第二章投影的基本知识

合集下载

第二章 投影的基本知识

第二章 投影的基本知识

Z W a'' O b'' Y
a ( b) YH
68
b' X O
b'' YW
X
A在B的正上方
H面重影,被挡 住的投影加( )
结论: ●X、Y分别相等,H面重影(H面投射线上),Z大可见。 正上(下)方 ●X、Z分别相等,V面重影(V面投射线上),Y大可见。 正前(后)方 ●Y、Z分别相等,W面重影(W面投射线上),X大可见。 正左(右)方
间点重合,另两个投影分别在投影轴上。
60
例3、根据点的坐标,作出点的三面投影, 并想像该点的空间位置。 A(15,10,20)
a'
Z aZ
a''
aX
X a
15
a YW
O a YH
YW
YH
61
B(20,15,0)
Z
X
b'
O
b''
YW
b Y
H
62
C(20,0,20)
c'
Z
c''
X
c
b' a' X b
b"
O
YW
a
YH
因此 点A位于点B左、前、下方。
67
两点重影
▲重影点要判别其可见性,不可见的投影用括号括起来,以示 ▲当空间两点的两对坐标相等时,两点处于同一投射线上,在 区别。 该投射线的投影面上的投影重合在一起,称为该投影面的重影 a'' 点。 a'
V
a' b' A B
H a(b)
X a′ A aX H a aZ

第2章 投影的基本知识

第2章 投影的基本知识
第 2章
投影的基本知识
本章学习目标
1.掌握投影的基本概念,了解投影 的种类。 2.掌握正投影的特性。 3.理解三面投影体系的建立,掌握 三面投影规律。
对工程图样的基本要求是能在一个平面上准确地表达物体的几何形状和大小。 园林工程中所用的图样都是按照一定的投影方法绘制出来的。
投影原 理 和 投 影方法是绘制投影图 的基础,只有掌握了 投影原理和投影方法, 才能绘制和识读各种 园林工程图样。 本章主 要 介 绍 正投影法的基本原理 和三面投影图的形成 及其基本画法。
图2-5
直线的正投影
图2-5
直线的正投影——立体图(1)
图2-5
直线的正投影——立体图(2)
图2-5
直线的正投影——直线的正投影
(3).平面的正投影特性
(1)当平面平行于投影面时,其投影仍为平面,且 反映实形。 (2)当平面垂直于投影面时,其投影积聚为一直线。 (3)当平面倾斜于投影面时,其投影仍为平面,但 其面积缩小。 (4)平面上一直线的投影,必在该平面的投影上。 (5)平面上一直线分该平面的面积之比等于其投影 所分面积之比。
(1)斜投影 投影线倾斜于投影面时所作出的平行 投影,称为斜投影。 (2)正投影 投影线垂直于投影面时所作出的平行 投影,称为正投影。
图2-2
正投影
图2-3
平行投影
图2-3
平行投影——斜投影
图2-3
平行投影——正投影
2.2 正投影的基本特性
一、点、线、面的正投影特性
(1).点的正投影特性
点的正投影仍为一点。
图2-6
平面的正投影
图2-6
平面的正投影——立体图(1)
图2-6
平面的正投影——立体图(2)

第二章 投影的基本知识

第二章 投影的基本知识

投影面平行线的投影图和投影特性见表2-1。
第 二 章 投 影 的 基 本 知 识
表2-1 投影面平行线的投影图和投影特性
第 二 章 投 影 的 基 本 知 识
(2)三面正投影图中的点、线、面符号 为了作图准确和便于校核,作图时可把所 画物体上的点、线、面用符号来标注(如图218所示)。 一般规定空间物体上的点用大写字母A、B、 C、D…或Ⅰ、Ⅱ、Ⅲ、Ⅳ…表示,面用P、Q、 R…表示。 点或面的投影用相应的小写字母表示。 直线不另注符号,用直线两端点的符号表 示,如AB直线的正面投影是a′b′。
第 二 章 投 影 的 基 本 知 识
从图中可以看出点的投影规律: (1)点的V面投影a′和H面投影a的连线垂直 于OX轴(aa′⊥ OX)。 (2)点的V面投影a′和W面投影a″的连线垂直于 OZ轴(a′a″⊥ OZ)。 (3)点的H面投影a到OX轴的距离等于点的W 面投影a″到OZ轴的距离( aax=a″az )。 由此可见,在点的三面正投影图中,任何两 个投影都有一定的联系,因此,只要给出一点的 任意两个投影,就可以求出其第三个投影。
2.1 投影的概念
2.2 基本几何元素的投影
2.3 点、直线及平面的投影
第 二 章 投 影 的 基 本 知 识
2.1 投影的概念 2.1.1 投影的形成与分类
1.投影的形成 影子与投影概念的区别: ( 1 )物体在光源的照射下会出现影子。如图 2-1(a)。 ( 2 )光源发出的光线,透过形体而将各个顶 点和各条侧棱都在平面 P上投落它们的影,这些 点和线的影将组成一个能够反映出形体各部分 形状的图形,这个图形称为形体的投影。如图21(b)。
第 二 章 投 影 的 基 本 知 识
(a)中心投影

投影的基本知识

投影的基本知识

第二章投影的基本知识一、投影概念在投影面上作出物体投影的方法,称为投影法。

二、投影的分类投影法分为两类:中心投影法和平行投影法。

.中心投影法所有投影线都相交于投影中心的投影方法。

平行投影法由互相平行的投影线在投影面上作出物体投影的方法。

按投影线与投影面是否垂直,可分为斜投影法和正投影法两种。

(1)斜投影法:投影线倾斜于投影面的平行投影法。

(2)正投影法:投影线垂直于投影面的平行投影法。

特点:其投影反映了物体的真实形状和大小,并且与物体到投影面的距离无关。

所以建筑图样一般均采用这种投影法绘制,所得的投影称为正投影,简称投影。

1、正投影法概念:投影线垂直于投影面的平行投影法。

2 、正投影的基本特性:1)真实性----平行于投影面的物体,投影反映实形;2)积聚性----垂直投影面的平面或直线,其投影积聚成直线或一点;3)类似性----物体上的平面与投影面倾斜时,其投影为缩小的类似形;4)从属性---- 直线或平面上的点,其投影仍在直线或平面的投影上。

真实性、积聚性、类似性和从属性是正投影的四个重要特性,在画图和读图中将经常用到,必须牢固掌握。

三、三面投影图1、三面投影图的形成我们将形体正放在三个互相垂直的投影面之间,并分别向三个投影面进行投影,就能得到该形体在三个投影面上的投影图,将这三个投影图结合起来观察,就能准确地反映出该形体的形状和大小。

这三个互相垂直的投影面分别为水平投影面(或称H面,用字母H表示)、正立投影面(或称V 面,用字母V表示)和侧立投影面(或称W面,用字母W表示)。

这三个投影面组合起来就构成了三面投影体系(三投影面体系)。

三个投影面两两相交构成的三条轴称为OX、OY、OZ轴,且OX⊥OY⊥OZ,三条轴的交点O称为原点。

形体在三个投影面上的投影分别称为水平投影、正面投影和侧面投影。

注:OX轴的正方向为水平向左,OY轴的正方向为正对观察者,OZ轴的正方向为铅直向上。

2、三面投影图的展开因为形体的三个投影分别在三个不共面的平面上,因此无法绘制在同一平面图纸上,为此,需将三个投影面进行展开,使其共面。

第二章 投影的基本知识

第二章 投影的基本知识

第二篇投影制图第二章投影的基本知识【学习目的】掌握正投影的基本原理,掌握三视图的形成及其投影规律,掌握点、线、面的投影特性。

【学习要点】投影的基本特性;物体的三视图的绘制;点、线、面的投影特性。

第一节投影方法一、投影的概念(一)投影法的概念在日常生活中,我们看到在太阳光或灯光照射物体时,在地面或墙壁上出现物体的影子,这就是一种投影现象。

投影法与自然投影现象类似,就是投影线通过物体向选定的投影面投射,并在该面上得到图形的方法,用投影法得到的图形称作投影图或投影,如图2-1所示。

图2-1 投影的产生产生投影时必须具备的三个基本条件是投影线、被投影的物体和投影面。

需要注意的是,生活中的影子和工程制图中的投影是有区别的,投影必须将物体的各个组成部分的轮廓全部表示出来,而影子只能表达物体的整体轮廓,并且内部为一个整体如图2-2所示。

(a)影子 (b)投影图2-2 投影与影子的区别二、 投影法分类根据投影线与投影面的相对位置的不同,投影法分为两种。

(一) 中心投影法投影线从一点出发,经过空间物体,在投影面上得到投影的方法(投影中心位于有限远处),如图2-3所示。

图2-3 中心投影法缺点:中心投影不能真实地反映物体的大小和形状,不适合用于绘制水利工程图样。

优点:中心投影法绘制的直观图立体感较强,适用于绘制水利工程建筑物的透视图。

(二) 平行投影法投影线相互平行经过空间物体,在投影面上得到投影的方法(投影中心位于无限远处),称为平行投影法。

平行投影法根据投影线与投影面的角度不同,又分为正投影法和斜投影法,如图2-4所示。

(a )为斜投影法,(b )为正投影法。

(b)(a)图2-4 平行投影法优点:正投影法能够表达物体的真实形状和大小,作图方法也较简单,所以广泛用于绘制工程图样。

正投影法斜投影法在以后的章节中,我们所讲述的投影都是指的正投影。

三、投影的特性(一)真实性平行于投影面的直线段或平面图形,在该投影面上的投影反映了该直线段或者平面图形的实长或实形,这种投影特性称为真实性,如图2-5所示。

投影的基本知识

投影的基本知识

3.类似收缩性 当直线或平面既不平行于投影面, 当直线或平面既不平行于投影面,又不平行于投 影线时,其投影小于实长或实形,但与原形类似。 影线时,其投影小于实长或实形,但与原形类似。 4.平行性 互相平行的两直线在同一投影面上的投影保持平 行。 5.从属性 若点在直线上,则点的投影必在直线的投影上。 若点在直线上,则点的投影必在直线的投影上。
6.定比性 直线上两线段长度之比等于该两线段投影的长度 之比。 之比。两平行线段的长度之比等于它们的投影长 度之比。 度之比规律
如图2-4所示是三个形状不同的物体, 如图 所示是三个形状不同的物体,它们在同一个 所示是三个形状不同的物体 投影面上的投影是相同的。 投影面上的投影是相同的。很明显若不附加其它说 仅凭这一个投影面上的投影, 明,仅凭这一个投影面上的投影,是不能表示物体 的形状和大小的。 的形状和大小的。
图2-1 中心投影法
2.平行投影法 2.平行投影法 投影线相互平行的投影法成为平行投影法, 投影线相互平行的投影法成为平行投影法,如 根据投射线与投影面的角度不同, 图2-2。根据投射线与投影面的角度不同,又 分为正投影法 斜投影法 正投影法与 分为正投影法与斜投影法。 (1)正投影法:投射线与投影面相垂直的平 正投影法: 行投影法( 行投影法(图a)。 正投影法是工程制图中广泛应用的方法。 正投影法是工程制图中广泛应用的方法。正投 影法是本课程研究的主要对象。 影法是本课程研究的主要对象。以后所说的投 如无特别说明均指正投影。 影,如无特别说明均指正投影。
在投影法中: 在投影法中: 向物体投射的光线,称为投影线; 向物体投射的光线,称为投影线; 投影线 出现影像的平面,称为投影面; 出现影像的平面,称为投影面; 投影面 所得影像的集合轮廓则称为投影或投影图。 所得影像的集合轮廓则称为投影或投影图。 投影

第二章 投影的基础知识

第二章 投影的基础知识
两点间的前后相对位置可由Y坐标确定,Y坐标大者在前。 两点间的上下相对位置可由Z坐标确定,Z坐标大者在上。 由两点间的坐标差,可以确定两点间的偏移距离,如以 A点为基准,则B点在A点的右方6 mm ,前方5 mm ,上方11 mm, 如图2-16(b)所示。
第二章 投影的基本知识
图2-16 两点间的相对位置
第二章 投影的基本知识
图2-5 类似性
第二章 投影的基本知识
2.2 物体的三面视图
图2-6 一个视图不能反映物体的形状
第二章 投影的基本知识 2.2.1 三视图的形成 1. 三投影面体系
互相垂直相交的三个投影面,称为三投影面体系,如图27所示。 它们分别是:
正立投影面:直立在观察者正对面的投影面,简称正面, 用字母V表示; 水平投影面:水平位置的投影面,简称水平面,用字母 H 表示; 侧立投影面:直立在右侧面的投影面,简称侧面,用字母 W表示。
上不画投影面的边框线和投影轴,如图2-8(d)所示。
第二章 投影的基本知识
2.2.2 三视图之间的对应关系
将投影面展开到一个平面上后,各视图必须有规则的配置, 并相互之间形成一定的对应关系,如图2-9 所示。
第二章 投影的基本知识 1.位置关系 以主视图为准,俯视图在主视图的正下方,左视图在主视 图的正右方。 画三视图时必须按以上的投影关系配置。
图2-10 保持宽相等的三种画法
第二章 投影的基本知识
例2-1
以图2-11 所示物体为例,说明画三视图的方法和
步骤, 如图2-12所示。
图2-11 轴测图
第二章 投影的基本知识
图2-12 三视图的画图步骤 (a) 选主视图, 画基准线; (b) 先从主视图画起; (c) 根据尺寸关系, 逐一画全三个视图; (d) 加深、 擦去作图线, 完成三视图

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影基本要求:建立投影的概念,掌握正投影的基本性质;掌握点线面的投影特性;根据投影能判断出点、线、面的关系。

主要内容:1、投影的基本知识;2、点的投影;3、直线的投影;4、平面的投影。

2.1 投影的基本知识一、内容:1、投影的基本概念;2、投影的类型;3、工程中常用的投影图。

二、要求及重点:要求掌握投影的基本概念;了解投影的类型、用途。

三、教学方式:通过实物及日常生活中的现象,使学生掌握投影的基本概念;了解投影的类型、用途。

2.1 投影的基本知识一、投影的概念1、在日常生活中,经常看到空间一个物体在光线照射下在某一平面产生影子的现象,抽象后的“影子”称为投影。

2、产生投影的光源称为投影中心S,接受投影的面称为投影面,连接投影中心和形体上的点的直线称为投影线。

形成投影线的方法称为投影法(图2-1)。

(a) (b)图2-1 中心投影法图2-2 平行投影法二、投影的类型投影法分为中心投影法和平行投影法两大类。

1、中心投影法光线由光源点发出,投射线成束线状。

投影的影子(图形)随光源的方向和距形体的距离而变化。

光源距形体越近,形体投影越大,它不反映形体的真实大小。

2、平行投影法光源在无限远处,投射线相互平行,投影大小与形体到光源的距离无关,如图2-2所示。

平行投影法又可根据投射线(方向)与投影面的方向(角度)分为斜投影(a)和正投影(b)两种。

(1)斜投影法:投射线相互平行,但与投影面倾斜,如图2-2(a)所示。

(2)正投影法:投射线相互平行且与投影面垂直,如图2-2(b)所示。

用正投影法得到的投影叫正投影。

三、工程上常用的投影图1、透视图用中心投影法将空间形体投射到单一投影面上得到的图形称为透视图,如图2-3。

透视图与人的视觉习惯相符,能体现近大远小的效果,所以形象逼真,具有丰富的立体感,但作图比较麻烦,且度量性差,常用于绘制建筑效果图。

图2-3 透视图图2-4 轴测图2、轴测图将空间形体正放用斜投影法画出的图或将空间形体斜放用正投影法画出的图称为轴测图。

第二章 投影的基本知识

第二章 投影的基本知识

长对正、高平齐、 长对正、高平齐、宽相等








上 左 后 右
前 右 下 后
左 前 下
左 下
后 前 左 上 右 前
V面投影图反映形体的上、下和左、右的情况,不反映前、后情况;H面投影图反 映形体的前、后和左、右的情况,不反映上、下情况;W面投影图反映形体的上、下 和前、后情况,不反映左、右情况。
投 射 线 方 向
90°
a c
b
3、斜投影法 、
投 射 线 方 向
a c
b
≠90°
2.1.2工程上常用的投影图 2.1.2工程上常用的投影图
• 1.多面正投影图 1.多面正投影图 • 2.轴测投影图 2.轴测投影图 • 3.标高投影图 3.标高投影图 • 4.透视投影图 4.透视投影图
(1)多面正投影
度量性、相仿性、积聚性、平行性、定比性
1.度量性
d c a b a b
c
2.相仿性
d a c b a b
Байду номын сангаас
c
3.积聚性
E
F M
a(c)(b)
d(a)
e
m
f
c(b)
4.平行性
a
c b d
a b
d c
f e
5.定比性 .
C B C A B a c b a c b (a) (b) d A D
(1) 直线上两线段长度之比等于两线段投影的长度之比 (2) 相互平行的两直线在同一投影面上的平行投影保持 平行.这种特性称为平行性。两平行线段的长度之比, 平行.这种特性称为平行性。两平行线段的长度之比,等 于它们的平行投影的长度之比。 于它们的平行投影的长度之比。

第2章 投影基本知识

第2章   投影基本知识

第2章 投影基本知识 图2–1 中心投影法
第2章 投影基本知识 图2–2 平行投影法
第2章 投影基本知识
2. 投影法的种类 1) 中心投影法 投影线交汇于一点的投影法称为中心投影法,如图 2–1所示。投影线的汇交点称为投影中心。 2) 平行投影法 投影线相互平行的投影法称为平行投影法。在平行 投影法中,又以投射线与投影面的相对位置不同分为正 投影法和斜投影法。
第2章 投影基本知识
例2.1 已知空间点A(20、10、15),试作它的三面 投影图。作图步骤:
(1) 如图2–12所示,在展开的三面投影体系中,由原 点O向左沿轴OX量取20 mm得ax,过ax作OX轴的垂线,在 垂线上自ax向前量取10 mm得水平投影a,向上量取15 mm 得正面投影a′。
(2) 过a′作OZ轴的垂线交OZ轴于az,在垂线上自az向 前量取10 mm得a″(a″也可由a通过作圆弧或45°斜线求 得)。则a、a′、a″即为A点的三面投影,可记为A(a、a′、 a″)。
第2章 投影基本知识 图2–18 判断点K是否在直线AB上
第2章 投影基本知识
3. 两直线的相对位置 两直线的相对位置有三种情况:平行、相交和交叉。 平行和相交的两直线均属于同一平面(共面)的直线, 而交叉两直线则不属于同一平面(异面)的直线。
ab=ABcosα, a′b′=ABcosβ, a″b″=ABcosγ
第2章 投影基本知识
2) 投影面平行线 直线在所平行的投影面上的投影反映实长和对另 两个投影面的真实倾角。 直线的另两个投影分别平行于相应的投影轴,且 均小于实长。 3) 投影面垂直线 2. 直线上的点 直线上的点有以下特性:
第2章 投影基本知识
(4) 布图、画底图。画作图基准线、定位线;画三 视图底图。从主视图画起,三个视图配合着画图。

第二章投影法基本知识

第二章投影法基本知识
真实性
积聚性:当一线段与投影面垂直时,其正投影积聚为一
点;当一平面图形与投影面垂直时,其正投影积聚为 一直线。
积聚性
类似性:当一线段与投影面倾斜时,其正投影为缩短
的线段; 当一平面图形与投影面倾斜时,其正投影 为缩小的类似图形。
类似性
§2-2 三视图的形成及其对应关系
根据国标规定,用正投影法绘制出物体的图形称为视图。 下图表示的是三个不同形体,在一个投影面上的视图却是完 全相同的。
1、主视图—从前向后投射,在V 面上所得的视图。
2、俯视图—从上向下投射,在H 面上所得的视图。
3、左视图—从左向右投射,在W 面上所得的视图。
三视图的形成
三投影面的展开
V面保持不动,H面绕OX轴向下旋转90°,W面绕 OZ轴向右旋转90°,这样V、H和W三个投影面就摊 平在了同一平面上。
水 平 投 影 面 和侧立投影 面旋转后,OY轴被分成两 条,分别用OYh和OYw 表 示 。
注意:
要细心,不要把点对错了。
§2-4 直线的投影
二、各种位置直线的投影
根据直线在三投影面体系中对投影面的相对位置不同,将
直线分为:
投影面平行线 投影面垂直线
特殊位置直线
投影面倾斜线
一般位置直线
1、一般位置直线 定义:与三个投影面均成倾斜的直线
直线与 H、V、W 投影面的倾角分别用 α、β、γ表示,见图 中的标注。
即 ac:cb=a'c':c'b'=a''c'':c''b''=k
例: 判断图中点是否在直线上。
作图分析: ⑴由于AB直线为一般位置。而给出 的C点的两投影分别在AB线的同面投 影上,故可认定C点从属于AB直线。

水利工程制图(高职)-第2章 投影的基本知识

水利工程制图(高职)-第2章 投影的基本知识

投影概念
投射线通过物体向选定的平面 投射,来自在该平面获得图形的 方法。在投影法中
光线——投影线 地面——投影面 影子——投影
投影法的分类
中心投影法-投影线从一点发出
投影法的分类
平行投影法-投影线相互平行,分以下2种
– 斜投影-投影线倾斜于投影面 – 正投影-投影线垂直于投影面
投影法小结
投影法
正视图-从前向后看得到的图形 俯视图-从上向下看得到的图形 左视图-从左向右看得到的图形
Tips:先轮廓后平行面、垂直面,最后倾斜面; 先整体后切割。
平面体三视图练习
四棱柱
简单体三视图
简单体三视图
第二章 投影的基本知识
第2章 投影的基本知识
2.1 投影概 念
2.2正投影法 的三个基本
特性
2.3 三视图 的形成
2.4 三视图 的画法
投影法概念
三视图的形 成
三视图的投 影规律
三视图与物 体位置的对
应关系
投影现象
物体在灯光或阳光下会产生影子,这种现象 就是投影。
人们在实践中对影子和物体之间的关系进行 分析并加以科学的抽象,逐步形成了投影的 方法。
三视图形成
将物体置于三投影面中,分别向各投影面 投影得到三视图。
正视图-从前向后投影 俯视图-从上向下投影 左视图-从左向右投影
投影面展开
投影面展开
三视图的投影规律
正视图与俯视图——长对正 正视图与左视图——高平齐 俯视图与左视图——宽相等
三视图画法
实际作三视图时,正对投影面看物体,画出看到的物 体轮廓
多面视图
单面视图不能唯一确定物体的形状。
工程上采用多 面视图来表达 物体,常用三 面视图,简称 三视图。

第二章 投影的基本知识

第二章 投影的基本知识
2 投影的基本知识
本章提要
本章主要介绍投影的概念与分类、 本章主要介绍投影的概念与分类、正投影 的特性、 的特性、三面投影体系的建立及形体在三面投 影体系中的投影规律以及形体在三面投影体系 中投影的作图方法。 中投影的作图方法。
本章内容
2.1 投影的概念、分类及其应用 投影的概念、 2.2 正投影的特性 2.3 三面投影图
图2.7 投影的显实性
2.2.2 积聚性
直线或平面与投影面垂直时,其投影积聚成点或 直线,如图2.8所示。这种性质称为正投影的积聚性。
图2.8 投影的积聚性
2.2.3 类似性
直线或平面与投影面倾斜时,直线的投影仍为 直线,但短于原直线的实长;平面的投影仍为平面, 但形状和大小都发生变化。如图2.9所示,当直线AB 或平面ABCD不平行于投影面时,其投影ab<AB; 平面ABCD的投影abcd仍为平面,但abcd不仅比平面 ABCD小,而且形状也发生了变化。这种性质称为正 投影的类似性。
已知A点的坐标值 例1:已知 点的坐标值 已知 点的坐标值A(12,10,15),求作 点的 , , ,求作A点的 三面投影图。 三面投影图。 Z 步骤: 步骤: a' a'' aZ
1、作投影轴; 、作投影轴; 2、量取: 、量取:
=12、 =15、 Oax=12、Oaz=15、OaYH=OaYW=10, X 得ax、az、OaYH、OaYW等点 ;
图2.16 三面投影图的规律
2.3.4 三面投影图的方位
形体在三面投影体系中的位置确定后,相对于 观察者,它的空间就有上、下、左、右、前、后六 个方位,如图2.17所示。 水平面上的投影反映形体的前、后、左、右关 系,正面投影反映形体的上、下、左、右关系,侧 面投影反映形体的上、下、前、后关系。

投影的基本知识

投影的基本知识
Y
它们的投影 有何特性?
立体上的投影面平行线
投影面平行线的投影: 水平线
a' b´ Z Z b" a" V a´ b´
X
b
O
YW
β
X Υ
b″ Υ O β b W a″
Υ a
β
YH
a H
水平线投影特性:
Y
(1)直线的水平投影反映直线的实长,且反映β、Υ角的实 形;
(2)直线的V投影(a´b´)平行OX轴,W投影(a″b ″) 平行OYW轴,均小于实长。
Z V a′ aZ W Z aZ
a〞
a′
a〞
X
aX a H
O
aY aY
YW
X
aX a
O
aY
aY
YW
YH
YH
点的三面投影特性:
1.点的正面投影和水平投影连线必垂直于OX轴,即aa′⊥OX轴。 2.点的正面投影和侧面投影连线必垂直于 OZ轴,即a′a″⊥OZ轴。 3.点的水平投影到OX轴的距离等于该点的侧面投影到OZ轴的距离,即aa X ⊥a″a Z 。
3.平行性
空间两条直线平行,则两平行直线的 投影一般仍平行。
AB∥CD=ab∥cd
4.定比性
点分直线所成的比例,等于点的投影分直线的投影所成的 比例。
AC/BC = ac/bc
5.积聚性
当直线平行于投射方向 时,直线的投 影为点;当平面平行于投射方向时,其投 影为直线。这一性质称为积聚性。
6.显实性(全等性)
O
Z
b′ b″ a″ c″
X
b″ c″ a″
O YW
c′ a′
a
c
b

建筑构造与识图(第二章投影的基本知识)

建筑构造与识图(第二章投影的基本知识)
三、平面的正投影规律
一.点的正投影及其规律
1、点的三面投影 2、点的投影与直角坐标的关系 3、两点的相对位置 4、识读点的投影图
1.点的三面投影
为了统一制图标准,规定空间点用大写字母表示,如A、 B、C等;水平投影用相应的小写字母表示,如a、b、c等;正 面投影用相应的小写字母加撇表示,如a′、b′、c′;侧面 投影用相应的小写字母加两撇表示,如a″、b″、c″。点的 投影用直径小于1mm 的小圆圈画出,点号写在投影的旁边。
2、工程制图投影的相关假设
(1)假定光线可以穿透物体(物体的面是透明的, 而物体的轮廓线是不透的); (2)规定在影子当中,光线直接照射到的轮廓线 画成实线,光线不能直接照射到的轮廓线画成虚 线; 则经过上述抽象由不同照射方向的光线照射得到 的“影子”即为工程图投影。如图1-2-1:
图1-2-1
5 . 三面投影图的画法
• 作形体投影图时, 先总体分析形体,选好主 视图的方向,使其主要平面与投影面平行;确 定比例、图幅大小;确定三视图的位置,先画 投影轴(互相垂直的两条线),水平投影面在 下方,正立投影面在水平投影面的正上方,侧 立投影面在正立投影面的正右方,然后画出定 位线、辅助线如图2.18所示。
思考
为什么采用正投 影法绘制工程图 样?
工程图样采用正投 影法绘制,使所绘 制图形既反应物体 的真实形状和大小, 又简单易画。
正投影法是本书讨论的重点,后 面将正投影法简称为投影。
第二节 正投影的基本特征 (一)显示性
当直线和平面垂直于投影面时,它们的投影分 别反映实形。
(二)类似性
当直线和平面垂直于投影面时,直线的投影比 实长短,平面的投影面积比实际面积小,但形状 仍与实形类似。
2 .点的投影与直角坐标的关系

第二章 投影法的基本知识

第二章 投影法的基本知识

3交叉两直线(相错)
d
b
d
1(2)
b
1(2)
B
a
a c
2
D
X
c
O
X A
a
O 1
2
b
C
c1
d
2
a
1
c
b d
凡不满足平行和相交条件的直线为交叉两直线。
在右图中,虽然ab∩cd =k,a′b′∩c′d′=k′,且 k′k⊥OX,但因AB是侧平 线,察看侧面投影,a″b″ 和c″d″虽然相交,但该交 点与k′的连线与Z轴不垂直, 故此两直线不相交。
例 过点A 作EF 线段的垂线AB。
b
f
e
X e b
a
O
a
f
2.5 平面的投影
一、平面的表示法
1. 几何元素表示平面 用几何元素表示平面有五种形式:
(1)不在一直线上的三个点; (2)一直线和直线外一点; (3)相交两直线; (4)平行两直线; (5)任意平面图形。 2.平面的迹线表示法
Aa, aax= Aa' 。
点的两面投影图 通常不画边界
2 三投影面体系的建立
Z V
X
OW
H Y
三投影面体系由V、H、W三个投影面构成。 H、V、W面将
空间分成八个分角,处在前、上、左侧的那个分角称为第 一分角。我们通常把物体放在第一分角中来研究。
点的三面投影图
Z
V a
V
Z
a
A
a
X
OWX
V SB
A
ab
YW
四、直线上的点
b
c
B
C
a
X
O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、三视图之间的关系 1、三视图的度量对应关系
主视图(V面) 左视图(W面)
俯视图(H面)
俯视图(H面)在主视图(V面)的正下方; 左视图(W面)在主视图(V面)的正右方,这种位置
关系,在一般情况下是不允许变动的。
思考一个问题: 物体的大小是由长、宽和高三个 方向的尺寸所决定的,三视图中的每 一个视图能反映几个方向尺寸?
(1)正投影法
S
投射线
投影中心
投影面 B
C
A
投影对象
D
b
c
(2)斜投影法
投影
a
dp
B
C
A
D
90°
b
c
a
d
斜投影法
斜投影法:平行的投 射线倾斜于投影面的 投影法。
正投影法:平行的投 射线垂直于投影面的 投影法。
正投影法
B
C
A
D
b
c
a
d
三、 正投影的基本性质
A
B投

A
B
C
方 向
b
a
AA B
B投


C
为什么俯视图和左视图会有宽 相等的对应关系?
2.三视图与物体方位的对应关系



右后



以主视图为

主,左、俯


视图中靠近 主视图的为

后面,远离
的为前面。 主视图——反映了形体的上、下、左、右方位关系;
俯视图——反映了形体的左、右、前、后方位关系;
左视图——反映了形体的上、下、前、后位置关系。
投影面的距离。
例2-5 已知点的两个投影,求第三投影。 解法一:
a●
az ●a
ax
通过作45°线使aaz=aax
a●
解法二:
a●
az
a

ax
用圆规直接量取aaz=aax a●
例2-6 已知点A的正面与侧面投影,求点A的水平投影。
Z
a
a
X
O
YW
a
YH
3. 点的投影与直角坐标的关系
A点的X坐标Xa=A点到W面的距离Aa " ,表示长度;
坐标相同时,将处于某一
e' (f ')
投影面的同一条投影线上,
则在该投影面上的投影相
重合,成为对该投影面的
重影点。 Z
X
e' (f ')
f"
e"
F E O
f
f"
W e"
X o
He
YW
Y
重影点的可见性需根据这两
f
个点不相同的坐标大小来判定。
e YH
YE < YF 故对面V ,E可见,F不可见。
二、 直线的三面投影
1.直线的投影特性
A B
A B
B A
b a
a (b)
b
a
(1)真实性:直线平 (2)积聚性:直线垂 (3)类似性:直线倾 行与投影面时,其 直与投影面时,其 斜于投影面时,其 投影等于实长; 投影积聚为一点。 投影小于实长;
Y1

Y2
Y2


线型
例2-2 画三视图
要注意宽相等
虚线 要画
例2-3 根据立体图补画出所缺的第三个视图
例2-4
画直角弯板轮廓的三视图
画方槽的三面投影 画右部切角的三面视图 整理、描深
切角
切槽
主视方向
2.3点、线、面的投影
一、点的投影
1.点的投影

V a'




X
Z 侧立投影面
A a"W
aO
A点的Y坐标Ya=A点到V面的距离Aa ' ,表示宽度;
A点的Z坐标Za=A点到H面的距离Aa,表示高度。
Z V
x a'
Z
a"
a' X
A
O a H
W a" X
a
Y
O
Yw
YH
例2-7 已知点A(30,10,20),求作它的 三面投影图。
Z
a'
a"
10
X
O
YW
30 a
YH
4 .两点的相对位置、重影点
每一个视图只能反映物体三个 方向尺寸中的两个尺寸。

主视图反映物体的长和高方向尺寸


俯视图反映物体的长和宽方向尺寸

左视图反映物体的宽和高方向尺寸








总体三等
局部三等
主、俯视图——长对正。 主、左视图——高平齐。
三等关系
俯、左视图——宽相等。
在上述三等关系中,初学者比较容 易理解和掌握主、俯视图的长对正和主、 左视图的高平齐关系。而在俯、左视图 的宽相等对应关系上出现一些 误会将视图画错。
第2章 投影的基本知识
本章学习目标
1.掌握正投影法的基本原理和基本性质。 2.掌握点、线、面在三投影面体系中的投影特 性。 3.掌握三视图的形成规律,并能运用正投影法 绘制简单立体的三视图。 4.掌握基本立体投影特性,能够读懂简单立体 的视图。 5.能识读和绘制简单立体的轴测图。
第2章 投影的基本知识
2.1 投影法概述 2.2 物体的三视图 2.3 点、线、面的投影 2.4 基本体的视图 2.5 基本体的轴测图
2.1 投影的概述
一、投影法:在工程图学中,用投射线通过物体,把物体
投射到特定的表面上而得到物体图形的方法称为投影法。
二、 投影法的分类
1. 中心投影法:投射 线汇交与一点的投 影法。
2. 平行投影法:投射 线相互平行的投影 法。
1. 两点的相对位置
空间两点的相对位置由两点 的坐标差来确定。
左、右位置由X坐标差
确定。XA>XB,点A在点B a' 的左方;
前、后位置由Y坐标差 X
确定;YA<YB,点A在点B
的后方;
a
上、下位置由Z坐标差 确定。ZA<ZB,点A在点B 的下方。
Z b'
a"
o
b YH
b" YW
2. 重影点
Z
当空间两点的某两个 V
水平投影面
H
Y
W面向右 后转90°
Z Z
a'
az W
a'
a"
ax
O
X
aYW X
a
aYH
H
Yw
a
YH
H面向下
后转90°
Z a"
O Yw
YH
2.点的三面投影规律 Z
Z
a'
a"
V
a'
X
O
Yw
A
W
a"
a
X
O
YH
点的三面投影规律:
a
H Y
(1) 点的两面投影的连线,必定垂直于投影轴。
(2) 点的投影到投影轴的距离,等于空间点到相应
四、 画三视图的方法与步骤
• 将物体自然放平,一般使主要表面与投影面平行或垂直, 进而确定主规律
• 可见轮廓线用粗实线绘制,不可见的轮廓线用虚线绘制, 当虚线与实线重合时画实线
• 特别应注意俯、左视图宽相等和前、后方位关系
例2-1 由物体的立体图画三视图
三根投影轴互相垂直, 其交点称为原点O。
O H
W Y
二、三视图的形成
1、视图:用正投影
法,将物体向投影面 投射所得到的图形。
2、三视图的形成
V
Z
W
(主视图)
(左视图)
X
0
YW
(俯视图)
H
YH
展开后的三视图
三视图
物体在V面上的正投影图称为主视图, 物体在H面上的正投 影图称为俯视图,物体在W面上的正投影图称为左视图.

b
ac
c
a(b)
a
b
(1)真实性 A
B
B
A
投 射

C

(2)积聚性
a
b
b
c
a
(3)类似性
2.2 物体的三视图
一、三投影面体系的建立:
V面:正立的投影面;
Z
H面:水平的投影面; V
W面:侧立的投影面;
X 轴 ——V 与 H 面 的 交 线,代表长度方向;
Y轴——H与W面的交
线,代表宽度方向;
X
Z 轴 ——V 与 W 面 的 交 线,代表高度方向;
相关文档
最新文档