2020年第四章 图形的相似单元测试(含答案) (1)

合集下载

精品北师大版2019-2020九年级数学上册第四章图形的相似单元检测卷答案解析

精品北师大版2019-2020九年级数学上册第四章图形的相似单元检测卷答案解析

第四章 图形的相似单元检测卷一、选择题(每题3分,共30分)1.已知7x =9y(y ≠0),那么下列比例式中正确的是( )A.7x =9y B.9x =7yC.y x =97D.7x=y 92.下列各组图形中有可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形3.如图,直线a ,b ,c 被直线l 1,l 2所截,交点分别为点A ,C ,E 和点B ,D ,F .已知a ∥b∥c ,且AC =3,CE =4,则BDBF 的值是( ) A.34B.43C.37D.47(第3题) (第4题) (第6题) (第7题)4.如图,在平面直角坐标系中,有点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( ) A .(2,1)B .(2,0)C .(3,3)D .(3,1)5.对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“等距变换”.下列变换中不一定是等距变换的是( ) A .平移B .旋转C .轴对称D .位似6.如图,为估算河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( ) A .60 mB .40 mC .30 mD .20 m7.如图,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0,8),以某点为位似中心,作出△CDE ,使它与△AOB 位似,且相似比为k ,则位似中心的坐标和k 的值分别为( ) A .(0,0),2 B .(2,2),12 C .(2,2),2D .(1,1),128.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF 等于( ) A .2B .2.4C .2.5D .2.259.如图,在▱ABCD 中,E 是CD 上的一点,DE ∶EC =2∶3,连接AE ,BE ,BD ,且AE ,BD交于点F ,则S △DEF ∶S △EBF ∶S △ABF 等于( ) A .2∶5∶25B .4∶9∶25C .2∶3∶5D .4∶10∶2510.如图,在矩形ABCD 中,点E 为AD 上一点,且AB =8,AE =3,BC =4,点P 为AB 边上一动点,连接PC ,PE ,若△P AE 与△PBC 是相似三角形,则满足条件的点P 的个数为( ) A .1个B .2个C .3个D .4个(第8题) (第9题) (第10题) (第13题) (第14题) 二、填空题(每题3分,共24分)11.假期,爸爸带小明去A 地旅游,小明想知道A 地与他所居住的城市的距离,他在比例尺为1∶500 000的地图上测得所居住的城市距A 地32 cm ,则小明所居住的城市与A 地的实际距离为________.12.若a +b c =b +c a =c +ab =k (a +b +c ≠0),则k =________.13.如图,已知点C 是线段AB 的黄金分割点,且BC >AC .若S 1表示以BC 为边的正方形的面积,S 2表示长为AD (AD =AB )、宽为AC 的矩形的面积,则S 1与S 2的大小关系为____________.14.如图,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上一点,DF 平分CE于点G ,CF =1,则BC =________,△ADE 与△ABC 的周长之比为________,△CFG 与△BFD 的面积之比为________.15.如图,以点A 为位似中心,把正方形ABCD 的各边缩小为原来的一半,得到正方形A ′B ′C ′D ′,则点C 的对应点C ′的坐标为________.(第15题) (第16题) (第17题) (第18题)16.如图,阳光通过窗口AB 照射到室内,在地面上留下4 m 宽的区域DE ,已知点E 到窗口下的墙脚C 的距离为5 m ,窗口AB 高2 m ,那么窗口底端B 距离墙脚C ________m. 17.如图,已知点P 是边长为4的正方形ABCD 内一点,且PB =3,BF ⊥BP ,垂足是点B ,若在射线BF 上找一点M ,使以点B ,M ,C 为顶点的三角形与△ABP 相似,则BM 的长为________.18.如图,正三角形ABC 的边长为2,以BC 边上的高AB 1为边作正三角形AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1,再以正三角形AB 1C 1的边B 1C 1上的高AB 2为边作正三角形AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2,……,以此类推,则S n =________(用含n 的式子表示,n 为正整数).三、解答题(19,20题每题8分,24题14分,其余每题12分,共66分)19.如图,矩形ABCD 为一密封的长方体纸盒的纵切面的示意图,AB 边上的点E 处有一小孔,光线从点E 处射入,经纸盒底面上的平面镜反射,恰好从点D 处的小孔射出.已知AD =26 cm ,AB =13 cm ,AE =6 cm. (1)求证:△BEF ∽△CDF ; (2)求CF 的长.(第19题)20.如图,△ABC 三个顶点的坐标分别为A (1,2),B (3,1),C (2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.(第20题)21.如图,在▱ABCD中,过点A作AE⊥BC于点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.(第21题) 22.如图,某水平地面上有一建筑物AB,在点D和点F处分别竖有2米高的标杆CD和EF,两标杆相距52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,点G与建筑物顶端A和标杆顶端C在同一条直线上;从标杆EF后退4米到点H处,点H与建筑物顶端A和标杆顶端E在同一条直线上,求建筑物AB的高度.(第22题)23.如图,在矩形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B以2 cm/s 的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论.(3)当t为何值时,以点Q,A,P为顶点的三角形与△ABC相似?24.如图①,在R t△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)当α=0°和α=180°时,求AEBD的值.(2)试判断当0°≤α<360°时,AEBD的大小有无变化?请仅就图②的情况给出证明.(3)当△EDC旋转至A,D,E三点共线时,求线段BD的长.答案一、1.B 2.A3.C 点拨:因为a ∥b ∥c ,所以BD BF =AC AE =33+4=37.4.A 5.D6.B 点拨:∵AB ⊥BC ,CD ⊥BC ,∴∠ABE =∠DCE =90°. 又∵∠AEB =∠DEC , ∴△ABE ∽△DCE . ∴AB DC =BE CE ,即AB 20=2010. ∴AB =40 m . 7.B8.B 点拨:由∠A =90°,CF ⊥BE ,AD ∥BC ,易证△ABE ∽△FCB . ∴AB BE =CF BC .由AE =12×3=1.5, AB =2,易得BE =2.5, ∴22.5=CF3.∴CF =2.4. 9.D10.C 点拨:设AP =x ,则BP =8-x ,当△P AE ∽△PBC 时, AE BC =P A PB ,∴AE ·PB =BC ·P A ,即3(8-x )=4x ,解得x =247. 当△P AE ∽△CBP 时,AE PB =P A BC ,∴AE ·BC =P A ·PB ,即3×4=x (8-x ),解得x =2或6. 故满足条件的点P 的个数为3个.二、11.160 km 点拨:设小明所居住的城市与A 地的实际距离为x km ,根据题意可列比例式为1500 000=32x ×105,解得x =160. 12.2 点拨:∵a +b c =b +c a =c +ab =k ,∴2a +2b +2ca +b +c=k ,故k =2.易错提醒:在运用等比性质时,注意分母的和不等于0这个条件. 13.S 1=S 2 点拨:∵点C 是线段AB 的黄金分割点,且BC >AC ,∴BC 2=AC ·AB .又∵S 1=BC 2,S 2=AC ·AD =AC ·AB ,∴S 1=S 2. 14.2;;15.(2,1)或(0,-1) 点拨:如图,以点A 为位似中心,把正方形ABCD 的各边缩小为原来的一半,得正方形A ′B ′C ′D ′,根据图形可得点C ′的坐标为(2,1)或(0,-1).(第15题)易错提醒:此类题要注意多种可能:位似图形可能位于位似中心的同侧,也可能位于位似中心的两侧,要分情况进行讨论.16.2.5 点拨:由题意得CE =5 m ,AB =2 m ,DE =4 m.∵AD ∥BE , ∴BC AB =CE ED , ∴BC 2=54,解得BC =2.5 m ,即窗口底端B 距离墙脚C 2.5 m.17.163或3 点拨:∵∠ABC =∠FBP =90°,∴∠ABP =∠CBF .当△MBC ∽△ABP 时,BM ∶AB=BC ∶BP ,得BM =4×4÷3=163;当△CBM ∽△ABP 时,BM ∶BP =CB ∶AB ,得BM =4×3÷4=3.18.32×⎝ ⎛⎭⎪⎫34n点拨:在正三角形ABC 中,AB 1⊥BC , ∴BB 1=12BC =1.在R t △ABB 1中,AB 1=AB 2-BB 21=22-12=3,根据题意可得△AB 2B 1∽△AB 1B ,记△AB 1B 的面积为S ,∴S 1S =⎝ ⎛⎭⎪⎫322.∴S 1=34S .同理可得S 2=34S 1,S 3=34S 2,S 4=34S 3,…. 又∵S =12×1×3=32, ∴S 1=34S =32×34,S 2=34S 1=32×⎝ ⎛⎭⎪⎫342,S 3=34S 2=32×⎝ ⎛⎭⎪⎫343,S 4=34S 3=32×⎝ ⎛⎭⎪⎫344,…,S n =32×⎝ ⎛⎭⎪⎫34n. 三、19.(1)证明:∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF .(2)解:设CF =x cm ,则BF =(26-x )cm , ∵AB =13 cm ,AE =6 cm , ∴BE =7 cm ,由(1)得,△BEF ∽△CDF , ∴BE CD =BF CF ,即713=26-xx , 解得x =16.9, 即CF =16.9 cm.20.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6.(第20题)21.(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠B +∠C =180°, ∴∠ADE =∠DEC .又∵∠AFE =∠B ,∠AFE +∠AFD =180°, ∴∠AFD =∠C , ∴△ADF ∽△DEC .(2)解:在▱ABCD 中,CD =AB =8. ∵△ADF ∽△DEC , ∴AF CD =AD DE ,即438=63DE ,解得DE =12. ∵AE ⊥BC ,AD ∥BC , ∴AE ⊥AD .在Rt △AED 中,由勾股定理,得AE =122-(63)2=6. 22.解:由题意得,CD =DG =EF =2,DF =52,FH =4.∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH , ∴∠ABH =∠CDG =∠EFH =90°. 又∵∠CGD =∠AGB ,∠EHF =∠AHB , ∴△CDG ∽△ABG ,△EFH ∽△ABH , ∴CD AB =DG BG ,EF AB =FH BH , 即CD AB =DGDG +BD,EF AB =FH FH +DF +BD , ∴2AB =22+BD ,2AB =44+52+BD, ∴22+BD =44+52+BD, 解得BD =52, ∴2AB =22+52,解得AB =54. 答:建筑物AB 的高度为54米.23.解:(1)由题意知AP =2t ,DQ =t ,QA =6-t ,当QA =AP 时,△QAP 是等腰直角三角形,所以6-t =2t ,解得t =2.(2)四边形QAPC 的面积=S △QAC +S △APC =12AQ ·CD +12AP ·BC =(36-6t )+6t =36(cm 2).在P ,Q 两点移动的过程中,四边形QAPC 的面积始终保持不变.(3)分两种情况:①当AQ AB =AP BC 时,△QAP ∽△ABC ,则6-t 12=2t 6,即t =1.2;②当QA BC =AP AB 时,△P AQ ∽△ABC ,则6-t 6=2t 12,即t =3.所以当t =1.2或3时,以点Q ,A ,P 为顶点的三角形与△ABC 相似.24.解:(1)当α=0°时,∵BC =2AB =8,∴AB =4.∵点D ,E 分别是边BC ,AC 的中点,∴BD =4,AE =EC =12AC .∵∠B =90°,∴AC =82+42=4 5.∴AE =CE =2 5.∴AE BD =254=52.当α=180°时,如图①,易得AC =45,CE =25,CD =4,∴AE BD =AC +CE BC +CD =45+258+4=52.(第24题)(2)无变化.证明:在题图①中,∵DE 是△ABC 的中位线,∴DE ∥AB .∴CE CA =CDCB ,∠EDC =∠B =90°.在题图②中,∵△EDC 在旋转过程中形状大小不变,∴CE CA =CD CB 仍然成立.又∵∠ACE =∠BCD =α,∴△ACE ∽△BCD .∴AE BD =AC BC .由(1)可知AC =4 5.∴AC BC =458=52.∴AE BD =52.∴AE BD 的大小不变.(3)当△EDC 在BC 上方,且A ,D ,E 三点共线时,四边形ABCD 为矩形,如图②,∴BD =AC =45;当△EDC 在BC 下方,且A ,E ,D 三点共线时,△ADC 为直角三角形,如图③,由勾股定理可得AD =AC 2-CD 2=8.又易知DE =2,∴AE =6.∵AE BD =52,∴BD =1255.综上,BD 的长为45或1255.。

2020年第四章 相似图形单元达标检测(含答案)

2020年第四章 相似图形单元达标检测(含答案)

R Q PKHG FED C B A第四章 相似图形单元达标检测一、选择题1.若两个相似三角形的面积之比为1∶4,则它们的周长之比为 ( ) A .1∶2 B .1∶4 C .1∶5 D .1∶16 2.在相同时刻的物高与影长成正比.如果高为1.5m 的竹竿的影长为2.5m ,那么影长为30m 旗杆的高是A. 15mB. 16mC. 18mD. 20m3.已知△ABC 如右图,则下列4个三角形中,与△ABC 相似的是( ),A B C D4.如图,身高1.6m 的学生想测量学校旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2.0m ,BC =8.0m ,则旗杆的高度是 A .6.4m B .7.0m C .8.0m D .9.0m(第4题) (第5题)5.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确...的是【 】A .∠ABD =∠CB .∠ADB =∠ABC C .AB CB BD CD = D .AD ABAB AC=6.如图,Rt △ABC 中,∠C =90°,有三个正方形CDEF 、DGHK 、GRPQ ,它们分别是△ACB 、△EDB 和△HGB 的内接正方形,EF =10cm ,HK =7cm ,则第三个正方形的边长PQ 的长为( ).A. 4cmB. 5cmC. 4.5 cmD. 4.9 cmMO DCBA(第6题) (第7题) (第8题)7.如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依次类推,若各种开本的矩形都相似,那么ABAD等于()A.0.618 B.22C.2D.28.如图,已知正方形ABCD的边长为1,M是AB的中点,则图中阴影部分的面积是A.29B.14C.15D.16二、填空题9.地图上某城市面积为80cm2,实际该城市面积为320 km2.这地图的比例尺为10.据有关实验测定,当气温处于人体正常体温(37o C)的黄金比值时,人体感到最舒适。

北师大版九年级上册数学 第四章 图形的相似(单元综合卷)(解析版)

北师大版九年级上册数学 第四章 图形的相似(单元综合卷)(解析版)

第四章 图形的相似(单元综合卷)一、单选题1.若0234a b c ==≠,则22a b c a-+= ( ) A .45 B .54 C .34 D .无法确定【答案】B【解析】【分析】设比值为k ,然后用k 表示出a 、b 、c ,再代入算式进行计算即可求解.【详解】 设234a b c k ===、 则2a k =、3b k =、4c k =、 ∴2223452224a b c k k k a k -+⨯-+==⨯. 故选、B .【点睛】本题考查了比例的性质,利用设“k ”法表示出a 、b 、c 是解题的关键,设“k ”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.2.若、ABC、、DEF ,且、ABC 与、DEF 的面积比是94,则、ABC 与、DEF 对应中线的比为( ) A .23 B .8116 C .94 D .32【解析】【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】、、ABC、、DEF、、ABC与、DEF的面积比是9 4、、、ABC与、DEF的相似比为3 2、、、ABC与、DEF对应中线的比为3 2、故选D、【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.如图,在ABC中,点D在BC边上,连接AD,点G在线段AD上,过点G作//GE BD,交AB边于点E,作//GF AC,交BC边于点F,则下列结论中一定正确的是()A.AB AGAE AD=B.DF DGCF AD=C.FG EGAC BD=D.AE CFBE DF=【答案】D 【解析】由GE、BD、GF、AC利用平行线分线段成比例,可得出AE AGBE DG=,AG CFDG DF=,进而可得出AE CFBE DF=,此题得解.【详解】、GE、BD,GF、AC,、AE AGBE DG=,AG CFDG DF=,、AE CF BE DF=.故选:D.【点睛】本题考查了平行线分线段成比例,利用平行线分线段成比例,找出AE AGBE DG=,AG CFDG DF=是解题的关键.4.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把、EFO缩小为、E′F′O,且、E′F′O与、EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)【答案】C【解析】【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】、点E(﹣4,2),以O为位似中心,按2:1的相似比把、EFO缩小为、E'F'O,、点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.5.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为(、A.11.5米B.11.75米C.11.8米D.12.25米【答案】C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在台阶上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上台阶的高就是树高.【详解】如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,、同一时刻物高与影长成正比例,、AE、ED=1、0.4、即AE、4.6=1、0.4、、AE=11.5米,、AB=AE+EB=11.5+0.3=11.8米,、树的高度是11.8米、故选C.【点睛】本题考查了相似三角形的应用,把实际问题抽象到相似三角形中,根据相似三角形的相似比,列出方程进行求解是关键.6.如图所示的两个四边形相似、则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.7.下列条件中,能使ABC DEF ∽△△成立的是( )A .、C =98°,、E =98°,AC DE BC DF; B .AB =1,AC =1.5,BC =2,EF =8,DE =10,FD =6C .、A =、F =90°,AC =5,BC =13,DF =10,EF =26;D .、B =35°,BC =10,BC 上的高AG =7;、E =35°,EF =5,EF 上的高DH =3.5【答案】D【解析】【分析】根据相似三角形的判定定理对四个选项进行分析即可.【详解】A 、若、ABC~、DEF ,则AC DF =BC EF,故本选项错误; B 、若、ABC~、DEE ,则AB AC BC ==DE DF EF 而AB 1=DE 10≠AC 1.5=DF 6,故本选项错误; C 、若、ABC~、DEF ,、A =90°,则、D =90°,故本选项错误;D 、BC AG ==2EF DH且、AGC =、BHF =90°,因此、AGC、、BHF ,所以、C =、F ,而、B =、E =35°,因此可判断相似,故本选项正确;所以D 选项是正确的.【点睛】本题考查的是相似三角形的判定定理,解答此类题目时要熟知相似三角形的判定方法,即:(1)三组对应边的比相等的两个三角形相似;(2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的两个三角形相似8.如图,、ABC 中,点D 在AB 上,过点D 作DE、BC 交AC 于点E ,过点E 作 EF、AB 交BC 于点F ,连接CD ,交EF 于点G ,则下列说法不正确的是( 、A .BD BF FG FC =B .DE AE BC AC = C .AD AE AB AC = D .BF AD BC AB= 【答案】A【解析】因为DE、BC, 所以,,DE AE AD AE BC AC AB AC== 因为EF、AB, 所以,,BF AE BD BC BC AC FK CF== 所以,BF AD BC AB = 故选A.9.如图, ABC 中, 90C ∠=︒,3,4,AC BC M ==是BC 边上的动点,过M 作//MN AB 交AC 于点,N P 是MN 的中点,当PA 平分BAC ∠时, BM =( )A .2011B .2013C .1511D .2513【答案】A【解析】【分析】根据题意作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,利用相似三角形判定证得BMF BAC ∽,进而设3,PD PE MF x ===建立方程求解即可.【详解】解:作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,则,PD PE MF BMF BAC ==∽.、3,4,AC BC ==、5AB =设3,PD PE MF x ===则26,5CM PD x BM x ===由65114,BC x x x =+==得420 =,1111x BM =. 故选:A .【点睛】 本题考查三角形动点问题,熟练掌握相似三角形判定并运用方程结合思维进行分析是解题的关键. 10.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分、DCB 交BD 于点F ,且、ABC =60°,AB =2BC ,连接OE ,下列结论:、、ACD =30°;、S 平行四边形ABCD =AC BC ⋅;、OE :AC =1:4;、S 、OCF =2S 、OEF .其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由四边形ABCD 是平行四边形,得到、ABC=、ADC=60°,、BAD=120°,根据角平分线的定义得到、DCE=、BCE=60°推出、CBE 是等边三角形,证得、ACB=90°,求出、ACD=、CAB=30°,故、正确; 由AC、BC ,得到S、ABCD=AC•BC ,故、正确;根据直角三角形的性质得到,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :AC=6,故、错误;由三角形的中位线可得BC、OE ,可判断、OEF、、BCF ,根据相似三角形的性质得到CF BC EF OE==2,求得S 、OCF =2S 、OEF ;故、正确.【详解】解:、四边形ABCD是平行四边形,、、ABC=、ADC=60°,、BCD=120°,、CE平分、BCD交AB于点E,、、DCE=、BCE=60°、、CBE是等边三角形,、BE=BC=CE,、AB=2BC,、AE=BC=CE,、、ACB=90°,、、ACD=、CAB=30°,故、正确;、AC、BC,、S、ABCD=AC•BC,故、正确,在Rt、ACB中,、ACB=90°,、CAB=30°,,、AO=OC,AE=BE,、OE=12 BC,、OE:6;故、错误;、AO=OC,AE=BE,、OE、BC,、、OEF、、BCF , 、CF BC EF OE==2 、S 、OCF :S 、OEF =CF EF =2, 、S 、OCF =2S 、OEF ;故、正确.故选C .【点睛】本题考查了平行四边形的性质、三角形中位线、相似三角形的性质,熟练掌握并灵活运用是解题的关键.二、填空题11.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且3AB =,4BC =, 4.8EF =,则DE 的长为__________.【答案】3.6【解析】【分析】根据平行线分线段成比例定理即可得.【详解】由平行线分线段成比例定理得:AB DE BC EF= 3AB =,4BC =, 4.8EF =34 4.8DE ∴= 解得 3.6DE =故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.12.已知x 是正整数,且x 是4和16的比例中项,那么x =______.【答案】8【解析】【分析】根据比例中项的性质进行求解.【详解】解:、x 是4和16的比例中项,且是正整数,、241664x =⨯=,解得8x =.故答案是:8.【点睛】本题考查比例中项的性质,解题的关键是掌握比例中项的性质.13.如图,、ABC 与、A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__、【答案】(9,0)【解析】【分析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.【答案】4【解析】【分析】根据题意,画出示意图,易得:Rt、EDC、Rt、CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.【详解】如图:过点C作CD、EF,由题意得:、EFC是直角三角形,、ECF=90°,、、EDC=、CDF=90°,、、E+、ECD=、ECD+、DCF=90°,、、E=、DCF,、Rt、EDC、Rt、CDF,有EDDC=DCFD;即DC2=ED FD,代入数据可得DC2=16,DC=4;故答案为4.【点睛】本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.15.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC 的长为_____.【解析】【分析】根据相似多边形的性质列出比例式,计算即可.【详解】、矩形ABCD与矩形EABF相似,、AEAB=ABAD,即121AD=1AD,解得,AD,、矩形ABCD 的面积=AB •AD ,.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.16.如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有__________对.【答案】6【解析】【分析】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,因为////AB EF DC ,//AD BC ,所以、AEG、、ADC、、CFG、、CBA ,有6中组合,据此可得出答案.【详解】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,、////AB EF DC ,//AD BC ,、、AEG、、ADC、、CFG、、CBA共有6个组合分别为:、AEG、、ADC ,、AEG、、CFG ,、AEG、、CBA ,、ADC、、CFG ,、ADC、、CBA ,、CFG、、CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.17.如图,在三角形ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=__________.【答案】9或16【解析】【分析】根据相似三角形的判断,要使得、ADE与、ABC相似,已经满足、BAC=、DAE,因此只要两边对应成比例即可,由于本题中三角形相似,对应点没有确定,因此分两种情况,画出图形,然后根据相似三角形对应边成比例,就出AE的长.【详解】第一种情况:当、ABC、、ADE时,如图、;、、ABC、、ADE,、AB AC AD AE=,、AB=24,AC=18,AD=12,、2418 12AE=,、AE=9.第二种情况:当、ABC、、AED ,如图、;、、ABC、、AED , 、AB AC AE AD=, 、AB =24,AC =18,AD =12, 、241812AE =, 、AE =16.故填9或16.考点:相似三角形的性质.18.如图,在ABC ∆中,D 、E 分别是AB 、BC 上的点,且DE AC ,若:1:4BDE CDE S S ∆∆=,则:BDE ACD S S ∆∆=______.【答案】1:20【解析】【分析】根据、BDE和、CDE高相同得到BE:EC=1:4,再证明、BDE、、BAC,利用面积比等于相似比的平方即可解题.【详解】、、BDE和、CDE高相同,且:1:4BDE CDES S=,、BE:EC=1:4,、//DE AC、、BDE、、BAC,即BE:BC=1:5、:BDE BACS S=1:25、:BDE ACDS S=1、、25-1-4、=1:20【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉相似三角形性质是解题关键.19.如图,在矩形ABCD中,BC=4,AB=2,Rt、BEF的顶点E在边CD上,且、BEF=90°,EF=12 BE,DF BE=_____.【解析】【分析】过F作FG、CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG=12EC,GE=2=CD;设EC=x,则DG=x,FG=12x,再根据勾股定理,即可得到CE2=94,最后依据勾股定理进行计算,即可得出BE的长.【详解】解:如图所示,过F作FG、CD,交CD的延长线于G,则、G=90°,、四边形ABCD是矩形,、、C=90°,AB=CD=2,又、、BEF=90°,、、FEG+、BEC=90°=、EBC+、BEC,、、FEG=、EBC,又、、C=、G=90°,、、BCE、、EGF,、FG GE EF EC CB BE ==,即142EG CE EC ==, 、FG =12EC ,GE =2=CD , 、DG =EC ,设EC =x ,则DG =x ,FG =12x , 、Rt、FDG 中,FG 2+DG 2=DF 2,、(12x )2+x 22, 解得x 2=94, 即CE 2=94,、Rt、BCE 中,BE ==.【点睛】本题主要考查了相似三角形和勾股定理的结合,准确分析计算是解题的关键.20.如图,在直角坐标系中,将OAB 绕原点旋转到OCD ,其中()3,1A -、()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为_______.【答案】913,55⎛⎫- ⎪⎝⎭【解析】【分析】连接AC 、BD ,设点C 的坐标为(a ,b ),根据平面直角坐标系中任意两点之间的距离公式即可求出OA 、OB ,由旋转的性质即可求出OC 和OD ,从而证出OAC、OBD ,列出比例式即可求出AC ,再利用平面直角坐标系中任意两点之间的距离公式列出方程即可求出结论.【详解】解:连接AC 、BD ,设点C 的坐标为(a ,b )、()3,1A -、()4,3B ,=5由旋转的性质可得,OD=OB=5,、AOC=、BOD、点D 的坐标为(5,0),OA OC OB OD==OAC、OBD、AC OA BDOB== 解得AC=2、()()222210314a b a b ⎧+=⎪⎨++-=⎪⎩ 解得:95135a b ⎧=-⎪⎪⎨⎪=⎪⎩或31a b =-⎧⎨=-⎩ 、点C 在第二象限,、95135a b ⎧=-⎪⎪⎨⎪=⎪⎩即点C 913,55⎛⎫- ⎪⎝⎭ 故答案为:913,55⎛⎫- ⎪⎝⎭. 【点睛】此题考查的是坐标与图形的变化、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式,此题难度较大,掌握旋转的性质、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.三、解答题21.化简并求值:已知2,235a c e a c e b d f===-+=,求b -2d+3f 的值. 【答案】52【解析】【分析】 由2a c e b d f===可知2,2,2a b c d e f ===,代入235a c e -+=易得b -2d+3f 的值. 【详解】 解:2a c e b d f=== 2,2,2a b c d e f ∴===232462(23)5a c e b d f b d f ∴-+=-+=-+=5232b d f ∴-+=【点睛】 本题考查了比例的性质,灵活的利用比例进行等量代换是解题的关键.22.如图,已知DE、BC ,FE、CD ,AF =3,AD =5,AE =4.(1)求CE 的长;(2)求AB 的长.【答案】(1)CE=83;(2)AB=253.【解析】【分析】(1)根据平行线分线段成比例定理列出比例式求出AC即可解决问题;(2)根据平行线分线段成比例定理列出比例式,然后代入数据计算即可.【详解】解:(1)、FE、CD,、AEAC=AFAD,即4AC=35,解得,AC=203,则CE=AC﹣AE=203﹣4=83;(2)、DE、BC,、ADAB=AEAC,即5AB=4203,解得,AB=253.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.如图,在、ABC中,点D,E分别在边AB,AC上,、AED=、B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:、ADF、、ACG;(2)若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2、1.【解析】(1)欲证明、ADF、、ACG,由可知,只要证明、ADF=、C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:、、AED=、B,、DAE=、DAE,、、ADF=、C,、,、、ADF、、ACG.(2)解:、、ADF、、ACG,、,又、,、,、1.24.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:2CF GF EF=⋅.【答案】详见解析【解析】【分析】由平行四边形对边互相平行,可得平行线分线段成比例,得出比例式进行等比代换即可得证.【详解】解:、四边形ABCD 是平行四边形,、AD BC ∥,AB CD ∥. 、GF DF CF BF =,CF DF EF BF= 、GF CF CF EF =, 即2CF GF EF =⋅.【点睛】本题考查证明线段乘积关系,由平行线分线段成比例得到比例式是解决本题的关键.25.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点、ABC (顶点是网格线的交点),在建立的平面直角坐标系中,、ABC 绕旋转中心P 逆时针旋转90°后得到、A 1B 1C 1、、1)在图中标示出旋转中心P ,并写出它的坐标;、2)以原点O 为位似中心,将、A 1B 1C 1作位似变换且放大到原来的两倍,得到、A 2B 2C 2,在图中画出、A 2B 2C 2,并写出C 2的坐标.【答案】、1、见解析、P点坐标为(3、1、、、2、作图见解析、C2的坐标为(2、4)或(﹣2、、4、、【解析】【分析】、1)作BB1和AA1的垂直平分线,它们的交点即为P点,然后写出P点坐标;(2)把点A1、B1、C1的横纵坐标都乘以2或-2得到对应点A2、B2、C2的坐标,然后描点即可得到、A2B2C2、【详解】、、、1)如图,点P为所作,P点坐标为(3、1、、、2)如图,、A2B2C2为所作,C2的坐标为(2、4)或(﹣2、、4、、【点睛】本题考查了位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.26.如图,在平行四边形ABCD中,过点A作AE、BC,垂足为E,连接DE,F为线段DE上一点,且、AFE=、B(1)求证:、ADF、、DEC;(2)若AB=8,AE的长.【答案】(1)见解析(2)6【解析】【分析】(1)利用对应两角相等,证明两个三角形相似、ADF、、DEC.(2)利用、ADF、、DEC,可以求出线段DE的长度;然后在在Rt、ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:、四边形ABCD是平行四边形,、AB、CD,AD、BC、、C+、B=180°,、ADF=、DEC、、AFD+、AFE=180°,、AFE=、B,、、AFD=、C在、ADF与、DEC中,、、AFD=、C,、ADF=、DEC,、、ADF、、DEC(2)、四边形ABCD是平行四边形,、CD=AB=8.由(1)知、ADF、、DEC,、AD AF DE CD=,、AD CDDE12AF⋅===在Rt、ADE中,由勾股定理得:AE6===27.如图,在菱形ABCD中,60C︒∠=,4AB=,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若DAG FEG∠=∠,、求证:、AGE∽、DGF;、求DF的长.【答案】(1)DE=(2)、详见解析;、1.【解析】【分析】(1)只要证明DE 是等边、DBC 的高即可解决问题;(2)、由、AGD、、EGF ,可得AG DG EG FG=,即可推出AG EG DG FG =又、AGE=、DGF ,即可推出、AGE、、DGF ; 、根据相似求出EF,再根据勾股定理求出FH 的长,再求出CF 即可解决问题.【详解】解:(1)连结BD4604122∵四边形是菱形,∵△是等边三角形∵点是边的中点ABCD CB CD AB C CDB DB DC BC E BC BE EC BC DE BCDE ︒∴===∠=∴∴===∴===∴⊥∴==(2)、DAG FEG AGD EGFAGD EGFAG DG EG FG AG EG DG FGAGE DGFAGE DGF∠=∠∠=∠∴∴=∴=∠=∠∴∵,△∽△又∵△∽△ 、,9030,901222131∵△∽△∵又∵过点作于点在△中,AGE DGF DE BCEAG GDF C AGD EGF AGE DGFGFE ADG DE EF AE E EH DC HRt ECH FH CF FH CH DF CD CF ︒︒︒⊥∴∠=∠=-∠=∠=∠∠=∠∴∠=∠==∴===⊥==∴=+=+=∴=-=【点睛】此题考查菱形的性质、相似三角形的判定和性质、直角三角形30°角性质、勾股定理等知识,解题的关键是准确寻找相似三角形解决问题,所以中考常考题型.。

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。

北师大九年级数学上《第四章图形的相似》单元测试含答案

北师大九年级数学上《第四章图形的相似》单元测试含答案

第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32B .2x =3yC .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm图4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z-54-Z-612.如图4-Z-6,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C 落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE =60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11详解1.A2.D [解析] ∵l 1∥l 2∥l 3,∴A 1B 1B 1C 1=AB BC. ∵AB =6 cm ,BC =3 cm ,A 1B 1=4 cm , ∴4B 1C 1=63,∴B 1C 1=2(cm).故选D. 3.B 4.C5.C [解析] A 项,∵∠A =55°,∴∠B =90°-55°=35°.∵∠D =35°,∴∠B =∠D .又∵∠C =∠F ,∴△ABC ∽△EDF ;B 项,∵AC =9,BC =12,DF =6,EF =8,∴AC DF =BC EF =32.又∵∠C =∠F ,∴△ABC ∽△DEF ;C 项,有一组角相等、两边对应成比例,但该组角不是这两边的夹角,故不相似;D 项,易得AB =10,AC =8,BC =6,DE =15,DF =12,EF =9,∴AC DF =BC EF =23.又∵∠C =∠F ,∴△ABC ∽△DEF .故选C.6.A7.B [解析] 连接PP ′交BC 于点O ,∵四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ =90°.∵∠ACB =90°,∴PO ∥AC ,∴AP AB =CO CB .∵点Q 运动的时间为t s ,∴AP =2t ,QB =t ,∴QC =6-t ,∴CO =3-t2.∵AC =CB =6,∠ACB =90°,∴AB =6 2,∴2t6 2=3-t26,解得t =2.8.20 [解析] 设其他两边的实际长度都是x m ,由题意,得x 4=255,解得x =20.即其他两边的实际长度都是20 m.9.143 [解析] 设a 5=b 7=c8=x ,则a =5x ,b =7x ,c =8x .因为3a -2b +c =3,所以15x -14x +8x =3,解得x =13,所以2a +4b -3c =10x +28x -24x =14x =143.10.20 cm 211.312.(7+3)[解析] 如图,过点D 作DE ⊥BC 交其延长线于点E ,连接AD 并延长交BC 的延长线于点F ,∵CD =4 m ,CD 与地面成30°角,∴DE =12CD =12×4=2(m),CE =CD 2-DE 2=2 3 m .∵高1 m 的标杆的影长为2 m ,∴DE EF =12,AB BF =12,∴EF =2DE =2×2=4(m),∴BF =BC +CE +EF =10+2 3+4=(14+2 3)m ,∴AB =12×(14+2 3)=(7+3)m.13.[全品导学号:52652189]12 [解析] 根据折叠的性质可得∠FEG =90°,设AF =x cm ,则EF =(6-x )cm.在Rt △AEF 中,AF 2+AE 2=EF 2,即x 2+32=(6-x )2,解得x =94,所以AF =94 cm ,EF =154 cm ,根据△AFE ∽△BEG ,可得AF BE =AE BG =EF EG ,即943=3BG =154EG,所以BG =4 cm ,EG =5 cm ,所以△EBG 的周长为3+4+5=12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1,∴x +1=2(x -1),解得x =3, ∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.。

2020年秋北师大版九年级数学上册第四章 图形的相似单元提高检测题(含解析)

2020年秋北师大版九年级数学上册第四章 图形的相似单元提高检测题(含解析)

2020年秋北师大版九年级数学上册第四章 图形的相似单元提高检测题解析版一、选择题(共10题;共30分)1.给出下列各组线段,其中成比例线段的是( )A. 1cm,2cm,3cm,4cmB. 2cm,3cm,4cm,5cmC. 0.3m,0.6m,0.5m,0.9mD. 1cm,√5cm,2√3cm,2√15cm2.已知x :y :z=3:4:6,则 x+y−z x−y+z 的值为( )A. 15B. 1C. 135D. 1133.如图,一张矩形报纸ABCD 的长AB=a ,宽BC=b ,E,F 分别是AB ,CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽的比等于矩形ABCD 的长与宽的比,则a:b 等于( )A. √2:1B. 1:√2C. √3:1D. 1:√34.某数学活动小组在利用太阳光线测量某棵树 AB 的高度时,发现树 AB 的影子不全落在地面上,有一部分影子落在教学楼的墙壁上.经测量,落在墙壁上影高 CD 为2米,落在地面上的影长 BC 为5米,同一时间测得8米高的国旗杆影长是4米,则树高为( )A. 8米B. 10米C. 12米D. 14米5.若△ABC ∽△DEF ,相似比为1∶2,则△ABC 与△DEF 的面积的比为( )A. √2 :1B. 1∶ √2C. 4∶1D. 1∶46.在如图所示的网格中,以点O 为位似中心,四边形 ABCD 的位似图形是( )A. 四边形 NPMQB. 四边形 NPMRC. 四边形 NHMQD. 四边形 NHMR7.如图,在 △ABC 中,点D 在BC 上,连接AD ,点E 在AC 上,过点E 作 EF//BC ,交AD 于点F ,过点E 作 EG//AB ,交BC 于点G ,则下列式子一定正确的是( )A. AE EC =EF CDB. EG AB =EF CDC. AF FD =BG GCD. CG BC =AF AD8.如图,矩形ABCD 中,AB=8,BC=4.点G ,E 分别在边AB ,CD 上,点F ,H 在对角线AC 上.若四边形EFGH 是菱形,则AG 的长是( )A. 2√5B. 5C. 3√5D. 69.正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE 、BD 相交于点M , N , 则MN 的长为( )A. 5√56B. 2√53 ﹣1C. 4√515D. √3310.如图,等腰直角三角形ABC , ∠BAC =90°,D 、E 是BC 上的两点,且BD =CE , 过D 、E 作DM 、EN 分别垂直AB 、AC , 垂足为M 、N , 交与点F , 连接AD 、AE . 其中①四边形AMFN 是正方形;②△ABE ≌△ACD ;③CE 2+BD 2=DE 2;④当∠DAE =45°时,AD 2=DE •CD . 符合题意结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共24分)11.△ABC∽△A1B1C1,其中点A,B,C分别与点A1,B1,C1对应,如果AB:A1B1=2:3,AC=6,那么A1C1=________.12.我军侦察员在距敌方AN=120m的地方发现敌方的一座建筑物,但不知其高度,又不能靠近建筑物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离AM约为40cm,食指BC的长约为8cm,则敌方建筑物DE 的高度约是________m。

北师大版九年级数学上册第4章《图形的相似》单元练习题(含答案)

北师大版九年级数学上册第4章《图形的相似》单元练习题(含答案)

北师大版九年级数学上册第4章《图形的相似》单元练习题(含答案)一、单选题1.在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR2.如图,在正方形网格上有5个三角形(三角形的顶点均在格点上):①△ABC ,②△ADE ,③△AEF ,④△AFH ,⑤△AHG ,在②至⑤中,与①相似的三角形是( )A .②④B .②⑤C .③④D .④⑤ 3.生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感,若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米 4.如图,123l l l ∥∥,若23=AB BC ,15DF =,则EF =( )A .5B .6C .7D .95.如图,点O 是四边形ABCD 内一点,A '、B '、C '、D 分别是OA 、OB 、OC 、OD 上的点,且::::2:1OA A A OB B B OC CC OD D D '''''''====,若四边形A B C D ''''的面积为12cm 2,则四边形ABCD 的面积为( )A .18cm 2B .27cm 2C .36cm 2D .54cm 26.已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:17.如图,某零件的外径为10cm ,用一个交叉卡钳(两条尺长AC 和BD 相等)可测量零件的内孔直径AB .如果OA :OC =OB :OD =3,且量得CD =3cm ,则零件的厚度x 为( )A .0.3cmB .0.5cmC .0.7cmD .1cm8.下列图形中,不是相似图形的一组是( )A .B .C .D .9.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件不能满足△ADE ∽△ACB 的条件是( )A .∠AED =∠BB .AD AE AC AB = C .AD ·BC = DE ·ACD .DE //BC 10.已知23a b =,那么下列等式中成立的是( ) A .23a b = B .1314a b +=+ C .53a b b += D .13a b b -=. 11.如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 12.如图,ABC 中,点D 是边BC 上一点,下列条件中,不能判定ABC 与ABD △相似的是( )A .2AB BD BC =⋅B .BDA BAC ∠=∠ C .ADC C B ∠=∠+∠D .AD BC AB AC ⋅=⋅二、填空题13.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为______米.14.为了测量河宽AB ,某同学采用以下方法:如图,取一根标尺,把它横放,使CD ∥AB ,并使点B ,D ,O 和点A ,C ,O 分别在同一条直线上,量得CD =10米,OC =15米,OA =45米,则河宽AB =______米.15.如图,△ABC 与△A B C '''是位似图形,点O 是位似中心,若3OA AA '=,9ABC S =,则A B C S '''=________.16.如图,四边形ABCD 中,对角线AC BD 、交于点O ,2AO =,4=AD ,6OC =,8BC =,如果DAO CBO ∠=∠,那么ABCD ∶的值是___________.17.在平面直角坐标系中,点O 为坐标原点,点A 的坐标为(3,4),点B 的坐标为(7,0),D ,E 分别是线段AO ,AB 上的点,以DE 所在直线为对称轴,把△ADE 作轴对称变换得△A′DE ,点A′恰好在x 轴上,若△OA′D 与△OAB 相似,则OA′的长为________.(结果保留2个有效数字)18.如图所示,在ABC 中,90C ∠=︒,4AC =,3BC =.(1)如图1,四边形DEFG 为ABC 的内接正方形,则正方形DEFG 的边长为_________;(2)如图2,若ABC 内有并排的n 个全等的正方形,它们组成的矩形内接于ABC ,则正方形的边长为_________.三、解答题19.如图,DA ⊥AB 于A ,EB ⊥AB 于B ,C 是AB 上的动点,若∠DCE =90°.求证:△ACD ∽△BEC20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC 于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,连接BM,交线段DE于点F,延长线段BM交边AC于点G,求EF DF的值.21.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上、已知纸板的两条边DF=0.5m,EF=0.3m,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.22.已知a、b、c是△ABC的三边,且满足438324a b c+++==,且a+b+c=12,请你探索△ABC的形状.23.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.24.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE.点M,N分别是BD,CE的中点,连接AM,AN,MN.(1)求证:△CAE≌△BAD;(2)求证:△AMN∽△ABC;(3)若AC=6,AE=4,∠EAC=60°,求AN的长.25.如图,小明同学为了测量路灯OP 的高度,先将长2m 的竹竿竖直立在水平地面上的B 处,测得竹竿的影长3m BE =,然后将竹竿向远离路灯的方向移动5m 到D 处,即5m BD =,测得竹竿的影长5m DF =(AB 、CD 为竹竿).求路灯OP 的高度.26.如图,在ABC 中,90B ,12cm AB =,24cm BC =,动点P 从点A 开始沿着边AB 向点B 以2cm s 的速度移动(不与点B 重合),动点Q 从点B 开始沿着边BC 向点C 以4cm s 的速度移动(不与点C 重合).若P 、Q 两点同时移动()s t .(1)当移动几秒时,BPQ 的面积为232cm .(2)设四边形APQC 的面积为()2cm S ,当移动几秒时,四边形APQC 的面积为2108cm ?(3)当移动几秒时,BPQ与ABC相似?27.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.28.如图,在△ABC中,∠ACB=90°,CD是高,BE平分∠ABC.BE分别与AC,CD相交于点E,F.(1)求证:△AEB∽△CFB;EF ,BD=6.求AD的长.(2)若CE=5,25参考答案1.A2.A3.A4.D5.B6.C7.B8.D9.C10.C11.D12.D 13.(51)##1514.3015.1616.2317.2.0或3.318.6037602512n+19.证明:∵AD⊥AB,BE⊥AB,∴∠DAC=90°=∠EBC,∴∠D+∠ACD=90°,∠E+∠ECB=90°,∵∠DCE=90°,∴∠DCA+∠ECB=90°,∴∠D=∠ECB,∵∠DAC=90°=∠EBC,∴△ACD∽△BEC.20.解:∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=3在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=3∴BD=BC-CD=43∵DE∥CA,∴DECA23 BDBC==,∴DE=4;(2)解:如图.∵点M 是线段AD 的中点,∴DM =AM ,∵DE ∥CA , ∴DF AG =DM AM . ∴DF =AG .∵DE ∥CA ,∴EF AG =BF BG ,BF BG =BD BC . ∴EF AG =BD BC . ∵BD =43, BC =63, DF =AG , ∴23EF DF =.21.解:∵∠DEF =∠BCD =90°,∠D =∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF =0.5 m ,EF =0.3 m ,AC =1.5 m ,CD =10 m ,由勾股定理得DE 22DF EF -0.4 m ,∴100.30.4BC =, ∴BC =7.5m ,∴AB =AC +BC =1.5+7.5=9(m ),答:树高AB 是9m .22.解:令438324a b c +++===k , ∴a +4=3k ,b +3=2k ,c +8=4k ,∴a =3k ﹣4,b =2k ﹣3,c =4k ﹣8,又∵a +b +c =12,∴(3k ﹣4)+(2k ﹣3)+(4k ﹣8)=12,∴k =3,∴a =5,b =3,c =4,∵32+42=52,∴△ABC 是直角三角形.23.解:延长OD ,∵DO ⊥BF ,∴∠DOE=90°,∵OD=1m ,OE=1m ,∴∠DEB=45°,∵AB ⊥BF ,∴∠BAE=45°,∴AB=BE ,设AB=EB=x m ,∵AB ⊥BF ,CO ⊥BF ,∴AB ∥CO ,∴△ABF ∽△COF , ∴ABCOBF OF =,1.51(51)5x x +∴=+-,解得:x=4.经检验:x=4是原方程的解.答:围墙AB 的高度是4m .24.(1)∵∠BAC=∠AE ,∴∠BAC-∠BAE=∠DAE-∠BAE ,∴∠EAC=∠DAB ,在△CAE 与△BAD 中,AB AC EAC DAB AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△BAD (SAS );(2)由(1)得△CAE ≌△BAD ,∴∠ACE=∠ABD ,CE=BD ,∵M 、N 分别是BD ,CE 的中点,∴CN=BM ,在△CAN 与△BAM 中,AC AB ACE ABD CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△CAN ≌△BAM (SAS ),∴AN=AM ,∠CAN=∠BAM ,∴∠CAN+∠BAN=∠BAM+∠BAN ,即∠CAB=∠NAM ,∵AC=AB ,AN=AM , ∴AN AM AC AB=, ∴△AMN ∽△ABC ;(3)取AC 的中点F ,连接FN ,过点点N 作NG ⊥AC 于点G ,∵点N 是CE 的中点,∴NF ∥AE ,NF=12AE=2,∴∠GFN=∠EAC=60°,∴∠FNG=30°,∴FG=12FN=1,∴AG=1+3=4,2221-3在Rt △ANG 中,根据勾股定理可知:1925.解:由已知得,2AB CD ==m ,3BE =m ,5BD =m ,5DF =m , 90POE ABE CDF ∠=∠=∠=︒,AEB PEO ∠=∠,CFD PFO ∠=∠,∴在EAB ∆和EPO ∆中,AEB PEO ABE POE∠=∠⎧⎨∠=∠⎩, ∴EAB ∆∽EPO ∆ ∴AB OP BE OE =,即233OP OB =+, ∴263OB OP +=,在FCD ∆和FPO ∆中CFD PFO CDF POF ∠=∠⎧⎨∠=∠⎩, ∴FCD ∆∽FPO ∆, ∴CD OP DF OF =,即2510OP OB =+, ∴2205OB OP +=,∴263OB OP +=,2205OB OP +=,∴7.5OB =,7OP =,即路灯OP 的高度为7m .26.(1)求出运动时间为t 秒时PB 、BQ 的长度,根据三角形的面积公式结合△BPQ 的面积为32cm 2,即可得出关于t 的一元二次方程,解之即可得出结论;(2)用△ABC 的面积减去△BPQ 的面积即可得出S ,令其等于108即可得出关于t 的一元二次方程,解之即可得出结论;(3)分两种情况:①当△BPQ ∽△BAC 时,②当△BPQ ∽△BCA 时,分别利用相似三角形的性质列式求解即可.(1)解:运动时间为t 秒时(0≤t <6),PB =12−2t ,BQ =4t ,由题意得:S △BPQ =12PB ·BQ =12(12−2t )·4t =2244t t -=32, 解得:t 1=2,t 2=4,答:当移动2秒或4秒时,△BPQ 的面积为32cm 2;(2) 由题意得:()2212444241441082ABC BPQ S S S AB BC t t t t =-=⋅--=-+=△△, 解得:t =3,答:当移动3秒时,四边形APQC 的面积为108cm 2;(3)分两种情况:①当△BPQ ∽△BAC 时, 则BP BQ BA BC=,即12241224t t -=, 解得:3t =,②当△BPQ ∽△BCA 时, 则BP BQ BC BA=,即12242412t t -=, 解得:65t =, 综上,当移动3秒或65秒时,BPQ 与ABC 相似. 27.解:由题意可得:△DEF ∽△DCA , 则DE EF DC AC=, ∵DE =0.5米,EF =0.25米,DG =1.5m ,DC =20m , ∴0.50.2520AC=, 解得:AC =10,故AB =AC+BC =10+1.5=11.5(m ).答:旗杆的高度为11.5m .28.(1)证明:90ACB ∠=︒,90ACD BCD ∴∠+∠=︒, CD 为AB 边上的高,90A ACD ∴∠+∠=︒,A BCD ∴∠=∠, BE 是ABC ∠的平分线,ABE CBE ∴∠=∠,AEB CFB ∴∆∆∽.(2)解:如图,作CH EF ⊥于H .∵∠BFD +∠ABE =90°,∠CEB +∠CBE =90°,∠ABE =∠CBE , ∴∠BFD =∠CEB ,∵∠BFD =∠CFE ,CEF CFE ∴∠=∠,CEF ∴为等腰三角形,CE CF ∴=,CH EF ⊥,∴点H 为EF 的中点,5EH FH ∴==,22225(5)25CH EC EH ∴--=,90BFD CFH CHF BDF ∠=∠∠=∠=︒,BFD CFH ∴∆∆∽, ∴DF BD HF CH =, ∴5253DF ∴=,8CD CF DF =+=,90ADC CDB ∠==︒,,ECH FCH FBD CBF ∠=∠∠=∠,根据BFD CFH ∆∆∽,即FCH FBD ∠=∠,ACD CBD∴∆∆∽,∴AD CD CD BD=,∴8 86 AD=,323 AD∴=.。

北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)

北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)

第四章 图形的相似第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组中的四条线段是成比例线段的是( )A .1 cm ,2 cm ,20 cm ,40 cmB .1 cm ,2 cm ,3 cm ,4 cmC .6 cm ,4 cm ,1 cm ,3 cmD .5 cm ,10 cm ,15 cm ,20 cm2.如图1,两条直线分别被三条平行直线l 1,l 2,l 3所截,若AB =3,BC =6,DE =2,则DF 的长为( )图1A .4B .5C .6D .73.若a b =35,则a +b b的值是( )A.58B.35C.85D.324.如图2,△ABC 中,AC =BC ,在边AB 上截取AD =AC ,连接CD ,若点D 恰好是线段AB 的一个黄金分割点,则∠A 的度数是( )图2A.22.5° B.30° C.36° D.45°5.如图3所示,将△ABO的三边分别扩大为原来的2倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标是( )A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4)图36.如图4,已知矩形ABCD,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处,若四边形EFDC与矩形ABCD相似,则AD的长为( )图4A. 5B.5+1 C.4 D.2 37.在小孔成像问题中,光线穿过小孔,在屏幕上形成倒立的实像,如图5所示,若点O到AB的距离是18 cm,点O到CD的距离是6 cm,则像CD的长是AB长的( )图5A .3倍 B.12C.13D .不知AB 的长度,故无法判断8.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图6所示的测量方案,把一面很小的镜子水平放置在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =3.2米,观察者目高CD =1.6米,则树(AB )的高度为( )图6A .4.2米B .4.8米C .6.4米D .16.8米9.如图7,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 边的中点B ′重合,若AB =2,BC =3,则△FCB ′与△B ′DG 的面积之比为( )A.9∶4 B.3∶2 C.4∶3 D.16∶9图710.如图8,在△ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D的运动速度为1 cm/s,点E的运动速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )图8A.3 s或4.8 s B.3 sC.4.5 s D.4.5 s或4.8 s请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,D 是等边三角形ABC 中边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 分别在边AC 和BC 上,则CFCE=________.图912.如图10,△ABC 中,AB =6,DE ∥AC ,将△BDE 绕点B 顺时针旋转得到△BD ′E ′,点D 的对应点D ′落在边BC 上.已知BE ′=5,D ′C =4,则BC 的长为________.图1013.若a b =c d =e f =12,则3a -2c +e 3b -2d +f(3b -2d +f ≠0)=________.14.如图11所示,Rt △DEF 是由Rt △ABC 沿BC 方向平移得到的,若AB =8,BE =4,DH =3,则△HEC 的面积为________.图1115.如图12,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 的同侧,且∠ACD =∠B ,CD =2,E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为________.图1216.如图13,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B ′的坐标为________.图13三、解答题(共72分)17.(6分)已知a ,b ,c 是△ABC 的三边长,且满足a +43=b +32=c +84,a +b +c =12,试求a ,b ,c 的值,并判断△ABC 的形状.18.(6分)如图14,在平面直角坐标系中,四边形OABC的顶点分别是O(0,0),A(6,0),B(3,6),C(-3,3).(1)以原点O为位似中心,在点O的异侧画出四边形OABC的位似图形四边形OA1B1C1,使它与四边形OABC的相似比是2∶3;(2)写出点A1,B1,C1的坐标;(3)求四边形OA1B1C1的面积.图1419.(8分)已知:在△ABC中,∠ABC=90°,AB=3,BC=4,Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图15①)或线段AB的延长线(如图15②)于点P.(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ;(2)当△PQB 为等腰三角形时,求AP 的长.图1520.(8分)如图16①,点D ,E 分别在AB ,AC 上,且AD AB =AEAC .(1)求证:DE ∥BC ;(2)如图②,在△ABC 中,D 为边AC 上任意一点,连接BD ,取BD 的中点E ,连接CE 并延长CE 交边AB 于点F ,求证:BF AF =CDAC;(3)在(2)的条件下,若AB =AC ,AF =CD ,求BFAF的值.图1621.(10分)如图17是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D 处竖直立一根木棒CD ,并测得此时木棒的影长DE =2.4米;然后,小希在BD 的延长线上找出一点F ,使得A ,C ,F 三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.图1722.(10分)如图18,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动,点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果点P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)设△POQ的面积为y,求y关于t的函数表达式;(2)当t为何值时,△POQ与△AOB相似?图1823.(12分)如图19,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,D是BC边上的一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.图1924.(12分)如图20①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似给出“黄金分割线”的定义:一条直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线?并证明你的结论;(2)如图③,在边长为1的正方形ABCD 中,E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.图20详解详析1.A2.C [解析] ∵两条直线分别被三条平行直线l 1,l 2,l 3所截,∴AB BC =DE EF.∵AB =3,BC =6,DE =2,∴EF =4,∴DF =DE +EF =2+4=6.故选C.3.C4.C [解析] ∵点D 是线段AB 的一个黄金分割点,∴AD 2=BD ·AB . ∵AD =AC =BC ,∴BC 2=BD ·AB , 即BC ∶BD =AB ∶BC .而∠ABC =∠CBD ,∴△BCD ∽△BAC , ∴∠A =∠BCD .设∠A =x °,则∠B =x °,∠BCD =x °, ∴∠ADC =∠BCD +∠B =2x °. 而AC =AD ,∴∠ACD =∠ADC =2x °, ∴x +2x +2x =180,解得x =36, 即∠A =36°.故选C.5.A6.B [解析] 由折叠知AF =AB =2,设AD =x ,则FD =x -2,EF =2,∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,即2x -2=x 2,解得x 1=1+5,x 2=1-5(不合题意,舍去),即AD 的长为5+1.故选B.7.C [解析] 过点O 作OM ⊥AB 于点M ,交CD 于点N ,如图,则OM =18 cm ,ON =6 cm.∵AB ∥CD ,∴△ODC ∽△OAB ,∴CD AB =ON OM =618=13,即CD 的长是AB 长的13.故选C.8.A [解析] 如图,过点E 作EF ⊥BD 于点E ,则∠1=∠2.∵∠DEF =∠BEF =90°,∴∠DEC =∠AEB .∵CD ⊥BD ,AB ⊥BD ,∴∠CDE =∠ABE =90°,∴△CDE ∽△ABE ,∴DE BE =CDAB.∵DE =3.2米,CD =1.6米,BE =8.4米,∴3.28.4=1.6AB,解得AB =4.2米. 9.D [解析] 本题运用方程思想,设CF =x , 则BF =3-x ,易得CF 2+CB ′2=FB ′2,即x 2+12=(3-x )2,解得x =43.由已知可证得Rt △FCB ′∽Rt△B ′DG ,所以S △FCB ′S △B ′DG =⎝ ⎛⎭⎪⎫CF DB ′2=169.10.A [解析] 本题运用分类讨论的思想,分△ADE ∽△ABC 和△ADE ∽△ACB 两种情况分别求解.11.54 [解析] ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AC =BC =AB =AD +DB =6.由折叠的性质可知∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF , ∴△AED ∽△BDF ,∴DF DE =BD +DF +BF AE +AD +DE =108=54,∴CF CE =DF DE =54. 12.2+34 [解析] 由旋转可得BE =BE ′=5,BD =BD ′. ∵D ′C =4,∴BD ′=BC -4,即BD =BC -4.∵DE ∥AC ,∴BD BA =BE BC ,即BC -46=5BC,解得BC =2+34(负值已舍),即BC 的长为2+34.13.12 [解析] 由a b =c d =e f =12,得a =12b ,c =12d ,e =12f ,所以3a -2c +e 3b -2d +f =1.5b -d +0.5f3b -2d +f =12. 14.503 [解析] 设CE =x ,由△CEH ∽△CBA ,得EH AB =CE CB ,即8-38=x x +4,∴x =203,∴S△HEC=12×203×5=503.15.43或3 [解析] ∵∠ACD +∠DCE =∠B +∠A ,∠ACD =∠B ,∴∠DCE =∠A ,∴∠A 与∠DCE 是对应角,∴△DCE 和△ABC 相似有两种情况:(1)当△BAC ∽△ECD 时,AB CE =AC CD ,∴4CE =62,∴CE =43; (2)当△BAC ∽△DCE 时,AB CD =ACCE, ∴42=6CE,∴CE =3. 综上所述,CE 的长为43或3.故答案为:43或3.易错警示△DCE 和△ABC 相似有两种情况,注意不要漏解.16.(4,3)或(-8,-3) [解析] 由直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,得点A (-2,0),点B (0,1).画△BOC 的位似图形△B ′O ′C ′如图所示.∵△BOC 与△B ′O ′C ′的相似比为1∶3,∴点B ′(x ,3)或(x ,-3).∵点B ′(x ,3)或(x ,-3)在直线y=12x +1上,∴点B ′的坐标为(4,3)或(-8,-3). 故答案为(4,3)或(-8,-3).17.解:设a +43=b +32=c +84=k (k ≠0),∴a =3k -4,b =2k -3,c =4k -8. ∵a +b +c =12,将a =3k -4,b =2k -3,c =4k -8代入上式, 得3k -4+2k -3+4k -8=12, ∴9k =27,即k =3. ∴a =5,b =3,c =4.∵b 2+c 2=9+16=25,a 2=52=25, ∴b 2+c 2=a 2,∴△ABC 是直角三角形.18.解:(1)如图所示,四边形OA 1B 1C 1即为所求.(2)由图形可得A 1(-4,0),B 1(-2,-4),C 1(2,-2).(3)四边形OA 1B 1C 1的面积为12×2×4+12×(3+4)×2+12×3×2=14.19.解:(1)证明:∵∠A +∠APQ =90°,∠A +∠C =90°, ∴∠APQ =∠C . 在△AQP 和△ABC 中, ∵∠APQ =∠C ,∠A =∠A , ∴△AQP ∽△ABC .(2)在Rt △ABC 中,AB =3,BC =4,由勾股定理,得AC =5. ①当点P 在线段AB 上时. ∵△PQB 为等腰三角形,∴PB =PQ . 由(1)可知,△AQP ∽△ABC ,∴PA AC =PQBC,即3-PB 5=PB 4,解得PB =43, ∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时. ∵△PQB 为等腰三角形, ∴PB =BQ ,∴∠BQP =∠P .∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,即B 为线段AP 的中点, ∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.20.解:(1)证明:∵∠A =∠A ,AD AB =AEAC, ∴△ADE ∽△ABC ,∴∠ADE =∠B , ∴DE ∥BC .(2)证明:如图,过点D 作DG ∥AB 交CF 于点G ,则△CDG ∽△CAF ,∴DG AF =CD AC.∵E 是BD 的中点,∴BE =ED . ∵DG ∥AB ,∴∠FBE =∠EDG .在△BEF 和△DEG 中,∠FBE =∠EDG ,∠FEB =∠GED ,BE =ED ,∴△BEF ≌△DEG (ASA),∴BF =DG ,∴BF AF =CDAC.(3)由(2)可得BF AF =CDAC.∵AB =AC ,AF =CD ,∴BF AF =AFAF +BF,∴BF 2+BF ·AF -AF 2=0,∴(BF AF)2+BF AF -1=0,解得BF AF =-1±52,而BE AF >0,∴BF AF =5-12.21.解:由题意得∠ABD =∠CDE =90°, ∠ADB =∠CED ,∴△CDE ∽△ABD ,∴CD AB =DE BD.∵由题意得∠CDF =∠ABF =90°,∠CFD =∠AFB ,∴△CDF ∽△ABF ,∴CD AB =DF BF,∴DE BD =DF BF,即2.4BD = 2.5BD +2.5,∴BD =60, ∴1.72AB =2.460,∴AB =43. 答:小雁塔的高度AB 是43米.22.解:(1)由题意,得BQ =t 厘米,OP =t 厘米. 因为OB =6厘米, 所以OQ =(6-t )厘米.所以y =12OP ·OQ =12t ·(6-t )=-12t 2+3t (0≤t ≤6). (2)当△POQ 与△AOB 相似时,①若OQ OB =OP OA ,即6-t 6=t 12,解得t =4; ②若OQ OA =OP OB ,即6-t 12=t 6,解得t =2. 所以当t =4或t =2时,△POQ 与△AOB 相似.23.解:(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠B =∠C =30°. 又∵∠ADE =30°,∴∠B =∠ADE .又∵∠ADC =∠ADE +∠EDC =∠B +∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE .(2)如图①,过点A 作AF ⊥BC 于点F ,∵AB =AC =2,∠BAC =120°,∴∠AFB =90°.∵AB =2,∠ABF =30°,∴AF =12AB =1, ∴BF =3,∴BC =2BF =23,则CD =23-x ,CE =2-y .∵△ABD ∽△DCE ,∴AB BD =CD CE ,∴2x =23-x 2-y ,化简得y =12x 2-3x +2(0<x <23).(3)当AD =DE 时,如图②,由(1)可知:此时△ABD ∽△DCE ,则AB =CD ,即2=23-x ,x =23-2,将其代入y =12x 2-3x +2,解得y =4-23, 即AE =4-23;当AE =ED 时,如图③,∠EAD =∠EDA =30°,∠AED =120°,∴∠DEC =60°,∠EDC =90°,则DE =12CE ,即y =12(2-y ),解得y =23,即AE =23;当AD =AE 时,∠AED =∠ADE =30°,∠EAD =120°,此时点D 与点B 重合,不符合题意,故此种情况不存在.综上,当△ADE 是等腰三角形时,AE 的长为4-23或23. 24.解:(1)直线CD 是△ABC 的黄金分割线.证明:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36°, ∴∠BDC =72°=∠B ,∠A =∠ACD ,∴BC =CD ,AD =CD ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC AB ,∴BD AD =AD AB. 又∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB, ∴S △BCD S △ADC =S △ADC S △ABC, ∴直线CD 是△ABC 的黄金分割线.(2)设BE =x ,∵正方形ABCD 的边长为1,∴S △ABE =12AB ·BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1-12x . ∵直线AE 是正方形ABCD 的黄金分割线, ∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD, ∴S 四边形ADCE 2=S △ABE ·S 正方形ABCD , 即(1-12x )2=12x ·1, 整理,得x 2-6x +4=0,解得x 1=3+5,x 2=3- 5.∵E 是边BC 上一点,∴x <1,∴x=3-5,∴BE的长为3- 5.。

最新版2019-2020年北师大版数学九年级上册《第四章图形相似》单元测试及答案-精编试题

最新版2019-2020年北师大版数学九年级上册《第四章图形相似》单元测试及答案-精编试题

北师大版数学九年级上册《第四章图形相似》单元测试一.选择题(共12小题)1.若,则的值为()A.1 B.C.D.2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF的面积比为()A.3:2 B.2:3 C.4:9 D.9:163.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90m B.60m C.45m D.30m4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD 等于()A.2:5 B.3:5 C.2:3 D.5:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:119.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为()A.B.C.D.10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:1011.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4二.填空题(共5小题)13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF= .15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A n B n D n C n的边长是.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= .17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC 上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.三.解答题(共6小题)18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△AB E∽△DEF;(2)若正方形的边长为4,求BG的长.20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE 与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE= ,EN= ;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?参考答案一.选择题1.C.2.C.3.B.4.A.5.B.6.A.7.A.8.C.9.B10.D.11.D.12.B.二.填空题13.]4.14.7.5.15.].16.3.17.36.三.解答题18.(1)证明:∵AB=2,BC=4,BD=1,∴==,=,∴=,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△C BA,∴△ABD∽△CDE,∴DE=1.5.19.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.20.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.21.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.22.解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为:(1)(2,﹣2);(2)(1,0)23.解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴=,=,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当点K运动6秒时,点K到点F,点P还没到点B,∴点K不可能在BC边上,.综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.。

2019-2020学年北师大版九年级上册数学 第四章 图形的相似 单元达标测试题(含答案)

2019-2020学年北师大版九年级上册数学 第四章 图形的相似 单元达标测试题(含答案)

第四章图形的相似一、选择题1.下列各组中四条线段成比例的是()A. 4cm、2cm、1cm、3cmB. 1cm、2cm、3cm、4cmC. 25cm、35cm、45cm、55cmD. 1cm、2cm、20cm、40cm2.如图,l1∥l2∥l3,AC、DF交于点O,则下列比例中成立的是()A. B. C. D.3.下列生活中的现象,属于相似变换的是()A. 抽屉的拉开B. 汽车刮雨器的运动C. 坐在秋千上人的运动D. 投影片的文字经投影变换到屏幕4.在长度为1的线段上找到两个黄金分割点P,Q,则PQ=()A. B. C. D.5.如图,∠1=∠2,则下列各式中,不能说明△ABC∽△ADE的是( )A. ∠D=∠BB. ∠E=∠CC.D.6.在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则的值是( )A. B. C. D.7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交DB于点F,则△DEF的面积与△BAF的面积之比为()A. 1:3B. 3:4C. 1:9D. 9:168.如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有()A. 3个B. 2个C. 1个D. 0个9.两个相似三角形的相似比为1:2,则对应高的比为()A. 1:1B. 1:2C. 1:3D. 1:410.如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A. B. C. 或 D. 或11.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为()A. (0,0)B. (0,1)C. (﹣3,2)D. (3,﹣2)12.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题13.若x:y=1:2,则=________.14.已知实数a,b,c满足a+b+c=10,且++=,则++的值是________15.如果两个图形相似,那么它们的形状________ ,而与它们的________ 无关.16.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________ .17.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF=________.18.如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是________。

人教版九年级数学第四章《相似图形》单元水平测试(一)及答案

人教版九年级数学第四章《相似图形》单元水平测试(一)及答案

第四章《相似图形》水平测试一、细心选一选(每题3分,共30分)1.如图1是2008年奥运会标志的“中国印”.贝贝同学用放大镜将图形放大,这种变换属于( )A 、对称变换B 、平移变换C 、旋转变换D 、相似变换2.在1:1000000 地图上,A B ,两点之间的距离是5cm ,则A B ,两地的实际距离是( )A.5千米B.50千米C.500千米D.5000千米3.在下列各组线段中,不成比例的是( )32,15,5,2..10,5,6,4..3,6,2,1..4,2,6,3.================d c b a D d c b a C d c b a B d c b a A 图1 图24.下列命题:①正方形都相似;②等腰三角形都相似;③等腰直角三角形都相似;④直角三角形斜边上的中线与斜边的比为1∶2;⑤两个相似多边形的面积比为4∶9,则周长的比为16∶81.中,其中正确的个数有 ( )A 、1个B 、2个C 、3个D 、4个5.如图2,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( )A .1:6B .1:5C .1:4D .1:26.张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为( )A.3.2米B.4.8米C.5.2米D.5.6米7.如图3,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为( )A .6.4米B . 8米C .9.6米D .11.2米图3 图48.圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(如图4所示).已知桌面的直径1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( )A.0.36π平方米 B.0.81π平方米C.2π平方米D.3.24π平方米9.如图5所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是( )图5 图610.如图6,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a ,b ,c 满足的关系式是( )A .b a c =+B .b ac =C .222b ac =+ D .22b a c == 二、用心填一填(每题3分,共24分)11.若线段a b c d ,,,成比例,其中3cm 6cm 2cm a b c ===,,,则_____d =. 12.如图7,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD= .图7 图8 图913.如图8表示△COD 和它放大后得到的△AOB ,则它们的相似比是 . 14、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2,那么较小的多边形的面积是 cm 2.15.如图9,将①∠BAD = ∠C ;②∠ADB = ∠CAB ;③BC BD AB ⋅=2;④DBABAD CA =;⑤DA AC BA BC =;⑥ACDABA BC =中的一个作为条件,另一个作为结论,组成一个真命题,则条件是__________,结论是_______.(只填序号)1 2 PD CBAF E╮╭图10 图1116.如图10,测量小玻璃管的口径的量具ABC 上,AB 的长为10mm ,AC 被分为60等份.如果小管口DE 正好对着量具上30份处(DE ∥AB ),那么小管口径DE 的长是__mm . 17.如图11,在等腰梯形ABCD 中,AD ∥BC ,过C 作CE ∥AB ,P 是梯形ABCD 内一点,连接BP 并延长交CD 于F ,CE 于E ,再连接PC .已知BP =PC .贝贝同学在作业本上写下了四个结论:①∠1=∠2;②∠2=∠E ;③△PFC ∽△PCE ;④△EFC ∽△ECB . 你认为他写得正确的是______(把你认为正确的结论写在横线上)18.贝贝同学把一个长为8cm ,宽为6cm 的矩形纸片,截去一个矩形,使得留下的矩形与原矩形相似,则留下的矩形的面积为____. 三、耐心做一做(共42分)19.(7分)已知一矩形长为20 cm ,宽为15 cm ,另一个与它相似的矩形的一边长为10cm ,求另一边长.20.(8分)如图,梯形ABCD 中,AB ∥DC ,∠B =90°,E 为BC 上一点,且AE ⊥ED ,若BC=12,DC =7,BE :EC =1:2,求AB 的长.EDCBA21.(9分)如图,已知O 是坐标原点,B ,C 两点的坐标分别为(31)(21)-,,,.(1)以O 点为位似中心在y 轴的左侧..将OBC △放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B ,C 两点的对应点B ',C '的坐标;(3)如果OBC △内部一点M 的坐标为()x y ,,写出M 的对应点M '的坐标.22.(8分)如图13,AD 是△ABC 的角平分线,BH ⊥AD ,CK ⊥AD ,垂足分别为点H 、K ,你能说明AB·DK =AC·DH 的理由吗?KHDCBA23.(10分)八年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.四.拓广探索(每题12分,共24分)24.一条河的两岸有一段是平行的.在河的南岸每相距5米栽一棵树,在河的北岸每相距50米栽一根电线杆.在南岸离开岸边25米处看北岸,看到北岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河宽.(要求要有求解所需要的图形说明,可以在原图中标注和绘制)北岸河流南岸25.王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.参考答案1.D 2.B 3、B 4.C (点拨:正确的有①③④)5、C6、B7、C8、B 9.B10.A (点拨:根据正方形和直角三角形的性质可得图中间的两个三角形相似,根据边长特点得出b c ca b a-=-,化简后即可得b a c =+) 11.4cm 12.23; 13、3:514.40 15.①,③或③,①等 16.6 17.①②③ 18.272cm 19.矩形的另一边长为7.5cm 或403cm 20.由EC =1:2,BC =12,可得BE =4,EC =8;又可说明△ABE ∽△ECD ,所以AB :BE =EC :CD ,AB =28721.(1)画图略 (2)(62)(42)B C ''---,,, (3)(22)M x y '--, 22.由题意可知说明△ABH ∽ACK ,所以AB BHAC CK=,又可说明△BDH ∽CDK ,所以BH BD CK DK =,所以AB BHAC KD=,所以AB·DK =AC·DH . 23..解:CD FB Q ⊥,AB FB ⊥ CD AB ∴∥,CD 与EH 交于点G .CGE AHE ∴△∽△ CG EG AH EH ∴= 即:CD EF FDAH FD BD-=+ 3 1.62215AH -∴=+11.9AH ∴= 11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+=24.如图,由题意可知AB =50,DE =20,设HF =x ,则CH =25+x ,因为DE ∥AB ,所以AB CF DE CH =∴,即50252025x+=,解得37.5x =. F EHDCBA FE D CBA25.根据题意,有两种情况,(1)当等腰三角形为锐角三角形时(如图1),BE F20AD BD ==∵,15DE =,25AE =∴过C 点作CF AB ⊥于F .DE CF ∴∥.DE AE CF AC =∴.15402425CF ⨯==11402448022ABC S AB CF ==⨯⨯=V g ∴(m 2)(2)当等腰三角形为钝角三角形时(如图2),过A 点作AF BC ⊥于F .20AD BD ==∵,15DE =,25BE =∴. ∵△BDE ∽△BFA , BD BE DE BF AB AF ==∴.20403225BF ⨯==∴∴23264BC =⨯=.24AF = 164247682ABC S =⨯⨯=V ∴(m 2)备用题1、如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A .1:2 B .1:4C.D .2:1【答案】B.2、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )【答案】B3、如图,在△ABC 中,AB =24,AC =18,D 是AC 上的一点,AD =12,在AB 上取一点E ,使A 、D 、E 三点组成三角形与△ABC 相似,则AE 的长为 ( ) A 、16 B 、14 C 、16或14 D 、16或9答案:D (点拨:分两种情况进行讨论).A .B .C .D .ABCB4.如图,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形: .△ABE ∽△FCE 或△CEF ∽△DFA5、如图③,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC ;(2)若四边形BDFE 的面积为6,求△ABD 的面积.21FE DCBA解:(1)证明: CF ACB ∠Q 平分,∴ 12∠=∠.∵ DC AC =,∴ CF 是△ACD 的中线,∴ 点F 是AD 的中点 又∵ 点E 是AB 的中点, ∴ EF ∥BD, 即 EF ∥BC (2)解:由(1)知,EF ∥BD , ∴ △AEF ∽△ABD ,∴ 2()AEF ABD S AE S AB∆∆= 又∵ 12AE AB =, 6AEF ABD ABD BDFE S S S S ∆∆∆=-=-四边形, ∴261()2ABD ABD S S ∆∆-= , ∴ 8ABD S ∆=, 即ABD ∆的面积为8.6.如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,连结BE 交AC 于点F ,BE 的延长线交CD 的延长线于点G . (1)证明:GE AEGB BC=. (2)若GE =2,BF =3,求线段EF的长.BGABFDCE解:(1)∵E 点是AD 的中点,∴AE=DE .∵AD ∥BC ,∴BCAEBC ED GB GE ==. (2)∵AD ∥BC ,∴BF EF BC AE =,即BF EFGB GE =. 设EF=x ,则3322xx =++,解得:1=x .∴EF =1.7.如图,点C 、D 在线段AB 上,△PCD 是等边三角形.(1)当AC 、CD 、DB 满足怎样的关系时,△ACP ∽△PDB ?并说明理由. (2)当△ACP ∽△PDB 时,求∠APB 的度数.解:(1)CD 2=AC·BD ,由PC=PD=CD ,转化为AC :PD=CP :BD ,.(2)由(1)得∠APC=∠B ,而∠DPB+∠B=60°,所以∠APC+∠DPB=60°,再加上∠CPD=60°,所以∠APB=120°.8.如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)CG AE =; (2).MN CN DN AN •=•解:(1)Θ四边形ABCD 和四边形DEFG 都是正方形,,90,AD CD DE DG ADC EDG ∴==∠=∠=oPD,ADE CDG ADE CDG ∴∠=∠∴△≌△,AE CG ∴=(2)由(1)得 ,又CND ANM DCG DAE CDG ADE ∠=∠∠=∠∴∆≅∆,, ∴∆AMN ∽∆CDNAN MNAN DN CN MN CN DN∴=•=•,即。

2020年秋北师大版九年级数学上册第四章 图形的相似培优测试卷(含解析)

2020年秋北师大版九年级数学上册第四章 图形的相似培优测试卷(含解析)

2020年秋北师大版九年级数学上册第四章图形的相似培优测试卷一、选择题(共10题;共30分)1.下列各组线段中,能成比例的是()A. 1 cm,3 cm,4 cm,6 cmB. 2 cm,1 cm,4 cm,1.5 cmC. 0.1 cm,0.2 cm,0.3 cm,0.4 cmD. 3 cm,4 cm,6 cm,8 cm2.已知两数x ,y ,且3x=2y ,则下列结论一定正确的是()A. x=2,y=3B. x3=y2C. x+yy=53D. x+2y+3=233.如图,直线a //b //c,AB=45BC,若DF=9,则EF的长度为( )A. 9B. 5C. 4D. 34.如图所示,在长为8 cm,宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm25.如图,为估算学校的旗杆的高度,身高1.8米的小明同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m, BC=8m,则旗杆的高度是( )A. 6.4mB. 7mC. 8m.D. 9m6.已知△ABC∽△DEF ,若△ABC与△DEF的相似比为2:3,△ABC的面积为40,则△DEF的面积为()A. 60B. 70C. 80D. 907.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A. (-2,3)B. (2,-3)C. (3,-2)或(-2,3)D. (-2,3)或(2,-3)8.如图,在△ABC 中,点D 在BC 边上,连接AD , 点G 在线段AD 上,GE//BD , 且交AB 于点E , GF//AC , 且交CD 于点F , 则下列结论一定正确的是( )A. AB AE =AG ADB. DF CF =DG ADC. FG AC =EG BDD. AE BE =CF DF 9.如图,矩形 ABCD 的对角线 AC , BD 交于点 O , AB =6 , BC =8 ,过点 O 作 OE ⊥AC ,交 AD 于点 E ,过点 E 作 EF ⊥BD ,垂足为 F ,则 OE +EF 的值为( )A. 485B. 325C. 245D. 12510.在正方形ABCD 中,点E 为BC 边的中点,把△ABE 沿直线AE 折叠,B 点落在点B ′处,B ′B 与AE 交于点F ,连接AB ′,DB ′,FC.下列结论:①AB ′=AD ;②△FCB ′为等腰直角三角形;③∠CB ′D=135°;④BB ′=BC ;⑤ AB 2=AE ⋅AF .其中正确的个数为( ).A. 2B. 3C. 4D. 5二、填空题(共8题;共24分)11.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE 不行于BC ,添加一条件能使△ABC ∽△ADE 的是________.12.如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为________.13.若x∶y∶z=2∶3∶4,则2x+3y−z的值为________.x−y+2z14.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=________.15.如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,则电线杆AB的高为________米.16.如图已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的BC边上的高是3,那么这个正方形的边长是________.17.如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF 翻折,使点D落在BC上的点M处,过点E作EH//AB交BC于点H,过点F作FG//BC交AB于点G .若四边形ABHE与四边形BCFG的面积相等,则CF的长为________.18.如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC,ED分别交于点M ,N .已知AB=4,BC=6,则MN的长为________.三、解答题(共8题;共66分)19.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD ,CD⊥BD ,测得AB=2米,BP=3米,PD=12米,求该古城墙的高度CD .20.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.21.图①、图②、图③都是6×6的网格,每个小正方形的顶点为格点,△ABC的顶点A、B、C均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求作图,不要求写出画法.(1)在图①中画出△ABC边BC上的中线AD,则S△ABD=________.(2)在图②中画出△BEF,点E、F分别在边AB、BC上,满足△BEF~△BAC,且S△BEF:S△BAC=1:4;(3)在图③中画出△BMN,点MN分别在边AB、BC上,使得△BMN与△BAC是位似图形,且(保留作图痕迹)点B为位似中心,位似比为1322.如图,在△ABC中,BC=3,D为AC延长线上一点,AC=3CD ,∠CBD=∠A ,过D作DH∥AB ,交BC的延长线于点H .(1)求证:△HCD∽△HDB .(2)求DH长度.23.如图,△ABC 中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点C 移动,同时动点Q从C出发以1cm/s的速度向点A 移动,设它们的运动时间为t.(1)根据题意知:CQ=________,CP=________;(用含t 的代数式表示);(2)t为何值时,△CPQ 的面积等于1?(3)运动几秒时,△CPQ 与△CBA 相似?24.如图,在△ABC中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且AD⋅OC= AB⋅OD,AF是∠BAC的平分线,交BC于点F,交DE于点G.(1)求证:CE⊥AB.(2)求证:AF⋅DE=AG⋅BC .25.如图1,四边形ABCD的对角线AC,BD相交于点O,OA=OC,OB=OD+CD.图1 图2(1)过点A作AE//DC交BD于点E,求证:AE=BE;(2)如图2,将△ABD沿AB翻折得到△ABD′.①求证:BD′//CD;②若AD′//BC,求证:CD2=2OD⋅BD.26.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点P从点A出发,沿线段AB以每秒5个单位长度的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB,交折线AC−CB 于点Q,过点P、Q分别平行于BC、BA的直线相交于点R.设点P运动的时间为t秒,△PQR与△ABC重叠部分的面积为S.(1)直接写出线段PQ的长.(用含t的代数式表示)(2)当点R落在边AC上时,求t的值.(3)当△PQR与△ABC重叠部分图形为三角形时,求S与t之间的函数关系式.(4)直接写出AQ或PC平分△PQR面积时t的值.答案一、选择题1.解:A、1×6≠3×4,故不符合题意;B、1×4≠2×1.5,故不符合题意;C、0.1×0.4≠0.2×0.3,故不符合题意;D、3×8=4×6,故符合题意.故答案为:D.2.解:A、当x=2时,y=3,但不是x一定等于2,y一定等于3,故A不符合题意;B、3x=2y,则x3=y2,故B不符合题意;C、由3x=2y,得xy =23,则x+yy=53,故C符合题意;D、由3x=2y,得xy =23,不能得到x+2y+3=23,故D不符合题意.故答案为:C.3.解:∵l1//l2//l3,根据平行线分线段成比例可知,AB BC =DEEF=45,设DE=4t,EF=5t,又∵DF=9,其中DF=DE+EF=9t=9,解得:t=1,∴EF=5t=5,故答案为:B.4.解:设留下矩形的宽为xcm,∵留下的矩形(图中阴影部分)与原矩形相似,∴x4=48,解得x=2则留下矩形的面积为2×4=8(cm2) . 故答案为:C.5.解:设旗杆高度为h,由题意得 1.8h =22+8,解得:h=9米.故答案为:D.6.解:∵△ABC与△DEF相似,相似比为2:3,∴面积比为4:9,∵△ABC的面积为40,∴△DEF的面积为90,故答案为:D .7.如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

(典型题)初中数学九年级数学上册第四单元《图形相似》测试题(答案解析)(1)

(典型题)初中数学九年级数学上册第四单元《图形相似》测试题(答案解析)(1)

一、选择题1.如图,ABC 的两个顶点B 、C 均在第一象限,以点()0,1A 为位似中心,在y 轴左侧作ABC 的位似图形ADE ,ABC 与ADE 的位似比为1:2若点C 的纵坐标是m ,则其对应点E 的纵坐标是( )A .32m -+B .23m +C .()23m -+D .23m -+ 2.点B 把线段AC 分成两部分,如果BC AB AB AC ==k ,那么k 的值为( ) A .512+ B .512- C .5+1 D .5-1 3.如图,在▱ABCD 中,E 是BC 的中点,DE ,AC 相交于点F ,S △CEF =1,则S △ADC =( )A .3B .4C .5D .64.如图,在▱ABCD 中,点O 是对角线BD 上的一点,且12OD OB =,连接CO 并延长交AD 于点E ,若△COD 的面积是2,则四边形ABOE 的面积是( )A .3B .4C .5D .65.如图,已知□ABCD ,以B 为位似中心,作□ABCD 的位似图形□EBFG ,位似图形与原图形的位似比为23,连结CG ,DG .若□ABCD 的面积为30,则△CDG 的面积为( )A .3B .4C .5D .6 6.如图,CD ,BE 分别是ABC 两条中线,连结DE ,则:EDC ABC S S 的比值是( )A .12B .14C .13D .237.如图,在矩形ABCD 中,E ,F 分别为BC ,CD 的中点,线段AE ,AF 与对角线BD 分别交于点G .设矩形ABCD 的面积为S ,则下列结论不正确的是( )A .:2:1AG GE =B .::1:1:1BG GH HD =C .12313S S S S ++=D .246::1:3:4S S S = 8.若34,x y =则x y =( ) A .34 B .74 C .43 D .739.如图,已知ABC ,DCE ,FEG ,HGI 是四个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一直线上,且4AB =,2BC =,连接AI 交FG 于点Q ,则QI 的值为( )A .4B .103C .3D .8310.如图,梯形ABCD 中,AC 交BD 于点O ,已知AD ∥BC ,AD =2,BC =4,S △AOD =1,则梯形ABCD 的面积为( )A .9B .8C .7D .611.如图,在Rt ABC 中,90ACB ∠=︒,以其三边为边向外作正方形,过点C 作CR FG ⊥于点R ,再过点C 作PQ CR ⊥分别交边DE ,BH 于点P ,Q .若2QH PE =,9PQ =,则CR 的长为( )A .14B .9C .425D .36512.如图,正方形ABCD 的边长为2,BE CE =, 1.MN =线段MN 的两端在CD ,AD 上滑动,当ABE 与以D ,M ,N 为顶点的三角形相似时,DM 的长为( )A .13B .13或23C .55D .55或255二、填空题13.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN =32NF ;③38BM MG =;④S 四边形CGNF =12S 四边形ANGD ,其中正确的结论的序号是_____.14.如图,小静在横格纸上画了两条线段AB ,CD ,点A ,D 在同一条格线上,点B ,C 在同一条格线上,AB 与CD 的交点也在格线上,横格纸的横线平行且相邻横线间的距离相等,若4=AD ,则BC =______.15.如图,在ABC ∆中,点111,,A B C 分别是,,AC BC AB 的中点,连接1111,AC A B ,四边形111A B BC 的面积记作1S ;点222,,A B C 分别是1111,,A C B C A B 的中点,连接2222,A C A B ,四边形2212A B B C 的面积记作2S …,按此规律进行下去,若ABC S a ∆=,则3S =__________;n S =__________.(n 为正整数)16.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若AB =4,AD =3,则CF 的长为_____.17.已知AEF ABC ∽,且:1:3AE AB =,四边形EBCF 的面积是8,则ABC S =____________.18.如图,在正方形ABCD 中,对角线,AC BD 相交于点,O E 是OB 的中点,连接AE 并延长交BC 于点,F 若BEF ∆的面积为1,则正方形ABCD 的面积为________________________.19.线段AB 、CD 在平面直角坐标系中的网格位置,如图所示,O 为坐标原点,A 、B 、C 、D 均在格点上,线段AB 、CD 是位似图形,位似中心的坐标是__________.20.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得AB =1.8米,BD =1米,BE =0.2米,那么井深AC 为____米.三、解答题21.如图,上体育课时,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是多少米?22.如图,直角坐标系xOy 中,一次函数+6y x =-的图象1l 分别与,x y 轴交于,A B 两点,正比例函数的图象2l 与1l 交于点(),5C m(1)求m 的值及2l 的解析式;(2)求AOC S 的值;(3)垂直于x 轴的直线x a =与直线12,l l 分别交于点,P Q ,若线段2PQ =,求a 的值; (4)一次函数64y kx k =-+的图象与线段AB (含端点)有公共点,且满足y 随x 的增大而减小,设直线与x 轴的交点横坐标为,x 直接写出x 的取值范围.23.如图,在矩形ABCD 中,E 是BC 上一点,DF AE ⊥于点F ,设()0AD AEλλ=>.(1)若1λ=,求证:CE FE =;(2)若3,4AB AD ==,且D B F 、、在同一直线上时,求λ的值.24.如图,在△ABC 中,∠C =∠ADE ,AB =3,AD =2,CE =5,求证:(1)△ADE ∽△ACB ;(2)求AE 的长.25.如图,小明想测量河对岸建筑物AB 的高度,在地面上C 处放置了一块平面镜,然后从C 点向后退了2.4米至D 处,小明的眼睛E 恰好看到了镜中建筑物A 的像,在D 处做好标记,将平面镜移至D 处,小明再次从D 点后退2.52米至F 处,眼睛G 恰好又看到了建筑物顶端A 的像,已知小明眼睛距地面的高度ED ,GF 均为1.6米,求建筑物AB 的高度.(注:图中的左侧α,β为入射角,右侧的α,β为反射角)26.如图1,在等边ABC 中,点D 是BC 边上的动点(不与点B 、C 重合),点E 、F 分别在AB 和AC 边上,且EDF=60.(1)求证:BDE CFD △∽△;(2)若点D 移至BC 的中点,如图2,求证:FD 平分EFC ∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设点C 的纵坐标为m ,然后表示出AC 、EA 的纵坐标的距离,再根据位似比列式计算即可;【详解】设点C 的纵坐标为m ,则A 、C 间的纵坐标的长度为()1m -,∵△ABC 放大到原来的2倍得到△ADE ,∴E 、A 间的纵坐标的长度为()21m -,∴点E 的纵坐标为()()2112323m mm ⎡⎤---=--=-+⎣⎦;故答案选D .【点睛】 本题主要考查了位似变换,坐标与图形的性质,准确分析计算是解题的关键. 2.B解析:B【分析】设AC=1,由题意得AB=k ,BC=2k ,由AC=AB+ BC=1得到关于k 的一元二次方程,解方程即可.【详解】设AC=1, ∵BC AB AB AC==k ,且0k >, ∴AB=k ,BC=2k ,∵AC=AB+ BC=1,∴21k k +=,即210k k +-=,∵1a =,1b =,1c =-,()224141150b ac =-=-⨯⨯-=>,∴k =负值舍去),∴12k =, 故选:B .【点睛】本题考查了比例线段,公式法解一元二次方程,由比例线段得到一元二次方程是解题的关键.3.D解析:D【分析】根据已知可得△CEF ∽△ADF ,及EF 和DF 的关系,从而根据相似三角形的性质和三角形的面积得到答案.【详解】解:∵四边形ABCD 是平行四边形∴AD=BC ,△CEF ∽△ADF , ∴EC EF AD DF= ∵E 是BC 的中点,∴EC=1122BC AD = ∴12EC EF AD DF == ∴2211()()24CEF ADF S EF S DF ∆∆=== ∵S △CEF =1,∴S △ADF =4, ∵12EF DF = ∴DF=2EF ∴S △D CF =2 S △CEF =2,∴S △ADC =S △ADF + S △D CF =4+2=6故选:D .【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解答此题的关键.4.C解析:C【分析】由题意可得△BOC 的面积为4,通过证明△DOE ∽△BOC ,可求S △DOE =1,即可求解.【详解】解:∵12 ODOB,△COD的面积是2,∴△BOC的面积为4,∵四边形ABCD是平行四边形,∴AD∥BC,S△ABD=S△BCD=2+4=6,∴△DOE∽△BOC,∴DOEBOCSS.(ODOB)2=14,∴S△DOE=1,∴四边形ABOE的面积=6﹣1=5,故选:C.【点睛】本题主要考查了相似三角形的判定与性质,准确计算是解题的关键.5.C解析:C【分析】连接BG,根据位似变换的概念得到点D、G、B在同一条直线上,FG∥CD,根据相似三角形的性质得到BGBD=FGCD=23,根据三角形的面积公式计算,得到答案.【详解】解:连接BG,∵▱ABCD和▱EBFG是以B为位似中心的位似图形,∴点D、G、B在同一条直线上,FG∥CD,∵四边形ABCD是平行四边形,面积为30,∴△CDB的面积为15,∵FG∥CD,∴△BFG∽△BCD,∴BGBD=FGCD=23,∴DGBD=13,∴△CDG的面积=15×13=5,故选:C.【点睛】本题考查的是位似变换的概念和性质、平行四边形的性质,掌握位似图形是相似图形、对应点的连线都经过同一点、对应边平行是解题的关键.6.B解析:B【分析】利用三角形中位线定理证明三角形的相似,根据相似三角形的性质确定面积之比,利用中线的性质等量代换三角形即可得证.【详解】∵CD ,BE 分别是ABC 两条中线,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,∴ADE S =14ABC S , ∴ADE S:ABC S =1:4, ∵点E 是AC 的中点, ∴ADE S=EDC S , ∴EDC S :ABC S =1:4, 故选B .【点睛】本题考查了三角形的中位线定理,三角形相似的判定与性质,中位线的性质,熟练掌握定理,灵活运用性质,规范进行代换是解题的关键.7.D解析:D【分析】 根据平行线分线段成比例定理和线段中点的定义得:21AG AD GE BE ==,可判断选项A 正确;同理根据平行线分线段成比例定理得:13BG BD =,13DH BD =即可判断B 选项;设1S x =根据相似三角形面积的比等于相似比的平方,等底同高三角形面积的关系依次用x 表示各三角形的面积,即可判断C 和D 选项.【详解】 ①四边形ABCD 是矩形,//BC AD BC AD ∴=点E 是BC 的中点1122//BE BC AD AD BE∴== ∴21AG AD GE BE == 故选项A 正确;②//BE AD1213BG BE DG AD BG BD ∴==∴= 同理得:13DH BD =::1:1:1BG GH HD BG GH HD ∴==∴=故选项B 正确 ③//BE ADDAG ∴△BEG ∽△ 13453414S S S BG GH HD S S S ∴=+==∴==设1S x =则5342S S S x ===12S x ∴=同理可得:2S x =1231243S S S x x x x S ∴++=++== 故选项C 正确;④由③可知:664S x x x x =--=246::1:2:4S S S ∴=故选项D 错误;故选:D .【点睛】本题考查了矩形的性质,三角形相似的性质和判定,平行线分线段成比例定理,三角形面积等知识,解题的关键是理解题意,掌握等底同高三角形面积相等,相似三角形面积的比等于相似比的平方.8.C解析:C【分析】根据比例的性质,两内项之积等于两外项之积进行计算即可求解.【详解】由比例的性质,由34,x y =得43x y =. 故选C . 【点睛】本题考查了比例的性质,利用比例的性质是解题关键. 9.D解析:D【分析】先求出BP ,进而利用勾股定理求出AP 的平方,即可求AI=8,最后判断出QG ∥AC ,即可通过全等得出结论.【详解】解:如图,过点A 作AP ⊥BC 垂足为P ,∵AB=AC ,BC=2,∴BP=12BC =1,BC=CE=EG=GI=2, 在Rt △ABP 中,根据勾股定理得,AP 2=AB 2-BP 2= 42-12=15 ,在Rt △API 中,PI=772BC =,根据勾股定理得222=1578AI AP PI ++= , ∵△ABC ,△DCE ,△FEG ,△HGI 是4个全等的等腰三角形,∴∠ACB=∠QGC ,∴QG ∥AC ,∴△IGQ ∽△ICA , ∴QI IG AI IC = , ∴268QI =, ∴QI=83, 故选:D .【点睛】 此题主要考查了相似三角形的判定和性质,全等三角形的性质,平行线的判定和性质,勾股定理,等腰三角形的性质,求出AI 是解本题的关键.10.A解析:A【分析】先根据AD ∥BC ,得到△AOD ∽△COB ,从而得出△COB 的面积,再根据△AOB 与△COB 等高,从而得出△AOB 的面积,同理得出△DOC 的面积即可得出梯形ABCD 的面积.【详解】解:∵AD ∥BC ,∴△AOD ∽△COB∵AD =2,BC =4, ∴12AD BC = ∴114AOD COB COB S S S == ∴COB S △ =4∵△AOB 与△COB 等高,又∵12AO CO = ∴142AOB AOB COB S S S == ∴AOB S =2同理,DOC S =2∴ABCD S 梯形=AOD COB AOB DOC SS S S +++ =1+4+2+2=9.故选:A .【点睛】 本题主要考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的面积比等于相似比的平方.11.C解析:C【分析】连接EC ,CH ,设AB 交CR 于点J ,先证得△ECP ∽△HCQ ,可得12PC CE EP CQ CH HQ ===,进而可求得CQ =6,AC :BC =1:2,由此可设AC =a ,则BC =2a ,利用AC ∥BQ ,CQ ∥AB ,可证得四边形ABQC 为平行四边形,由此可得AB =CQ =6,再根据勾股定理求得AC =,5BC =125CJ =,进而可求得CR 的长. 【详解】解:如图,连接EC ,CH ,设AB 交CR 于点J ,∵四边形ACDE ,四边形BCIH 都是正方形,∴∠ACE =∠BCH =45°,∵∠ACB =90°,∠BCI =90°,∴∠ACE +∠ACB +∠BCH =180°,∠ACB +∠BCI =180°,∴点E 、C 、H 在同一直线上,点A 、C 、I 在同一直线上,∵DE ∥AI ∥BH ,∴∠CEP =∠CHQ ,∵∠ECP =∠QCH ,∴△ECP ∽△HCQ , ∴12PC CE EP CQ CH HQ ===, ∵PQ =9,∴PC =3,CQ =6,∵EC :CH =1:2,∴AC :BC =1:2,设AC =a ,则BC =2a ,∵PQ ⊥CR ,CR ⊥AB ,∴CQ ∥AB ,∵AC ∥BQ ,CQ ∥AB ,∴四边形ABQC 为平行四边形,∴AB =CQ =6,∵222AC BC AB +=,∴2536a =,∴5a =(舍负)∴AC =,BC = ∵1122AC BC AB CJ ⋅⋅=⋅⋅,∴125565CJ ==, ∵JR =AF =AB =6,∴CR =CJ +JR =425, 故选择:C .【点睛】本题考查了正方形的性质、相似三角形的判定及性质、平行四边形的判定及性质、勾股定理的应用,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键. 12.D解析:D【分析】根据90B D ∠=∠=,所以只有两种可能,假设ABE △∽NDM 或ABE △∽MDN △,分别求出DM 的长即可.【详解】 解:正方形ABCD 边长是2,BE CE =,1BE ∴=,225AE AB BE ∴+=当ABE △∽NDM 时::DM BE MN AE ∴=,1.MN = 5DM ∴=. 当ABE △∽MDN △时,::DM BA MN AE ∴=,2=1,=AB MN25DM ∴ 5DM ∴=25. 故选D .【点睛】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM 与AB 是对应边时,②当DM 与BE 是对应边时这两种情况.二、填空题13.①②③【分析】由BE=EF=FCCG=2GD可得BF=CG易证△ABF≌△BCG 即可解题;②易证△BNF∽△BCG即可求得的值即可解题;③作EH⊥AF令AB=3即可求得MNBM的值即可解题;④连接A解析:①②③【分析】由BE=EF=FC,CG=2GD可得BF=CG,易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得BNNF的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.【详解】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,90AB BCABF BCGBF CG⎧⎪∠∠︒⎨⎪⎩====,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,90CBG NBFBCG BNF∠∠⎧⎨∠∠︒⎩===,∴△BNF∽△BCG,∴32BN BCNF CG==,∴BN=32NF;②正确;作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,22AF AB BF=+13∵S △ABF =12AF•BN =12AB•BF , ∴BN =61313,NF =23BN =41313, ∴AN =AF -NF =913, ∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH =313,NH =213,BN ∥EH , ∴AH =111313,AN MN AH EH =,解得:MN =2713143, ∴BM=BN-MN =31311,MG=BG-BM =81311, ∴38BM MG =;③正确; ④连接AG ,FG ,根据③中结论,则NG=BG-BN 713 ∵S 四边形CGNF =S △CFG +S △GNF =12CG•CF +12NF•NG =1+1413=2713, S 四边形ANGD =S △ANG +S △ADG =12AN•GN +12AD•DG =6335126213+=, ∴S 四边形CGNF ≠12S 四边形ANGD ,④错误; 故答案为 ①②③.【点睛】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB =3求得AN ,BN ,NG ,NF 的值是解题的关键.14.6【分析】过点O 作OE ⊥AD 于点EOF ⊥CB 于点F 则EOF 三点共线根据平行线分线段成比例可得代入计算即可解答【详解】解:如图过点O 作OE ⊥AD 于点EOF ⊥CB 于点F 则EOF 三点共线∵横格纸的横线平行解析:6【分析】过点O 作OE ⊥AD 于点E ,OF ⊥CB 于点F ,则E 、O 、F 三点共线,根据平行线分线段成比例可得AD OE BC OF=,代入计算即可解答. 【详解】解:如图,过点O 作OE ⊥AD 于点E ,OF ⊥CB 于点F ,则E 、O 、F 三点共线,∵横格纸的横线平行且相邻横线间的距离相等,∴AD OE BC OF =, 即423BC =, ∴CD=6.故答案为:6.【点睛】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.15.【分析】根据三角形中位线定理结合相似三角形的判定和性质可求出S1的值进而可得出S2的值找出规律即可求值【详解】解:∵是的中位线∴∴∴同理∴;同理可得∴故答案为:;【点睛】本题考查的是相似三角形的性质 解析:a 32 212n a - 【分析】根据三角形中位线定理结合相似三角形的判定和性质可求出S 1的值,进而可得出S 2的值,找出规律即可求值.【详解】解:∵1111,AC A B 是ABC ∆的中位线,∴11111,//2AC BC AC BC =, ∴11AC A ABC ∆∆, ∴111144AC A ABC S S a ∆∆==,同理111144A CB ABC S S a ∆∆==,∴1111442S a a a a =--=; 同理可得,2335,,2232a a a S S ===, ∴212n n aS -=.故答案为:a 32;212n a - 【点睛】 本题考查的是相似三角形的性质及三角形中位线定理,正确得出面积变化规律是解答此题的关键.16.【分析】根据矩形的性质可得出AB ∥CD 进而可得出∠FAE =∠FCD 结合∠AFE =∠CFD (对顶角相等)可得出△AFE ∽△CFD 利用相似三角形的性质可得出==2利用勾股定理可求出AC 的长度再结合CF =解析:103【分析】根据矩形的性质可得出AB ∥CD ,进而可得出∠FAE =∠FCD ,结合∠AFE =∠CFD (对顶角相等)可得出△AFE ∽△CFD ,利用相似三角形的性质可得出CF AF =CD AE =2,利用勾股定理可求出AC 的长度,再结合CF =CF CF AF +•AC ,即可求出CF 的长. 【详解】解:∵四边形ABCD 为矩形,∴AB =CD ,AD =BC ,AB ∥CD, ∴∠FAE =∠FCD ,又∵∠AFE =∠CFD ,∴△AFE ∽△CFD ,∴CF AF =CD AE=2. ∵AC 22AB BC +5, ∴CF =CF CF AF+•AC =221+×5=103. 故答案为:103. 【点睛】本题考查了矩形的性质、相似三角形的判定与性质以及勾股定理,利用相似三角形的性质找出CF=2AF 是解题的关键.17.9【分析】根据相似三角形性质得到△AEF 和△ABC 面积比为1∶9设列方程即可求解【详解】解:∵∴∴设则解得x=9故答案为:9【点睛】本题考查了相似三角形的性质根据相似三角形性质求出面积比设出未知数列解析:9【分析】根据相似三角形性质得到△AEF 和△ABC 面积比为1∶9,设ABC S x =△,列方程即可求解.【详解】解:∵AEF ABC ∽,:1:3AE AB =, ∴219AEF ABC S AE S AF ⎛⎫== ⎪⎝⎭△△, ∴设ABC S x =△, 则189x x -=, 解得x=9.故答案为:9【点睛】 本题考查了相似三角形的性质,根据相似三角形性质求出面积比,设出未知数列出方程是解题关键.18.【分析】根据正方形的性质得OB =ODAD ∥BC 根据三角形相似的性质和判定得:根据同高三角形面积的比等于对应底边的比可得结论【详解】解:∵四边形ABCD 是正方形∴OB =ODAD ∥BC ∴△BEF ∽△DE解析:24【分析】根据正方形的性质得OB =OD ,AD ∥BC ,根据三角形相似的性质和判定得:13BE EF ED AE ==,根据同高三角形面积的比等于对应底边的比,可得结论. 【详解】解:∵四边形ABCD 是正方形,∴OB =OD ,AD ∥BC ,∴△BEF ∽△DEA , ∴BE EF ED AE=, ∵E 是OB 的中点, ∴13BE EF ED AE ==,∴S △BEF :S △AEB =EF :AE =13, ∵△BEF 的面积为1,∴△AEB 的面积为3,∵13BE ED , ∴S △AEB :S △AED =13, ∴△AED 的面积为9,∴S △ABD =9+3=12, ∴正方形ABCD 的面积=12×2=24.故答案为:24.【点睛】本题考查了正方形的性质,三角形面积,三角形相似的性质和判定等知识,熟练掌握相似三角形的性质和判定是关键.19.(00)或(4)【分析】分①点A 和点C 为对应点点B 和点D 为对应点;②点A 和点D 为对应点点B 和点C 为对应点两种情况根据位似中心的概念解答【详解】解:①当点A 和点C 为对应点点B 和点D 为对应点时延长CAB解析:(0,0)或(143,4) 【分析】分①点A 和点C 为对应点,点B 和点D 为对应点;②点A 和点D 为对应点,点B 和点C 为对应点两种情况,根据位似中心的概念解答.【详解】解:①当点A 和点C 为对应点,点B 和点D 为对应点时,延长CA 、BD 交于点O ,则位似中心的坐标是(0,0),②当点A 和点D 为对应点,点B 和点C 为对应点时,连接AD 、BC 交于点P ,则点P 为位似中心,∵线段AB 、CD 是位似图形,∴AB ∥CD ,∴△PAB ∽△PDC ,∴12AP AB PD CD ===,即152AP AP =-, ∴AP 53=, ∴位似中心点P 的坐标是(533+,4),即(143,4), 综上所述,位似中心点的坐标是(0,0)或(143,4), 故答案为:(0,0)或(143,4). 【点睛】 本题考查了位似图形的概念和性质、相似三角形的性质,掌握位似图形的概念是解题的关键.20.8【分析】根据相似三角形的判定和性质定理即可得到结论【详解】解:∵BD ⊥ABAC ⊥AB ∴BD ∥AC ∴△ACE ∽△BDE ∴∴∴AC=8(米)故答案为:8【点睛】本题考查了相似三角形的应用正确的识别图形解析:8【分析】根据相似三角形的判定和性质定理即可得到结论.【详解】解:∵BD ⊥AB ,AC ⊥AB ,∴BD ∥AC ,∴△ACE ∽△BDE , ∴AC AE BD BE =, ∴ 1.80.210.2AC -=, ∴AC=8(米),故答案为:8.【点睛】本题考查了相似三角形的应用,正确的识别图形是解题的关键.三、解答题21.6米【分析】先根据DE ∥BC 得出△ADE ∽△ACB ,再根据相似三角形的对应边成比例求出AD 的值,由AC =AD+CD 得出结论.【详解】解:∵DE ∥BC ,∴△ADE ∽△ACB , ∴DE BC =AD AC, 设AD =x ,则有1.51.8=1x x +, 解得x =5. 甲的影长AC =1+5=6米.答:甲的影长是6米.【点睛】本题考查了相似三角形的应用,根据题意判断出△ADE ∽△ACB 是解题的关键. 22.(1)1m =, 5y x =;(2)15AOC S =;(3)43a =或23a =;(4)18x ≥. 【分析】(1)由一次函数+6y x =-的图象1l 过点(),5C m ,可得+65m -=求出m ,设2l 的解析式为y kx =过点C(1,5),求出k 即可;(2) 由y=0时,+60,6x x -==,OA=6,12AOC C S OA y =⋅; (3)当x a =时,与直线1l 交于点P (,6a a -),与直线2l 交于点Q (,5a a ),PQ=()562a a --=解之即可;(4)由一次函数64=-+y kx k 的图象横过定点(6,4) ,一次函数64=-+y kx k 的图象过B (0,6),13k =-,一次函数为163y x =-+ ,与x 轴交点,当18x ≥时即可. 【详解】解:(1)∵一次函数+6y x =-的图象1l 过点(),5C m ,∴+65m -=,∴1m =,设2l 的解析式为y kx =过点C ,∴k=5,∴2l 的解析式为5y x =;(2)一次函数+6y x =-与x 轴交点为A ,当y=0时,+60,6x x -==,∴OA=6, 11651522AOC C S OA y =⋅=⨯⨯=; (3)当x a =时,与直线1l 交于点P (,6a a -),与直线2l 交于点Q (,5a a ),PQ=()56612a a a --=-=,113a -=, 113a -=±, 43a =或23a =; (4)一次函数整理得()64y k x =-+,由64x y =⎧⎨=⎩, ∴一次函数64=-+y kx k 的图象横过定点(6,4) ,A (6,0),B (0,6),一次函数64=-+y kx k 的图象过B (0,6),∴646k -+=,∴13k =-,∴一次函数163y x =-+, ∴y=0,x=18,当18x ≥时一次函数64=-+y kx k 的图象与线段AB (含端点)有公共点且满足y 随x 的增大而减小.【点睛】本题考查直线解析式,三角形面积,两直线l 1,l 2与x=a 交点距离,一次函数64=-+y kx k 的图象与线段AB (含端点)有公共点范围问题,掌握待定系数法求直线解析式,三角形面积求法,会求两直线l 1,l 2与x=a 交点距离,一次函数64=-+y kx k 的图象与线段AB (含端点)有公共点范围方法是解题关键.23.(1)证明见解析;(2)1615 【分析】(1)根据矩形的性质可得,90//B AD BC AB CD AD BC ∠=︒==,,,,再根据已知条件DF AE ⊥,即可证明DFA ≌ABE △,则AF BE =,进而通过线段的和差关系求得;(2)由勾股定理求得BD 的长度,再由ABD △的面积求得AF 的长度,则可用勾股定理求得DF 的长度,则可得BF 的长度,再由DFA ≌ABE △,求得EB 的长度,在Rt ABE △中,根据勾股定理即可求得AE ,即可求得λ的值.【详解】(1)∵1λ=,∴1AD AE=, ∴AD AE =,又∵四边形ABCD 是矩形,∴90//B AD BC AB CD AD BC ∠=︒==,,,,∴DAF AEB ∠=∠,∵DF AE ⊥,∴90DFA B ∠=∠=︒,∴在DFA 和ABE △中,DFA B DAF AEB AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DFA ≌ABE △,∴AF BE =,∵=AE AD BC =,∴AE AF BC BE -=-, ∴CE FE =;(2)如图,D B F 、、三点共线,∵3,4AB AD ==,∴5BD ==,∵DF AE ⊥, ∴1122ABD S AB AD BD AF =⋅=⋅△, ∴341255AB AD AF BD ⋅⨯===,∴165DF ===, ∴169555BF BD DF =-=-=, ∵//AD BE , ∴在ADF 和EBF △中,FAD FEB ADF EBF AFD EFB ∠=∠∠=∠∠=∠,,,∴ADF ∽EBF △, ∴AD DF EB BF=, 即164595EB=, ∴94EB =,∴154AE ===, ∴14161554AD AE λ===.【点睛】 本题考查了矩形的性质、三角形全等的判定和性质、三角形相似的判定和性质、勾股定理、三角形面积、相似比等,解答本题的关键是熟练掌握运用以上知识点,利用勾股定理求解线段的长.24.(1)见解析;(2)1【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度.【详解】解:(1)证明:∵∠C =∠ADE ,∠A =∠A ,∴△ADE ∽△ACB(2)解:由(1)知,△ADE ∽△ACB ,AC AB∵AB =3,AD =2,CE =5, ∴253AE AE =+, 得:121,6AE AE ==-(舍去)∴AE 的长是1【点睛】本题考查了相似三角形的判定与性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.25.32米【分析】易得△ABC ∽△EDC 以及△ABD ∽△GFD ,根据相似三角形的性质得到关于x 和y 的方程组,求解即可.【详解】解:设AB 为xm ,BC 为ym ,根据题意知,△ABC ∽△EDC ,有 1.62.4x y =①. △ABD ∽△GFD ,有 1.62.4 2.52x y =+②. 联立①②,得x =32.答:建筑物AB 的高度为32m .【点睛】本题考查相似三角形的实际应用,掌握相似三角形的性质是解题的关键.26.(1)见解析 (2)见解析【分析】(1)根据等腰三角形的性质得到∠B=∠C ,根据三角形的内角和定理和平角的定义得到∠BED=∠CDF ,于是得到△BDE ∽△CFD ;(2)根据相似三角形的性质得到对应边成比例,等量代换得到比例式,判定相似三角形,最后根据相似三角形的性质得出FD 平分∠EFC .【详解】解:(1)∵AB=AC=BC ,∴∠B=∠C=60°,∵∠BED=180°-∠B-∠BDE=120°-∠BDE ,∠CDF=180°-∠EDF-∠BDE=120°-∠BDE ,∴∠BED=∠CDF ,∴△BDE ∽△CFD ;(2)∵△BDE ∽△CFD ,CF DF∵点D是BC的中点,∴BD=CD,∴CD DE=CF DF∵∠EDF=∠C=60°,∴△DEF∽△CDF,∴∠DFE=∠CFD,∴FD平分∠EFC.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.。

第四章 图形的相似单元测试(解析版)

第四章 图形的相似单元测试(解析版)

第四章图形的相似单元测试一、选择题:1.如图,在平行四边形ABCD中,E为DC的中点,AE交BD于点F,S△DEF =12cm2,则S△AOB的值为()A.12cm2B.24cm2C.36cm2D.48cm2(第1题) (第2题) (第5题)2.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于()A.B.10 C.或10 D.以上答案都不对3.(3分)在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为()A.B.C.D.4.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.2条B.3条C.4条D.5条5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.6.正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF 等于()A.8 B.6 C.4 D.37.已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP 相似的是()A.∠APB=∠EPC B.∠APE=90°C.P是BC的中点D.BP:BC=2:3(第7题) (第8题) (第9题) (第11题)8.如图,矩形ABCD中,BE⊥AC于F,E恰是CD的中点,下列式子成立的是()A.BF2=AF2;B.BF2=AF2C.BF2>AF2D.BF2<AF29.(3分)如图,正方形ABCD的面积为1,M是AB的中点,连接CM、DM、AC,则图中阴影部分的面积为()A.B.C.D.10.在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出()A.6条B.3条C.4条D.5条二、填空题:11.如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为.12.已知:===,2b+3d﹣5f=9,则2a+3c﹣5e=.13.如图,在Rt△ABC中,∠C=90°,MN⊥AB于M,AM=8cm,AC=AB,BC=15cm,则四边形BCNM的面积为.(第13题) (第14题) (第15题) (第16题)14.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD 与四边形DEFC的面积之比是.15.如图,已知梯形AECF中,已知点D是AB边的中点,AF∥BC,CG=3,GA=1,若△AEG的面积为1,那么四边形BDGC的面积为.16.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC=.三、解答题:(共36分)17.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.18.(8分)已知:如图AD•AB=AF•AC,求证:△DEB∽△FE C.19.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)求证:AM2=AD•DM;(3)根据(2)的结论你能找出图中的黄金分割点吗?20.已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•F C.21.已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,.(1)求AC的长;(2)求EG的长.参考答案与试题解析一、选择题:1.如图,在平行四边形ABCD中,E为DC的中点,AE交BD于点F,S△DEF =12cm2,则S△AOB的值为()A.12cm2B.24cm2C.36cm2D.48cm2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得出AB=DC=2DE,OD=OB,DC∥AB,求出△DFE∽△BFA,推出===,=()2=,==,求出△AFB的面积是48cm2,△ADF 的面积是24cm2,求出△ABD的面积即可.【解答】解:∵E为DC的中点,∴DC=2DE,∵四边形ABCD是平行四边形,∴AB=DC=2DE,OD=OB,DC∥AB,∴△DFE∽△BFA,∴===,=()2=()2=,==,∵S△DEF=12cm2,∴△AFB的面积是48cm2,△ADF的面积是24cm2,∴△ABD的面积是72cm2,∵DO=OB,∴△ADO和△ABO的面积相等,∴S△AOB的值为×72cm2=36cm2,故选C.【点评】本题考查了相似三角形的性质和判定,平行四边形的性质的应用,解此题的关键是求出△AFB的面积和△ADF的面积.2.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于()A.B.10C.或10 D.以上答案都不对【考点】相似三角形的性质.【专题】分类讨论.【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.【解答】解:如图(1)当∠AED=∠C时,即DE∥BC则AE=AC=10(2)当∠AED=∠B时,△AED∽△ABC∴,即AE=综合(1),(2),故选C.【点评】会利用相似三角形求解一些简单的计算问题.3.(3分)在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为()A.B.C.D.【考点】勾股定理.【分析】本题主要利用勾股定理和面积法求高即可.【解答】解:∵在直角三角形中,两直角边分别为3和4,∴斜边为5,∴斜边上的高为=.(由直角三角形的面积可求得)∴这个三角形的斜边与斜边上的高的比为5:=.故选A.【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.4.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.2条B.3条C.4条D.5条【考点】相似三角形的判定.【专题】常规题型;压轴题.【分析】根据已知及相似三角形的判定作辅助线即可求得这样的直线有几条.【解答】解:(1)作∠APD=∠C∵∠A=∠A∴△APD∽△ABC(2)作PE∥BC∴△APE∽△ABC(3)作∠BPF=∠C∵∠B=∠B∴△FBP∽△ABC(4)作PG∥AC∴△PBG∽△ABC所以共4条故选C.【点评】本题考查相似三角形的判定的运用.5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.6.正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF 等于()A.8 B.6 C.4 D.3【考点】相似三角形的判定与性质;正方形的性质.【专题】压轴题;探究型.【分析】先根据题意画出图形,因为四边形ABCD是正方形,E是BC中点,所以CE=AD,由相似三角形的判定定理得出△CEF∽△ADF,再根据相似三角形的对应边成比例可得出==,再根据DF=DE﹣EF即可得出EF的长.【解答】解:如图所示:∵四边形ABCD是正方形,E是BC中点,∴CE=AD,∵AD∥BC,∴∠ADF=∠DEC,∠AFD=∠EFC,∴△CEF∽△ADF,∴==,=,即=,解得EF=4.故选C.【点评】本题考查的是相似三角形的判定与性质及正方形的性质,先根据题意判断出△CEF∽△ADF,再根据相似三角形的对应边成比例进行解答是解答此题的关键.7.已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP 相似的是()A.∠APB=∠EPC B.∠APE=90°C.P是BC的中点D.BP:BC=2:3【考点】相似三角形的判定;正方形的性质.【专题】压轴题.【分析】利用两三角形相似的判定定理,做题即可.【解答】解:利用三角形相似的判定方法逐一进行判断.A、B可用两角对应相等的两个三角形相似;D可用两边对应成比例且夹角相等的两个三角形相似进行判断.只有C中P是BC的中点不可推断.故选C.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8.如图,矩形ABCD中,BE⊥AC于F,E恰是CD的中点,下列式子成立的是()A.BF2=AF2B.BF2=AF2C.BF2>AF2D.BF2<AF2【考点】相似三角形的判定与性质;矩形的性质;射影定理.【分析】此题即是探求BF2与AF2之间的关系.利用△ABF∽△CEF所得比例线段探究求解.【解答】解:根据射影定理可得BF2=AF×CF;∵△ABF∽△CEF,∴CF:AF=CE:AB=1:2∴BF2=AF×AF=AF2.故选A.【点评】本题主要考查了射影定理及三角形的相似的性质.9.(3分)如图,正方形ABCD的面积为1,M是AB的中点,连接CM、DM、AC,则图中阴影部分的面积为()A .B .C .D .【考点】相似三角形的判定与性质;正方形的性质.【分析】根据正方形的性质可得到△AME ∽△CDE ,根据相似三角形的边对应边成比例,求得EH ,EF 的长,从而即可求得阴影部分的面积.【解答】解:如图,过点E 作HF ⊥AB∵AM ∥CD ,∴∠DCE =∠EAM ,∠CDE =∠EMA ,∴△AME ∽△CDE∴AM :DC =EH :EF =1:2,FH =AD =1∴EH =,EF =.∴阴影部分的面积=S 正﹣S △AME ﹣S △CDE ﹣S △MBC =1﹣﹣﹣=.故选B .【点评】本题考查了正方形的性质,相似三角形的判定和性质,找出各线段之间的比例关系是本题解题的关键.10.在坐标系中,已知A (﹣3,0),B (0,﹣4),C (0,1),过点C 作直线L 交x 轴于点D ,使得以点D ,C ,O 为顶点的三角形与△AOB 相似,这样的直线一共可以作出( )A .6条B .3条C .4条D .5条【考点】相似三角形的判定;坐标与图形性质.【专题】常规题型;分类讨论.【分析】△AOB是直角三角形,所作的以点D,C,O为顶点的三角形中∠COD=90度,OC与AD 可能是对应边,这样就可以求出CD的长度,以C为圆心,以所求的长度为半径作圆,圆与x轴有两个交点,因而这样的直线就是两条.同理,当OC与BD是对应边时,又有两条满足条件的直线,共有四条.【解答】解:以点D,C,O为顶点的三角形中∠COD=90度,当OC与AO是对应边,以C为圆心,以CD的长度为半径作圆,圆与x轴有两个交点,因而这样的直线就是两条.同理,当OC与OB是对应边时,又有两条满足条件的直线,所以共有四条.故选C.【点评】本题主要考查了三角形的相似,注意到分两种情况进行讨论是解决本题的关键.二、填空题:11.如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为.【考点】相似多边形的性质.【分析】根据相似多边形对应边的比相等,设出原来矩形的长与宽,就可得到一个方程,解方程即可求得.【解答】解:根据条件可知:矩形AEFB∽矩形ABC D.∴=.设AD=x,AB=y,则AE=x.则=,即:x2=y2.∴=2.∴x:y=:1.即原矩形长与宽的比为:1.故答案为::1.【点评】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.12.已知:===,2b+3d﹣5f=9,则2a+3c﹣5e=.【考点】比例的性质.【分析】根据等比性质解答即可.【解答】解:∵===,∴=,∵2b+3d﹣5f=9,∴2a+3c﹣5e=×9=6.故答案为:6.【点评】本题考查了比例的性质,熟记并理解等比性质是解题的关键.13.如图,在Rt△ABC中,∠C=90°,MN⊥AB于M,AM=8cm,AC=AB,BC=15cm,则四边形BCNM的面积为.【考点】相似三角形的判定与性质.【分析】由△AMN∽△ACB,推出==,由AC:AB=4:5,设AC=4k,AB=5k,则BC=3k,由BC=15,推出k=5,AC=20,AB=25,根据四边形BCNM的面积=S△ABC ﹣S△AMN即可解决问题.【解答】解:∵MN⊥AB,∴∠AMN=∠C=90°,∵∠A=∠A,∴△AMN ∽△ACB ,∴==,∵AC :AB =4:5,设AC =4k ,AB =5k ,则BC =3k ,∵BC =15,∴3k =15,∴k =5,AC =20,AB =25,∴MN =6,AN =8,∴四边形BCNM 的面积=S △ABC ﹣S △AMN =×20×15﹣×8×6=126. 故答案为126.【点评】本题考查相似三角形的性质和判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.14.如图,在正方形ABCD 中,点E 是BC 边上一点,且BE :EC =2:1,AE 与BD 交于点F ,则△AFD 与四边形DEFC 的面积之比是 .【考点】正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据题意,先设CE =x ,S △BEF =a ,再求出S △ADF 的表达式,利用四部分的面积和等于正方形的面积,得到x 与a 的关系,那么两部分的面积比就可以求出来.【解答】解:设CE =x ,S △BEF =a ,∵CE =x ,BE :CE =2:1,∴BE =2x ,AD =BC =CD =AD =3x ;∵BC ∥AD ∴∠EBF =∠ADF ,又∵∠BFE =∠DFA ;∴△EBF ∽△ADF∴S △BEF :S △ADF ===,那么S △ADF =a .∵S △BCD ﹣S △BEF =S 四边形EFDC =S 正方形ABCD ﹣S △ABE ﹣S △ADF ,∴x 2﹣a =9x 2﹣×3x •2x ﹣,化简可求出x 2=;∴S △AFD :S 四边形DEFC =: =: =9:11,故答案为9:11. 【点评】此题运用了相似三角形的判定和性质,还用到了相似三角形的面积比等于相似比的平方.15.如图,已知梯形AECF 中,已知点D 是AB 边的中点,AF ∥BC ,CG =3,GA =1,若△AEG 的面积为1,那么四边形BDGC 的面积为 .【考点】相似三角形的判定与性质;梯形.【分析】先求出△AFG 的面积,然后找出S △CEG =9S △AFG =3,再求出S △AFD =2S △AFC =2×=,S △DEB =S △AFD =,最后用面积差即可.【解答】解:AF ∥BC ,CG =3,GA =1,∴,∴FG =EF ,∵AF ∥BC ,∴, ∵D 是AB 的中点,∴AD =BD ,∴ED =FD ,∴FD =EF ,∵=,∴S △AFG =S △AEG =,∵AF ∥BC ,∴△CEG ∽△AFG ,∴,∴S △CEG =9S △AFG =3,∵FG =EF ,FD =EF ,∴FD =2FG ,∴DG =FG ,∴S △AFD =2S △AFC =2×=,∵△BED ≌△AFD ,∴S △DEB =S △AFD =,∴S 四边形BDGC 的面积=S △CGE ﹣S △BED=3﹣=.【点评】此题是相似三角形的性质和判定,主要考查了相似三角形的性质,面积比等于相似比的平分,等底的两三角形面积的比等于高的比,解本题的关键是求出△AFG 的面积.16.如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC = .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.【解答】解:由已知得:△AMP∽△CDP,∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①△ANQ∽△CDQ,∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②解①、②得:AQ=AC,PQ=AQ﹣AP=AC,QC=AC﹣AQ=AC,∴AP:PQ:QC=5:3:12.【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.三、解答题:(共36分)17.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.【考点】平行线分线段成比例;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得AD∥BC,AB∥CD,再根据平行线分线段成比例定理得=,=,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴=,=,∴=,即CF2=GF•EF.【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.18.(8分)已知:如图AD•AB=AF•AC,求证:△DEB∽△FE C.【考点】相似三角形的判定.【专题】证明题.【分析】利用两边对应比值相等,且夹角相等的两三角形相似,进而得出即可.【解答】证明:∵AD•AB=AF•AC,∴=,又∵∠A=∠A,∴△DEB∽△FE C.【点评】此题主要考查了相似三角形的判定,熟练掌握判定定理是解题关键.19.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)求证:AM2=AD•DM;(3)根据(2)的结论你能找出图中的黄金分割点吗?【考点】黄金分割;勾股定理;正方形的性质.【分析】(1)由勾股定理求PD,根据AM=AF=PF﹣PA=PD﹣PA,DM=AD﹣AM求解;(2)由(1)计算的数据进行证明;(3)根据(2)的结论得:=,根据黄金分割点的概念,则点M是AD的黄金分割点.【解答】(1)解:在Rt△APD中,PA=AB=1,AD=2,∴PD==,∴AM=AF=PF﹣PA=PD﹣PA=﹣1,DM=AD﹣AM=2﹣(﹣1)=3﹣;(2)证明:∵AM2=(﹣1)2=6﹣2,AD•DM=2(3﹣)=6﹣2,∴AM2=AD•DM;(3)点M是AD的黄金分割点.理由如下:∵AM2=AD•DM,∴═=,∴点M是AD的黄金分割点.【点评】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.20.已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•F C.【考点】相似三角形的判定与性质.【专题】证明题.【分析】首先连接AF,可证得△AFC∽△BFA,然后由相似三角形的对应边成比例证得FA2=FB•FC,则可得FD2=FB•F C.【解答】证明:连接AF,∵EF是AD的垂直平分线,∴AF=DF,∴∠FAE=∠FDE,∵∠FAE=∠FAB+∠BAD,∠FDE=∠C+∠CAD,且∠BAD=∠CAD,∴∠FAB=∠C,∵∠AFB是公共角,∴△AFB∽△CFA,∴,∴FA2=FB•FC,即FD2=FB•F C.【点评】此题考查了相似三角形的判定与性质,线段垂直平分线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,.(1)求AC的长;(2)求EG的长.【考点】相似三角形的判定与性质;角平分线的性质;勾股定理;三角形中位线定理.【专题】几何图形问题.【分析】(1)∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根据相似三角形对应边成比例,列出比例式整理即可得到AC2=AE•AD,代入数据计算即可;(2)根据勾股定理求出BC的长度为8,再根据AD平分∠CAB交BC于点D,CE⊥AD证明△ACE 和△AFE全等,根据全等三角形对应边相等,CE=EF,最后根据三角形的中位线平行于第三边并且等于第三边的一半EG=B C.【解答】解:(1)∵CE⊥AD,21 ∴∠AEC =90°,∵∠ACB =90°,∴∠AEC =∠ACB ,又∠CAE =∠CAE ,∴△ACE ∽△ADC ,∴,即AC 2=AE •AD ,∵AE •AD =16,∴AC 2=16,∴AC =4;(2)在△ABC 中,BC ===8,∵AD 平分∠CAB 交BC 于点D ,∴∠CAE =∠FAE ,∵CE ⊥AD ,∴∠AEC =∠AEF =90°,在△ACE 和△AFE 中,,∴△ACE ≌△AFE (ASA ),∴CE =EF ,∵EG ∥BC ,∴EG =BC =×8=4. 【点评】本题主要考查两角对应相等,两三角形相似,相似三角形对应边成比例,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟练掌握性质并灵活运用是解题的关键,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 图形的相似单元测试题一、选择题(30分) 1、已知0432≠==cb a ,则c b a +的值为( ) A.54B.45C.2D.21 2、两地实际距离是500 m ,画在图上的距离是25 cm ,若在此图上量得A 、B 两地相距为40 cm ,则A 、B 两地的实际距离是( ) A.800 mB.8000 mC.32250 cmD.3225 m3、如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为( ) A 、815B 、 1C 、D 、854、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( )A.1对B.2对C.3对D.4对 5、如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m ,梯上点D 距墙 1.4m ,BD 长0.55m ,则梯子的长为( )A.3.85mB.4.00mC.4.40mD.4.50m6、若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A 、2∶3B 、4∶9C 、2∶3D 、3∶2 7、如图,∠ACB =∠ADC =90°,BC =a ,AC =b ,AD =c ,要使⊿ABC ∽⊿CAD ,只要CD 等于( )A.c b 2B.ab 2 C.c abD.a bc8、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( )6米0.8米4米h 米(第18题图)A 、4.8米B 、6.4米C 、9.6米D 、10米9、如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米, 那么该古城墙的高度是( ) A 、6米 B 、8米 C 、18米 D 、24米10、如图,在A B C ∆中,D 、分别是A B 、A C 边的中点,若6B C =,则D E 等于( ) A .5 B .4 C .3 D .2 二、填空题11、如果线段a 、b 、c 、d 是成比例线段且a =3,b =4,c =5,则d =______________; 12、已知2=y x ,则=+y y x ;=-xyx . 13、两个相似三角形对应边的比为6,则它们周长的比为________。

14、如图,点D 、E 分别在△ABC 的边上AB 、AC 上,且AB AED ∠=∠,若DE =3,BC =6,AB =8,则AE 的长为_________15、如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____.16、已知CD 是RtΔABC 斜边AB 上的高,且AC =6cm ,BC =8cm ,则CD =_____17、如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知AB =10cm ,则AC的长约为cm .(结果精确到0.1cm ) 18、如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为 .第15题图FA E BCD 第4题BCD EAAECDB图14三、解答题(6+6+8+6+8+12=46分)19、如图,在矩形ABCD 中,点E F 、分别在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.20、如图,在ΔABC 中,已知DE ∥BC ,AD =4,DB =8,DE =3, (1)求ADAB的值,(2)求BC 的长21、如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB =42,AF =3,求FG 的长.22、如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F . (1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .23、如图,ABC △在方格纸中(1)请在方格纸上建立平面直角坐标系,使(23)(62)A C ,,,,并求出B 点坐标; (2)以原点O 为位似中心,相似比为2,在第一象限内将ABC △放大,画出放大后的图形A B C '''△;(3)计算A B C '''△的面积S .A BC24、问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式222156208260+=).F图2图1图3参考答案1、B 解析:设k c b a ===432,则 k c k b k a 432===,所以45432=+=+k k k c b a 。

2、A 解析:图上距离与实际距离的比相等,注意单位要统一。

3、C 解析:根据相似三角形的对应边成比例,1068.0=h ,所以 34=h 米。

4、C 解析:△ABE ∽△FCE ;△FCE ∽△FDA ;△FDA ∽△ABE 。

5、C 解析:∵△ABC ∽△ADE ∴BC AD BC DE =,即ABAB 55.06.14.1-=∴AB =4.40(m )。

6、B 解析:相似多边形面积的比等于相似比的平方。

7、D 解析:根据本题的条件可以用“两边对应成比例且夹角相等的两个三角形相似”来证明,AD BC CD AC =,即c a CD b =,所以CD =abc。

8、C 解析:根据同一时刻的物高与影长成比例,设树的高度为h ,则 h8.46.18.0=,解得6.9=h 。

9、B 解析:入射光线、反射光线与镜面形成的夹角相等,即∠APB =∠CPD ,又因为∠ABP =∠CDP =90°,所以⊿ABP ∽⊿CDP ,所以PD BP CD AB =,即128.12.1=CD ,所以CD =8。

10、C 解析:∵21==AC AE AB AD ,∠A 为公共角,∴⊿ADE ∽⊿ABC ,∴21==AB AD BC DE ,321==BC DE 。

11、320 解析:∵d c b a = ∴320354=⨯==a bc d 。

12、321 解析: 3121=+=+=+y x y y x ,212111=-=-=-x y x y x 。

13、6 解析:相似多边形的周长的比等于相似比。

14、4 解析:∵AB AED ∠=∠,∠A 是公共角,∴⊿ADE ∽⊿ACB ,∴BCDEAB AE =即638=AE ,∴AE =4。

15、4 解析:由AB ∥CD 可得,△AEF ∽△CDF ,所以21==DC AE FC AF 。

17、6.2 解析:本题考查黄金分割的有关知识,由题意知2AC BC AB =⨯,∴()21010AC AC =-⨯,解得x ≈6.2,故填6.2..18、0.81π2m 解析:根据相似三角形的性质可以求得阴影部分的半径为0.9m 。

19、解:∵四边形ABCD 是矩形,AB =6 ∴∠A =∠D =90°,DC =AB =6又∵AE =9 ∴在Rt △ABE 中,由勾股定理得:BE =117692222=+=+AB AE∵ABE DEF △∽△,∴EF BE DE AB =,即EF 11726=∴EF =311720、解:(1)因为48AD DB,所以4812AB AD DB所以41123AD AB (2)因为DE BC ∥,所以ADE ABC △∽△所以DEADBC AB因为3DE 所以313BC 所以9BC21、(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM (写出两对即可) 以下证明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B ∴△AMF ∽△BGM .(2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM =AMF ∽△BGM ,∴AF BMAM BG=∴283AM BM BG AF === 又4AC BC ===,∴84433CG =-=,431CF =-=∴53FG ==22、证明:(1)∵ 3,2AC DC = 63,42BC CE == ∴ .AC BC DC CE = 又 ∠ACB =∠DCE =90°,∴ △ACB ∽△DCE .(2)∵ △ACB ∽△DCE ,∴ ∠ABC =∠DEC .又 ∠ABC +∠A =90°,∴ ∠DEC +∠A =90°. ∴ ∠EF A =90°. ∴ EF ⊥AB .23、(1)画出原点O ,x 轴、y 轴.(21)B ,, (2)画出图形A B C '''△.(3)148162S =⨯⨯=. 24、解:(1)由题意可知:90BAC EDF BCA EFD ==︒∠=∠∠∠,. ∴ABC DEF △∽△.∴AB AC DE DF =,即8060900DE =.∴DE =1200(cm ).所以,学校旗杆的高度是12m .(2)解法一:与①类似得:AB AC GN GH =,即8060156GN =.∴GN =208.在Rt NGH △中,根据勾股定理得:2222156208260.NH =+=∴NH =260. 设O 的半径为rcm ,连结OM ,∵NH 切O 于M ,∴OM NH ⊥.则90OMN HGN =∠=︒∠,又ONM HNG =∠∠. ∴OMN HGN △∽△.∴OM ONHG HN=.又()8ON OK KN OK GN GK r =+=+-=+. ∴8156260r r +=,解得:r =12.所以,景灯灯罩的半径是12cm .解法二: 与①类似得:AB AC GN GH =,即8060156GN =.∴GN =208.设O 的半径为rcm ,连结OM , ∵NH 切O 于M ,∴OM NH ⊥. 则90OMN HGN =∠=︒∠,又ONM HNG =∠∠,DFE900cm 图2B C A60cm 80cm 图1图3GHN156cm M O200cmK∴OMN HGN △∽△.∴OM MN HG GN =,即156208r MN=.∴43MN r =,又()8ON OK KN OK GN GK r =+=+-=+. 在Rt OMN △中,根据勾股定理得:()222483r r r ⎛⎫+=+ ⎪⎝⎭,即29360r r --=.解得:12123r r ==-,(不合题意,舍去)所以,景灯灯罩的半径是12cm .。

相关文档
最新文档