SPI通信协议(SPI总线)学习
单片机中的SPI总线通信协议与应用

单片机中的SPI总线通信协议与应用SPI(Serial Peripheral Interface)是一种基于同步通信方式的总线协议,常用于将单片机与外部设备进行数据交互。
本文将介绍SPI总线通信协议的原理和应用。
一、SPI总线通信协议的原理SPI总线通信协议由主设备(Master)和从设备(Slave)组成,主设备控制通信的发起和传输,而从设备被动接收和回应。
SPI总线通信协议通过四根线(SCLK、MOSI、MISO、SS)实现数据传输和通信控制。
1. SCLK(Serial Clock)线是用来同步主设备和从设备的时钟信号。
主设备通过拉高和拉低SCLK线来控制数据传输的时钟频率以及数据的采样和发送时机。
2. MOSI(Master Out Slave In)线是主设备发送数据给从设备的数据线。
主设备通过拉高和拉低MOSI线来将数据传输给从设备。
3. MISO(Master In Slave Out)线是从设备发送数据给主设备的数据线。
从设备通过拉高和拉低MISO线来将数据传输给主设备。
4. SS(Slave Select)线用于选择从设备。
主设备可以通过拉低相应的SS线来选择与之通信的从设备,从而实现多从设备的控制和数据交互。
SPI总线通信协议的数据传输是全双工的,即主设备和从设备可以同时发送和接收数据。
主设备通过SCLK线控制数据传输的时钟频率,而MOSI和MISO线相互独立地进行数据传输。
二、SPI总线通信协议的应用SPI总线通信协议广泛应用于各种领域,如数字信号处理、嵌入式系统、通信设备等。
下面将介绍几个常见的应用场景。
1. 存储器扩展许多单片机具有内置的存储器,在容量有限的情况下,可以通过SPI总线连接外部存储器来扩展储存空间。
主设备通过SPI总线的读写操作,将数据存储到外部存储器或者从外部存储器中读取数据。
2. 传感器接口许多传感器都支持SPI总线通信接口,例如加速度传感器、温度传感器等。
SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟!SPI通信协议(SPI总线)学习1、什么是SPI?SPI是串行外设接口(Serial Peripheral Interface)的缩写。
是Motorola 公司推出的一种同步串行接口技术,是一种高速的,全双工,同步的通信总线。
2、SPI优点支持全双工通信通信简单数据传输速率块3、缺点没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。
4、特点1):高速、同步、全双工、非差分、总线式2):主从机通信模式5、协议通信时序详解1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。
也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。
(1)SDO/MOSI –主设备数据输出,从设备数据输入;(2)SDI/MISO –主设备数据输入,从设备数据输出;(3)SCLK –时钟信号,由主设备产生;(4)CS/SS –从设备使能信号,由主设备控制。
当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低或者是拉高。
2):需要说明的是,我们SPI通信有4种不同的模式,不同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1时钟极性CPOL 是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA是用来配置数据采样是在第几个边沿:CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿例如:CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。
SPI总线协议介绍

SPI总线协议介绍 ⼀、概述 SPI = Serial Peripheral Interface,是串⾏外围接⼝设备,是⼀种⾼速,全双⼯,同步的通信总线。
常规只占⽤四根线,节约了芯⽚管脚,PCB的布局省空间。
优点: ⽀持全双⼯,push-pull的驱动性能相⽐open-drain信号完整性更好。
⽀持⾼速(100MHz以上)。
协议⽀持字节长不限于8bits,可根据应⽤特点灵活选择消息字长 硬件连接简单。
缺点: 相⽐I2C多两根线。
没有寻址机制,只能靠⽚选选择不同设备。
没有从设备接收ACK,主设备对于发送成功与否不得⽽知。
典型应⽤只⽀持单主控 相⽐RS232 RS485和CAN总线,SPI传输距离短 ⼆、硬件结构 SPI总线定义两个及以上设备间的数据通信,提供时钟的设备为主设备Master,接收时钟的设备为从设备Slave; 信号定义如下: SCK :Serial Clock 串⾏时钟 MOSI:Master Ouput,Slave Input 主发从收信号 MISO:Master Input,Slave Input主收从发信号 SS/CS:Slave Select⽚选信号 电路连接如下: 单个主设备和单个从设备: 单个主设备和多个从设备: 三、寄存器类型 摩托罗拉定义的SPI寄存器包括: SPI Control Register 1 控制寄存器1 SPI Control Register 2 控制寄存器2 SPI Baud Rate Register 波特率寄存器 SPI Status Register(SPISR) 状态寄存器(只读其余均可读可写) SPI Data Register(SPIDR)数据寄存器 通过往寄存器中写⼊不同的值,设置SPI模块的不同属性 四、SPI传输模式 SPI通信有四种模式,简单地讲就是设置SCLK时钟信号线的那种信号为有效信号 通过设置控制寄存器SPICR1中的CPOL和CPHA位,将SPI可以分成四种传输模式 时钟极性CPOL,即Clock Polarity,决定时钟空闲时状态电平。
spi总线协议

spi总线协议SPI总线是一种常用的串行通信协议,全称为Serial Peripheral Interface,即串行外围设备接口。
它由Motorola公司在20世纪80年代初提出,并在之后的几十年里得到了广泛应用。
SPI 总线协议利用硬件时序进行通信,因此传输速度较高,被广泛应用于各种嵌入式系统和通信设备中。
SPI总线协议采用一主多从的方式进行通信,其中主设备通过SCLK时钟信号控制数据传输的时序,并通过SS片选信号选择从设备进行通信。
在SPI总线中,每个从设备都有一个对应的片选信号,主设备需要选择某个从设备才能与其进行通信。
数据在传输过程中,通过MOSI主发送、从接收数据,以及MISO主接收、从发送数据,实现双向的数据传输。
SPI总线协议具有以下几个主要特点:1.简单的硬件连接:SPI总线只需要四根线连接,包括SCLK 时钟线、MOSI主发送数据线、MISO主接收数据线和SS从片选信号线。
这种简单的硬件连接使得SPI总线在成本和布线上具有一定的优势。
2.高速的数据传输:SPI总线是同步传输协议,通过时钟信号来控制数据的传输速度。
在SPI总线中,时钟信号的频率可以根据实际需要进行调整,从而实现较高的传输速度。
相比其他串行通信协议,如I2C和UART,SPI总线通常能够提供更高的数据传输速率。
3.可靠的数据传输:由于SPI总线是基于硬件时序的通信协议,所以在数据传输的过程中具有较高的可靠性。
数据传输的时序由主设备控制,从而减少了数据传输过程中产生错误的可能性。
4.灵活的工作模式:SPI总线协议支持多种工作模式,包括全双工、半双工和单工三种。
在全双工模式下,主设备和从设备可以同时进行发送和接收操作;在半双工模式下,主设备和从设备交替进行发送和接收操作;而在单工模式下,只能进行发送或接收操作。
SPI总线协议在各种嵌入式应用中被广泛应用,如存储器、显示屏控制器、传感器等。
同时,SPI总线还可以通过级联的方式连接多个从设备,从而扩展系统的功能。
(完整)spi总线协议详细说明

SPI总线原理与应用篇《电子制作》2008年9月站长原创,如需引用请注明出处大家好,通过以前的学习,我们已经对51单片机综合学习系统的使用方法及学习方式有所了解与熟悉,学会了使用IIC总线的基本知识,体会到了综合学习系统的易用性与易学性,这一期我们将一起学习SPI总线的基本原理与应用实例。
先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI 总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。
主体系统如图1所示,其配套书本教程《单片机快速入门》如图2所示。
图1 51单片机综合学习系统主机部分图片图2 51单片机综合学习系统配套书本教程——《单片机快速入门》上图是我们将要使用的51单片机综合学习系统硬件平台,如图1所示,本期实验我们用到了综合系统主机、板载的AT93C46芯片,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。
SPI总线简介SPI总线基本概念SPI ( Serial Peripheral Interface ———串行外设接口) 总线是Motorola公司推出的一种同步串行接口技术。
SPI总线系统是一种同步串行外设接口,允许MCU 与各种外围设备以串行方式进行通信、数据交换。
外围设备包括FLASHRAM、A/ D 转换器、网络控制器、MCU 等。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
其工作模式有两种:主模式和从模式。
SPI是一种允许一个主设备启动一个从设备的同步通讯的协议,从而完成数据的交换。
也就是SPI是一种规定好的通讯方式。
这种通信方式的优点是占用端口较少,一般4根就够基本通讯了(不算电源线)。
spi总线协议

spi总线协议SPI总线协议。
SPI(Serial Peripheral Interface)是一种用于在数字集成电路之间进行通信的同步串行通信协议。
它通常用于连接微控制器和外围设备,例如存储器芯片、传感器、显示器和无线模块等。
SPI总线协议具有简单、高效、灵活等特点,因此在许多嵌入式系统中得到广泛应用。
本文将对SPI总线协议的基本原理、通信方式、时序特性以及应用进行介绍。
SPI总线协议基本原理。
SPI总线由四根信号线组成,分别为时钟信号(SCLK)、主设备输出(MOSI)、主设备输入(MISO)和片选信号(SS)。
在SPI总线中,通信的主设备通过SCLK信号产生时钟脉冲,控制数据的传输。
MOSI信号用于主设备向从设备发送数据,MISO信号用于从设备向主设备发送数据。
片选信号用于选择从设备,使得主设备可以与多个从设备进行通信。
SPI总线协议通信方式。
SPI总线协议采用全双工通信方式,即主设备和从设备可以同时发送和接收数据。
通信开始时,主设备通过片选信号选择从设备,并在时钟信号的控制下,通过MOSI信号向从设备发送数据,同时从设备通过MISO信号向主设备发送数据。
通信结束后,主设备通过片选信号取消对从设备的选择,从而完成一次数据传输。
SPI总线协议时序特性。
在SPI总线协议中,数据的传输是在时钟信号的控制下进行的。
通常情况下,数据的传输是在时钟的上升沿或下降沿进行的,具体取决于SPI设备的工作模式。
此外,SPI总线协议还可以通过调整时钟信号的极性和相位来适应不同的外设要求,从而实现更灵活的通信方式。
SPI总线协议应用。
SPI总线协议在各种嵌入式系统中得到广泛应用,例如单片机、嵌入式系统、传感器网络等。
在单片机中,SPI总线协议通常用于连接外部存储器、显示器、通信模块等外围设备。
在嵌入式系统中,SPI总线协议可以用于连接各种外设,实现系统的功能扩展和升级。
在传感器网络中,SPI总线协议可以用于连接各种传感器节点,实现数据的采集和传输。
SPI通信协议详解(四)

SPI通信协议详解(四)1.SPI协议简介板卡内不同芯⽚间通讯最常⽤的三种串⾏协议:UART、I2C、SPI,之前写过串⼝协议及其FPGA实现,今天我们来介绍SPI协议,SPI是Serial Perripheral Interface的简称,是由Motorola公司推出的⼀种⾼速、全双⼯的总线协议。
与IIC类似,SPI也是采⽤主从⽅式⼯作,主机通常为FPGA、MCU或DSP等可编程控制器,从机通常为EPROM、Flash,AD/DA,⾳视频处理芯⽚等设备。
⼀般由SCLK、CS、MOSI,MISO四根线组成,有的地⽅可能是:SCK、SS、SDI、SDO等名称,都是⼀样的含义,当有多个从机存在时,通过CS来选择要控制的从机设备。
和标准SPI类似的协议,还有TI的SSP协议,区别主要在⽚选信号的时序上。
2.4线还是3线?当我们谈到SPI时,默认情况下都是指标准的4线制Motorola SPI协议,即SCLK,MOSI,MISO和CS共4根数据线,标准4线制的好处是可以实现数据的全双⼯传输。
当只有⼀个主机和⼀个从机设备时,只需要⼀个CS,多个从机需要多个CS,各数据线的介绍:SCLK,时钟信号,时钟频率即SPI速率,和SPI模式有关MOSI,主机输出,从机输⼊MISO,主机输⼊,从机输出CS,从机设备选择,低电平有效3线制SPI,根据不同的应⽤场景,主要有以下2种类型:只有3根线:SCLK,CS和DI或DO,适⽤于单⼯通讯,主机只发送或接收数据。
只有3根线:SCLK,SDIO和CS,这⾥的SDIO作为双向端⼝,适⽤于半双⼯通讯,⽐如ADI的多款ADC芯⽚都⽀持双向传输。
在使⽤FPGA操作双向端⼝时,作为输⼊时要设置为⾼阻态z。
还有标准SPI协议的升级版,Dual SPI、Quad SPI和QPI等,这些协议不在本⼩节3线/4线制讨论的范围内,⽂章后⾯会提到。
3.4种⼯作模式既然是进⾏数据传输,双⽅就要明确从机在什么时刻去采样主机发出的数据,主机在什么时刻去读取从机发来的数据。
SPI总线协议介绍

SPI总线协议介绍1.SPI总线协议介绍串行外围设备(接口)(Serial Peripheral Interface,SPI)是一种高速、全双工、同步(通信)总线,常用于(单片机)和E2PROM、FLASH、(实时时钟)、(数字信号)(处理器)等器件之间的通信,它主要是主从方式通信,通常只有一个主机和多个从机。
标准SPI协议有4根线,SCLK(必须存在),其他三条线(MOSI、MISO、CS)都可以根据实际情况进行删减。
SCLK:(时钟)(信号),由主机产生( 必须存在)MOSI:主机给从机发送指令或数据的通道MISO:主机读取从机的状态或数据的通道CS:从机片选使能信号在同一时刻,主机只能跟一个从机进行通信。
当总线上存在多个从机时,需要进行片选将从机的CS接口电平拉高或拉低。
2.SPI总线寻址模式SPI协议和(I2C)协议一样,数据是从高位到低位依次发送,SPI协议中SCLK在空闲时可以是高电平也可以是低电平。
下面以空闲时,SCLK为高电平举例。
当SCLK出现下降沿即从高电平跳到低电平时,进行数据输出;当SCLK出现上升沿即从低电平跳到高电平时,进行数据采样。
SPI总线寻址模式和I2C协议相比,SPI协议没有开始位、停止位、应答位,规则上简单很多。
SPI协议中SCLK在空闲时可以是高电平也可以是低电平,这其实反映了时钟的极性。
上图中,CPOL=1,CPHA=1 。
CPOL时钟极性:CPOL=0,SCLK空闲时状态为低电平CPOL=1,SCLK空闲时状态为高电平时钟的相位:它决定了什么时候进行数据输出,什么时候进行数据采样。
CPHA时钟相位:CPHA=0,每个周期的第一个跳变沿进行数据采样CPHA=1,每个周期的第一个跳变沿进行数据输出。
SPI总线学习

SPI总线学习1、S PI总线速度:波特率可以高达5Mbps,具体速度大小取决于SPI硬件。
例如,Xicor公司的SPI串行器件传输速度能达到5MHz;ATMEL的AT45DB021B,20 MHz Max Clock Frequency;LPC2214的SPI,最大数据位速率为输入时钟速率的1/8。
2、SPI简介:同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FLASH和显示驱动器之类的慢速外设器件通信。
SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。
通讯时,数据由MOSI 输出,MISO输入,数据在时钟的上升或下降沿由MOSI输出,在紧接着的下降或上升沿由MISO读入,这样经过8/16次时钟的改变,完成8/16位数据的传输。
在一次数据传输过程中,接口上只能有一个主机和一个从机能够通信。
并且,主机总是向从机发送一个字节数据,而从机也总是向主机发送一个字节数据。
该总线通信基于主-从配置。
它有4个信号:MOSI:主出/从入MISO:主入/从出SCK:串行时钟SS:从属选择 。
即CS(从使能信号),CS决定了唯一的与主设备通信的从设备,如 没有CS信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。
在SPI传输中,数据是同步进行发送和接收的。
数据传输的时钟基于来自主处理器的时钟脉冲,摩托罗拉没有定义任何通用SPI的时钟规范。
然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。
CPOL和CPHA的设置决定了数据取样的时钟.3、例子:LPC2214有两个SPI接口。
SPI从机选择信号是一个低有效信号,用于指示被选择参与数据传输的从机。
SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习
SPI(Serial Peripheral Interface)是一种同步的、全双工的通信总线,常用于连接微
控制器和外围设备。
SPI总线的通信协议相对简单,有四根信号线组成:SCLK(时钟
信号)、MOSI(主机输出从机输入信号)、MISO(主机输入从机输出信号)和SS (片选信号)。
SPI总线的工作方式如下:
1. 选择从机:主机通过将片选信号(SS)置低来选择要通信的从机。
通常每个从机都
有独立的片选线。
2. 时钟信号:主机通过时钟信号(SCLK)提供同步时钟给从机,控制数据传输的时钟周期。
3. 主机输出从机输入:主机将要发送给从机的数据通过主机输出从机输入信号(MOSI)发送给从机。
数据按照时钟的上升沿或下降沿传输。
4. 主机输入从机输出:从机将要发送给主机的数据通过主机输入从机输出信号(MISO)传输给主机。
数据按照时钟的上升沿或下降沿传输。
5. 数据传输顺序:数据传输是基于时钟信号的,每个时钟周期传输一个位。
主机和从
机按照特定的数据传输格式进行通信,可以是先传输最高有效位(MSB)或最低有效
位(LSB)。
6. 数据传输模式:SPI总线支持多种数据传输模式,如模式0、模式1、模式2和模式3,不同模式下时钟信号和数据传输的相位和极性不同。
7. 传输完成:主机通过将片选信号(SS)置高来结束通信。
SPI总线的优点是简单、高速、低成本,适用于连接多种外设,如传感器、存储器、显示器等。
然而,SPI总线并没有提供错误检测和纠正机制,需要通过其他方式保证数据的可靠性。
SPI总线协议介绍

SPI总线协议及SPI时序图详解SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
上升沿发送、下降沿接收、高位先发送。
上升沿到来的时候,sdo上的电平将被发送到从设备的寄存器中。
下降沿到来的时候,sdi上的电平将被接收到主设备的寄存器中。
假设主机和从机初始化就绪:并且主机的sbuff=0xaa (10101010),从机的sbuff=0x55 (01010101),下面将分步对spi的8个时钟周期的数据情况演示一遍(假设上升沿发送数据)。
---------------------------------------------------脉冲主机sbuff 从机sbuff sdi sdo---------------------------------------------------0 00-0 10101010 01010101 0 0---------------------------------------------------1 0--1 0101010x 10101011 0 11 1--0 01010100 10101011 0 1---------------------------------------------------2 0--1 1010100x 01010110 1 02 1--0 10101001 01010110 1 0---------------------------------------------------3 0--1 0101001x 10101101 0 13 1--0 01010010 10101101 0 1---------------------------------------------------4 0--1 1010010x 01011010 1 04 1--0 10100101 01011010 1 0---------------------------------------------------5 0--1 0100101x 10110101 0 15 1--0 01001010 10110101 0 1---------------------------------------------------6 0--1 1001010x 01101010 1 06 1--0 10010101 01101010 1 0---------------------------------------------------7 0--1 0010101x 11010101 0 17 1--0 00101010 11010101 0 1---------------------------------------------------8 0--1 0101010x 10101010 1 08 1--0 01010101 10101010 1 0---------------------------------------------------这样就完成了两个寄存器8位的交换,上面的0--1表示上升沿、1--0表示下降沿,sdi、 sdo相对于主机而言的。
SPI总线协议

SPI总线协议同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。
SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。
SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。
通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。
SPI通信该总线通信基于主-从配置。
它有以下4个信号:MOSI:主出/从入MISO:主入/从出SCK:串行时钟SS:从属选择芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。
在SPI传输中,数据是同步进行发送和接收的。
数据传输的时钟基于来自主处理器的时钟脉冲,摩托罗拉没有定义任何通用SPI的时钟规范。
然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。
CPOL和CPHA的设置决定了数据取样的时钟沿。
数据方向和通信速度SPI传输串行数据时首先传输最高位。
波特率可以高达5Mbps,具体速度大小取决于SPI 硬件。
例如,Xicor公司的SPI串行器件传输速度能达到5MHz。
SPI总线接口及时序SPI总线包括1根串行同步时钟信号线以及2根数据线。
SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。
SPI总线协议介绍(易懂)

SPI总线协议介绍(易懂)目录CONTENTS•SPI总线协议产生背景•SPI总线协议内容介绍•SPI总线协议总结一、SPI总线协议背景12 SPI是由摩托罗拉(Motorola)公司于1979年开发的全双工同步串行总线,是微处理控制单元(MCU)和外围设备之间进行通信的同步串行端口。
主要应用在EEPROM、Flash、实时时钟(RTC)、数模转换器(ADC)、网络控制器、MCU、数字信号处理器(DSP)以及数字信号解码器之间。
SPI,全称Serial Peripheral Interface,中文意思是串行外部设备接口,是一种全双工、高速、同步的通信总线。
SPI 总线器件可直接与各个厂家生产的多种标准外围器件直接接口,一般使用4 条线:串行时钟线SCLK、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI 和低电平有效的从机选择线CS3SPI总线术语及定义,如表(1)所示:表(1) SPI总线术语及定义二、SPI总线协议内容1<1>.SPI总线采用主从模式架构,支持多从设备应用,一般只支持单主设备;<2>.当主设备想要和某从设备进行通信时候,主设备需要先向对应从设备的片选线(CS)山发送使能信号(高电平或者低电平,按从设备而定),表示选中该从设备;<3>.时钟由主设备控制,数据在时钟脉冲下按位传输,高位在前;<4>.目前应用中的数据速率可达几Mbps。
2SPI设备之间采用全双工模式通信,是一个主机和一个或者多个从机的主从模式。
主机负责初始化帧,这个数据传输帧可以用于读与写两种操作,片选线可以从多个从机选择一个来响应主机的请求。
如图(1)、图(2)、图(3)和图(4)所示图(1)SPI连接类型首先Master产生时钟,时钟频率小于或等于Slave支持的最大频率;随后Master通过产生时钟信号(SCLK)来控制数据传输,并通过将特定Slave的芯片选择(CS)线拉低来进行通信。
硬件学习之通信协议篇-SPI总线

一、概述SPI:Serial Peripheral Interface,串行外围设备接口。
是由摩托罗拉在20世纪80年代中期开发的同步串行总线接口规范(带有时钟信号,通过时钟极性和时钟相位来控制采样,即同步传输)。
1、支持半双工、全双工通信模式。
2、没有流控制和应答机制来确认是否接收到数据(UART有校验或流控制)。
3、没有一个固定的传输速率规定,已有器件SPI输出速率达到50Mbps以上(I2C有明确规定速率)。
4、只能板内的短距离传输(RS232、RS485输出距离远)。
5、没有限制传输bit数量,常用的是8bit或9bit。
6、不需要硬件地址(I2C要地址),采用片选。
7、主从模式,一托多。
二、3线和4线模式3线SPI和4线SPI各个模式下信号定义:3线9bit I型接口信号:SCL、CS、SDA3线9bit II型接口信号:SCL、CS、SDO、SDI4线8bit I型接口信号:SCL、CS、DCX、SDA4线8bit II型接口信号:SCL、CS、DCX、SDO、SDI3线9bit2data Lane接口信号:SCL、CS、D0、D1对于3线或4线来区分,并不是信号线的数量,也不是网上说的半双工和全双工,或者数据线数量差异。
3线说的是时钟、片选、数据信号(不管是一根数据线,还是两根数据线),共三种信号。
4线说的是时钟、片选、数据信号、数据或命令控制线(确定发送的是数据还是命令),共4中信号。
三、SPI四种工作模式通过CPOL时钟极性和CPHA时钟相位的搭配来得到四种工作模式:CPOL时钟极性定义的是SCLK时钟线空闲状态时的电平CPOL=0,即SCLK=0,表示SCLK时钟信号线在空闲状态时的电平为低电平,因此有效状态为高电平。
CPOL=1,即SCLK=1,表示SCLK时钟信号线在空闲状态时的电平为高电平,因此有效状态为低电平。
CPHA时钟相位定义的是数据位相对于时钟线的时序(即相位)CPHA=0,即表示输出(out)端在上一个时钟周期的后沿改变数据,而输入(in)端在时钟周期的前沿(或不久之后)捕获数据。
SPI总线协议及SPI时序图详解

SPI总线协议及SPI时序图详解SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
上升沿发送、下降沿接收、高位先发送。
上升沿到来的时候,sdo上的电平将被发送到从设备的寄存器中。
下降沿到来的时候,sdi上的电平将被接收到主设备的寄存器中。
假设主机和从机初始化就绪:并且主机的sbuff=0xaa (10101010),从机的sbuff=0x55 (01010101),下面将分步对spi的8个时钟周期的数据情况演示一遍(假设上升沿发送数据)。
---------------------------------------------------脉冲主机sbuff 从机sbuff sdi sdo---------------------------------------------------0 00-0 10101010 01010101 0 0---------------------------------------------------1 0--1 0101010x 10101011 0 11 1--0 01010100 10101011 0 1---------------------------------------------------2 0--1 1010100x 01010110 1 02 1--0 10101001 01010110 1 0---------------------------------------------------3 0--1 0101001x 10101101 0 13 1--0 01010010 10101101 0 1---------------------------------------------------4 0--1 1010010x 01011010 1 04 1--0 10100101 01011010 1 0---------------------------------------------------5 0--1 0100101x 10110101 0 15 1--0 01001010 10110101 0 1---------------------------------------------------6 0--1 1001010x 01101010 1 06 1--0 10010101 01101010 1 0---------------------------------------------------7 0--1 0010101x 11010101 0 17 1--0 00101010 11010101 0 1---------------------------------------------------8 0--1 0101010x 10101010 1 08 1--0 01010101 10101010 1 0---------------------------------------------------这样就完成了两个寄存器8位的交换,上面的0--1表示上升沿、1--0表示下降沿,sdi、sdo相对于主机而言的。
SPI通信协议(SPI总线)学习.doc

SPI通信协议(SPI总线)学习1、什么是SPI?SPI是串行外设接口(Serial Peripheral Interface)的缩写。
是Motorola 公司推出的一种同步串行接口技术,是一种高速的,全双工,同步的通信总线。
2、SPI优点支持全双工通信通信简单数据传输速率块3、缺点没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC 总线协议比较在数据可靠性上有一定的缺陷。
4、特点1):高速、同步、全双工、非差分、总线式2):主从机通信模式5、协议通信时序详解1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。
也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。
(1)SDO/MOSI –主设备数据输出,从设备数据输入;(2)SDI/MISO –主设备数据输入,从设备数据输出;(3)SCLK –时钟信号,由主设备产生;(4)CS/SS –从设备使能信号,由主设备控制。
当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低或者是拉高。
2):需要说明的是,我们SPI通信有4种不同的模式,不同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1时钟极性CPOL是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA是用来配置数据采样是在第几个边沿:CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK 处于高电平时CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK 处于低电平时CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿例如:CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。
SPI总线学习资料

SPI总线制作人:刘洪利上海电力学院2011.5.20SPI总线R SPI总线是串行外围设备接口,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线.R SPI的通信原理很简单,它以主从方式工作,通常有一个主设备和一个或多个从设备,需要至少4根线。
R SDO–主设备数据输出,从设备数据输入R SDI–主设备数据输入,从设备数据输出R SCLK–用来为数据通信提供同步时钟信号,由主设备产生R CS–从设备使能信号,由主设备控制R SPI接口是全双工、同步、串口、单主机。
2SPI从机的内部结构l SPI从机从主机获得时钟和片选信号,因此cs和sclk都是输入信号。
l SPI接口在内部硬件实际上是个简单的移位寄存器,传输的数据为8位,在主器件产生的从器件使能信号和移位脉冲下,按位传输,高位在前,低位在后。
3SPI总线从机没有被选中,,他的数据输出端SDO将处于高R如果一个SPI从机没有被选中阻状态,从而与当前处于激活状态的隔离开。
寻址:MOSI:When master,out line;when slave,in lineMISO:When master,in line;when slave,out line4SPI 从机的内部结构-SPI 接口实际上是两个简单的移位寄存器,传输的数据为8位,在主器件产生的从器件使能信号和移位脉冲下,按位传输,高位在前,低位在后。
-上升沿发送,下降沿接收。
(有的器件是上升沿接收,下降沿发送)5D7....D0D0....D7SPI 总线R SPI 总线中在一次数据传输过程中,,接口上只能有一个主机和一个从机能够通信。
并且并且,,主机总是数据向从机发送一个字节数据,,而从机也总是向主机发送一个数据字节数据。
R 在SPI 传输中,数据是同步进行发送和接收的。
R 数据传输的时钟基于来自主处理器的时钟脉冲,6R 当SPI 接口上有多个SPI 接口的单片机时,应区别其主从地位,在某一时刻只能由一个单片机为主器件。
spi

SPI总线简介SPI总线基本概念SPI ( Serial Peripheral Interface ———串行外设接口) 总线是Motorola公司推出的一种同步串行接口技术。
SPI总线系统是一种同步串行外设接口,允许MCU 与各种外围设备以串行方式进行通信、数据交换。
外围设备包括FLASHRAM、A/ D 转换器、网络控制器、MCU 等。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
其工作模式有两种:主模式和从模式。
SPI是一种允许一个主设备启动一个从设备的同步通讯的协议,从而完成数据的交换。
也就是SPI是一种规定好的通讯方式。
这种通信方式的优点是占用端口较少,一般4根就够基本通讯了(不算电源线)。
同时传输速度也很高。
一般来说要求主设备要有SPI控制器(也可用模拟方式),就可以与基于SPI的芯片通讯了。
SPI总线系统结构SPI 系统可直接与各个厂家生产的多种标准外围器件直接接口,一般使用4 条线:串行时钟线(SCK) 、主机输入/ 从机输出数据线MISO(DO)、主机输出/ 从机输入数据线MOSI (DI)和低电平有效的从机选择线CS。
MISO和MOSI用于串行接收和发送数据,先为MSB(高位),后为LSB(低位)。
在SPI设置为主机方式时,MISO是主机数据输入给,MOSI 是主机数据输出线。
SCK用于提供时钟脉冲将数据一位位地传送。
SPI总线器件间传送数据框图如图3所示:图3 SPI总线器件间传送数据框图SPI总线的接口特性利用SPI总线可在软件的控制下构成各种系统。
如1个主MCU和几个从MCU、几个从MCU相互连接构成多主机系统(分布式系统)、1个主MCU和1个或几个从I/O设备所构成的各种系统等。
在大多数应用场合,可使用1个MCU作为主控机来控制数据,并向1个或几个从外围器件传送该数据。
spi总线协议

spi总线协议SPI(Serial Peripheral Interface)总线协议是一种用于在多个芯片之间进行通信的串行通信协议。
它是针对短距离通信,高速数据传输和简单控制信号交互而设计的。
SPI总线协议广泛应用于嵌入式系统中,特别是在连接存储器、传感器、外设以及其他硬件设备时。
SPI总线协议的设计旨在提供一种灵活而高效的通信解决方案。
它使用一组由主设备和从设备共享的信号线,并采用全双工的通信方式。
在SPI总线上,数据传输是以位为单位进行的,主设备通过时钟信号来同步从设备的响应。
SPI总线协议通常使用四根线来传输数据:时钟线(SCK),主设备输出信号(MOSI),主设备输入信号(MISO)以及片选信号(SS)。
SPI总线协议的工作方式如下:首先,主设备通过片选信号选择要与其通信的从设备,在从设备中,可以有多个设备共享同一根片选信号。
然后,主设备通过时钟线同步数据传输的速度,并在MOSI线上发送数据。
同时,从设备通过MISO线将响应数据发送回主设备。
通过这种方式,主设备和从设备之间实现了双向的、同步的数据传输。
SPI总线协议的特点之一是其高速性能。
由于SPI总线使用并行传输方式,数据可以在一个时钟周期中同时传输多个位,从而实现了高速的数据传输。
另外,SPI总线还具有较低的延迟和较低的功耗,使其成为一种适用于高性能嵌入式系统的通信解决方案。
在使用SPI总线协议进行通信时,需要对从设备进行配置。
从设备的配置通常包括设置传输模式、时钟频率和数据位顺序等参数。
SPI总线协议支持多种传输模式,如主设备模式和从设备模式等。
主设备模式下,主设备发出时钟信号并控制通信过程;从设备模式下,从设备接收时钟信号并进行响应。
时钟频率的选择取决于设备之间的距离和通信需求,较短的距离和较高的速率可以实现更高的传输速度。
数据位顺序指定了数据的传输顺序,可以是最高有效位(MSB)优先或最低有效位(LSB)优先。
尽管SPI总线协议有许多优点,但它也存在一些限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPI通信协议(SPI总线)学习1、什么是SPI?SPI是串行外设接口(Serial Peripheral Interface)的缩写。
是Motorola 公司推出的一种同步串行接口技术,是一种高速的,全双工,同步的通信总线。
2、SPI优点支持全双工通信通信简单数据传输速率块3、缺点没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。
4、特点1):高速、同步、全双工、非差分、总线式2):主从机通信模式5、协议通信时序详解1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。
也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。
(1)SDO/MOSI – 主设备数据输出,从设备数据输入;(2)SDI/MISO – 主设备数据输入,从设备数据输出;(3)SCLK – 时钟信号,由主设备产生;(4)CS/SS – 从设备使能信号,由主设备控制。
当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低或者是拉高。
2):需要说明的是,我们SPI通信有4种不同的模式,不同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1时钟极性CPOL是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA 是用来配置数据采样是在第几个边沿:CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿例如:CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。
CPOL=0,CPHA=1:此时空闲态时,SCLK处于低电平,数据发送是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在下降沿,数据发送是在上升沿。
CPOL=1,CPHA=0:此时空闲态时,SCLK处于高电平,数据采集是在第1个边沿,也就是SCLK由高电平到低电平的跳变,所以数据采集是在下降沿,数据发送是在上升沿。
CPOL=1,CPHA=1:此时空闲态时,SCLK处于高电平,数据发送是在第1个边沿,也就是SCLK由高电平到低电平的跳变,所以数据采集是在上升沿,数据发送是在下降沿。
需要注意的是:我们的主设备能够控制时钟,因为我们的SPI通信并不像UART或者IIC通信那样有专门的通信周期,有专门的通信起始信号,有专门的通信结束信号;所以我们的SPI协议能够通过控制时钟信号线,当没有数据交流的时候我们的时钟线要么是保持高电平要么是保持低电平。
6、内部工作机制SSPSR 是SPI 设备内部的移位寄存器(Shift Register). 它的主要作用是根据SPI时钟信号状态, 往SSPBUF 里移入或者移出数据, 每次移动的数据大小由Bus-Width 以及Channel-Width 所决定.最后,再附上用IO口来模拟的四种SPI模式程序,仅作参考理解用,还要根据实际情况改写,如下://表示相关引脚高低电平,要根据实际引脚修改。
SSEL_D(0) SSEL_D(1) //片选SCK_D(0) SCK_D(1) //时钟信号MOSI_D(0) MOSI_D(1) //SDOMISO_I(0) MISO_I(1) //SDI#define _CPOL 1 //时钟极性#define _CPHA 0 //时钟相位//延时子程序void delay(){unsigned char m,n;for(n=0;n<5;n++);for(m=0;m<100;m++);}/**********************************************模式零写数据***********************************************/ #if _CPOL==0&&_CPHA==0 //MODE 0 0 void SPI_Send_Dat(unsigned char dat){unsigned char n;for(n=0;n<8;n++){SCK_D(0);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(1);}SCK_D(0);}/*********************************************模式零读数据*********************************************/ unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;for(n=0;n<8;n++){SCK_D(0);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(1);}SCK_D(0);return dat;}#endif/*********************************************模式一写数据*********************************************/ #if _CPOL==0&&_CPHA==1 //MODE 0 1 void SPI_Send_Dat(unsigned char dat){unsigned char n;SCK_D(0);for(n=0;n<8;n++){SCK_D(1);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(0);}}/*********************************************模式一读数据*********************************************/ unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;for(n=0;n<8;n++){SCK_D(1);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(0);}SCK_D(0);return dat;}#endif/**********************************************模式二写数据***********************************************/ #if _CPOL==1&&_CPHA==0 //MODE 1 0 void SPI_Send_Dat(unsigned char dat){unsigned char n;for(n=0;n<8;n++){SCK_D(1);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(0);}SCK_D(1);}/*********************************************模式二读数据*********************************************/ unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;for(n=0;n<8;n++){SCK_D(1);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(0);}SCK_D(1);return dat;}#endif/**********************************************模式三写数据***********************************************/ #if _CPOL==1&&_CPHA==1 //MODE 1 1 void SPI_Send_Dat(unsigned char dat){unsigned char n;SCK_D(1);for(n=0;n<8;n++){SCK_D(0);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(1);}/************************************模式三读数据************************************/ unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;SCK_D(0);for(n=0;n<8;n++){ SCK_D(0);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(1);}SCK_D(1);return dat;}#endifvoid main(){SPI_Init();DDRB = 0XFF;//#if _CPOL//SCK_D(0);//#endifwhile(1){//SSEL_D(0);//SPI_Send_Dat(0x01);//SPI_Send_Dat(0x31);//SSEL_D(1);SSEL_D(0);SPI_Send_Dat(0x81);PORTB =SPI_Receiver_Dat();SSEL_D(1);//delay();}。