勾股定理教学设计案例
勾股定理优秀教案
勾股定理优秀教案【篇一:探索勾股定理优秀教案】—1——2——3—1.1探索勾股定理1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒()根a.20 b. 14 c. 24 d. 30 2.在rt△abc中,斜边ab=1,则ab2+bc2+ac2=()a.2 b. 4 c. 6d. 8 3.如图,阴影部分是一个正方形,则此正方形的面积为()a.8 b. 64 c. 16 d. 324.直角三角形的两条直角边的比为3:4,斜边长25cm,则斜边上的高为()a.10cm b. 12cm c. 15cmd. 20cm15 第3题—4—【篇二:勾股定理教学设计与反思】教学设计【篇三:《勾股定理》教学设计】《勾股定理》教学设计创新整合点本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
教材分析这节课是苏科版《义务教育课程标准实验教科书》八年级(下)教材《勾股定理》第一节的内容。
勾股定理的内容是全章内容的重点、难点,它的地位作用体现在以下三个方面:1、勾股定理是学习锐角三角函数与解直角三角形的基础,学生只有正确掌握了勾股定理的内容,才能熟练地运用它去解决生活中的测量问题。
2、本章“勾股定理”的内容在本册书中占有十分重要的地位,它是学习斜三角形、三角函数的基础,在知识结构上它起到了承上启下的作用,为学生的终生学习奠定良好的基础。
3、解直角三角形内容在航空、航海、工程建筑、机械制造、工农业生产等各个方面都有着广泛的应用,并与生活息息相关。
学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
勾股定理案例-完整版公开课教学设计
勾股定理我们本节课要学的内容是勾股定理,通过这节课的学习,要求我们掌握勾股定理的证明,并且能初步运用勾股定理解决问题。
本节课分为以下几个环节,创设情景,引入新课、合作交流,探究新知、动手操作,证明结论、巩固训练,反馈矫正、师生小结,共同提升、自主检测,巩固提升、课后拓展,布置作业。
(一)下面开始新课,大家可以看到这样一个问题:某楼房三楼失火,消防员赶来救火,了解到每层楼高3米,消防员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防员能否进入三楼灭火画出图形后,指出需要解决的问题:已知直角三角形的两边,怎样求第三边通过本节的学习我们可以解决这个问题(二)活动一早在2500年前,古希腊数学家毕达哥拉斯从朋友家的地板砖铺”成的地面上找到了灵感,并且对此展开研究,下面我们也来重温数学家的发现之路,探究这个“饭局中诞生的定理。
”●探究:等腰直角三角形三边的关系思考:1)你能发现图中的三个正方形的面积有什么联系吗2)你能用直角三角形的边长表示正方形的面积吗3)你能发现图中的直角三角形三边长度之间存在什么关系吗初步猜想:在等腰直角三角形中,两直角边的平方和等于斜边的平方。
进一步猜想: 在直角三角形中,两直角边的平方和等于斜边的平方。
以上仅仅是我们的猜想,这个命题如何来进行证明呢(三)活动二探究:一般直角三角形三边之间的关系是否也是如此1.图形A的面积= ,图形B的面积=交流:图形C的面积如何求出2.你能用直角三角形的边长表示正方形的面积吗3.你能发现图中的直角三角形三边长度之间存在什么关系吗四我国古代人民早在几千万年前就发现和运用勾股定理,在已有的文献记载中,最早给出证明的是三国时期的吴国数学家赵爽在给出勾股定理的证明。
大家利用手中4个全等直角三角形进行拼图。
✓赵爽“勾股圆方图”大正方形的面积可以表示为c2也可以表示为4*1/2abb-a2,于是可得:c2=4*1/2abb-a2整理得:a2b2=c2➢得到勾股定理在直角三角形中,两直角边的平方和等于斜边的平方。
勾股定理的应用教学设计5篇
勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
勾股定理教案(表格式)
勾股定理教案(表格式)教学目标:1. 了解勾股定理的定义及其在几何学中的应用。
2. 学会使用勾股定理计算直角三角形的长度。
3. 培养学生的观察、分析和解决问题的能力。
教学重点:1. 勾股定理的定义及应用。
2. 学会使用勾股定理计算直角三角形的长度。
教学难点:1. 理解并应用勾股定理解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 直角三角形模型或图片。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍勾股定理的背景和重要性。
2. 展示直角三角形模型或图片,引导学生观察并提问:你们能发现什么规律吗?二、探索勾股定理(15分钟)1. 引导学生通过观察和实验,发现直角三角形两条直角边的平方和等于斜边的平方。
2. 学生分组讨论,总结出勾股定理的表达式:a^2 + b^2 = c^2。
三、验证勾股定理(15分钟)1. 学生使用三角板或直角三角形模型,进行实际测量和计算,验证勾股定理。
2. 学生展示验证结果,教师点评并总结。
四、应用勾股定理(15分钟)1. 教师提出实际问题,引导学生运用勾股定理解决问题。
2. 学生分组讨论并解答问题,展示解题过程和结果。
五、总结与评价(5分钟)1. 教师引导学生总结本节课的学习内容,强调勾股定理的重要性和应用。
2. 学生评价自己的学习成果,提出疑问和困惑。
教学延伸:1. 引导学生进一步探究勾股定理的证明方法。
2. 布置课后作业,巩固勾股定理的应用。
教学反思:本节课通过引导学生观察、实验、讨论和应用,让学生深入了解勾股定理的定义和应用。
在教学过程中,注意关注学生的学习情况,及时解答疑问,帮助学生克服学习难点。
通过实际问题的解决,培养学生的观察、分析和解决问题的能力。
总体来说,本节课达到了预期的教学目标。
六、实践练习(15分钟)1. 教师提供一系列有关勾股定理的练习题,让学生独立完成。
2. 学生展示解题过程和结果,教师点评并给予反馈。
七、拓展活动(15分钟)1. 学生分组,每组设计一个关于勾股定理的有趣活动,如小游戏、演示实验等。
《勾股定理》教学案例
《勾股定理》教学案例一、研究缘由《勾股定理》在八年级教材下册,这部分内容详细介绍了勾股定理的相关知识与探索过程,包含了大量应用习题,学生需要巧妙运用列式变形等方法验证勾股定理内容。
教师需要做到数形结合,发展学生的形象思维。
勾股定理属于基础性知识,在中考几何证明题中运用广泛,只有学生熟练掌握,才能挖掘出题目当中的隐含信息,为此,教师需要对勾股定理的教学方法进行研究,提高学生知识迁移能力。
二、教学实践初中阶段的学生已经具有了一定的数学基础,对三角形的相关性质、面积、周长等概念比较熟悉,能够完成计算等任务。
在本节课的教学中,教师可以引导学生开展自主探究,让学生分析勾股定理的产生过程,从多个角度研究勾股定理。
【教学片段一】运用传统数学经典,导入教学内容师:在《周髀算经》中,有这样一段话,“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五……”同学们知道这段话当中所蕴含的数学定理吗?生:勾股定理。
师:非常聪明,同学们能够抓住这段话的关键字,知道描述的是勾股定理,也就是我们今天要学习的内容。
师:在2500多年前,毕达哥拉斯就从地板砖上发现了一些三角形的规律,现在大家打开课本,看看能够发现什么奥秘呢?师:大家看课本中的地板砖示意图,其中为我们描绘了大正方形、小正方形,大家可以拿出笔算一算,能发现什么?生:两个小正方形面积相加,可以得到大正方形的面积。
师:正方形的面积是边的平方,所以等腰直角三角形的三边关系是怎样的呢?生:两条直角边的平方和等于斜边的平方。
师:非常好,说出了老师想要听的答案。
【分析思考】教师运用我国传统的数学名著引入新知识,能够有效调动学生学习兴趣,激发学生数学文化素养,培养学生热爱祖国、传承传统文化的意识。
在勾股定理的探索过程中,教师从课本中的方格图形入手,引导学生自主探究,让学生通过计算、变式等方法,从面积关系转移到边长关系,增强对勾股定理的理解。
【教学片段二】开展小组合作探究,完成知识迁移师:现在教师用多媒体课件呈现了普通直角三角形,用不同颜色呈现了相应的正方形,现在大家分小组探究,看刚才得出的结论能否应用在这些直角三角形当中。
勾股定理的教学设计(热门14篇)
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
八年级数学上册《勾股定理》教案、教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。
勾股定理教学设计(优秀3篇)
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
八年级数学下册《勾股定理》教案、教学设计
3.精讲精练,突破难点
(1)教师针对勾股定理的证明方法进行详细讲解,引导学生理解并掌握。
(2)设计具有层次性的课堂练习,让学生在实际操作中巩固勾股定理的应用。
(3)针对学生在练习中遇到的问题,教师进行个别辅导,帮助他们突破难点。
2.各小组选取一位代表进行汇报,分享他们的讨论成果和心得体会。
3.组织学生互相提问、解答,共同探讨勾股定理的证明方法和应用技巧。
4.引导学生思考勾股定理在生活中的具体应用,鼓励他们举例说明。
5.对各小组的表现进行评价,鼓励积极参与、合作交流的学生。
(四)课堂练习,500字
在课堂练习环节,我会设计以下练习题:
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及提高他们的数学思维能力,我设计了以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,要求学生通过计算给定直角三角形的斜边长度,加强对勾股定理的直接应用。
2.实践应用题:选择一道生活中的实际问题,如测量学校旗杆的高度、计算三角形广告牌的面积等,运用勾股定理解决问题,并撰写解题报告。此题旨在培养学生将数学知识应用于实际情境的能力。
1.直角三角形的两条直角边和斜边之间有什么关系?
2.在直角三角形中,是否有一个规律可以计算斜边的长度?
3.你听说过勾股定理吗?它是什么意思?
(二)讲授新知,500字
在讲授新知环节,我会按照以下步骤进行:
1.回顾直角三角形的基本概念和性质,如直角、斜边、直角边等。
2.引导学生观察直角三角形中斜边与直角边之间的关系,发现斜边的平方等于两条直角边平方和的规律。
(2)引导学生进行自我反思,总结学习经验,提高自主学习能力。
勾股定理教案范本 勾股定理教案教学方法优秀6篇
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
《勾股定理》教学设计-优秀教案
利用传统文化引入课题,激发学生再创数学的愿望
环节三:
教的活动3
练习:如图,△ABC中,∠C=90°,CD⊥AB于D,AC=9,BC=12,
求:(1)AB的长
(2)△ABC的面积
(3)CD的长。
学的活动3
课堂练习本上完成
活动意图说明
巩固知识点
7.板书设计
3.1勾股定理(1)
8.作业与拓展学习设计
完成作业纸
9.特色学习资源分析、技术手段应用说明
无
1.教学内容分析
本节课是苏教版第三章3.1勾股定理第一课时,是在学生学习了全等三角形等知识之后。
2.学习者分析
八年级学生正处于思维能力和认识活动最活跃的时期,要抓住这种特点,一方面运用直观生动的形象,引发它们的兴趣,另一方面要发挥学生的主动性,让他们动口动手,鼓励它们参与课堂
3.学习目标确定
1.经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想。
3.计算以AB为一边的正方形
的面积你用的什么方法?
学生活动1
计算面积
活动意图说明:
引导学生把不能利用网格直接计算面积的图形转化为直接计算面积的图形,让学生三个正方形面积的关系
2.两直角边a、b与斜边c之间的关系?
学生活动2
证明
活动意图说明
引导学生把将正方形的面积与直角三角形的边长建立联系
3.体会通过合情推理探索数学结论
3.单元(或主题)整体教学思路(教学结构图)
3.1勾股定理2课时
3.2勾股定理的逆定理1课时
3.3勾股定理的简单运用1课时
小结与思考1课时
第1课时教学设计(其他课时同)
课题
勾股定理(1)
八年级数学《勾股定理》教案8篇
八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。
《勾股定理》教学案例及反思
《勾股定理》教学案例及反思《《勾股定理》教学案例及反思》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【教学目标】一、知识目标1.了解勾股定理的历史背景,体会勾股定理的探索过程.2.掌握直角三角形中的三边关系和三角之间的关系。
二、数学思考在勾股定理的探索过程中,发现合理推理能力.体会数形结合的思想.三、解决问题1.通过探究勾股定理(正方形方格中)的过程,体验数学思维的严谨性。
2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。
四、情感态度目标1.学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。
2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探究精神。
【重点难点】重点:探索和证明勾股定理。
难点:应用勾股定理时斜边的平方等于两直角边的平方和。
疑点:灵活运用勾股定理。
【设计思路】本课时教学强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力。
让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。
【教学流程安排】活动一:了解历史,探索勾股定理活动二:拼图验证并证明勾股定理活动三:例题讲解,:巩固练习,活动四:反思小结,布置作业活动内容及目的:通过多勾股定理的发现,(国外、国内)了解历史,激发学生对勾股定理的探索兴趣。
观察、分析方格图,得到指教三角形的性质——勾股定理,发展学生分析问题的能力。
通过拼图验证勾股定理,体会数学的严谨性,培养学生的数形结合思想,激发探究精神,回顾、反思、交流。
布置作业,巩固、发展提高。
【教学过程设计】【活动一】(一)问题与情景1、你听说过“勾股定理”吗?(1)勾股定理古希腊数学家毕达哥拉斯发现的,西方国家称勾股定理为“毕达哥拉斯”定理(2)我国著名的《算经十书》最早的一部《周髀算经》。
勾股定理优秀教学设计模板(精选11篇)
勾股定理优秀教学设计模板(精选11篇)勾股定理优秀教学设计模板(精选11篇)作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
我们应该怎么写教学设计呢?以下是小编精心整理的勾股定理优秀教学设计模板,欢迎阅读与收藏。
勾股定理优秀教学设计篇1一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。
它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
勾股定理教案(精选3篇)
勾股定理教案(精选3篇)勾股定理教案(精选3篇)作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
怎样写教案才更能起到其作用呢?以下是大熊猫壹号书店整理的勾股定理教案(精选3篇),仅供参考,大家一起来看看吧。
勾股定理教案1学习目标1、通过拼图,用面积的方法说明勾股定理的正确性。
2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。
重点难点或学习建议学习重点:用面积的方法说明勾股定理的正确。
学习难点:勾股定理的应用。
学习过程教师二次备课栏自学准备与知识导学:这是1955年希腊为纪念一位数学家曾经发行的邮票。
邮票上的图案是根据一个著名的数学定理设计的。
学习交流与问题研讨:1、探索问题:分别以图中的直角三角形三边为边向三角形外作正方形,小方格的面积看做1,求这三个正方形的面积?S正方形BCED=S正方形ACFG=S正方形ABHI=发现:2、实验在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。
请完成下表:S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系1121454162091625发现:如何用直角三角形的三边长来表示这个结论?这个结论就是我们今天要学习的勾股定理:如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾练习检测与拓展延伸:练习1、求下列直角三角形中未知边的长练习2、下列各图中所示的线段的长度或正方形的面积为多少。
(注:下列各图中的三角形均为直角三角形)例1、如图,在四边形中,∠,∠,,求。
检测:1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。
人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例
4.总结归纳:教师组织学生进行总结,让学生分享自己在学习勾股定理过程中的收获和感悟。通过总结归纳,教师帮助学生巩固所学知识,构建知识体系,提高学生的知识运用能力。
2.教师设计具体情境,如测量未知边长的直角三角形,让学生面临实际问题,引出勾股定理的学习需求。
3.教师利用多媒体课件,展示勾股定理的动态演示,帮助学生直观理解勾股定理的含义和应用。
(二)讲授新知
1.教师引导学生从特殊到一般,思考直角三角形边长之间的关系,引导学生发现勾股定理的规律。
2.教师给出勾股定理的定义,解释勾股定理的表达式,并通过几何图形的演示,帮助学生理解勾股定理的含义。
(三)小组合作
1.教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。
2.教师设计合作任务,如共同制作勾股定理的演示道具,让学生在实践中深化对勾股定理的理解。
3.教师组织小组竞赛,激发学生的竞争意识和团队合作精神,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如在学习勾股定理的过程中遇到了哪些困难,如何克服等。
2.学生通过教师引导,运用数学归纳法证明勾股定理,培养逻辑思维与推理能力。
3.学生通过解决实际问题,运用勾股定理,提高问题解决能力,培养创新实践能力。
(三)情感态度与价值观
1.学生感受数学文化的魅力,了解勾股定理的历史背景,提高对数学学科的兴趣。
2.学生在探究过程中,培养克服困难、勇于探索的精神,增强自信心。
五、案例亮点
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
(三)学生小组讨论
1.教师给出具体的合作任务,如共同探究勾股定理的证明方法,分享解题心得等。
2.学生分组进行讨论,相互交流,共同解决问题。
3.教师巡回指导,关注学生的个体差异,给予有针对性的帮助。
(四)总结归纳
1.教师引导学生对所学内容进行总结,如勾股定理的定义、证明方法及其应用等。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
一、案例背景
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用,旨在让学生通过探究、实践,掌握勾股定理在实际问题中的应用。本节内容与日常生活紧密相连,旨在培养学生运用数学知识解决实际问题的能力。
本节课的内容包括:理解勾股定理的应用场景,如直角三角形、矩形、正方形等;学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个四边形是否为矩形等;培养学生的合作交流能力,通过小组讨论、分享解题方法,提高学生对勾股定理应用的掌握程度。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的实例引入,如测量房屋面积、计算登机桥的长度等,让学生感受到勾股定理的实际应用。
2.媒体素材:运用多媒体课件、视频等素材,展示勾股定理的历史背景、发现过程,让学生深入了解勾股定理的来历。
3.问题情境:设计一些具有启发性的问题,如“为什么勾股定理适用于所有直角三角形?”“如何判断一个四边形是否为矩形?”等,激发学生的思考兴趣。
4.教师在小组合作过程中进行巡视指导,关注学生的个体差异,给予有针对性的帮助。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,如“在学习勾股定理的过程中,你遇到了哪些困难?是如何克服的?”“你在解决问题时采用了哪些方法?效果如何?”等。
17.1 勾股定理(第三课时)教案2022-2023学年人教版八年级下册数学
17.1 勾股定理(第三课时)教案教学目标•理解勾股定理的概念和应用•掌握使用勾股定理求解直角三角形的边长问题•运用勾股定理解决实际问题教学重点•勾股定理的概念和应用•使用勾股定理求解直角三角形的边长问题教学难点•运用勾股定理解决实际问题教学准备•教材:人教版八年级下册数学教材•教具:直角三角形剪纸、直尺、铅笔、橡皮、教学课件教学过程1. 导入与复习(5分钟)•进入课堂后,先与学生复习上一节课所学内容,引导学生回忆勾股定理的概念和公式。
2. 引入新知(10分钟)•引入勾股定理的第三种形式:勾股定理可以用来求解直角三角形的边长问题。
•示范一个求解直角三角形边长的示例,引导学生理解勾股定理在解决实际问题中的应用。
3. 案例演示(15分钟)•准备几个直角三角形剪纸模型,通过剪纸模型演示如何使用勾股定理求解直角三角形的边长问题。
•指导学生跟随演示一起操作,逐步掌握勾股定理的具体应用方法。
4. 讲解与练习(20分钟)•讲解勾股定理的证明过程,让学生理解其数学原理。
•通过典型的练习题进行讲解和解答,帮助学生巩固勾股定理的运用。
5. 拓展应用(15分钟)•转化思维,通过一些实际问题的应用让学生运用勾股定理解决问题。
•引导学生理解勾股定理在实际生活中的应用价值。
6. 总结与展望(5分钟)•进行本节课的总结,重点回顾勾股定理的核心内容和应用方法。
•展望下节课的内容,激发学生对数学的兴趣。
课堂作业1.完成课堂上的练习题。
2.查阅相关资料,了解勾股定理的发展历程及其在工程和科学领域的应用。
教学反思本节课通过剪纸模型、演示、讲解与练习、拓展应用等多种教学方法,从不同角度引导学生理解勾股定理的概念和应用。
通过实际问题的讨论与解答,培养了学生的数学思维和动手能力。
考虑到学生的不同掌握程度,本节课的教学设计充分考虑了巩固与拓展的内容,使学生在学习勾股定理的同时得到了实际运用的训练,提高了他们的学习兴趣和学习效果。
下节课将继续巩固勾股定理的应用,并与其他数学知识相结合,提升学生的数学综合能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理教学设计
教学过程设计
问题与情景师生行为设计意图
【活动1】
展示2002年在北京早开的第24届国际数学家大会的会徽图案。
(1)你见过这个图案吗?
(2)你听说过:“勾股定理”吗?
教师出示图片。
学生观察图片发表见解。
教师做补充说明:
这个图案是我国汉代数学家
赵爽在证明勾股定理时用到的,
被称为“赵爽弦图”。
在本次活动中,教师应重点
注重:
(1)学生对“赵爽弦图”及
勾股定理的历史是否感兴趣
(2)学生对勾股定理的了解
水准。
从现实生活中提出
“赵爽弦图”,为学生能
够积极主动地投入到探
索活动创设情境,激发学
生学习热情。
同时为探索
勾股定理提供背景资料。
【活动2】
毕达哥拉斯是古代希腊著名的数学家。
相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
(1)现在也请你观察一下,你有什么发现?
(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
(3)你有新的结论吗?
教师展示图片并提出问题。
学生观察图片并分组交流。
教师引导学生总结:等腰直
角三角形的两条直角边平方和等
于斜边的平方。
在独立探究的基础上,学生
分组交流。
教师参与小组活动,指导、
倾听学生交流。
针对不同理解水
平的学生,引导其用不同的方法
得出大正方形的面积。
在本次活动中,教师应重点
注重:
(1)给学生留出充分的时间
思考和交流,鼓励学生大胆说出
自己的看法;
(2)学生能否准确挖掘出图
形中的隐含条件,计算各个正方
形的面积;
(3)学生能否有不同种方法
问题是思维的起点,
通过问题激发学生好奇、
探究和主动学习的欲望。
渗透从一般到特殊
的数学思想。
为学生提供
参与数学活动的时间和
空间,发挥学生的主体作
用;培养学生的类比、迁
移水平及探索问题的水
平,使学生在相互欣赏、
争辩、互助中得到提升。
鼓励学生勇于面对
数学活动中的困难,尝试
从不同角度寻求解决问
题的有效方法,并通过对
方法的反思,获得解决问
题的经验。
让学生在轻松的氛
围中积极参与对数学问
题的讨论,敢于发表自己
的观点,并尊重与理解他
人的见解,能从交流中获
益。