湖北省武汉市2018年中考数学模拟试题(Word版,含答案)

合集下载

【真题】2018年武汉市中考数学试卷含答案(Word版)

【真题】2018年武汉市中考数学试卷含答案(Word版)

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111m m m---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。

2018武汉中考数学模拟题(五套)-精选.pdf

2018武汉中考数学模拟题(五套)-精选.pdf

2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A .5 B .±5C .-5D .±42.如果分式1x x 无意义,那么x 的取值范围是()A .x ≠0B .x =1C .x ≠1D .x =-1 3.(-a +3)2的计算结果是()A .-a 2+9B .-a 2-6a +9C .a 2-6a +9D .a 2+6a +9 4.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A .必然事件B .随机事件C .确定事件D .不可能事件5.下列运算结果是a 6的是()A .a 3·a3B .a 3+a3C .a 6÷a3D .(-2a 2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B ,则点B 的坐标为()A .(-1,-2)B .(2,1)C .(-2,-1)D .(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数0 1 2 3 4 人数3 1316 171A .2和3B .3和3C .2和2D .3和2 9.在如图的4×4的方格中,与△ABC 相似的格点三角形(顶点均在格点上)(且不包括△ABC )的个数有()A .23个B .24个C .31个D .32个10.二次函数y =mx 2-nx -2过点(1,0),且函数图象的顶点在第三象限.当m +n 为整数时,则mn 的值为()A .2321、B .431、C .24321、、D .243、二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________ 12.化简:111b b b =__________ 13.在-1、0、31、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________14.如图,△ABC 中,AB =AC ,∠BAC =66°,OD 垂直平分线段AB ,AO 平分∠BAC ,将∠C沿EF (点E 在BC 上,点F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC =___________15.如图,在四边形ABCD 中,AC 与BD 交于点O ,∠DAB 与∠ACB 互补,35OBOD ,AD =7,AC =6,AB =8,则BC =___________16.如图,C 是半径为4的半圆上的任意一点,AB 为直径,延长AC 至点P 使CP =2CA .当点C 从B 运动到A 时,动点P 的运动路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:x -2(x -1)=-218.(本题8分)如图,已知点E 、C 在线段BF 上,BE =CF ,AB ∥DE ,AC ∥DF ,求证:△ABC≌△DEF19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1) 该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的圆心角是__________ (2) 补全条形统计图(3) 若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1) 求1辆大客车和1辆小客车的租金各为多少元?(2) 若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC 为⊙O 的直径,点A 为⊙O 上一点,点E 为△ABC 的内心,OE ⊥EC (1) 若BC =10,求DE 的长(2) 求sin ∠EBO 的值22.(本题10分)如图,直线y =2x 与函数xk y(x >0)的图象交于第一象限的点A ,且A 点的横坐标为1,过点A 作AB ⊥x 轴于点B ,C 为射线BA 上一点,作CE ⊥AB 交双曲线于点E ,延长OC 交AE 于点F (1) 则k =__________(2) 作EM ∥y 轴交直线OA 于点M ,交OC 于点G ①求证:AF =FE②比较MG 与EG 的大小,并证明你的结论23.(本题10分)如图,在△ABC 与△AFE 中,AC =2AB ,AF =2AE ,∠CAB =∠FAE =α(1) 求证:∠ACF =∠ABE(2) 若点G 在线段EF 上,点D 在线段BC 上,且31CBCD EF GF ,α=90°,EB =1,求线段GD的长(3) 将(2)中改为120°,其它条件不变,请直接写出CFGD 的值24.(本题12分)在平面直角坐标系中,抛物线C 1:y =ax 2+bx -1的最高点为点D (-1,0),将C 1左移1个单位,上移1个单位得到抛物线C 2,点P 为C 2的顶点(1) 求抛物线C 1的解析式(2) 若过点D 的直线l 与抛物线C 2只有一个交点,求直线l 的解析式(3) 直线y =x +c 与抛物线C 2交于D 、B 两点,交y 轴于点A ,连接AP ,过点B 作BC ⊥AP 于点C ,点Q 为C 2上PB 之间的一个动点,连接PQ 交BC 于点E ,连接BQ 并延长交AC 于点F ,试说明:FC ·(AC +EC)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A .8B .-8C .4D .-42.要使分式15x 有意义,则x 的取值范围是()A .x ≠1B .x >1C .x <1D .x ≠-13.下列计算结果为x 8的是()A .x 9-x B .x 2·x4C .x 2+x6D .(x 2)44.有两个事件,事件A :投一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则()A .只有事件A 是随机事件B .只有事件B 是随机事件C .事件A 和B 都是随机事件D .事件A 和B 都不是随机事件5.计算(a -3)2的结果是()A .a 2-4 B .a 2-2+4 C .a 2-4a +4D .a 2+46.如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为()A .(a ,b)B .(-a ,b)C .(b ,-a)D .(-b ,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3 3.54 4.5 人数1121A .中位数是4,平均数是 3.75B .众数是4,平均数是 3.75C .中位数是4,平均数是3.8 D .众数是2,平均数是 3.89.把所有正奇数从小到大排列,并按如下规律分组:(1) (3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式A m =(i ,j)表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 89=()A .(6,7)B .(7,8)C .(7,9)D .(6,9)10.二次函数y =2x 2-2x +m (0<m <21),如果当x =a 时,y <0,那么当x =a -1时,函数值y 的取值范围为()A .y <0B .0<y <mC .m <y <m +4D .y >m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:111a a a =___________ 13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF =DC .若∠ADF =25°,则∠BEC =__________ 15.如图,从一张腰为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM ⊥ON ,斜边长为4的等腰直角△ABC 的斜边AC 在射线ON 上,顶点C 与O 重合.若点A 沿NO 方向向O 运动,△ABC 的顶点C 随之沿OM 方向运动,点A 移动到点O 为止,则直角顶点B 运动的路径长是__________三、解答题(共8题,共72分)17.(本题8分)解方程:3-(5-2x)=x +218.(本题8分)已知:如图,点B 、F 、C 、E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF ,求证:∠B =∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1) 此次抽样调查的样本容量是___________(2) 补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3) 如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题8分)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低21.(本题8分)如图,直径AE 平分弦CD ,交CD 于点G ,EF ∥CD ,交AD 的延长线于F ,AP ⊥AC 交CD 的延长线于点P(1) 求证:EF 是⊙O 的切线(2) 若AC =2,PD =21CD ,求tan ∠P 的值22.(本题10分)已知,直线l 1:y =-x +n 过点A(-1,3),双曲线C :xm y(x >0),过点B(1,2),动直线l 2:y =kx -2k +2(k <0)恒过定点F(1) 求直线l 1,双曲线C 的解析式,定点F 的坐标(2) 在双曲线C 上取一点P(x ,y),过P 作x 轴的平行线交直线l 1于M ,连接PF ,求证:PF=PM (3) 若动直线l 2与双曲线C 交于P 1、P 2两点,连接OF 交直线l 1于点E ,连接P 1E 、P 2E ,求证:EF平分∠P 1EP 223.(本题10分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α(1) 如图1,当α=60°时,求证:△DCE 是等边三角形(2) 如图2,当α=45°时,求证:①2DECD ;②CE ⊥DE(3) 如图3,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4(a <0)经过第一象限内的定点P (1) 直接写出点P 的坐标(2) 若a =-1,如图1,点M 的坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点,设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式(3) 直线y =2x +b 与抛物线c 1相交于A 、B 两点,如图2,直线PA 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A .±2B .2C .-2D .22.要使分式31x 有意义,则x 的取值应满足()A .x ≥3B .x <3C .x ≠-3D .x ≠3 3.下列计算结果为x 6的是()A .x ·x6B .(x 2)3C .x 7-xD .x 12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A .摸出的三个球中至少有一个红球B .摸出的三个球中有两个球是黄球C .摸出的三个球都是红球D .摸出的三个球都是黄球5.计算(a -1)2正确的是()A .a 2-1B .a 2-2a +1 C .a 2-2a -1D .a 2-a +1 6.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标为()A .(3,1)B .(2,-1)C .(4,1)D .(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)5 10 15 20 25 人数258 96则这30名同学每天使用的零花钱的众数和中位数分别是()A .20、15B .20、17.5C .20、20D .15、15 9.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、……按如图的方式放置,点A 1、A 2、A 3……和点C 1、C 2、C 3……分别在直线y =x +1和x 轴上,则点B 6的坐标是()A .(31,16)B .(63,32)C .(15,8)D .(31,32)10.已知关于x 的二次函数y =x 2-2x -2,当a ≤x ≤a +2时,函数有最大值1,则a 的值为()A .-1或1B .1或-3C .-1或3D .3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________ 12.计算:1212x x x =___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是___________14.如图,将矩形ABCD 沿BD 翻折,点C 落在P 点处,连接AP .若∠ABP =26°,则∠APB =___________15.已知平行四边形内有一个内角为60°,且60°的两边长分别为3、4.若有一个圆与这个平行四边形的三边相切,则这个圆的半径为___________16.如图,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB 同侧分别作等边△APE和△PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x+8=6x-3(x-1)18.(本题8分)已知:如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE,求证:BE=CD19.(本题8分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为______(2) 请将条形统计图补充完整(3) 若该校九年级有1000名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1) 每辆大卡车与每辆小汽车平均各装多少吨化肥?(2) 现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O 是△ABC 的外接圆,弧AB =弧AC ,AP 是⊙O 的切线,交BO 的延长线于点P(1) 求证:AP ∥BC (2) 若tan ∠P =43,求tan ∠PAC 的值22.(本题10分)如图,一次函数y =kx +b (k ≠0)的图象与反比例函数xm y(m ≠0)的图象交于A(-3,1)、B(1,n)两点(1) 求反比例函数和一次函数的解析式(2) 设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标(3) 点H 为反比例函数第二象限内的一点,过点H 作y 轴的平行线交直线AB 于点G .若HG =2,求此时H 的坐标23.(本题10分)如图,射线BD 是∠MBN 的平分线,点A 、C 分别是角的两边BM 、BN 上两点,且AB =BC ,E 是线段BC 上一点,线段EC 的垂直平分线交射线BD 于点F ,连接AE 交BD 于点G ,连接AF 、EF 、FC (1) 求证:AF =EF (2) 求证:△AGF ∽△BAF(3) 若点P 是线段AG 上一点,连接BP .若∠PBG =21∠BAF ,AB =3,AF =2,求GPEG24.(本题12分)如图,抛物线y =ax 2-(2a +1)x +b 的图象经过(2,-1)和(-2,7)且与直线y=kx -2k -3相交于点P(m ,2m -7)(1) 求抛物线的解析式(2) 求直线y =kx -2k -3与抛物线y =ax 2-(2a +1)x +b 的对称轴的交点Q 的坐标(3) 在y 轴上是否存在点T ,使△PQT 的一边中线等于该边的一半?若存在,求出点T 的坐标;若不存在,请说明理由一、选择题(共10小题,每小题3分,共30分)题号12345678910答案B C B D B B A B D A第10题选A (1)0122<,即<a a a 当1222a ay a x 最大时,舍去),(31a a (2)122aa a,即12)2(2)2(22222a a a ay a a x 最大时,或无解。

湖北省武汉市武昌区2018年中考数学模拟试卷含答案

湖北省武汉市武昌区2018年中考数学模拟试卷含答案

14 .如图,在 3× 6 的网格中,每个小正方形的边长都是
1 个单位长度,网格中小正方形的顶点叫格点,点
C 在格点上,连接 AB、 BC,则 tan∠ ABC = ___________
A、 B、
15 .如图,在锐角 △ ABC 中, AB=AC =5, BC = 10 ,点 D 从点 A 出发,以每秒 1 个单位长度的速度沿 AB 向终
50 名学生的捐款统计情况如下表
平均数是 30.6 元,则他们捐款金额的中位数和众数分别是(

A . 20、 16
B . 15.5、 20
C. 20、 16
D . 20、 10
(其中 x 为未知数) .该班学生捐款的
9.如图,直线 l: y 3x ,过点 A(1 , 0)作 x 轴的垂线交直线 l 于点 B,过点 B 作直线 l 的垂线交 x 轴于点 A1,过
(含 150,不含 50)
150 以上部分 (不含 150)
价 格(元)
零售价的 95%
零售价的 85%
零售价的 75%
(1) 如果该水果经销商要采购 x 千克苹果( 50< x≤ 100),当 x 为何值时,他在甲、乙两店采购所花费用一样?
(2) 如果该水果经销商采购 x 千克苹果( x> 100 ),问他选择哪一家店采购所花费用更少?
点 B 运动 .过点 D 作 DE ∥ AC 交 BC 于 E,过点 D 作 DF ⊥ DE 于 D ,点 F 在点 D 的下方,连接 EF ,且 EF ∥ AB.射线
EF 与 AC 交于点 G,连接 DG .当点 D 从 A 开始向 B 运动,经过 ___________ 秒时,线段 DG 的垂直平分线经过点
1
11 .计算 5 ( 3 5) 的结果是 ___________

【真题】2018年武汉市中考数学试卷含答案(Word版)

【真题】2018年武汉市中考数学试卷含答案(Word版)

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111m m m---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。

(完整)2018年湖北省武汉市中考数学试卷含答案,推荐文档

(完整)2018年湖北省武汉市中考数学试卷含答案,推荐文档

湖北省武汉市2018年中考数学试卷一、单项选择题<共10小题,每小题3分,共30分)1. <3分)<2018?武汉)在实数-2, 0, 2, 3中,最小的实数是<)A 1 •-2B 0C 2D 31 • 1 • 1 •考点实数大小比较分析根据正数大于0, 0大于负数,可得答案.解答解:- 2v0v2v3,最小的实数是-2, 故选:A.点评:本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.2. <3分)<2018?武汉)若在实数范围内有意义,则x的取值范围是< )A x>0B x>3C x>3D x< 3考点.二7 八、、•一次根式有意义的条件.分析:先根据一次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:T使在实数范围内有意义,x —3^0,解得x >3. 故选C.点评:本题考查的是二次根式有意义的条件,即被开 方数大于等于0.3. <3分)<2018?武汉)光速约为3000 000千M/秒,将数字300000用科学记数 法表示为< )b5E2RGbCAPA 3X 1041 •B 3X 105C 3X 106D 30X 1041 • 1 •1 •考点. 二7 八、、科学记数法表示较大的数分析: 科学记数法的表示形式为a x 10n 的形式,其中 1< |a|<10, n 为整数.确定n 的值时,要看把 原数变成a 时,小数点移动了多少位,n 的绝对 值与小数点移动的位数相同.当原数绝对值〉 1 时,n 是正数;当原数的绝对值< 1时,n 是负 数.解答:解:将300 000用科学记数法表示为:3X 105.故选B.点评:此题考查科学记数法的表示方法.科学记数法 的表示形式为a x 10n 的形式,其中1< |a| < 10, n 为整数,表示时关键要正确确定 a 的值以 及n 的值.4. <3分)<2018?武汉)在一次中学生田径运动会上,参加跳高的 15名运动员的成绩如表: 那么这些运动员跳高成绩的众数是)可.解答: 解:A 、<x3) 2=x6,原式计算错误,故本选项 错误;B、<2x) 2=4x2,原式计算错误,故本选项错误;C、x3?x2=x5,原式计算正确,故本选项正确;D <x+1) 2=x2+2x+1,原式计算错误,故本选项错误;故选C.点评:本题考查了幕的乘方与积的乘方、同底数幕的运算,掌握各部分的运算法则是关键.6. <3分)<2018?武汉)如图,线段AB两个端点的坐标分别为A<6, 6), B<8, 2),以原点0为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为< ) p1Ea nqFDPwA <3, 3)B <4, 3)C <3, 1)D <4, 1)考占.p 八、、位似变换;坐标与图形性质分析:利用位似图形的性质结合两图形的位似比进而得出坐标.C点解答:解:•••线段AB的两个端点坐标分别为A<6, 6), B<8,2),以原点0为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD二端点C的坐标为:<3, 3). 故选:A.点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7. <3分)<2018?武汉)如图是由4个大小相同的正方体搭成的几何体,其俯视图是< )8 <3分)<2018?武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量<单位:辆),将统计结果绘制成如下折线统计图:DXDiTa9E3d由此估计一个月<30天)该时段通过该路口的汽车数量超过200辆的天数为<)A 9B 10C 12D 15I •I ••I •考点:折线统计图;用样本估计总体分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.解答:解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:=0.4 ,所以估计一个月<30天)该时段通过该路口的汽车数量超过200辆的天数为:30 X0.4=12<天).故选C.点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.9. <3分)<2018?武汉)观察下列一组图形中点的个数,其中第1个图中共有4 个点,第2个图中共有10个点,第3个图中共有19个点,…RTCrpUDGiT 按此规律第5个图中共有点的个数是<)A 311 •B 461 •C 51•D•66考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1+1X 3=4个点,第2个图中共有1 + 1X 3+2X 3=10个点,第3个图中共有1+1X3+2X3+3X 3=19个点,…由此规律得出第n个图有1 + 1 X 3+2X 3+3X 3+…+3n 个点.解答:解:第1个图中共有1 + 1X 3=4个点,第2个图中共有1+1X 3+2X 3=10个点,第3个图中共有1+1X 3+2X 3+3X 3=19个点,第n个图有1+1X 3+2X 3+3X 3+…+3n个点.所以第5个图中共有点的个数是1 + 1 X 3+2X 3+3X 3+4X 3+5X 3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.10. <3分)<2018?武汉)如图,PA PB切O O于A、B两点,CD切O O于点E, 交PA PB 于C, D.若O O的半径为r, △ PCD的周长等于3r,则tan / APB的值是<)5PCzVD7HxAA BCD考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义分析:<1)连接OA OB OP延长BO交PA的延长线于点F.利用切线求得CA=CE DB=DE PA=PB再得出PA=PB=.利用Rt △BFP^ RT A OAF得出AF= FB,在RT^ FBP中,利用勾股定理求出BF,再求tan / APB的值即可.解答:解:连接OA OB OP延长BO交PA的延长线于点F.v PA PB切O O于A B两点,CD切O O于点E•••/ OAP h OBP=90 , CA=CE DB=DE PA=PB•••△PCD的周长二PC+CE+DE+PD二PC+AC+PD+DB二PA+PB=3r• PA=PB=在Rt△ BFP和Rt△ OAF中,••• Rt △ BF3 RT\ OAF••• AF=FB, 在Rt△ FBP中,v PF2- PB2=FB2• vPA+AF 2 - PB2=FB2< r+BF) 2- < )2=BF2解得BF= r,故选:B.点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.二、填空题<共6小题,每小题3分,满分18分)11. <3分)<2018?武汉)计算:-2+v-3)= - 5.考点:P八、、・有理数的加法分析:根据有理数的加法法则求出即可.解答:解: <- 2) +<-3) =-5, 故答案为:-5.点评:本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.12. <3分)<2018?武汉)分解因式:a3- a= a<a+1) <a- 1)考占.<7 提公因式法与公式法的综合运用分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解: a3 - a,=a<a2- 1),=a<a+1) <a- 1). 故答案为:a<a+1) <a- 1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13. <3分)<2018?武汉)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置<指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为考点.<7 概率公式分析:由一个转盘被分成7个相冋的扇形,颜色分为红、黄、绿二种,红色的有3个扇形,直接利用概率公式求解即可求得答案..jLBHrnAlLg解答:解:•一个转盘被分成7个相冋的扇形,颜色分为红、黄、绿二种,红色的有3个扇形,二指针指向红色的概率为:故答案为:点评: 此题考查了概率公式的应用.注意用到的知识点为:概率二所求情况数与总情况数之比.14. <3分)<2018?武汉)一次越野跑中,当小明跑了 1600M 时,小刚跑了 1400M 小明、小刚在此后所跑的路程 y<M 与时间tv 秒)之间的函数关系如 图,则这次越野跑的全程为 2200M . XHAQX74J0X一次函数的应用设小明的速度为aM/秒,小刚的速度为bM/秒,由行程考占. <7 八、、问题的数量关系建立方程组求出其解即可.解:设小明的速度为aM/秒,小刚的速度为bM/秒,由 题意,得 解得: •••这次越野跑的全程为:1600+300X 2=2200M 故答案为:2200. 本题考查了行程问题的数量关系的运用,二元一次方程 组的解法的运用,解答时由函数图象的数量关系建立方 程组是关键.解答: 点评:15. <3分)<2018?武汉)如图,若双曲线y与边长为5的等边△ AOB勺边OA AB分别相交于C, D两点,且0C=3B,则实数k 的值为.LDAYtRyKfE考点:反比例函数图象上点的坐标特征;等边三角形的性质分析:过点C作CELx轴于点E,过点D作DF丄x轴于点F,设OC=3x则BD=x分别表示出点C点D的坐标,代入函数解读式求出k,继而可建立方程,解出x的值后即可得出k的值.解答:解:过点C作CEL x轴于点E,过点D作DF L x轴于点F,设OC=3x 贝S BD=x在Rt△ OCE中, Z COE=60 ,则0E二CE=则点C坐标为<x), 在Rt△ BDF中,BD=x / DBF=60 ,则BF=DF=x,则点D的坐标为<5 -x), 将点C的坐标代入反比例函数解读式可得:k= x2,将点D的坐标代入反比例函数解读式可得:x2= k=x2,x2,解得:x1 = 1, x2=0<舍去),故故答案为:k= XI 2=点评:本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.16. <3 分)<2018?武汉)如图,在四边形 ABCD 中, AD=4 CD=3 / ABC 2 ACB W ADC=45,贝卩 BD 的长为.Zzz6ZB2Ltk全等三角形的判定与性质;勾股定理;等腰直角三角形 根据等式的性质,可得/ BAD 与/ CAD 的关系,根据 SAS 可得△ BAD W^ CAD 的关系,根据全等三角形的性 质,可得BD 与 CD 的关系,根据勾股定理,可得答案.解:作AD 丄AD AD =AD 连接CD , DD ,如图:, VZ BAC y CAD h DAD +Z CAD 即/ BAD Z CAD , 在厶BAD W^ CAD 中,考点. <7 八、、•分析:•••△BAD^A CAD <SAS , ••• BD=CD . / DAD =90°由勾股定理得DD =/ D‘ DA吃ADC=90由勾股定理得CD =••• BD=CD=故答案为:点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.三、解答题<共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17. <6分)<2018?武汉)解方程:考占.<7 八、、解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x - 6, 解得:x=6,经检验x=6是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想,把分式方程转化为整式方程求解.解分式方程疋注意要验根.18. <6分)<2018?武汉)已知直线y=2x-b经过点<1,- 1),求关于x的不等式2x- b>0 的解集.dvzfvkwMI1考点:一次函数与一元一次不等式分析:把点<1,- 1 )代入直线y=2x- b得到b的值,再解不等式.解:把点<1,- 1 )代入直线y=2x- b得,-1=2- b,解得,b=3.函数解读式为y=2x- 3.解2x - 3》0得,x》.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解读式.19. <6分)<2018?武汉)如图,AC和BD相交于点O, 0A=0, 0B=0D 求证:DC/ AB考占.P 八、、全等三角形的判定与性质;平行线的判定专题:证明题.分析:根据边角边定理求证△ OD QA OBA可得/ C=Z A< 或者/ D=Z B),即可证明DC// AB.解答:解答:证明:•••在厶。

湖北省武汉市2018年中考数学试题(含答案).doc

湖北省武汉市2018年中考数学试题(含答案).doc

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 、一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是( ) A .3℃ B .-3℃ C .11℃ D .-11℃2.若分式21+x 在实数范围内有意义,则实数x 的取值范围是( )A .x >-2B .x <-2C .x =-2D .x ≠-23.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 5.计算(a -2)(a +3)的结果是( ) A .a 2-6 B .a 2+a -6 C .a 2+6 D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5) B .(-2,5) C .(-2,-5) D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5 D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .65912 A .2019 B .2018 C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12143213.计算22111m m m---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m 16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表 学生读书数量扇形图b(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线xy 8=经过点C ,求t 的值(2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线x y 8-=(x <0),将线段OA 绕点O旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52=AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L:y=-x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1) 直接写出抛物线L的解析式(2) 如图1,过定点的直线y=kx-k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k 的值(3) 如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C 作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标。

湖北省武汉市2018届中考数学模拟题(一)及答案

湖北省武汉市2018届中考数学模拟题(一)及答案

2018武汉中考数学模拟题一一、选择题 (共10小题,每小题3分,共30分)1.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2∶1,点C 1的坐标是( )A .(1,0)B .(1,1)C .(-3,2)D .(0,0)2.如果分式1 x x 没有意义,那么x 的取值范围是( ) A .x ≠0 B .x =0 C .x ≠-1 D .x =-13.下列式子计算结果为2x 2的是( )A .x +xB .x ·2xC .(2x )2D .2x 6÷x 34.下列事件是随机事件的是( )A .从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B .通常温度降到0℃以下,纯净的水结冰C .任意画一个三角形,其内角和是360°D .随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x )(x -4)的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +166.364=( )A .4B .±8C .8D .±47.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是( )A .B .C .D .8年龄(岁)12 13 14 15 人数(个) 2 4 6 8根据表中信息可以判断该排球队员的平均年龄为( )A .13B .14C .13.5D .59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为( )A .50B .51C .48D .5210.已知二次函数y =x 2-(m +1)x -5m (m 为常数),在-1≤x ≤3的范围内至少有一个x 的值使y ≥2,则m 的取值范围是( )A .m ≤0B .0≤m ≤21C .m ≤21D .m >21 二、填空题(共6小题,每小题3分,共18分)11.计算:计算7-(-4)=___________12.计算:2121----x x x =___________ 13.在-2、-1、0、1、2这五个数中任取两数m 、n ,求二次函数y =(x -m )2+n 的顶点在坐标轴上的概率是___________14.P 为正方形ABCD 内部一点,PA =1,PD =2,PC =3,求阴影部分的面积S ABCP =______15.如图,将一段抛物线y =x (x -3)(0≤x ≤3)记为C 1,它与x 轴交于点O 和点A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 2,交x 轴于点A 3.若直线y =x +m 于C 1、C 2、C 3共有3个不同的交点,则m 的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O ,且⊙O 内有一定点A (2,1)、B 、D 为圆弧上的两个点,且∠BAD =90°,以AB 、AD 为边作矩形ABCD ,则AC 的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)17.(本题8分)解方程:⎩⎨⎧=-=+52323y x y x18.(本题8分)如图,AB ∥DE ,AC ∥DF ,点B 、E 、C 、F 在一条直线上,求证:△ABC ∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L 1、L 2、L 3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1) 从上述统计图可知,此厂需组装L 1、L 2、L 3型自行车的辆数分别是,________辆,________辆,________辆(2) 若组装每辆不同型号的自行车获得的利润分别是L 1:40元/辆,L 2:80元/辆,L 3:60元/辆,且a =40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L 3型自行车120辆花的时间相同,求a20.(本题8分)为了抓住文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元(1) 求购进A 、B 两种纪念品每件各需多少元?(2) 若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A 种纪念品多少件?21.(本题8分)如图,⊙O 是弦AB 、AC 、CD 相交点P ,弦AC 、BD 的延长线交于E ,∠APD =2m °,∠PAC =m °+15°(1) 求∠E 的度数(2) 连AD 、BC ,若3=ADBC ,求m 的值22.(本题10分)如图,反比例函数x k y =与y =mx 交于A 、B 两点.设点A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2),S =|x 1y 1|,且s s 413=- (1) 求k 的值(2) 当m 变化时,代数式12)1()1122212+++-m y x m y x m (是否为一个固定的值?若是,求出其值;若不是,请说理由(3) 点C 在y 轴上,点D 的坐标是(-1,23).若将菱形ACOD 沿x 轴负方向平移m 个单位,在平移过程中,若双曲线与菱形的边AD 始终有交点,请直接写出m 的取值范围23.(本题10分)如图,△ABC 中,CA =CB(1) 当点D 为AB 上一点,∠A =21∠MDN =α ① 如图1,若点M 、N 分别在AC 、BC 上,AD =BD ,问:DM 与DN 有何数量关系?证明你的结论② 如图2,若41=BD AD ,作∠MDN =2α,使点M 在AC 上,点N 在BC 的延长线上,完成图2,判断DM 与DN 的数量关系,并证明(2) 如图3,当点D 为AC 上的一点,∠A =∠BDN =α,CN ∥AB ,CD =2,AD =1,直接写出AB ·CN 的积24.(本题12分)如图1,直线y =mx +4与x 轴交于点A ,与y 轴交于点C ,CE ∥x 轴交∠CAO 的平分线于点E ,抛物线y =ax 2-5ax +4经过点A 、C 、E ,与x 轴交于另一点B(1) 求抛物线的解析式(2) 点P 是线段AB 上的一个动点,连CP ,作∠CPF =∠CAO ,交直线BE 于F .设线段PB 的长为x ,线段BF 的长为56y ,当P 点运动时,求y 与x 的函数关系式,并写出自变量x 的取值范围(3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线kx k y 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由2018武汉中考数学模拟题一答案一、选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 56 7 8 9 10 答案 C D C B DB AC B A 10.提示:设QO =QP =1,⊙O 的半径为r则AQ =r -1,CQ =r +1连接AP∵∠APD =∠ACD ,∠PAQ =∠CDQ∴△APQ ∽△DCQ∴CQ PQDQ AQ=即111+=-r DQ r ,DQ =r 2-1连接OD在Rt △DOQ 中,OD 2+OQ 2=DQ 2∴r 2+1=(r 2-1)2,解得r =3∴2311+=-+=r r QA QC二、填空题(共6小题,每小题3分,共18分)11.-9 12.013.31 14. 44° 15.13+16.10 15.提示:过点A 作AE ⊥BC 于E设AE =CE =1,则BE =3∵∠B =30°,∠ADB =30°+45°=75°∴∠BAD =∠BDA∴BA =BD =2,DE =32-,CD =13-∴13+=CD BD三、解答题(共8题,共72分)17.解:x =2,y=118.解:略19.解:(1) 80;(2) 如图;(3) 13020.解:(1) 设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元⎩⎨⎧=+=+2302327032y x y x ,解得⎩⎨⎧==7030y x (2) 设该商场购进甲种商品m 件,则购进乙种商品(100-m )件m ≥4(100-m ),解得m ≥80利润w =(40-30)m +(90-70)(100-m )=-10m +2000∵k =-10<0∴w 随m 的增大而减小当m =80时,w 有最大值为120021.解:(1) 连接CO 交⊙O 于D则∠CBD =90°∵sinD =sinA =53=CD BC ∴32535==BC CD (2) 如图,过点B 作BM ⊥AC 于M ∵sinA 53= ∴353==AB BM ,AM =4 ∵AB =AC∴M 为AC 的中点∴AC =8∴S △ABC =12设△ABC 内切圆的半径为r 则ABC S CA BC AB r ∆=++)(21,34=r 22.解:(1) ① (-2,-4)② (1,2)(一般形式为(a ,a -3))(2) ±1(3) 设点B 的坐标为(m ,n )∵点A 是点B 的“3-属派生点”∴A (n m nm +--+33,)∵点A 在反比例函数xy 34-=(x <0)的图象上 ∴34)3)(3(=+--+n m n m ,且03<-+n m 整理得23-=-+nm ,323+=m n∴B (323+m m ,)过点B 作BH ⊥OQ 于H∵BO 2=BH 2+OH 2=m 2+(323-m )2=3)23(42+-m ∴当时23=m ,BQ 有最小值 此时237323=+=m n ∴B (23723,)23.证明:(1) 连接CE∵∠CFE =∠CDE =90°,BC =CF =CD∴Rt △CFE ≌Rt △CDE (HL )∴EF =DE(2) 过点A 作AM ⊥DG 于M ,过点C 作CN ⊥DG 于N∴△AMD ≌△DNC (AAS )∴AM =DN ,DM =CN∵CF =CD∴∠FCN =∠DCN又∠BCP =∠FCP∴∠NCP =45°∴△CNG 为等腰直角三角形∴GN =CN =DM∴GM =DN =AM∴△AGM 为等腰直角三角形∴AG =2AM =22DF ∴2=AGDF (3) ∵AB =10,31=AB BP∴BP =310,AP =3102 在Rt △BCP 中,31022=+=BC PB PC ∵Rt △GAP ∽Rt △BCP ∴BPGP PC PA = 即3103103102GP =,32=GP 在Rt △AGP 中,222=-=GP AP AG由对角互补四边形模型可知:AG +GC =2DG∴DG =23延长GC 至N ,使△GDN 为等腰直角三角形,证明△CDG ≌△AGD ,得∠AGD=45°。

(完整版)2018年湖北省武汉市中考数学试卷及答案解析,推荐文档

(完整版)2018年湖北省武汉市中考数学试卷及答案解析,推荐文档
共有 16 种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为 12,
第 9 页(共 30 页)
所以两次抽取的卡片上数字之积为偶数的概率= = .
故选:C. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可 能的结果 n,再从中选出符合事件 A 或 B 的结果数目 m,然后利用概率公式计 算事件 A 或事件 B 的概率. 9.(3 分)将正整数 1 至 2018 按一定规律排列如下表:
A.3 B.4 C.5 D.6 8.(3 分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字 1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽 取的卡片上数字之积为偶数的概率是( )
第 1 页(共 30 页)
A. B. C. D. 9.(3 分)将正整数 1 至 2018 按一定规律排列如下表:
2018 年湖北省武汉市中考数学试卷
参考答案与试题解析
一、选择题(共 10 小题,每小题 3 分,共 30 分) 1.(3 分)温度由﹣4℃上升 7℃是( ) A.3℃ B.﹣3℃ C.11℃D.﹣11℃ 【分析】根据题意列出算式,再利用加法法则计算可得. 【解答】解:温度由﹣4℃上升 7℃是﹣4+7=3℃, 故选:A. 【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法 则. 2.(3 分)若分式 在实数范围内有意义,则实数 x 的取值范围是( )
5.(3 分)计算(a﹣2)(a+3)的结果是( ) A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6 【分析】根据多项式的乘法解答即可. 【解答】解:(a﹣2)(a+3)=a2+a﹣6, 故选:B. 【点评】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.

2018年湖北省武汉市中考数学模拟题含答案(共4套).doc

2018年湖北省武汉市中考数学模拟题含答案(共4套).doc

、-、-2C.-D.-、--12.化简:-b13.在-1、0、、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A.5B.±5C.-5D.±42.如果分式A.x≠0xx-1无意义,那么x的取值范围是()B.x=1C.x≠1D.x=-13.(-a+3)2的计算结果是()A.-a2+9B.-a2-6a+9C.a2-6a+9D.a2+6a+94.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件5.下列运算结果是a6的是()A.a3·a3B.a3+a3C.a6÷a3D.(-2a2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B,则点B的坐标为()A.(-1,-2)B.(2,1)C.(-2,-1)D.(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数人数311321631741A.2和3B.3和3C.2和2D.3和29.在如图的4×4的方格中,与△ABC相似的格点三角形(顶点均在格点上)(且不包括△ABC)的个数有()A.23个B.24个C.31个D.32个10.二次函数y=mx2-nx-2过点(1,0),且函数图象的顶点在第三象限.当m+n为整数时,则mn的值为()A.-1322B.-1、34132434、2二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________1-b+1b+1=__________1314.如图,△ABC中,AB=AC,∠BAC=66°,OD垂直平分线段AB,AO平分∠BAC,将∠C沿EF(点E在BC 上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC=___________=,AD=7,A⎩3x-y=1615.如图,在四边形ABCD中,AC与BD交于点O,∠DAB与∠ACB互补,C=6,AB=8,则BC=___________OD5OB316.如图,C是半径为4的半圆上的任意一点,AB为直径,延长AC至点P使CP=2CA.当点C从B运动到A时,动点P的运动路径长为___________三、解答题(共8题,共72分)⎧x+2y=317.(本题8分)解方程组:⎨18.(本题8分)如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AC∥DF,求证:ABC≌△DEF△19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B级所占的圆心角是__________(2)补全条形统计图(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1)求1辆大客车和1辆小客车的租金各为多少元?(2)若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC为⊙O的直径,点A为⊙O上一点,点E△为ABC的内心,OE⊥EC(1)若BC=10,求DE的长(2)求sin∠EBO的值22.(本题10分)如图,直线y=2x与函数y k(x>0)的图象交于第一象限的点A,且A点的x横坐标为1,过点A作AB⊥x轴于点B,C为射线BA上一点,作CE⊥AB交双曲线于点E,延长OC 交AE于点F(1)则k=__________(2)作EM∥y轴交直线OA于点M,交OC于点G①求证:AF=FE②比较MG与EG的大小,并证明你的结论(2)若点G在线段EF上,点D在线段BC上,且GF==,α=90°,EB=1,求线段GD的长23.(本题10分)如图,在△ABC△与AFE中,AC=2AB,AF=2AE,∠CAB=∠FAE=α(1)求证:∠ACF=∠ABECD1EF CB3(3)将(2)中改为120°,其它条件不变,请直接写出GDCF的值24.(本题12分)在平面直角坐标系中,抛物线C1:y=ax2+bx-1的最高点为点D(-1,0),将C1左移1个单位,上移1个单位得到抛物线C2,点P为C2的顶点(1)求抛物线C1的解析式(2)若过点D的直线l与抛物线C2只有一个交点,求直线l的解析式(3)直线y=x+c与抛物线C2交于D、B两点,交y轴于点A,连接AP,过点B作BC⊥AP于点C,点Q为C2上PB之间的一个动点,连接PQ交BC于点E,连接BQ并延长交AC于点F,试说明:FC·(AC+E C)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A.8B.-8C.4D.-42.要使分式5x1有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-13.下列计算结果为x8的是()A.x9-x B.x2·x4C.x2+x6D.(x2)44.有两个事件,事件A:投一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中,则()A.只有事件A是随机事件C.事件A和B都是随机事件5.计算(a-3)2的结果是()B.只有事件B是随机事件D.事件A和B都不是随机事件A.a2-4B.a2-2+4C.a2-4a+4D.a2+46.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(a,b)B.(-a,b)C.(b,-a)D.(-b,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)人数313.51424.51A.中位数是4,平均数是3.75C.中位数是4,平均数是3.8B.众数是4,平均数是3.75D.众数是2,平均数是3.89.把所有正奇数从小到大排列,并按如下规律分组:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A89=()A.(6,7)B.(7,8)C.(7,9)D.(6,9)10.二次函数y=2x2-2x+m(0<m<y的取值范围为()A.y<0B.0<y<m12),如果当x=a时,y<0,那么当x=a-1时,函数值C.m<y<m+4D.y>m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:a⎩3x+2y=81+a-1a-1=___________13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC.若∠ADF=25°,则∠BEC=__________15.如图,从一张腰为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM⊥ON,斜边长为4的等腰直角△ABC的斜边AC在射线ON上,顶点C与O重合.若点A沿NO方向向O运动,△ABC的顶点C随之沿OM方向运动,点A移动到点O为止,则直角顶点B运动的路径长是__________三、解答题(共8题,共72分)⎧2x-y=317.(本题8分)解方程组:⎨18.(本题8分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF,求证:∠B=∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是___________(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题 8 分)荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共 花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种荔枝的售价都不 变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计一种 购买方案,使所需总费用最低21.(本题 8 分)如图,直径 AE 平分弦 CD ,交 CD 于点 G ,EF ∥CD ,交 AD 的延长线于 F ,AP ⊥ AC 交 CD 的延长线于点 P (1) 求证:EF 是⊙O 的切线(2) 若 AC =2,PD = 1CD ,求 tan ∠P 的值222.(本题 10 分)已知,直线 l 1:y =-x +n 过点 A (-1,3),双曲线 C : y m x(x >0),过点B (1,2),动直线 l 2:y =kx -2k +2(k <0)恒过定点 F (1) 求直线 l 1,双曲线C 的解析式,定点 F 的坐标(2) 在双曲线 C 上取一点 P (x ,y ),过 P 作 x 轴的平行线交直线 l 1 于 M ,连接 PF ,求证:PF =PM (3) 若动直线 l 2 与双曲线 C 交于 P 1、P 2 两点,连接 OF 交直线 l 1 于点 E ,连接 P 1E 、P 2E ,求证:EF 平分∠P 1EP 223.(本题10分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE =∠ABC=∠ACB=α(1)如图1,当α=60°时,求证:△DCE是等边三角形(2)如图2,当α=45°时,求证:①CD2;②CE⊥DE DE(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy中,抛物线c1:y=ax2-4a+4(a<0)经过第一象限内的定点P(1)直接写出点P的坐标(2)若a=-1,如图1,点M的坐标为(2,0)是x轴上的点,N为抛物线c1上的点,Q为线段MN的中点,设点N在抛物线c1上运动时,Q的运动轨迹为抛物线c2,求抛物线c2的解析式(3)直线y=2x+b与抛物线c1相交于A、B两点,如图2,直线PA、PB与x轴分别交于D、C两点,当PD=PC时,求a的值12.计算:2x2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A.±22.要使分式1x+3B.2C.-2D.2有意义,则x的取值应满足()A.x≥3B.x<3C.x≠-3D.x≠33.下列计算结果为x6的是()A.x·x6B.(x2)3C.x7-x D.x12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A.摸出的三个球中至少有一个红球C.摸出的三个球都是红球5.计算(a-1)2正确的是()B.摸出的三个球中有两个球是黄球D.摸出的三个球都是黄球A.a2-1B.a2-2a+1C.a2-2a-1D.a2-a+16.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标为()A.(3,1)B.(2,-1)C.(4,1)D.(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)人数52105158209256则这30名同学每天使用的零花钱的众数和中位数分别是()A.20、15B.20、17.5C.20、20D.15、159.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如图的方式放置,点A1、A2、A3……和点C1、C2、C3……分别在直线y=x+1和x轴上,则点B6的坐标是()A.(31,16)B.(63,32)C.(15,8)D.(31,32)10.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.-1或1C.-1或3B.1或-3D.3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________2-x-1x-1=___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,⎩3x + 2 y = 1则从这 6 名学生中选取 2 名同时跳绳,恰好选中一男一女的概率是 ___________14.如图,将矩形 ABCD 沿 BD 翻折,点 C 落在 P 点处,连接 AP .若∠ABP =26°,则∠APB = ___________15.已知平行四边形内有一个内角为 60°,且 60°的两边长分别为 3、4.若有一个圆与这个平行 四边形的三边相切,则这个圆的半径为___________16.如图,已知线段 AB =6,C 、D 是 AB 上两点,且 AC =DB =1,P 是线段 CD 上一动点,在 AB 同侧分别作等边△APE 和△PBF ,G 为线段 EF 的中点,点 P 由点 C 移动到点 D 时,G 点移动的路 径长度为___________三、解答题(共 8 题,共 72 分)⎧x - y = 217.(本题 8 分)解方程组: ⎨ 18.(本题 8 分)已知:如图,BD ⊥AC 于点 D ,CE ⊥AB 于点 E ,AD =AE ,求证:BE =CD19.(本题 8 分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长 假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别: A 、游三个景区; B 、游两 个景区;C 、游一个景区; D 、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计 图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为______ (2) 请将条形统计图补充完整(3) 若该校九年级有 1000 名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1)每辆大卡车与每辆小汽车平均各装多少吨化肥?(2)现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O△是ABC的外接圆,弧AB=弧AC,AP是⊙O的切线,交BO的延长线于点P(1)求证:AP∥BC(2)若tan∠P=3,求tan∠PAC的值422.(本题10分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数ymx(m≠0)的图象交于A(-3,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标(3)点H为反比例函数第二象限内的一点,过点H作y轴的平行线交直线AB于点G.若HG=2,求此时H的坐标(3)若点P是线段AG上一点,连接BP.若∠PBG=1∠BAF,AB=3,AF=2,求(E23.本题10分)如图,射线BD是∠MBN的平分线,点A、C分别是角的两边BM、BN上两点,且AB=BC,是线段BC上一点,线段EC的垂直平分线交射线BD于点F,连接AE交BD于点G,连接AF、EF、FC(1)求证:AF=EF(2)求证:△AGF△∽BAFEG2GP24.(本题12分)如图,抛物线y=ax2-(2a+1)x+b的图象经过(2,-1)和(-2,7)且与直线y=kx-2k-3相交于点P(m,2m-7)(1)求抛物线的解析式(2)求直线y=kx-2k-3与抛物线y=ax2-(2a+1)x+b的对称轴的交点Q的坐标(3)在y轴上是否存在点T△,使PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在,请说明理由2018武汉中考数学模拟题四一、选择题(共10小题,每小题3分,共30分)1.364=()A.4B.±8C.8D.±42.如果分式x没有意义,那么x的取值范围是()x1A.x≠0B.x=0C.x≠-1D.x=-13.下列式子计算结果为2x2的是()A.x+x B.x·2x C.(2x)2D.2x6÷x34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16B.16-x2C.x2+16D.x2-8x+166.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A 1B1C1△,使A1B1C1与△ABC位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员的平均年龄为()A.13B.14C.13.5D.59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为()A.50B.51C.48D.522C.m≤2D.m>12.计算:x-1P⎩x-2y=5L L10.已知二次函数y=x2-(m+1)x-5m(m为常数),在-1≤x≤3的范围内至少有一个x的值使y≥2,则m的取值范围是()A.m≤0B.0≤m≤1二、填空题(共6小题,每小题3分,共18分)11.计算:计算7-(-4)=___________1=___________-x-2x-211213.在-2、-1、0、1、2这五个数中任取两数m、n,求二次函数y=(x-m)2+n的顶点在坐标轴上的概率是___________14.为正方形ABCD内部一点,PA=1,PD=2,PC=3,求阴影部分的面积SABCP=______15.如图,将一段抛物线y=x(x-3)(0≤x≤3)记为C1,它与x轴交于点O和点A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C2,交x轴于点A3.若直线y=x+m于C1、C2、C3共有3个不同的交点,则m的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O,且⊙O内有一定点A(2,1)、B、D为圆弧上的两个点,且∠BAD=90°,以AB、AD为边作矩形ABCD,则AC的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)⎧3x+2y=317.(本题8分)解方程:⎨18.(本题8分)如图,AB∥DE,AC∥DF,点B、E、C、F在一条直线上,求证:△ABC∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1)从上述统计图可知,此厂需组装L1、2、3型自行车的辆数分别是,________辆,________辆,________辆(2)若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3)若组装L1型自行车160辆与组装L3型自行车120辆花的时间相同,求a((m2-1)x y(m+1)2+21是否为一个固定的值?若是,求出其值;若不20.本题8分)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?21.(本题8分)如图,⊙O是弦AB、AC、CD相交点P,弦AC、BD的延长线交于E,∠APD =2m°,∠PAC=m°+15°(1)求∠E的度数(2)连AD、BC,若BC=3,求m的值AD22.(本题10分)如图,反比例函数y=为kx与y=mx交于A、B两点.设点A、B的坐标分别A(x1,y1)、B(x2,y2),S=|x1y1|,且(1)求k的值34=s-1s(2)当m变化时,代数式12是,请说理由2x ym+1(3)点C在y轴上,点D的坐标是(-1,32).若将菱形ACOD沿x轴负方向平移m个单位,在平移过程中,若双曲线与菱形的边AD始终有交点,请直接写出m的取值范围②如图2,若AD=,作∠MDN=2α,使点M在AC上,点N在BC的延长线上,完成图G点的直线y=-x+交于点P,C、D两点关于原点对称,DP的延长线交抛物线于点M.当23.(本题10分)如图,△ABC中,CA=CB(1)当点D为AB上一点,∠A=1∠MDN=α2①如图1,若点M、N分别在AC、BC上,AD=BD,问:DM与DN有何数量关系?证明你的结论1BD42,判断DM与DN的数量关系,并证明(2)如图3,当点D为AC上的一点,∠A=∠BDN=α,CN∥AB,CD=2,AD=1,直接写出AB·CN的积24.(本题12分)如图1,直线y=mx+4与x轴交于点A,与y轴交于点C,CE∥x轴交∠CAO的平分线于点E,抛物线y=ax2-5ax+4经过点A、C、E,与x轴交于另一点B(1)求抛物线的解析式(2)点P是线段AB上的一个动点,连CP,作∠CPF=∠CAO,交直线BE于F.设线段PB的长为x,线段BF的长为65y,当P点运动时,求y与x的函数关系式,并写出自变量x的取值范围(3)如图2,点G的坐标为(16,0),过A点的直线y=kx+3k(k<0)交y轴于点N,与过3116k3kk的取值发生变化时,问:tan∠APM的值是否发生变化?若不变,求其值,若变化,请说明理由=22-316.22018武汉中考数学模拟题三答案一、选择题(共10小题,每小题3分,共30分)题号答案1B2C3B4D5B6B7A8B9D10A第10题选A(1)a+a+2<1,即a<0 2当x=a时,y最大=a2-2a-2=1a=-1,a=3(舍去)(2)a+a+2=1,即a=0 2x=a或a+2时,y最大=a2-2a-2=(a+2)2-2(a+2)-2=1无解。

(完整word)2018年湖北省武汉市中考数学试卷及答案解析,推荐文档

(完整word)2018年湖北省武汉市中考数学试卷及答案解析,推荐文档

由此估计这种幼树在此条件下移植成活的概率约是 (精确到 0.1)
13.(3 分)计算

的结果是 .
14.(3 分)以正方形 ABCD 的边 AD 作等边△ADE,则∠BEC 的度数是
第 2 页(共 30 页)
. 15.(3 分)飞机着陆后滑行的距离 y(单位:m)关于滑行时间 t(单位:s) 的函数解析式是 y=60t﹣ .在飞机着陆滑行中,最后 4s 滑行的距离是 m. 16.(3 分)如图.在△ABC 中,∠ACB=60°,AC=1,D 是边 AB 的中点,E 是边 BC 上一点.若 DE 平分△ABC 的周长,则 DE 的长是 .
三、解答题(共 8 题,共 72 分) 17.(8 分)解方程组: 18.(8 分)如图,点 E、F 在 BC 上,BE=CF,AB=DC,∠B=∠C,AF 与 DE 交于 点 G,求证:GE=GF.
19.(8 分)某校七年级共有 500 名学生,在“世界读书日”前夕,开展了“阅读助
我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机
A.3 B.4 C.5 D.6 8.(3 分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字 1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽 取的卡片上数字之积为偶数的概率是( )
第 1 页(共 30 页)
A. B. C. D. 9.(3 分)将正整数 1 至 2018 按一定规律排列如下表:
23.(10 分)在△ABC 中,∠ABC=90°. (1)如图 1,分别过 A、C 两点作经过点 B 的直线的垂线,垂足分别为 M、N,求证:△ABM∽△BCN; (2)如图 2,P 是边 BC 上一点,∠BAP=∠C,tan∠PAC= ,求 tanC 的值; (3)如图 3,D 是边 CA 延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,

2018年武汉市九年级中考数学真题模拟卷及答案解析

2018年武汉市九年级中考数学真题模拟卷及答案解析

九年级中考数学模拟试卷(120分卷)一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>23.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2 4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是115.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6 C.a4÷a2=2a D.(a+b)2=a2+ab+b26.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)7.图中三视图对应的正三棱柱是()A.B.C.D.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如29.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为.12.计算﹣的结果是.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是元,B商品的单价是元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为(请直接写出结果)②求ME•MF的值.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.2018年湖北省武汉市中考数学预测试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】21:平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>2【考点】62:分式有意义的条件.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≠0,解得x≠2.故选:C.3.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x2﹣3x﹣4,不符合题意;B、原式=x2﹣4,符合题意;C、原式=4﹣x2,不符合题意;D、原式=x2﹣4x+4,不符合题意,故选B4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是11【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【解答】解:掷一次骰子,在骰子向上的一面上的点数大于0是必然事件;掷一次骰子,在骰子向上的一面上的点数为7是不可能事件;掷三次骰子,在骰子向上的一面上的点数之和刚好为18是随机事件;掷两次骰子,在骰子向上的一面上的点数之积刚好是11是不可能事件,故选:C.5.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【考点】4I:整式的混合运算.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.6.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)【考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.【分析】根据平移、中心旋转的定义画出图形,即可解决问题.【解答】解:如图所示,点A向右平移两个单位再向下平移3个单位得A1(1,2),再将线段OA1绕原点O顺时针旋转90°得到OA2,A2坐标(2,﹣1).故选C.7.图中三视图对应的正三棱柱是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如2【考点】W6:极差;W2:加权平均数;W4:中位数;W5:众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.9.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【考点】G6:反比例函数图象上点的坐标特征.【分析】设点P的坐标为(x,y),分∠APB=90°、∠PAB=90°和∠PBA=90°三种情况考虑:当∠APB=90°时,以AB为直径作圆,由圆与双曲线无交点可知此时点P 不存在;当∠PAB=90°时,可找出x=﹣3,进而可得出点P的坐标;当∠PBA=90°时,可找出x=3,进而可得出点P的坐标.综上即可得出结论.【解答】解:设点P的坐标为(x,y),当∠APB=90°时,以AB为直径作圆,如图所示,∵圆与双曲线无交点,∴点P不存在;当∠PAB=90°时,x=﹣3,y==﹣3,∴点P的坐标(﹣3,﹣3);当∠PBA=90°时,x=3,y==3,∴点P的坐标为(3,3).综上所述:满足条件的点P有2个.故选A.10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.【考点】H7:二次函数的最值.【分析】分a<、≤a≤4和a>4三种情况,找出函数值y的最小值,令其等于﹣23,即可得出关于a的一元一次(或一元二次)方程,解之即可得出结论.【解答】解:抛物线y=2x2﹣3ax+1的对称轴为x=a.当a<1,即a<时,有2﹣3a+1=﹣23,解得:a=(舍去);当1≤a≤3,即≤a≤4时,有a2=24,解得:a=或a=﹣(舍去);当a>3,即a>4时,有18﹣9a+1=﹣23,解得:a=.综上所述:a的值为或.故选C.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为﹣5.【考点】1A:有理数的减法.【分析】减去一个数,等于加上这个数的相反数.【解答】解:﹣2﹣(+3)=﹣2﹣3=﹣(2+3)=﹣5,故答案为:﹣5.12.计算﹣的结果是.【考点】6B:分式的加减法.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.【考点】X6:列表法与树状图法.【分析】根据题意列表,再根据表格即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.4种,所以两次取出的小球颜色不相同的概率=,故答案为:.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=80°.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】根据长方形性质得出平行线,根据平行线的性质求出∠DEF,根据折叠求出∠FEG,即可求出答案.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=50°,∵沿EF折叠D到D′,∴∠FEG=∠DEF=50°,∴∠AEG=180°﹣50°﹣50°=80°,故答案为:80°.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.【考点】O4:轨迹;D5:坐标与图形性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;LF:正方形的判定.【分析】先过P作PD⊥x轴于D,作PE⊥y轴于E,根据△AEP≌△BDP(AAS),得出PE=PD,进而得到点P的运动路径是∠AOM的角平分线,再分别求得当点B与点O重合时,OP=OC=,当点B与点M重合时,OP=OD=,进而得到点P移动的路线长.【解答】解:如图所示,过P作PD⊥x轴于D,作PE⊥y轴于E,则∠DPE=90°,∠AEP=∠BDP=90°,连接AP,∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC=BP,且AP⊥BC,即∠APB=90°,∴∠APE=∠BPD,在△AEP和△BDP中,,∴△AEP≌△BDP(AAS),∴PE=PD,∴点P的运动路径是∠AOM的角平分线,如图所示,当点B与点O重合时,AB=AO=1,OC=,∴OP=OC=;如图所示,当点B与点M重合时,过P作PD⊥x轴于D,作PE⊥y轴于E,连接OP,由△AEP≌△BDP,可得AE=BD,设AE=BD=x,则OE=1+x,OD=2﹣x,∵矩形ODPE中,PE=PD,∴四边形ODPE是正方形,∴OD=OE,即2﹣x=1+x,解得x=,∴OD=2﹣=,∴等腰Rt△OPD中,OP=OD=,∴当点B从点O向x轴正半轴移动到点M时,则点P移动的路线长为﹣=.故答案为:.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为m>﹣3或﹣12<m<﹣4.【考点】HA:抛物线与x轴的交点.【分析】分别画出x≤3和x>3的函数图象,得出两抛物线的交点坐标(3,3),结合函数图象知①直线f(x)=2x+m过点(3,3)时;②当直线f(x)=2x+m与f(x)=x2﹣2x只有一个交点时,方程只有一个实数解,分别求出m的值,结合函数图象可得m的取值范围.【解答】解:∵x≤3时,f(x)=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的顶点坐标为(1,﹣1),当f(x)=0时,由x2﹣2x=0得x=0或x=2,∴抛物线与x轴的交点为(0,0)和(2,0),∵x>3时,f(x)=x2﹣10x+24=(x﹣5)2﹣1,∴此时抛物线的顶点坐标为(5,﹣1),当f(x)=0时,由x2﹣10x+24=0得x=4或x=6,∴此时抛物线与x轴的交点为(4,0)和(6,0),由可得,即两抛物线交点坐标为(3,3),如图所示:直线f(x)=2x+m可看作直线y=2x平移得到,①当直线f(x)=2x+m过点(3,3),即6+m=3,得m=﹣3时,直线f(x)=2x+m与f(x)=x2﹣2x的图象有两个交点;②当直线f(x)=2x+m与f(x)=x2﹣2x有一个交点,即x2﹣2x=2x+m只有一个解时,方程f(x)=2x+m有且只有两个解,解得:m=﹣4,当直线f(x)=2x+m与f(x)=x2﹣10x+24只有1个交点时,即2x+m=x2﹣10x+24只有一个解,解得:m=﹣12,由图象可知当m>﹣3或﹣12<m<﹣4时,方程f(x)=2x+m有且只有两个实数解,故答案为:m>﹣3或﹣12<m<﹣4.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)【考点】86:解一元一次方程.【分析】根据去括号,移项,合并同类项,可得答案.【解答】解:去括号,得5x﹣1=3x﹣3,移项,合并同类项,得﹣2x=﹣2,系数化为1,得x=﹣1.18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.【考点】KD:全等三角形的判定与性质;J9:平行线的判定.【分析】根据条件证明△AOB≌△COD就可以得出∠A=∠C就可以得出结论.【解答】证明:在△AOB和△COD中,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由体育社团的人数除以占的百分比,确定出共调查的人数即可;(2)由文学社团的人数除以总人数,再乘以360°即可得到结果;(3)由体育社团的百分比乘以1500即可得到结果.【解答】解:(1)根据题意得:80÷40%=200(人),则此次共调查了200人;(2)根据题意得:60×200×360°=108°,则文学社团在扇形统计图中所占的圆心角度数为108°;(3)根据题意得:1500×40%=600(人),则喜欢体育类社团的学生约有600人.20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是16元,B商品的单价是4元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)①根据题意可以得到y与x的函数关系式;②根据题意可以列出相应的不等式组,从而可以解答本题.【解答】解:(1)A商品的单价是x元,B商品的单价是y元,,解得,即A商品的单价是16元,B商品的单价是4元,故答案为:16,4;(2)①由题意可得,y=16x+4(2x﹣4)=24x﹣16,即y与x的函数关系式是y=24x﹣16;②由题意可得,,解得,12≤x≤13,∴20≤2x﹣4≤22,∴购买B商品最多有22件,答:购买B商品最多有22件.21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OB,利用切线的性质以及等腰三角形的性质证明∠ADB=∠ABD,利用等角对等边证得;(2)设AC=a,则AB=AD=2a,在Rt△AOB中利用勾股定理即可列方程求得a的值,进而求得BD的长.【解答】解:(1)证明:连接OB.∵AB是⊙O的切线,OA⊥l,∴∠OBA=∠OAD=90°,又OB=OC,∴∠OBC=∠COB=∠ACD,∴∠ADB=∠ABD,∴AB=AD;(2)∵tan∠OCB=tan∠ACD==2,⊙O的半径是3,设AC=a,则AB=AD=2a,在Rt△AOB中,OA2=AB2+OB2,∴(a+3)2=(2a)2+32,∴a=2.过点A作AE⊥BD,设AE=x,DE=2x,则5x2=16,x=,∴BD=BE=,∴BD=.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为m>4(请直接写出结果)②求ME•MF的值.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)设D的坐标是(4,a),则A的坐标是(4,a+3),由点C是OA的中点,可用含a的代数式表示出点C的坐标,再根据反比例函数图象上点的坐标特征即可找出4a=2×=k,解之即可得出a、k的值,进而即可得出反比例函数的解析式;(2)①将一次函数解析式代入反比例函数解析式中,整理后可得出关于x的一元二次方程,由m>0以及根的判别式△>0,即可得出关于m的不等式组,解之即可得出结论;②由一次函数解析式可得出∠MEG=∠MFH=45°,进而可得出ME=GE、MF= HF,将一次函数解析式代入反比例函数解析式中,由根与系数的关系可得出x E•x F=4,进而可得出ME•MF=2x E•x F=8,此题得解.【解答】解:(1)设D的坐标是(4,a),则A的坐标是(4,a+3).又∵点C是OA的中点,∴点C的坐标是(2,),∴4a=2×=k,解得a=1,k=4,∴反比例函数的解析式为y=;(2)①将y=﹣x+m代入y=中,﹣x+m=,整理,得:x2﹣mx+4=0,∵直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F,∴,解得:m>4.故答案为:m>4.②过点E、F分别作y轴的垂线,垂足分别为G、H.由y=﹣x+m可知:∠MEG=∠MFH=45°,∴ME=GE,MF=HF.由y=﹣x+m=,得x2﹣mx+4=0,∴x E•x F=4,∴ME•MF=2x E•x F=8.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.【考点】SO:相似形综合题.【分析】(1)直接判断出△ABD∽△ECD,即可得出结论;(2)先设AB=AC=2a,CD=a,则BC=a,AD=a.求出BD,而△BAD∽△CED,得出,代入求出CE即可解决问题.(2)如图3,延长CE、BA相交于点F.只要证明△BEC≌△BEF,推出CE=EF,CF=2CE,由ABD≌△ACF,推出BD=CF,即可解决问题.【解答】解:(1)∵CE⊥BD,∴∠A=∠E=90°,∵∠ADB=∠EDC,∴△BAD∽△CED,∴,∴AD•CD=BD•DE;(2)设CD=AD=a,则AB=AC=2a.在Rt△ABD中,由勾股定理得:BD=a,由(1)知,△BAD∽△CED,∴,∴,解得:CE=a,∴==;(3)如图3,延长CE、BA相交于点F.∵BE是∠ABC的角平分线,且BE⊥CF在△BEC和△BEF中,,∴△BEC≌△BEF,∴CE=EF,∴CF=2CE又∵∠ABD+∠ADB=∠CDE+∠ACF=90°,且∠ADB=∠CDE,∴∠ABD=∠ACF∵AB=AC,∠BAD=∠CAF=90°,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE,∴=2.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(﹣4﹣,)(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.【考点】HF:二次函数综合题.【分析】(1)①选将函数关系式变形为y=(x﹣2)(x+k),从而可得到点A和点B的坐标,然后再求得点C的坐标,接下来再证明△OBC∽△OCA,依据相似三角形的性质可得到OC2=AO•OB,从而列出关于k的方程,故此可求得k的值;②将k=8代入抛物线的解析式得:y=x2+x﹣4,然后再求得点A、B、C的坐标,依据勾股定理可求得AC的长,由点B和点C的坐标可求得BC的解析式,设M 为AC的中点,则M(1,﹣2),过点M作PM∥BC,交抛物线与点P.然后求得PM的解析式,最后求得PM与抛物线的交点P的坐标即可;(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.将y=mx代入得:x2﹣1=mx,依据一元二次方程根与系数的关系得到x E+x F=4m,x E•x F=﹣4,由OF=2OE,可得到x F=﹣2x E,从而可求得m的值;②设∠FON=α,则+=cosα(+).由直线的解析式可知cosα=,然后依据一元二次方程根与系数的关系得到+=,故此可求得问题的答案.【解答】解:(1)①∵y= [x2+(k﹣2)x﹣2k]=(x﹣2)(x+k),∴点A的坐标为(2,0),点B的坐标为(﹣k,0).∵将x=0代入抛物线的解析式为y=﹣.∴点C的坐标为(0,﹣).∵∠BCO+∠ACO=90°,∠OBC+∠BCO=90°,∴∠OBC=∠OCA.又∵∠BOC=∠AOC,∴△OBC∽△OCA.∴=.∴OC2=AO•OB.∴k2=2k,解得:k=8或k=0(舍去).②将k=8代入抛物线的解析式得:y=x2+x﹣4.当x=0时,y=﹣4,∴C(0,﹣4).令y=0得:x2+x﹣4=0,解得x=﹣8或x=2.∴A(2,0)B(﹣8,0).∴AC==2.设直线BC的解析式为y=kx+b,将点B和点C的坐标代入得:,解得:,∴直线BC的解析式为y=x﹣4.设M为AC的中点,则M(1,﹣2),如图1所示:过点M作PM∥BC,交抛物线与点P.设直线PM的解析式为y=﹣x+c,将点M的坐标代入得:﹣+c=﹣2,解得:c=﹣.∴直线PM的解析式为y=﹣x﹣.∴﹣x﹣=x2+x﹣4,解得x=﹣4﹣或x=﹣4+(舍去).当x=﹣4﹣时,y=.∴点P的坐标为(﹣4﹣,).故答案为:(﹣4﹣,).(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.由x2﹣1=mx,得到x E+x F=4m,x E•x F=﹣4.∵OF=2OE,∴x F=﹣2x E,且x E<0,∴﹣2x E•x E=﹣4,解得:x E=﹣.∴﹣+2=4m,解得:m=.②设∠FON=α,则+=cosα(+).∵直线EF的解析式为y=mx,∴tanα=m,∴cosα=.∴+====.∴+=cosα(+)=•=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返还顾客现金 a 元,要使(2)中所有方案获利相同,a 值应是多少? 若考虑投入成本最低,则应 选择哪种进货方案?
21.如图,O 是△ABC 的外心,I 是△ABC 的内心,连 AI 并延长 交 BC 和⊙O 于 D、E 两点. (1)求证:EB=EI; (2)若 AB=4,AC=3,BE=2,求 AI 的长.
(2)设 AI=x,△BDE∽△ABE,BE2=ED·EA,DE= 4 . x2
△BDE∽△ABE,AB·AC=AD·AE,4×3=(x+2)(x+2- 4 ),解得 x=2,即 AI=2. x2
22.(1)略;(2)CD 解析式:y=-x-7;(3)4+4 2 . 23.(1)略; (2)分别延长 AQ、BP 交 CD、AD 于 E、F,证 △CEQ≌△DFP,得 DP=CQ.
D.x≠4
3.计算 3x3-2x3 的结果( )
A.1
B.x3
C.x6
D.5x3
4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )
投篮次数 10 50 100 150 200 250 300 500
投中次数 4
35 60 78 104 123 151 249
投中频率 0.40 0.70 0.60 0.52 0.52 0.49 0.5110 小题,每小题 3 分,共 30 分)
1.某地某日最高气温 27℃,最低 15℃,最高气温比最低气温高( )
A.22℃
B.12℃
C.15℃
D.14℃
2.若代数式 1 在实数范围内有意义,则实数 x 的取值范围是( ) x-4
A.x>-4
B.x=4
C.x≠0
求证:MN∥y 轴; (3)如图,2,过点 A 的直线交抛物线于 D、E,QD、QE 分别交 y 轴于 G、H.求证:CG •CH 为定值.
yN
A
C
M
B
O
x
P
图1
y
A CQ
G
DO H
x
E 图2
2018 年中考模拟试题 数学参考答案
一、选择题(每小题 3 分,共 30 分)
㼵号
1 2 3 4 5 6 7 8 9 10
A.0.5
B.0.7
C.0.6
D.0.4
5.计算(a-2)(a+3)的结果是( )
A.a2-6
B.a2+6
C.a2-a-6
D.a2+a-6
6.点 A(-2,5)关于 x 轴对称的点的坐标是( )
A.(2,5)
B.(-2,-5)
C.(2,-5) D.(5,-2)
7.一个几何体的三视图如左图所示,则该几何体是( )
h≠0,则 a 的取值范围是
.
三、解答题(共 8 题,共 72 分)
B
EC
F
3x y 6 17.(本题 8 分)解方程组 2x y 4
A
D
18.(本题 8 分)如图,B、E、C、F 四点顺次在同一条直线上,AC=DF,AC∥DF,BE=CF.求证:AB ∥DE
19.某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分
答案 B D B A D B D D B C
二、填空题(每小题 3 分,共 18 分)
11、 2 ; 12、 1 (或 1 ); 13、 1 ; 14、60;
1 x2
x2 1
4
15、 4 ≤x≤2;(只填 4 的给一分);
3
3
三、解答题
16、a≤
或 a>0 (只填对了一个范围的给两分)
17、
x y
A
OI
B
D
C
E
22.如图,A 是双曲线 C1:y= k (x>0)上一点,连接 OA. x
(1)如图 1,将 OA 绕点 O 逆时针旋转 900 至 ON,点 M 和 A 关于 y 轴对称. 在图 1 中画出点 M 和 ON.
y A
(2)如图 2,若 k=4,点 A(1,m)、B(4,n)是双曲线 C1 上两点.线 段 AB 绕某点旋转 1800 后,两对应点 C、D 恰好落在 双曲线 C2:y= 10 (x<0)上.求直线 CD 的解析式.
线于 P,且 DP⊥BP 于 P.若 PD+PA=6,AB=6,则⊙O 的直径 AC 的长为( )
A.5
B.8
C.10
D.12
A
B
G
P
D
A
C
F
D
E
第9题图
O
B
C
第10题图
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)
11.计算:( 3+ 2)- 3 的结果是________
12.计算
标包括 A 级和 B 级)?
20.(本题 8 分)某电脑公司经销甲种型号电脑,每台售价 4000 元.为了增加收入,电脑公司决定 再经销乙种型号电脑.已知甲种电脑每台进价为 3500 元,乙种电脑每台进价为 3000 元,公司预计 用不多于 5 万元且不少于 4.8 万元的资金购进这两种电脑共 15 台. (1)有几种进货方案? (2)如果乙种电脑每台售价为 3800 元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,
人数
1
2
2
月工资/(万元/人)
5
3
2
4
1
x
0.8
9.如图为正七边形 ABCDEFG,以这个正七边形的顶点 A 和其它六个顶点中的任两个顶点画三角形,
所画的三角形中,包含正七边形的中心的三角形个数为( )
A.3
B.6
C.9
D.12
10.如图,已知 AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,,过 D 作⊙O 的切线交 BA 的延长
B
C
图1
(2)如图 2,若 P 是正方形 ABCD 内一点,∠APB=900,CS⊥DP 于 S,延长 AP 交 CS A 于点 Q.请问:DP 与 CQ 的大小有何关系?证明你的结论;
S
D
P Q
(3)如图 3,若 P 是正方形 ABCD 外一点,∠APB=900,
tan∠BAP= 1 . CS⊥DP 于 S,交 PA 的延长线于点 Q .请直接 2
1 x 1
x x2 1
的结果是__________
13.同时抛掷两枚质地均匀的硬币,两枚硬币全部反面向上的的概率是__ ___
14.如图,在正方形 ABCD 的外侧,作等边三角形 ADE. AC,BE 相交于点 F,则∠BFC 为
°
B
A
A
D
M
F
E
C
D
第14题图
B
N
C
第15题图
15.如图,在矩形 ABCD 中,AB=2cm,BC=4cm.点 M 从 A 出发,沿矩形的边 A→B→C 运动,速度为
1.5 cm/s; 点 N 从 B 出发,沿矩形的边 B→C→D 运动, 运动速度为 3cm/s. 它们同时出发,设运动
时间为 x 秒(0≤x≤2),一个点停止运动时,另一个点也同时停止运动.若 MC⊥ND,则 x 的值

.
16.已知抛物线 y=a(x-h)2+k 经过坐标原点,顶点在抛物线 y=x2-x 上,若 -2≤h<1 且
A.球
B.三棱柱
C.圆柱 D.圆锥
8.某公司有 10 名工作人员,他们的月工资情况如下表(其中 x 为未知数).他们的月平均工资是 2.1
万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别( )
A.2、4
B.1.3、1.65
C.2、1.3
D. 1.65、1.3
职务
经理 副经理 A 类职员 B 类职员 C 类职员
y y
kx 4 1 x2
2
x
2
,得
1 2
x2-(k-i)x+2=0
∴xD•xE=4,即(m-2)•(n-2)=4.
∴CG•CH=(2-m)•(2-n)=4.
A
C
M
B
O
x
P
图1
y
A CQ
G
DO H
x
E 图2
2
xp k 1

y
y
kx 2 x4

xN=
k
2 1
=xM,
∴MN∥y 轴.
yN
(3)设 G(0,m),H(0,n).
得 QG:y= 2 m x+m,QH:y= 2 n x+n.
2
2

y y
2
m 2 1 x2
xm x
2
2
得 xD=m-2.
同理得 xE=n-2.

AE:y=kx+4,由
(3)tan∠PQC= 3 2
24.(1)y=- 1 x2+x+2; 2
(2)

PM:y=mx,PC:y=x+2.由
y
kx
2
得 1 x2+(k-1)x=0,
y
1 2
x2
x
2
2
xp= 1 k 2
.由
y
mx
y
1 2
x2
x2
得 1 x2+(m-i)x-2=0,xp•xm=-4,∴xm= 4 = 2 .
2 0
18、略
19、⑴200;⑵54°;
⑶解:根据样本信息,可知学习态度达标人数占 25%+60%,
估计该市近 20000 名八年级学生中学习态度达标人数是:
20000(25%+60%)=17000
相关文档
最新文档