7篇】人教版数学九年级上册教案篇一一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
二、教材目标及要求:1、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。
2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。
进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。
3、勾股定理:会用勾股定理和逆定理解决实际问题。
4、四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。
5、数据描述。
三、教学措施:1、认真备课,做好教学规划。
一堂课,40分钟,要讲好并不容易,既要保证讲透所有的知识点,又要兼顾学生的接受能力,因此课前备课尤为重要,针对每一节内容,选择不同的讲课方式,特别是运用通俗易懂的实际用例,可以使学生更容易接受知识点,所以课前充分做好准备,每一步都要考虑周到。
2、重视改进教学方法,坚持启发互动式教育。
讲课前要安排学生进行预习,对将要学的内容有一个初步的了解,在讲课过程中,老师步步引导,以随问的方式讲解知识点和例题,观察学生的反应,随时了解到学生的接受情况,在针对理解不透彻的地方进行重点讲解,做到老师与学生的互动教学学习,提高效率,还能激发学生的学习兴趣。