九年级数学下册4.3用频率估计概率教案(新版)湘教版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 用频率估计概率

1.理解试验次数较大时试验频率趋于稳定这一规律;(重点)

2.结合具体情境掌握如何用频率估计概率;(重点)

3.通过概率计算进一步比较概率与频率之间的关系.

一、情境导入

养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?

二、合作探究

探究点:用频率估计概率 【类型一】 频率的稳定性 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是____________________.

解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是接近1

6.

方法总结:等可能事件的概率是确定的,但某一事件出现的频率是随机的,在实验次数较少的情况下,事件出现的频率都只是可能的情况,不是确定的.

变式训练:见《学练优》本课时练习“课堂达标训练”第6题

【类型二】 利用等可能事件的概率求事件可能出现的频率

掷一枚质地均匀的硬币10次,下

列说法正确的是( )

A .可能有5次正面朝上

B .必有5次正面朝上

C .掷2次必有1次正面朝上

D .不可能10次正面朝上

解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确.故选A.

方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.

变式训练:见《学练优》本课时练习“课堂达标训练”第3题

【类型三】 利用频率估计非等可能事件的概率

某批次的零件质量检查结果表: 抽检 个数

80 100 200 300 400 500 800 1000 优等品

个数 60 83 154 246 312 405 634 804 优等品 频率

(1)计算并填写表中优等品的频率;

(2)估计从该批次零件中任取一个零件是优等品的概率.

解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.

解:(1)填表如下: 抽检

个数 80 100 200 300 400 500

800 1000 优等品 个数 60 83 154 246 312 405 634 804 优等品

频率

0.75 0.83 0.77 0.82 0.78 0.81 0.7925 0.804

(2)从该批次零件中任取一个零件

是优等品的概率为0.8.

变式训练:见《学练优》本课时练习“课堂达标训练”第5题

【类型四】 利用频率估计概率进行计算

在一个透明的布袋中,红色、黑

色、白色的玻璃球共有80个,它们除颜色

外其他完全相同,小李通过多次摸球试验

后,发现其中摸到红色球、黑色球的频率稳

定在15%和45%,则口袋中白色球的数目很

可能是________个.

解析:∵摸到红色球、黑色球的频率分

别为15%和45%,∴摸到白色球的频率=1

-15%-45%=40%,∴口袋中白色球的数目很可能为80×40%=32(个).故答案为32.

方法总结:在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.解决此类问题的关键是明确摸到各色球的频数和为1,再由频率等于所求情况数与总情况数之比得出结果. 变式训练:见《学练优》本课时练习“课堂达标训练”第7题 三、板书设计

教学过程中,强调频率与概率的联系与区别.使学生会用频率估计概率解决实际问题.

相关文档
最新文档