大学物理 刚体运动学
大学物理第四章刚体转动
进动和章动在自然界中实例
陀螺仪
地球极移
陀螺仪的工作原理即为进动现象。当 陀螺仪受到外力矩作用时,其自转轴 将绕某固定点作进动,通过测量进动 的角速度可以得知外力矩的大小和方 向。
地球极移是指地球自转轴在地球表面 上的移动现象,其产生原因与章动现 象类似。地球极移的周期约为18.6年 ,且极移的幅度会受到地球内部和外 部因素的影响。
天体运动
许多天体的运动都涉及到进动和章动 现象。例如,月球绕地球运动时,其 自转轴会发生进动,导致月球表面的 某些特征(如月海)在地球上观察时 会发生周期性的变化。同时,行星绕 太阳运动时也会发生章动现象,导致 行星的自转轴在空间中的指向发生变 化。
感谢观看
THANKS
02
刚体定轴转动动力学
转动惯量定义及计算
转动惯量定义
刚体绕定轴转动时,其惯性大小的量度称为转动惯量,用字母$J$表示。它是一个与刚体质量分布和转轴位置有 关的物理量。
转动惯量计算
对于形状规则的均质刚体,可以直接套用公式计算其转动惯量;对于形状不规则的刚体,则需要采用间接方法, 如分割法、填补法等,将其转化为规则形状进行计算。
刚体性质
刚体是一个理想模型,它在力的作用 下,只会发生平动和转动,不会发生 形变。
转动运动描述方式
01
02
03
定轴转动
平面平行运动
ห้องสมุดไป่ตู้
定点转动
物体绕一固定直线(轴)作转动。
物体上各点都绕同一固定直线作 不同半径的圆周运动,同时物体 又沿该固定直线作平动。
物体绕一固定点作转动。此时物 体上各点的运动轨迹都是绕该固 定点的圆周。
非惯性系下刚体转动描述方法
欧拉角描述法
大学物理 第5章刚体定轴转动
赵 承 均
转动平面 某质点所在的圆周平面,称为转动平面。
参考线
转心 矢径
转动平面内任一过转轴的直线,如选 x 轴。
某质点所在的轨迹圆的圆心,称为转心。 某质点对其转心的位矢,称为该质点的矢径。
第一篇
力学
重 大 数 理 学 院
显然:转动刚体内所有点有相同的角量,故用角量描述刚体 的转动更方便,只需确定转动平面内任一点的角量即可。 1.角坐标— 描写刚体转动位臵的物理量。 角坐标 转动平面内刚体上任一点 P 到转轴 O 点的连线与 参考线间的夹角 。
赵 承 均
第二类问题:已知J和力矩M:求出运动情况和 b及 F 。
第三类问题:已知运动情况和力矩M,求刚体转动惯量 J 。
第一篇
力学
重 大 数 理 学 院
第一类问题:已知运动情况和 J ,确定运动学和动力学的联 系 例 :长为 l,质量为 m 的细杆,初始时的角速 度为 ωo ,由于细杆与 桌面的摩擦,经过时间 t 后杆静止,求摩擦力 矩 Mf 。
Fi cos i Fi cos i mi ain mi ri 2 法向:
e i
第一篇
力学
重 大 数 理 学 院
由于法向力的作用线穿过转轴,其力矩为零。可在切向 方程两边乘以 ri ,得到:
Fi e ri sin i Fi i r i sin i mi ri 2
4.角加速度— 描写角速度变化快慢和方向的物理量。 ⑴ 平均角加速度 t
即:刚体的角速度变化与发生变化所用的时间之比。
赵 承 均
⑵ 角加速度 ①用平均角加速度代替变化的角加速度; ②令 t 0 取极限;
d d lim 2 t 0 t dt dt
大学物理第四章 刚体的转动部分的习题及答案
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
大学物理 刚体的定轴转动
⑶ t =6 ·0 s 时转过的角度为
6s
0
6s
d t 0
0(1et)dt
0 [te t]6 0 s 9 [6 ( 2 0 0) 5 (0 2 )]369rad
则 t =6 ·0 s
时电动机转过的圈数
N 587圈 2
5.2 5.4 刚体的转动定律及应用
5.2.1力对转轴的力矩
转轴
§5.1 刚体的运动的描述 §5.2 刚体定轴转动 §5.3 转动惯量的计算 §5.4 转动定律应用 §5.5 角动量守恒 §5.6 定轴转动中的功和能
5.1 刚体的运动的描述
•刚体(rigid body)
任何情况下形状和体积都不改变的物体(理想化模型)。 刚体是特殊的质点系。 刚体可以看作是由许多质点组成,每一个质点叫做 刚体的一个质元,刚体这个质点系的特点是,在外 力作用下各质元之间的相对位置保持不变。
2、刚体定轴转动的转动定律
M d(J )dL J
dt dt
刚体绕定轴转动时,它的角加速度与作用于刚体上的 合外力矩成正比,与刚体对转轴的转动惯量成反比。
刚体定轴转动的转动定律
M=J 与 F ma地位相当 m反映质点的平动惯性,J 反映刚体的转动惯性
力矩是使刚体转动状态发生改变而产生角加速度的原因。力
ri
即 F itfitΔ m iri
则刚体转动定律为
变形有 F ir tifir tiΔm iri2
M J
对所有质元求和:
F ir ti fir ti (m ir i2 ) 上式表明:
这里 FitriM i M外
刚体绕定轴转动时,刚
fitri 0 定义 JΔmiri2 叫转动惯量
体的角加速度与它所 受的合外力矩成正比.
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
大学物理习题答案03刚体运动学
⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。
若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。
(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。
(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。
(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。
[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。
(1)021 F F,=0合外F ,动量守恒。
(2)2211r F r F A =合。
21F F,但21r r时0A 外,因此E不⼀定守恒。
(3)21F F,2211d F d F M =合。
两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。
2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。
则物体 (A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) ⾓动量不变,动量不变。
(D) ⾓动量改变,动量改变。
(E)⾓动量不变,动能、动量都改变。
[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。
r 减⼩,v 增⼤。
因此p 、E k 均变化(m不变)。
3. 有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。
[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。
另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。
大学物理2-1第5章
若质量离散分布:
(质点,质点系)
J i mi ri2
J r2 dm
若质量连续分布:
dm dl
其中: d m d s
d m dV
例题补充 求质量为m,半径为R 的均匀圆环的对中心 轴的转动惯量。 解: 设线密度为λ; d m d l
J R dm
2
2R
0
R dl
2
o
R
dm
R2 2R mR2
例题5-3 求质量为m、半径为R 的均匀薄圆盘对中心轴 的转动惯量。 解: 设面密度为σ。
取半径为 r 宽为d r 的薄圆环,
R
d m d s 2 r d r
J r d m r 2 2r 2 d r
2
3 3g 2L
2)由v r得: v A L
L 3 3 gL 3 3 gL vB 2 8 2
5.2 定轴转动刚体的功和能
一、刚体的动能 当刚体绕Oz轴作定轴转动时,刚体上各质元某一瞬时 均以相同的角速度绕该轴作圆周运动。
2 2 质元mi的动能 E ki mi v i mi ( i ri )2 mi ri 2
2)取C 点为坐标原点。 在距C 点为x 处取dm 。 说明
A
A
x dm
B
L
C
x
x
xd m B
L2
L2
2 mL x 2 d x 12
JC x 2 d m
L 2 L 2
1) 刚体的转动惯量是由刚体的总质量、质量分布、 转轴的位置三个因素共同决定; 2) 同一刚体对不同转轴的转动惯量不同, 凡提到转动惯量 必须指明它是对哪个轴的。
高校大学物理第五章刚体运动学课件
解 (1)转速3000r/min和1200r/min相应的角速 度分别为
2
2π 3000 60
100π
rad/s
1
2π 1200 60
40π
rad/s
19
当t = 12s时
2 1 100π 40 π 15.7rad s2
t
12
(2)飞轮 12 s 内转过的角位移
0
0t
1 t 2
设 ct
由定义, 得 d ct
dt
d ctdt
16
t
两边积分 d c td t
0
0
由题意 在t 300s时
1 ct 2
2
18000r min1
18000 2π 600πrads-1 60
所以
c
2
t2
2 600π 3002
π rad s3 75
17
任意时刻的角速度
第5章 刚体运动学
1
第5章 刚体运动学
5.1 刚体和自由度的概念 5.2 刚体的平动 5.3 刚体绕定轴转动
2
§5.1 刚体和自由度的概念
一. 特刚殊体的质点系,形状和体积不变化 —— 理想化模型
在力作用下,组成物体的所有质点间的距离始终保持不变
二. 自由度
确定物体的位置所需要的独立坐标数 —— 物体的自由度数
s O
i=1
z
z
(x,y,z)
O
yO
y
x
i=2
i=3
x i = 3+2+1= 6
当刚体受到某些限制 ——自由度减少 3
§ 5.2 刚体的平动
1. 刚体的平动 刚体运动时,在刚体内所作的任一条直线都
大学物理刚体力学
大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。
而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。
本文将探讨大学物理中的刚体力学。
一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。
在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。
刚体具有以下特性:1、内部质点无相对位移。
2、刚体不发生形变,形状和体积保持不变。
3、刚体在运动过程中,内部任意两质点间的距离保持不变。
二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。
平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。
2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。
在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。
这些方程为我们提供了分析刚体运动状态变化的基本工具。
三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。
它与刚体的质量、形状和大小有关。
在物理学中,转动惯量是研究刚体转动规律的重要参数。
通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。
四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。
在刚体力学中,角动量是一个非常重要的概念。
它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。
同时,角动量守恒定律也是刚体力学中的一个重要定律。
在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。
动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。
对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。
六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。
大学物理课课件第3章_刚体的定轴转动
(m1-m2)g R(m1+ m2+ m 2) (m1-m2)g R(m1+ m2+ m 2)
a
gt 2
(rad)
两匀直细杆
两者瞬时角加速度之比 转动定律例题五
θ
θ
根据
1 2 1 2
θ θ
1 3 1 3
地面 从等倾角 处静止释放
短杆的角加速度大 且与匀质直杆的质量无关
第3节 机械能守恒定律
用两个对 转的顶浆
(支奴干 CH47)
A、B两轮共轴 A以ωΑ作惯性转动
守恒例题一
两轮啮合后 一起作惯性转动的角速度
ωΑΒ
以A、B为系统,忽略轴摩擦,脱离驱动力矩后,系 统受合外力矩为零,角动量守恒。
初态角动量 末态角动量
得
守恒例题二
木棒 弹
以弹、棒为系统 击入阶段 子弹击入木棒瞬间,系统在
铅直位置,受合外力矩为零,角动量守恒。 该瞬间之始 该瞬间之末 棒 弹 棒
对 质点运动和刚体转动定律
m 1 m 2 和 m 分别应用
及
β
R
T2 T2
m
T1 T1 m1
m1 g – T1 = m1a T2 – m2 g = m2a ( T1 – T2 ) R = Iβ
得 故
a = Rβ
1 I = 2 mR2 常量
β
(m1-m2)g = R(m1+ m2+ m 2) 由
m2
a
定轴转动物理量
1. 角位置
描述刚体(上某点)的位置 刚体定轴转动 的运动方程 刚体
刚体中任 一点
(t+△t) (t) 参考 方向
2. 角位移
大学物理第八讲、刚体运动学
2. 各质元作圆周运动的半径在相同的时间内转过的 角度相同。 ω 推论:所有质元都具有相同的角位 移、角速度和角加速度。 vi 三、刚体定轴转动的描述 ★用角量描述最为方便。
角速度矢量
o
ri
)
θ
∆mi
x
ω的方向平行于转轴。与转动方向成右旋关系时为
正,反之为负。
dθ ω= ω = dt
dt = J
ω
J
M0 M1
∫
ω
0
kt t dt − dω 1 J =∫ = ω M − e (1 ) 0 0 M 0 − kω J a
21
例:质量为m的均质细杆长为l,可绕过一端的O轴转 动。设杆自水平静止释放,求: ⑴当杆与水平方向成 θ 角时的角加速度; ⑵杆过铅直位置时的角速度; ⑶ 杆过铅直位置时,轴作用于杆上的力N。 解:杆受重力和轴的支承力,后者对轴无力矩。 y l ⑴ 重力矩:M = mg cosθ N z l 2 x o θ 转动定理: M = J α 1 2 J = ml 3
j
i
∆rij = c
ri
rj
o
3
刚体平动的特征 对上式求导得
结论
rj = ri + ∆rij v j = vi
c 平动:∆rij = a j = ai
∆rij
j
i
ri
rj
o
刚体平动时,其上各点具有相同的速度、加速度, 和相同的运动轨迹。 ●任意一点的运动规律即可代表整个刚体的平动 规律。 ●通常用质心的运动来描述刚体整体的平动规律。
2 l /2 2
J= J C + md A
2
大学物理学运动学复习资料
第一部分 运动的描述基本要求一、了解描述运动的三个必要条件:参考系(坐标系),恰当的物理模型(质点、刚体),初始条件。
二、熟练掌握用矢量描述运动的方法,即掌握a v r r ,,, 的矢量定义式及其在直角坐标系、自然坐标系的表示式。
学习指导一、内容提要1、描述物体运动的三个必要条件(1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。
(2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。
读者在学习中要着重体会:每一个物理模型是在什么条件下提出的?如何根据具体问题建立理想化模型?培养这种能力对提高一个人的科学素养是非常重要的。
质点适用的范围是:或者是物体自身的线度l 远远小于物体运动的空间范围r ;或者是物体作平动。
如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。
如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。
(3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。
在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。
2、描述质点运动和运动变化的物理量(1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径,在直角坐标系中zk yi xi r ++= (1—1)在自然坐标系中)(s r r = (1—2)在平面极坐标系中0rr r = (1—3)(2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即12r r r -=∆ (1—4)位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。
大学物理刚体(老师课件)
②刚体的重力矩等于刚体全部质量集中于质心时 所产生的重力矩.
o
细杆质量m, 长L
mg
重力矩大小:
L mg cos 2
例:几个力同时作用在一个具有固定转 轴的刚体上,如果这几个力的矢量和为 零,则此刚体 (A)必然不会转动. (B)转速必然不变. (C)转速必然改变. (D)转速可能不变,也可能改变.
速度。--刚体上任一点作 圆周运动的规律即代表了刚 体定轴转动的规律。
刚体的一般运动 质心的平动
+
绕质心的转动
三、刚体定轴转动的描述
1. 各点都在自己的转动平面内作圆周运动
描述的物理量 θ θ ω β
就是刚体转动的角位置、… 、角加速度
2. 各点转动的半径不同 线速度不同 对刚体不存在整体的线速度!
ω r
r
刚体上某点的线量 2 a n r 与角量的关系:
r
v
a t r
2 r (3i 4 j 5k ) 10 m 求: v ? 2 解: (60 ) k 2 k ( rad / s ) 60 v r 2 2 k (3i 4 j 5k ) 10
【例】已知圆盘转动惯量J,初角速度0 阻力矩M=-k (k为正的常量) 求:角速度从0变为0/2所需的时间
【例】飞轮转动惯量J,初角速度0,阻力矩的 大小与角速度的平方成正比,比例系数为k(k为 正的常量)求:⑴当=0/3时,角加速度=? ⑵从开始制动到=0/3时所转过的角度. 解:⑴按题意 M=-k2
Ep 0
kx F m1 g
F m1 g m2 g F (m1 m2 ) g
6.1 刚体运动学(大学物理)
1、转动惯量
刚体转动时,刚 体内的各质点作圆周 运动,刚体的动能等 于各质点动能之和。
mn
m1
rn
r1
r2 m2
1 1 1 2 2 2 Ek m1v1 m2v2 mnvn 2 2 2 n n 1 1 2 2 mivi mi (ri ) i 1 2 i 1 2 1 n 2 2 ( miri ) 2 i 1
1 l 1 2 2 J ml m ml 结果与前相同。 3 12 2
t
0
1 2 0 0 t t 2
v v 2a( x x0 )
2 2 0
2 ( )
2 2 0 0
匀变速转动
六 角量与线量之间的关系
1、位移与角位移之间的关系 刚体转过 刚体上的一点 位移 s
o
r
s
x
s r
第六章 刚体力学
本章主要内容:
6-1 刚体的运动 6-2 刚体的角动量、转动动能、转动惯量
6-3 力矩
刚体定轴转动定律
6-4 定轴转动的动能定理 6-5 刚体对定轴的角动量守恒定律
6-6 进动*
本章学习要求
2.理解转动惯量、力矩的概念,掌握转动定律。 3.掌握刚体转动的动能定理、角动量定理。
1.掌握刚体定轴转动的特点,理解角坐标、角位移 角速度、角加速度的概念。
1 n 刚体的转动动能 Ek ( miri2 ) 2 2 i 1 1 2 与平动动能比较 Ek mv 2 n 2 miri :相对于转轴的特征的物理量
i 1
转动惯量的定义:
单位:kg ·m2
J m r
i 1
大学物理力学第五章1刚体、转动定律
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;
大学物理第5章刚体转动
M r F
M=Fr sin q
3、力对转轴的力矩
M o roi Fi roi ( Fiz Fi ) roi Fi z roi Fi roi Fi (riz ri ) Fi riz Fi ri Fi
2 2 0
0 t 2 1 q q 0 0t 2 t
v v 2a( x x0 ) 2 02 2 (q q 0 )
四
角量与线量的关系
v ret
d d q 2 dt dt
2
dq dt
a
an r
对刚体转动起作用的只有力对 点的力矩在z轴方向的分量
由力对轴上任一点的力矩:
Fiz
Fi
z
d
Oi
ri
O
q
riz
O
roi
Fi
Miz ri Fi
外力对转轴的力矩
外力对转轴的力矩
Fiz
Miz ri Fi
大小
Fi
z
d
M iz ri Fi sin θ
飞轮 30 s 内转过的角度
2 2 0 (5 π ) 2 q 75π rad 2 2 (π 6)
转过的圈数
75π N 37.5 r 2π 2π
q
6s 时,飞轮的角速度 π 0 t (5π 6)rad s 1 4π rad s 1 6
(质量)、几何形状(质量分布)及转轴的位置 . 转动惯性的计算方法
质量离散分布刚体的转动惯量
大学物理学第五版马文蔚ch.ppt
§4-2 力矩 转动定律转动惯量
一、力矩 ①力臂:从转轴 z 与 截面的交点O到力 F 的作用线的垂直距离 d~力 F 对转轴的力臂
M
z
o
r
d
F
②力矩:
在垂直与转轴的平 面内,外力 F 与力线到 转轴的距离d(力臂)的乘 积定义为对转轴的力矩。
M r F
为正。 定轴转动,规定: 力矩逆时针方向 M
Fi
mi
F i Fi mi ai
建立自然坐标:切向、法向;
切向分量式为: Fit Fit mi ait mi ri
法向分量式为: mi ain Fin Fin ②利用 M r F ,即为:M ri Fit
注:切向分力与圆的半径及转轴三者互相垂直。
二、刚体定轴转动的转动定律
~利用力矩定义+牛顿第二定律,研究刚体作定 轴转动的动力学规律。
设:oz 为定轴, P为 刚体中任一质点 i ,其 质量为 mi。质点 i 受外力 F i ,内力 Fi 的作用,均在与 Oz 轴 相垂直的同一平面内。 ①牛顿第二定律:
z
Fi
Oi r i
Fit F it
v
r
d 角加速度矢量: dt
刚体运动学中所用 d 的角量关系及角量 = dt 和线量的关系如下: v r
d d 2 2 dt dt at r an r 2
注意:、是矢量,由于在定轴转动中轴的方 位不变,故用正负表示其方向。 在刚体作匀加 0 0t 1 t 2 2 速转动时,相 2 应公式如下: 0 t 2 0 2 作业:P143 4-6 4-11
角动量 变化率
大学物理刚体运动学
4-1 刚体运动学
4.1.1 刚体:在外力作用下,形状和大小都不发生变化的物体 .
4.1.2 刚体的基本运动形式:
(1)平动:若刚体中所有点的 运动轨迹都保持完全相同,或者 说刚体内任意两点间的连线在各 时刻总是平行.
刚体平动
质点运动
(2)转动: 定轴转动、定点转动
定轴转动: 转轴在所选参考系中固定不动的转动
dt 2
vi ri vi ri
第四章 刚体力学
2
➢ 刚体的一般运动 质心的平动 + 绕质心的转动
第四章 刚体力学
1
大学 物理
4-1 刚体运动学
4.1.3 描述刚体定轴转动的物理量
特征:刚体中所有的质点具有相同的
角位移、角速度、角加速度
角位移
角速度
d
dt
ri
vi • mi
转动平
面
O
图4-3线速度和角速度之间的矢量关系角加速度ddtd2
大学物理——第3章-角动量定理和刚体的转动
M
α
I
有何联系?
13
实验指出,定轴转动的刚体的角加速度 α与刚体所受的合外 力矩 M 成正比,与刚体的转动惯量 I 成反比.
v dω v M = Iα = I dt
v
定轴转动定理
v v F = ma
定轴转动定律在转动问题中的地 位相当于平动时的牛顿第二定律
应用转动定理解题步骤与牛顿第二定律时完全相同.
1 1 2 2 2 Eki = miυi = mi ri ω 2 2
质点质量 整个刚体的动能:
N
圆周运动的速率和半径
1 N 2 2 Ek = ∑Eki = (∑mi ri )ω 2 i=1 i=1
刚体对转轴的转动惯量:I
7
刚体定轴转动动能公式
物体的平动动能(质点动能)
1 2 Ek = Iω 2
角速度 ω 转动惯量 I 物体绕轴的转动惯性
λ :质量线密度 σ :质量面密度 ρ :质量体密度
10
I = ∫ r 2dm
单位: kg m2
转动惯量的大小取决于刚体的质量,质量分布及转轴的位置.
O
O l/2 O′
1 I= ml2 12
O
O O′
1 2 I = ml 3
r
O′
1 I = mr2 4
O′
1 I = mr2 2
11
平行轴
垂直轴
平行轴定理 质量为 m 的刚体,如果对其质心轴的转动惯量为 IC,则对任 一与该轴平行,相距为 d 的转轴的转动惯量:
2 θ 3Rω0 n= = 2π 16π g
26
讨论
用定轴转动的动能定理较之用转动定律求解, 省去了求角加速度,而直接求得,更为简捷.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 转动惯量的计算 按转动惯量的定义有 积分形式 dm—质元的质量 平动:一维直线运动 类比: 转动:定轴转动
I ri mi
2
刚体的质量可认为是连续分布的,所以上式可写成
I r dm
2
r —质元到转轴的距离
F ma m dv dt m d x dt
2
2
2
M I I
( m2 m1 )
又,绳与轮间无滑动,滑轮边缘的切向 加速度R,和物体的加速度相等.
a R ) (4
18
例: 一半径为R,质量为m匀质圆盘,平放在粗糙的水平桌 面上。设盘与桌面间摩擦系数为 ,令圆盘最初以角速度 0 绕通过中心且垂直盘面的轴旋转,问它经过多少时间才停 止转动? 0 解:由于摩擦力不是集中作用于 某一点,而是分布在整个圆盘与 桌子的接触面上,其力矩的计算 e d 要用积分法。 dr
ge
2 0
圆盘所受阻力矩
M d M
d r d r 0
2
R
2 3
geR
3
19
也可以把圆盘分成许多圆环形质元, 每个质元的质量dm= dV= 2rdre, 所受到的阻力矩是rdmg 。
M r d m g g r 2 r d re 2 g e 0 r d r
因为: d dt , d dt 。
d
P
参考方向
K
d
所以:刚体中任何其它质点都具有相同的,,
2
即(,, )三量具有普遍性。知一点 的(,, ),可知整个刚体的运动。 故用(,,)描写刚体的转动。
所以:定轴转动刚体中任何其它质点 都具有相同的,,
2 R
dr
r
质元
e
2 3
geR
2 3
3
d s 2 r d r
因m=eR2,代入得
M I
2 3
1 2
M
m gR
d V 2 r d re
m
d 3
m
I A md
2
md
2
2 md
2
叠加原理
I 0 3a m , (a ).
与转轴的位置有关。
15
例:细棒质量m,均匀分r dm
2
x
(1) 转轴过中心,与棒垂直. 取dx: d m
2
m l
d x
l 2 2
转动惯量与转轴 的位置有关
d dt
I
d dt
2
质量是平动中惯性大小的量度。
转动惯量是转动中惯性大小的量度。
14
注意:转动惯量与质量有关,与运动速度无关。 质量一定时,与质量的分布有关,并且与转轴的位置有关。 转动惯量计算:
I
i
Δ m i ri ,
2
例: d
0 A
m
d d
2
三个质点m组成一个正三角形 刚体结构。求IA、I0 。
10
2.2 转动定理
fi
O
Fi
i
取质点 P ( m i ) 受外力 Fi、内力 f i, 并设 Fi、 f i 都在转动平面内。
现对 P 质点 m i 写出法、切向 运动方程(按牛顿定律 ):
2
ri
i
P( mi )
Fi cos i f i cos θ i Δ m i a in Δ m i ri ω
ˆ L r P L x iˆ L y ˆ L z k j
讨论
P63
Lz :质点对z轴的角动量
ˆ M r F M x iˆ M y ˆ M z k j
Mz :质点对z轴的力矩
ˆ ˆ M r F ( x iˆ y ˆ z k ) ( F x iˆ F y ˆ F z k ) j j
1
(3)刚体的转动
刚体中各点都绕同一直线(转轴)作圆周运动. 转轴固定不动,称为定轴转动.
(4)转动运动学的物理量 转动平面:任取一垂直于转轴的平面 P为刚体上一质点,在转动平面 内绕0点作圆周运动。
具有角位移 d ,角速度 ,角加速度 .
转轴
dt
0
再任取一点K,在同一个dt内, 也转过同样的d角。
I1 1 12 ml 、 I 2
2
1 3
ml
2
2
2
1
1 I 2 I1 m l 2
例:均匀薄圆盘,转轴过中心与盘面垂直,求I0 。
取半径为r,宽为dr的圆环
d m σ d s m
r
0
dr
πR
R
2
2πr d r
r
I0
r
1 2
2
dm
2
r
0
2
m
πR
2
2πr d r
m,R
mR
17
例:如图所示,滑轮质量m,半径R ( I mR ). (注意:在中学里 2 一般滑轮质量略去不计)求:物体的加速度和绳的张力。
2
1
T1 T1
T 2 T 2
( m 2 ): m 2 g T 2 m 2 a (1 )
对于匀变速转动,应用以角量表示的运动方程, 在t=50s 时刻 =0,代入方程 =0+ t 得
0
t 50 50 rad s
2
O
r
3.14 rad s
2
从开始制动到静止,飞轮的角位移 及转数N分别为
0 0t t 2 1 50 50 50 1250 rad 2 1250
9
(2) 外力不在垂直于转轴的平面内
P63 结论:z轴转动平面内的分量 的运算就是对z轴的力矩。
转轴
F1
F
F2
z
r轴
F
F 轴
0
r
P
转动平面
o
r
o
ˆ r F M zk
将F分解成 F1和F2。 F1与转轴平行, F 2 在转动平面内。 F1对转动无贡献,仅考虑 F2, M r F2 (有效力矩)。 F1 M 、 , 对转动无贡献。
6 j 8 i
5
刚体运动学综合例题: 一飞轮转速n=1500r/min,受到制动后均匀 地减速,经t =50 s后静止。 (1)求角加速度 和飞轮从制动开始到静止所转过的转数N; 0 (2)求制动开始后t =25s 时飞轮的角速度 ; 解(1)初角速度为0 =21500/60=50 rad/s,方向如图
质元
d S r d r d
dV d Se r d r d e
阻力矩向下,与0方向相反!
如图,把圆盘分成许多如图的 质元 , 每个质元的质量为dm, dm= dV= rddre,(e是盘的厚度) 所受到的阻力矩dM=rdmg。
M r d mg g r re d d r
3
1.2 角速度矢量
转轴
v
0
r
P
的方向由右手螺旋定则 确定。
v与之间的矢量关系:
v r
(圆周运动 :v r)
4
例:一刚体以每分钟60转绕z轴做匀速运动, ( 沿z轴正方向), 设某时刻刚体上一点P 的位置矢量为:r 3 i 4 j 5 k (单位为“10-2m”),若以“10-2ms-1”为单位,则该时刻P点 的速度为:
2 i i i
合外力矩M
合内力矩=0
I -转动惯量
11
Fi ri sin i f i ri sin θ i Δ m i ri
2
Fi ri sin i f i ri sin θ i (Δ m i ri )
2 i i i
合外力矩M
合内力矩=0
I -转动惯量
M=I —转动定理
解: 2k 单位: s1 ), (rad v r 2πk (3i 4 j 5k ) 8πi 6πj
还可解行列式
i j
k
0 0 2 π 3 4 5
1. 刚体运动学
1.1 刚体的平动和转动 (1) 刚体、刚体的平动 刚体:无论在多大的外力作用下,总是保持其形状、大小 不变,理想化的模型。 (2) 刚体的平动 刚体内任何一条给定的直线,在运 动中始终保持它的方向不变。 各质点具有相同的速度和 加速度,所以刚体平动时任何 一点的运动都可代表整个刚体 的运动。 刚体的平动时可看成质点。
dω dt d θ dt
2 2
定轴转动定理(律)在转动问题中的地位 相当于平动时的牛顿第二定律
12
例:几个力同时作用在一个具有光滑固定转轴的刚体上, 讨论 如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. 答案:( D ) 参考解答:在应用转动定律M=I 时应注意M是合外力矩,是外力 力矩之和,而不是合外力的力矩。几个力的矢量和为零,有合外力 矩也为零或不为零的两种情况,所以定轴转动的刚体其转速可能不 变,也可能改变。
8
2 转动定理 转动惯量(刚体动力学)
2.1力对转轴的力矩. (1)外力在垂直于转轴的平面内。
M
F
p
0
p 力F的作用点。 M r F