基于热敏电阻的数字温度计设计
热敏电阻数字温度计的设计实验报告
![热敏电阻数字温度计的设计实验报告](https://img.taocdn.com/s3/m/bce3a0f75ebfc77da26925c52cc58bd63186936f.png)
热敏电阻数字温度计的设计实验报告
本次实验旨在设计一种基于热敏电阻的数字温度计,通过实验验证其可行性和精确性。
实验过程中,我们首先购买了一些热敏电阻和其他所需的元器件,包括电容、电阻、运放等。
然后按照电路图设计,进行了实际的电路连接和调试。
在调试过程中,我们需要注意电路的稳定性和输入电压的范围,以免影响实验结果。
在完成电路搭建和调试后,我们通过连接计算机和显示器,测试了温度计的输出精确度和稳定性。
实验结果表明,该数字温度计具有较高的精确度和稳定性,可满足实际应用的需求。
综上所述,基于热敏电阻的数字温度计设计实验成功完成,并且具有较高的精确度和稳定性,为实际应用提供了可靠的参考数据。
- 1 -。
用NTC热敏电阻设计制作体温计
![用NTC热敏电阻设计制作体温计](https://img.taocdn.com/s3/m/ebf24ff184868762cbaed500.png)
西北工业大学设计性基础物理实验报告班级:11051401 姓名:日期: 2016.05.13用NTC热敏电阻设计制作体温计一、实验目的1、测定NTC热敏电阻与温度的关系;2、设计制作一个数字体温计(温度范围35-42℃)二、实验仪器(名称、型号及参数)NTC热敏电阻可调直流稳压电源(0-5V)数字万用表单刀双掷开关导线FD-WTC-D型恒温控制装置 2X-21型电阻箱2个三、实验原理NTC负温度系数是一种利用半导体材料制成的体积小巧的电阻,为避免热敏电阻自身发热所带来的影响,流过热敏电阻的电流不能超过300微安。
由于热敏电阻随温度变化比金属电阻要灵敏得多,因此被广泛用于温度测量,温度控制以及电路中温度补偿、时间延迟等。
为了研究热敏电阻的电阻温度特性,常用电路如图1所示:R t=(R1/U1)*U t四、实验内容与方法1.测量不同温度t下NTC热敏电阻的阻值R(1)设计实验方案,画出实验电路图如图1,不断改变环境温度t,利用公式R t=(R1/U1)*U t计算出不同温度t下NTC的阻值。
(2)列表记录数据,用最小二乘法求出R与1/t之间的关系2.设计数字体温计如图2电路图所示,根据第一问中得到的R与1/t之间的关系,取35℃与42℃为边界,联立解出R1和R2。
计算各元件的数值,使数字电压表的mV示数即为温度示数。
根据设计的电路图搭建数字温度计,进行调试:(1)测量不同温度时,数字体温计的电压示数,并绘制校准曲线;(2)根据校准曲线,对设计的电路进行改进,使误差不超过1℃。
五、实验数据记录与处理(列表记录数据并写出主要处理过程)不同温度下的NTC阻值数据记录表格(R1=10000Ω U=4.77V)经过线性拟合b=451269.94 a=-7586.20 r=0.9487所以回归方程为:R=451269.94*1/t-7586.20当T=35和42时,解方程组4770R2/(R1+R2+R t)=35 解R1=8126.7.2Ω4770R2/(R1+R2+R t)=42 得R2=99.21Ω调整R2,获得较为准确的体温计(此时R1=8126.7Ω R2=117.2Ω)校准后误差在0.1摄氏度以内。
热敏电阻温度计的设计方案
![热敏电阻温度计的设计方案](https://img.taocdn.com/s3/m/f2714c7753d380eb6294dd88d0d233d4b14e3fd1.png)
热敏电阻温度计的设计方案一、整体思路。
咱要做个热敏电阻温度计呢,就像给温度这个调皮的小怪兽做个探测器。
这个温度计的核心就是热敏电阻啦,它可神奇了,温度一变,它的电阻值就跟着变,就像个超级敏感的小卫士。
我们就利用这个特性,把温度这个看不见摸不着的东西转化成能看明白的数值,显示在屏幕上或者其他啥地方。
二、所需材料和工具。
1. 热敏电阻:这是咱的主角,就像电影里的超级英雄一样重要。
要选那种对温度变化反应灵敏的,不然这个温度计就成了个小迷糊,测不准温度啦。
2. 电源:得给这个小系统供电呀,就像给超级英雄补充能量一样。
可以是电池,方便携带,要是做个固定在某个地方的温度计,接个电源适配器也不错。
3. 微控制器(比如单片机):这就像是温度计的大脑,负责处理热敏电阻传过来的信号,把电阻值的变化换算成温度值。
它可聪明啦,能按照我们设定好的程序进行复杂的计算。
4. 显示屏:这是温度计的脸蛋,把温度值显示出来给我们看。
可以是液晶显示屏(LCD),清楚又节能;要是想酷一点,用个OLED显示屏,显示效果那叫一个酷炫。
5. 其他小零件:像电阻、电容这些小零件也不能少,它们就像是超级英雄身边的小助手,帮助电路稳定运行,保证各个部分能和谐共处。
6. 工具方面:电烙铁是必须的,用来焊接那些小零件,就像厨师用锅铲做菜一样熟练地把各个零件连接起来。
还有万用表,用来检测电路是否正常,就像医生给病人做检查一样,找出电路中的毛病。
三、设计步骤。
1. 电路设计。
把热敏电阻接入电路。
可以设计一个简单的分压电路,让热敏电阻和一个普通电阻串联,然后接到电源两端。
这样,随着温度变化,热敏电阻的电阻值改变,它两端的电压也会跟着变,就像跳舞的小伙伴,随着音乐(温度)改变步伐(电压)。
接着,把这个电压信号接到微控制器的模拟输入引脚。
微控制器就像一个好奇的小侦探,时刻准备着接收这个信号并进行分析。
2. 微控制器编程。
在微控制器里,我们要写程序啦。
这个程序就像给小侦探(微控制器)一本秘籍,让它知道怎么根据接收到的电压值算出温度。
基于热敏电阻的数字温度计设计
![基于热敏电阻的数字温度计设计](https://img.taocdn.com/s3/m/3604c5433c1ec5da50e27021.png)
目录1 课程设计的目的 (1)2 课程设计的任务和要求 (1)3 设计方案与论证 (1)4 电路设计 (2)4.1 温度测量电路 (3)4.2 单片机最小系统 (6)4.3 LED数码显示电路 (8)5 系统软件设计 (9)6 系统调试 (9)7 总结 (11)参考文献 (13)附录1:总体电路原理图 (14)附录2:元器件清单 (15)附录3:实物图 (16)附录4:源程序 (17)1 课程设计的目的(1)掌握单片机原理及应用课程所学的理论知识;(2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题;(3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧;(4)培养认真严谨的工作作风和实事求是的工作态度;(5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。
2 课程设计的任务和要求(1)采用LED数码管显示温度;(2)测量温度范围为-10℃~110℃;(3)测量精度误差小于0.5℃。
3 设计方案与论证方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。
该方案的原理框图如图3-1所示。
DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。
它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控图3-1方案一系统框图方案二:温度检测部分采用传统的热敏电阻,热敏电阻的阻值随环境温度变化而变化,将热敏电阻与固定电阻串联后分压,经A/D转换器将其转换为单片机可识别得二进制数字量,然后根据程序查表得到温度值,单片机主要控制LED显示器显示正确的温度值,并根据设置的上下限控制继电器动作,从而控制外部负载。
该方案的原理框图如图3-2所示。
热敏电阻数字温度计及设计与制作
![热敏电阻数字温度计及设计与制作](https://img.taocdn.com/s3/m/287ff5204b7302768e9951e79b89680203d86be4.png)
热敏电阻数字温度计及设计与制作一、热敏电阻介绍热敏电阻(Thermistor)是一种特殊类型的电阻元件,也被称为温度传感器或温度电阻。
它由原材料包括硅、聚苯乙烯等制成,一般构成为由特殊陶瓷物质制成的金属杆支撑的微型电阻片,它的电阻值会随温度的变化而发生量级的变化,应用范围广泛,同时也具有非线性特性。
二、原理介绍热敏电阻可以因温度的变化而改变其电阻值,电路中施加的电压,将发生变化的电阻作用的电流,其特性一般是冷端温度为25°C时,电阻值最小,随着温度的增加,电阻值也增加。
热敏电阻具有很强的非线性特性,温度噪声小,因而对温度测量后级电路要求较低,这种特性使热敏电阻更加容易把输入的温度信号转变为数字信号。
三、数字温度计的介绍数字温度计(Digital Thermometer)是一种使用热敏电阻来测量温度的设备,可以检测温度并以数字方式显示温度变化,常用于家用、工业和其它科学测量等领域。
数字温度计利用热敏电阻这种特性,可以把温度信号变换为数字信号,然后再在显示分辨率与可调量程内显示出来。
要设计并制作一台数字温度计,需要用到热敏电阻、运算放大器、A/D转换器、晶体管、多路复用器和显示器等元件。
(1)热敏电阻。
用来检测温度变化,通过将温度变化映射成电阻变化。
(2)运算放大器。
它将检测到的电阻变化信号发送至A/D转换器,用以进一步进行信号转换处理,从而获取准确的温度数值。
(5)多路复用器。
它用来将晶体管处理出的信号发送至显示器,并选择正确的显示模式,以便正确显示温度数值。
五、结论热敏电阻及其特性使其能够非常精确地测量、检测温度变化。
数字温度计设计与制作主要使用热敏电阻以及相关电路元件,它可以把温度信号变换为数字信号,从而在对精度进行严格控制的情况下,准确地显示出温度信息。
51单片机的热敏电阻数字温度计设计
![51单片机的热敏电阻数字温度计设计](https://img.taocdn.com/s3/m/47bb50247ed5360cba1aa8114431b90d6c858921.png)
51单片机的热敏电阻数字温度计设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!51单片机的热敏电阻数字温度计设计引言随着电子技术的进步,数字温度计在各种应用中得到了广泛的使用。
基于热敏电阻的数字温度计课程设计.doc
![基于热敏电阻的数字温度计课程设计.doc](https://img.taocdn.com/s3/m/3c14e5ecf5335a8102d220c3.png)
基于热敏电阻的数字温度计课程设计. .目录1 绪论12 系统硬件电路设计32.1 测温电桥电路32.2 信号放大电路................................................................................62.3 AD转换电路...................................................................................72.4 控制电路........................................................................................92.5 声光报警电路 (102).6 显示电路..........................................................................................112.7 电源电路..........................................................................................123 系统软件设计154 总结与展望 (1)6参考文献……………………………………………………………..……………………………..171概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
基于单片机的热敏电阻温度计的设计
![基于单片机的热敏电阻温度计的设计](https://img.taocdn.com/s3/m/9e960ca94bfe04a1b0717fd5360cba1aa9118c71.png)
基于单片机的热敏电阻温度计的设计引言:热敏电阻是一种根据温度变化而产生变阻的元件,其电阻值与温度成反比变化。
热敏电阻广泛应用于温度测量领域,其中基于单片机的热敏电阻温度计具有精度高、控制方便等特点,因此被广泛应用于各个领域。
本文将介绍基于单片机的热敏电阻温度计的设计,并通过实验验证其测量精度和稳定性。
一、系统设计本系统设计使用STC89C52单片机作为控制核心,热敏电阻作为测量元件,LCD1602液晶显示屏作为温度显示设备。
1.系统原理图2.功能模块设计(1)温度采集模块:温度采集模块主要由热敏电阻和AD转换模块组成。
热敏电阻是根据温度变化而改变阻值的元件,它与AD转换模块相连,将电阻变化转换为与温度成正比的电压信号。
(2)AD转换模块:AD转换模块将热敏电阻的电压信号转换为数字信号,并通过串口将转换结果传输给单片机。
在该设计中,使用了MCP3204型号的AD转换芯片。
(3)驱动显示模块:驱动显示模块使用单片机的IO口来操作LCD1602液晶显示屏,将温度数值显示在屏幕上。
(4)温度计算模块:温度计算模块是通过单片机的计算功能将AD转换模块传输过来的数字信号转换为对应的温度值。
根据热敏电阻的特性曲线,可以通过查表或采用数学公式计算获得温度值。
二、系统实现1.硬件设计(1)单片机电路设计单片机电路包括单片机STC89C52、晶振、电源电路等。
根据需要,选用合适的外部晶振进行时钟信号的驱动。
(2)AD转换电路设计AD转换电路采用了MCP3204芯片进行温度信号的转换。
根据芯片的datasheet,进行正确的连接和电路设计。
(3)LCD显示电路设计LCD显示电路主要由单片机的IO口控制,根据液晶显示模块的引脚定义,进行正确的连接和电路设计。
(4)温度采集电路设计温度采集电路由热敏电阻和合适的电阻组成,根据不同的热敏电阻特性曲线,选择合适的电阻和连接方式。
2.软件设计(1)初始化设置:单片机开机之后,需要进行一系列的初始化设置,包括对IO口、串口和LCD液晶显示屏的初始化设置。
基于非平衡电桥的热敏电阻数字温度计设计
![基于非平衡电桥的热敏电阻数字温度计设计](https://img.taocdn.com/s3/m/d6caeec3112de2bd960590c69ec3d5bbfc0ada7e.png)
基于非平衡电桥的热敏电阻数字温度计设计
热敏电阻数字温度计是一种基于热敏电阻的温度测量器,利用电流通过热敏电阻时产生的热量与温度之间的关系来测量环境的温度。
该温度计的工作原理基于非平衡电桥,通过调整电桥的偏置电压来测量热敏电阻的电阻值,从而得到温度信息。
热敏电阻的电阻值会随着温度的变化而变化,这种变化可以通过欧姆定律来表示。
设热敏电阻的电阻值为R,电压为V,电流为I,则有V=IR。
当电流I保持不变时,电压V随着热敏电阻的电阻值R发生变化,从而可以得到温度信息。
为了保证测量准确性,需要对电路进行校准。
校准过程中需要先将热敏电阻置于已知温度下,并记录下相应的电阻值。
再将热敏电阻置于待测温度下,并进行电阻值读数,通过比较已知温度下的电阻值和待测温度下的电阻值,可以得到温度信息。
为了方便读取温度信息,可以使用单片机等数字电路将电阻值转换为数字信号,并通过LCD显示器显示出来。
具体的实现过程需要根据具体的电路设计进行确定。
总之,基于非平衡电桥的热敏电阻数字温度计是一种精度高、可靠性好的温度测量器,可以广泛应用于各种场合。
基于单片机的热敏电阻数字温度计的思路
![基于单片机的热敏电阻数字温度计的思路](https://img.taocdn.com/s3/m/68afdf491fd9ad51f01dc281e53a580216fc5099.png)
基于单片机的热敏电阻数字温度计的思路
热敏电阻是根据温度变化而变化阻值的电阻,其阻值与温度成反比例关系。
基于单片机的热敏电阻数字温度计的思路主要包括以下几个方面:
1.硬件设计:选用合适的热敏电阻、运放、单片机等元器件进
行硬件设计,电路需要确保稳定可靠,能够满足测量要求。
2.软件设计:根据硬件设计要求,编写相应的单片机程序,实
现温度信息的采集、处理、存储和显示等功能,程序需要具有较高的精度和可靠性。
3.温度采集:利用单片机的模拟输入端口对热敏电阻进行采集,将其阻值转换为温度值,并进行校准和滤波等处理,确保温度测量精度。
4.温度显示:将采集到的温度值显示在单片机的显示屏上,可
显示数值和单位,也可根据需要进行警报和数据记录等功能。
5.应用扩展:可以根据需要增加多路温度采集、远程传输、数
据存储和分析等功能,扩展应用领域,满足不同用户需求。
热敏电阻数字温度计设计制作实验的线性化方案探究
![热敏电阻数字温度计设计制作实验的线性化方案探究](https://img.taocdn.com/s3/m/1fd7aadb710abb68a98271fe910ef12d2af9a9ac.png)
热敏电阻数字温度计设计制作实验的线性化方案探究热敏电阻数字温度计设计制作实验的线性化是指热敏电阻在温度变化时,用电阻值变化与温度量度值之间的关系,精确测量准确的温度。
通常情况下,热敏电阻量度温度变化后,它们的电阻值变化不会按照从低到高从正到负,或者从高到低从负到正的分布,而是各种不同的变化规律。
因此,要精确的测量温度,就需要进行线性化处理,使电阻变化与温度变化之间的关系能够更加直观、精确。
要实现热敏电阻数字温度计的线性化处理,通常采用的技术就是多项式拟合技术。
它的基本思想就是通过导入实验数据,建立一个多项式函数,使电阻变化与温度变化之间更加精确地拟合。
比如说,使用一元四次多项式,以电阻R1和R2分别代表温度T1+20和T2+20时,便可以构建如下拟合方程:T= a0 + a1 × R + a2 × R2 + a3 × R3 + a4 × R4通过系数a0、a1、a2、a3、a4的校正,便可以获得完美的拟合函数,以准确的地测量温度。
之后,当热敏电阻的电阻值增加时,也可以由拟合函数已经准确的算出它对应的温度,而无需经过额外的多步调整。
此外,除了多项式拟合以外,也可以采用流水账的方法来获得线性化的解决方案,也就是把温度值分割为几个区间,然后用这几个区间上数据点相连即可,这样就可以实现电阻与温度变化之间复杂的关系转换为流畅的线性变化。
因此,实现热敏电阻数字温度计的线性化确实是要求较高的,无论是通过多项式拟合的方式,还是通过流水账的方式,都需要经过大量的调整,才能把线性变化表示出来。
此外,还需要针对多种温度表现出不同的过程,采用不同的线性化处理方式,才能实现最准确的温度测量。
所以,从线性化处理来看,热敏电阻数字温度计制作实验是一项艰巨的任务,也是一项非常有趣的实验。
基于热敏电阻的数字温度计的设计-基于热敏电阻的数字温度计
![基于热敏电阻的数字温度计的设计-基于热敏电阻的数字温度计](https://img.taocdn.com/s3/m/ba87f138dd36a32d73758154.png)
毕业设计说明书毕业设计评阅书题目:基于热敏电阻的数字温度计设计信息系电气工程及其自动化专业姓名设计时间:2014年03月25日~2014年06月15日评阅意见:成绩:指导教师:(签字)职务:201年月日太原理工大学阳泉学院毕业设计答辩记录卡信息系电气工程及其自动化专业姓名答辩内容记录员:(签名)成绩评定注:评定成绩为100分制,指导教师为30%,答辩组为70%。
专业答辩组组长:(签名)201年月日摘要温度计量是计量学的一个重要分支,它在国民经济各领域中占有重要的地位。
人们的日常生活、工农业生产和科学实验等许多方面都与温度测量有着十分密切的关系。
1871年,西门子(Sir william Siemens)发现了铂电阻测温原理,制造出第一支铂电阻温度计。
1887年,卡伦德(Hugh Callendar)改进了铂电阻温度计的工艺和研制测温电桥并得到了著名的卡伦德公式。
之后,铂电阻温度计成为国际温标的标准仪器,并一直沿用至今。
本文在查阅、分析了现有的几种不同的测温原理,分析确定了热敏电阻测温,并对基于热敏电阻pt100的数字温度计的设计进行了深入探讨和研究。
该系统分为测温模块、信号放大模块、A/D转换模块和控制显示模块,并分别对其进行方案分析,最终确定数字温度计系统的系统构架和设计方案;在硬件电路中,详细阐述了各模块电路的工作原理,分析了以AT89C51单片机为主控单元的系统硬件和软件设计,并对该系统进行误差分析,使我们对于系统的各种性能有了进一步认识。
本文用protues进行仿真,采用at89c51单片机作为处理的核心部分;用pt100作为温度传感器,把采集到的温度经放大后送到adc0804进行A/D转换,经过at89c51单片机处理后送到显示器,显示器将显示采集的温度。
关键字:at89c51单片机,热敏电阻pt100,数码显示,protuesABSTRACTTemperature metrology, a major branch of metrology, plays an important role in every field of national economy . For example, people's daily life, industrial and agricultural production,scientific experiments and many other aspects are all connected closely to the temperature metrology. In 1871, Sir william Siemens discovered the principle of temperature measurement of platinum resistor and created the first platinum resistance thermometer in the world. , The platinum resistance thermometer technics was improved by Hugh Callendar in 1887 . At the same time he developed bridge for measuring temperature and made out the famous Callendar's formula. From then on Callendar's thermometer has been used as a standard instrument to international temperature scale.Based on the inspection, analysis of the existing several different measurement principle, the analysis determined the thermistor temperature measurement, and a digital thermometer pt100 thermistor-based design in-depth study and research. The temperature measurement system is divided into modules, the signal amplification module, A / D converter module and a control module, and its solutions were analyzed to determine the final design of the system architecture and digital thermometer system; hardware circuit, elaborated Each module circuit works, and analyzes to AT89C51 main control unit of the system hardware and software design and error analysis of the system, so that our systems for a variety of performance has been further understanding.In this paper, protues simulation, using at89c51 microcontroller as the core part of the process; using pt100 as a temperature sensor, the temperature of the collected adc0804 after amplification to the A / D conversion, after treatment at89c51 microcontroller to monitor, the display will show acquisition of temperature.Keywords: at89c51 microcontroller, thermistor pt100, digital display, protues目录第一章绪言 (1)第一节课题背景 (1)第二节国内外研究的发展及现状 (2)一、温度传感器的的概述及发展现状 (2)二、传感器检测技术概述及发展现状 (3)三、数据采集技术概述及发展现状 (5)第三节本课题研究的内容 (5)第二章系统的硬件设计 (6)第一节总体设计方案 (6)第二节单片机 (6)一、AT89C51简介 (6)二、管脚说明 (7)三、振荡器特性: (9)四、芯片擦除: (9)第三节温度传感模块 (9)一、PT100介绍 (9)二、PT100测温原理 (10)第四节模数转换模块 (10)一、A/D转换概念: (10)二、分辨率概念: (11)三、ADC0804引脚功能: (11)四、ADC0804工作过程 (12)五、A/D转换电路设计 (14)第五节放大模块 (15)一、Lm324简介 (15)二、Lm324放大电路设计 (16)第六节数码管显示模块 (16)一、LED显示原理 (16)二、LED显示器的显示方式 (18)第三章程序设计 (20)第一节程序流程图 (20)第二节程序设计 (21)一、函数声明和管脚定义 (21)二、启动AD转换子程序 ....................................................... 错误!未定义书签。
用热敏电阻非平衡电桥设计数显温度计
![用热敏电阻非平衡电桥设计数显温度计](https://img.taocdn.com/s3/m/36e36640b94ae45c3b3567ec102de2bd9705de75.png)
用热敏电阻非平衡电桥设计数显温度计热敏电阻是一种温度敏感的电器元件,其电阻随温度的变化而变化。
利用热敏电阻作为传感元件设计非平衡电桥用于测量温度,是一种简单可行的方法。
数显温度计采用热敏电阻作为传感元件,将其嵌入测量对象中,通过传感器将信号转换为电信号,再通过数据处理进行数字显示。
其基本构成是测温电路、信号转换电路和显示电路。
首先,我们需要选择适合的热敏电阻作为传感元件。
热敏电阻的阻值随温度的变化是非线性的,需要经过平移、放大等线性化处理才能使用。
常用的热敏电阻有铂热电阻、镍铁热电阻、铁素体热电阻等。
其中铂热电阻具有稳定性好、精度高等优点,是较为理想的选型。
然后,我们需要设计非平衡电桥电路。
非平衡电桥由热敏电阻、电阻、电池和电流表组成,结构简单,灵敏度高。
在非平衡状态下,测量电路中的电流流经电阻和热敏电阻,使电阻和热敏电阻的电势差发生变化,通过这种变化来间接测量温度。
接下来,我们需要将信号转换为电信号,并进行放大、滤波等处理。
这里我们采用运算放大器将电阻变化信号转换为电压信号,并进行放大、滤波等处理。
通过运算放大器的放大系数和滤波模块的滤波特性,可以有效地提高信号的精度和稳定性。
最后,我们需要进行数字显示。
将经过处理的电压信号输入至数字显示模块中,通过对应的算法将电压转换为温度值,并进行数字显示。
在此过程中,我们需要考虑温度显示的精度、灵敏度、稳定性等因素,以保证温度计的可靠性和实用性。
总之,利用热敏电阻非平衡电桥设计数显温度计是一种简单可行的方法。
通过选择适合的传感元件、设计合理的电路结构、进行信号处理和数字化显示,可以实现对温度的准确测量和可靠显示。
热敏电阻数字温度计及设计与制作
![热敏电阻数字温度计及设计与制作](https://img.taocdn.com/s3/m/09b84be8aa00b52acfc7caa2.png)
评分:大学物理实验设计性实验实《用热敏电阻改装温度计》实验提要设计要求⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。
⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。
⑶根据实验情况自己确定所需的测量次数。
实验仪器惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求(1)要求测量范围在40℃~80℃。
(2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。
(3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。
提交整体设计方案时间学生自选题后2~3周内完成实验整体设计方案并提交。
提交整体设计方案,要求电子版。
用电子邮件发送到指导教师的电子邮箱里。
思考题如何才能提高改装热敏温度计的精确度?用热敏电阻改装温度计实验目的:1.了解热敏电阻的特性;2.掌握用热敏电阻测量温度的基本原理和方法;3.进一步掌握惠斯通电桥的原理及应用。
实验仪器:惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等实验原理:1.惠斯通电桥原理惠斯通电桥原理电路图如图1所示。
当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0;于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0或R X=R0R1/R2 (1)(1)式即为惠斯通电桥的平衡条件,也是用来测量电阻的原理公式。
欲求R X,调节电桥平衡后,只要知道R1,R2,R0的阻值,即可由(1)式求得其阻值。
2.热敏电阻温度计原理热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。
基于非平衡电桥的热敏电阻数字温度计设计
![基于非平衡电桥的热敏电阻数字温度计设计](https://img.taocdn.com/s3/m/f39f225859fafab069dc5022aaea998fcc2240e6.png)
基于非平衡电桥的热敏电阻数字温度计设计
热敏电阻数字温度计是一种以热敏电阻为测温元件的温度计,在实际应用中具有广泛的用途和重要意义。
为了设计一种基于非平衡电桥的热敏电阻数字温度计,我们需要进行以下步骤。
第一步:准备所需材料和仪器,包括热敏电阻元件、电桥电路、放大电路、ADC芯片、显示屏等。
第二步:设计非平衡电桥电路,将热敏电阻作为电桥中的一个元件。
电桥电路的设计应该充分考虑电桥的平衡性和抗干扰性能。
第三步:设计放大电路,将非平衡电桥电路的输出信号放大到能够被ADC芯片读取的水平。
第四步:选择合适的ADC芯片,将放大后的模拟信号转换为数字信号,同时滤除噪声和干扰。
第五步:设计显示屏电路,将数字信号显示在显示屏上,以便读取温度值。
第六步:将各个电路连接在一起,进行调试和测试,确认温度计的准确性和稳定性。
通过以上步骤的实施,我们可以得到一种基于非平衡电桥的热敏电阻数字温度计,具有高精度、高稳定性和抗干扰能力强的特点,并可以广泛应用于各种温度测量场合。
基于热敏电阻的温度计设计
![基于热敏电阻的温度计设计](https://img.taocdn.com/s3/m/c109d7e8f90f76c661371af2.png)
Hefei University温度计设计报告基于热敏电阻的温度计设计引言热敏电阻是一种敏感元件,其特点是电阻随温度的变化而显著变化,因而能直接将温度的变化转换为电量的变化,也就是说能将温度信号转化为电信号,从而实现了非电量的测量。
热敏电阻一般是用半导体材料制成的温度系数范围约为:(-0.003~+0.6)/℃。
热敏电阻的温度系数有正有负,因此分成PTC热敏电阻和NTC热敏电阻两类。
NTC热敏电阻是以锰、钴、镍铜和铝等金属氧化物为主要原料,采用陶瓷工艺制成。
这些金属氧化物都具有半导体性质。
近年来还有用单晶半导体如碳化硅等材料制成的(国产型号 MF91~MF96)负温度系数热敏电阻器。
NTC热敏电阻做为温度传感器具有体积小,结构简单,灵敏度高,并且本身阻值大,一般在102~105之间,不需要考虑引线长度带来的误差,易于实现远距离测量和控制。
NTC热敏电阻的测温范围较宽,特别适用于-100~300℃之间的温度测量。
NTC热敏电阻在工作温度范围内,其阻值随温度增加而显著减小,大多用于测温和控温,可以制成流量计和功率等。
一、 实验原理1、负温度系数热敏电阻的温度特性统计理论指出,热敏电阻的电阻值与温度的关系为:Rt = A ·exp B /T ,其中A 、B —半导体有关的常熟(理论分析和实验结果表明,B 值随温度略有变化,但在一般工作温度范围内近似为常数;B 值越大,阻值随温度的变化越大); T 表示热力学温度。
t 表示摄氏温度,且T =273.15+t ;Rt —在摄氏温度为t 时的电阻值,随温度上升,其电阻值呈指数关系下降(如图一)。
图1 负温度系数热敏电阻的温度特性 图2 非平衡电桥 图3 热敏电阻温度计的温度与电流特性T2、非平衡电桥电桥是一种用比较法进行测量的仪器。
所谓非平衡电桥,是指在测量过程中电桥是不平衡的。
桥路上的电流不为零,桥路上的电路的大小与电源电压,桥臂电阻有关。
利用非平衡电桥进行测量时,应具体选定,除待测电阻外其他电阻的阻值以及电源电压,这样待测电阻Rt与桥路上的电流Ig 就有唯一对应的关系,确定Rt-Ig的关系的过程,即为非平衡电桥的定标。
基于PT100热敏电阻的数字温度计
![基于PT100热敏电阻的数字温度计](https://img.taocdn.com/s3/m/45ffe0a9866fb84ae55c8d4d.png)
嵌入式设计基于热敏电阻的数字温度计设计院(系)___________________专业__________________班级___________________指导老师____________________学生姓名____________________成绩___________________2015年7月10日第一章绪论 (1)第二章设计要求及构思 (1)2.1设计要求 (1)2.2设计构思 (2)第三章总体程序流程图 (3)第四章原理框图 (4)4.1PT100伯热电阻: (4)4.2信号放大电路 (4)4.4主芯片电路图 (6)4.5四位数码管 (7)第五章仿真电路图 (8)第六章心得体会 (10)参考文献 (11)附录程序代码 (12)第一章绪论随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下儿种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
第二章设计要求及构思2.1设计要求1.系统硬件设计(1)使用热敏电阻PT100;(2)单片机采用MCS51系列;(3)LED数码管显示温度。
热敏电阻数字温度计的设计和制作
![热敏电阻数字温度计的设计和制作](https://img.taocdn.com/s3/m/ba48b31be2bd960590c677de.png)
完美WORD格式评分:大学物理实验设计性实验实《用热敏电阻改装温度计》实验提要设计要求⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。
⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。
⑶根据实验情况自己确定所需的测量次数。
实验仪器惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求(1)要求测量范围在40℃~80℃。
(2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。
(3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。
提交整体设计方案时间学生自选题后2~3周内完成实验整体设计方案并提交。
提交整体设计方案,要求电子版。
用电子邮件发送到指导教师的电子邮箱里。
思考题如何才能提高改装热敏温度计的精确度?用热敏电阻改装温度计实验目的:1.了解热敏电阻的特性;2.掌握用热敏电阻测量温度的基本原理和方法;3.进一步掌握惠斯通电桥的原理及应用。
实验仪器:惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等实验原理:1.惠斯通电桥原理惠斯通电桥原理电路图如图1所示。
当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0;于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0或 R X=R0R1/R2 (1)(1)式即为惠斯通电桥的平衡条件,也是用来测量电阻的原理公式。
欲求R X,调节电桥平衡后,只要知道R1,R2,R0的阻值,即可由(1)式求得其阻值。
2.热敏电阻温度计原理热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。
基于PT100热敏电阻的数字温度计
![基于PT100热敏电阻的数字温度计](https://img.taocdn.com/s3/m/2f3c8642ba0d4a7303763a8c.png)
嵌入式设计基于热敏电阻的数字温度计设计院(系) 专 业 班 级 指导老师 学生姓名 成 绩2015年 7月 10日目录第一章绪论 (1)第二章设计要求及构思 (1)2.1设计要求 (1)2.2设计构思 (2)第三章总体程序流程图 (3)第四章原理框图 (4)4.1PT100铂热电阻: (4)4.2信号放大电路 (4)4.4主芯片电路图 (6)4.5 四位数码管 (7)第五章仿真电路图 (8)第六章心得体会 (10)参考文献 (11)附录程序代码 (12)第一章绪论随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
第二章设计要求及构思2.1设计要求1.系统硬件设计(1)使用热敏电阻PT100;(2)单片机采用MCS51系列;(3)LED数码管显示温度。
2.系统软件设计(1)温度可以通过PT100热敏电阻实调程序;(2)AD转换芯片检测温度的模拟量程序;(3)LED显示程序;3.系统功能(1)测量温度范围−50℃~110℃;(2)精度误差小于0.5℃;(3)LED数码管显示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 课程设计的目的 (1)2 课程设计的任务和要求 03 设计方案与论证 04 电路设计 (2)4.1 温度测量电路 (2)4.2 单片机最小系统 (6)4.3 LED数码显示电路 (8)5 系统软件设计 (8)6 系统调试 (9)7 总结 (11)参考文献 (12)附录1:总体电路原理图 (13)附录2:元器件清单 (15)附录3:实物图 (16)附录4:源程序 (17)1 课程设计的目的(1)掌握单片机原理及应用课程所学的理论知识;(2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题;(3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧;(4)培养认真严谨的工作作风和实事求是的工作态度;(5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。
2 课程设计的任务和要求(1)采用LED数码管显示温度;(2)测量温度范围为-10℃~110℃;(3)测量精度误差小于0.5℃。
3 设计方案与论证方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。
该方案的原理框图如图3-1所示。
DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。
它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控图3-1方案一系统框图方案二:温度检测部分采用传统的热敏电阻,热敏电阻的阻值随环境温度变化而变化,将热敏电阻与固定电阻串联后分压,经A/D转换器将其转换为单片机可识别得二进制数字量,然后根据程序查表得到温度值,单片机主要控制LED显示器显示正确的温度值,并根据设置的上下限控制继电器动作,从而控制外部负载。
该方案的原理框图如图3-2所示。
图3-2方案二系统框图方案一与方案二的主要区别在温度检测部分,方案一主要利用DS18B20这块芯片进行温度检测,并将采集到的模拟量转换为单片机识别的二进制数。
方案二是采用热敏电阻检测温度,然后利用A/D转换器将温度模拟量转换为二进制数供单片机处理。
它最大的特点就是它能检测的温度范围很大,热敏电阻的性能决定了整个设计的所能检测的温度范围。
方案一的温度检测范围已经由系统中的DS18B20的特性所决定,它能检测的温度范围为-55℃到120℃,其温度检测范围很宽,已能足够满足一般测量需要,方案一是利用现有的智能温度传感芯片DS18B20,无需A/D转换,直接输出数字量,从整体上来看方案二比方案一更具有实际的锻炼意义,所以本设计采用方案二。
4 电路设计系统硬件电路主要包括3个部分:(1)温度测量电路;(2)单片机最小系统;(3)LED 数码显示电路。
4.1 温度测量电路温度测量电路主要由ADC0809、TL431、热敏电阻和电阻组成。
TL431是一个由良好的热稳性能的三端可调分流基准电压源。
它的输出电压用两个电阻就可以任意设置到 2.5V 到36V 范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如数字电压表、运放电路、可调电压源、开关电源等等。
在此电路中,它用于给ADC0809和热敏电阻提供可调电压。
电路中的热敏电阻作为测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。
导体测温元件,它与热电阻的温阻特性刚好相反,即有很大负温度系数,也就是说温度升高时,其阻值降低。
它们的关系为011()B T T T T R R e-= (4-1)式(4-1)中 R T -在温度T(K)时的电阻值; R T0:在温度T 0(K)时的电阻值; E :自然对数的底数;B :与热敏电阻特性有关的系数; T :被测温度;T 0与热敏电阻有关的温度参数。
根据这一公式,如果能测得热敏电阻两端的电压,并知道参数T 0和B ,则可以计算出热敏电阻的环境温度,即:被测温度,就这样就把电阻随温度的变化关系转变为电压随温度变化的关系。
系统中的A/D转换电路,负责将的温度测量电路中输出的模拟电压信号转化为可供单片机识别的数字信号。
主要采用ADC0809串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。
由于是串其管脚图如图引脚功能如下。
IN0~IN7:8路模拟量输入端。
OUT1~OUT8:8位数字量输出端。
ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。
ALE:地址锁存允许信号,输入,高电平有效。
START:A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns 宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。
EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。
OE:数据输出允许信号,输入,高电平有效。
当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。
CLOCK:时钟脉冲输入端。
REF(+)、REF(-):基准电压。
VCC:电源,单一+5V。
GND:地。
ADC0809工作过程:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。
此地址经译码选通8路模拟输入之一到比较器。
START上升沿将逐次逼近寄存器复位。
下降沿启动A/D转换,之后EOC 输出信号变低,指示转换正在进行。
直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。
当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。
转换数据的传送A/D转换后得到的数据应及时传送给单片机进行处理。
数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。
为此可采用下述三种方式。
(1)定时传送方式对于一种A/D转换器来说,转换时间作为一项技术指标是已知的和固定的。
例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。
可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。
(2)查询方式A/D转换芯片有表明转换完成的状态信号,例如ADC0809的EOC 端。
因此可以用查询方式,测试EOC的状态,即可确认转换是否完成,并接着进行数据传送。
(3)中断方式把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。
不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。
首先,送出出口地址,并且在信号有效时,即OE信号有效,把转换数据送到数据总线,供单片机接收。
利用热敏电阻和电阻串联,用TL431制作4V电压用于A/D的参考电压和热敏电阻的供电,R7是分压电阻,R9是可调电位器,用于调节TL431的输出电压。
当温度升高时,R8热敏电阻的阻值变小,串联的30k的电阻两端的电压就会升高,ADC0809采集到电压信号经过转换后将数字量传输给单片机。
温度测量电路图如图4-2所示。
图4-2 温度测量电路4.2 单片机最小系统STC89C51是一种低功耗、高性能的CMOS8位微控制器,具有4K 可编程Flash,其引脚如图4-3所示。
图4-3 STC89C51的引脚图单片机的最小系统由时钟电路和复位电路组成。
时钟电路:此系统的时钟电路设计是采用的内部方式,即利用芯片内部的振荡电路。
STC89C51内部有一个用于构成振荡器的高增益反相放大器。
引脚X1和X2分别是此放大器的输入端和输出端。
这个放大器与作为反馈元件的片外晶体谐振器一起构成一个自激振荡器。
外接晶体谐振器以及电容C2和C3构成并联谐振电路,接在放大器的反馈回路中。
时钟电路图如图4-4所示。
333333331111111122222222图4-5 复位电路4. 3 LED数码显示电路该电路选用的数码管是四位八段共阳极的,数码管的扫描方式分为静态扫描和动态扫描两种,由于单片机资源有限,这里采用的是动态扫描的方法。
在该接法中,用到单片机的P0和P1口,其中P0作为输出口;电路中利用三极管驱动数码管,用电阻起到限流作用,使得数码管亮度适中,其电路图如图4-6所示。
图4-6 LED数码显示电路图5 系统软件设计系统程序主要包括初始化、温度采集、数据处理和显示温度四部分。
该电路设计的程序流程图如图5-1所示。
图5-1 程序流程图温度采集和数据处理部分主要由热敏电阻、数模转换器ADC0809、单片机及四位共阳数码管组成。
通过测得热敏电阻阻值,利用热敏电阻阻值与电压的对应关系,将热敏电阻阻值转化为输出电压,ADC0809采集输出的电压信号,并将采集的电压信号转换为数字信号,传送给单片机,由单片机P0口输出,最后由四位共阳数码管采用动态扫描方式显示温度。
6 系统调试在整个调试过程中首先应注意各个模块的供电问题,其中单片机和A/D等芯片使用5V电压供电。
由热敏电阻构成的测温部分和A/D的参考电压输入端则使用+4V电压供电,表6-1为系统的调试数据。
表6-1 系统调试数据调试结果如图6-1、图6-2、图6-3所示。
图6-1 调试结果一图6-2 调试结果二图6-3 调试结果三7 总结经过一周的课程设计,通过对热敏电阻的数字温度计系统的设计过程及计算得出如下结论。
设计电路关键在于对设计要求的理解分析以及对基本电路相关知识的熟练掌握。
设计电路时,将总体的功能分成若干个部分来实现,是简化电路设计思路的很好方法;且搞清各个模块的功能与实现要求操作的具体方法,对电路故障的检查也是很有帮助。
通过这次设计,学到了很多东西,如查找资料,设计比较,从各种图中提取所需。
焊接时学到了好多,如如何在一定大小的板子上正确摆放好芯片,如何布线等等,调试时也是,知道了用工具如万用表来检查、修复故障。
本设计对有限温度范围内的温度测量具有较高的精度,在这过程中,感谢老师和同学对我们的帮助,程序经过无数次地调试,实现了测量温度显示。
在做实物的过程中,我们在焊接时还是谨小慎微,但是由于焊接时引脚短路的问题导致实物没出来现象。
学会了用Proteus 软件的应用。
在以后的学习中更加地完善自己,努力提升自己。
参考文献[1]杨素行.模拟电子技术基础[第3版].北京:高等教育出版社,2006.[2] 阎石.数字电子技术基础[第5版].北京:高等教育出版社,2006.[3]赵茂泰.智能仪器原理及应用[第3版].北京:电子工业出版社,2009.[4]郭天祥.51单片机C语言教程.北京:电子工业出版社,2006.[5]张忠梅.单片机的C语言应用程序设计[第4版].北京:北京航空航天大学出版社,2006.[6]李朝青.单片机原理及接口技术[第3版].北京:北京航空航天大学出版社,2006.[7]孙有才.新型AT89S51系列单片机及其应用.北京:清华大学出版社,2001.[8]姚福安.电子电路设计与实践.济南:山东科学技术出版社,2009.[9] 李青.电路与电子技术基础.杭州:浙江科学技术出版社,2004.附录1:总体电路原理图附录2:元器件清单附录3:实物图附录4:源程序//程序头函数#include <reg52.h>//宏定义#define uint unsigned int#define uchar unsigned char#define Data_ADC0809 P1//管脚声明//ADC0809sbit ST=P3^3;sbit EOC=P3^4;sbit OE=P3^2;//显示数组0-9H, L, -ucharData_[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x76,0x38,0x40};uchar code Data_T[]={//AD数值对应的温度0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,/*0-11*///此范围内为无效值,读到的数据为---70x89,0x88,0x87,0x86,0x85,0x84,0x83,0x82,0x81,/*12-20*/ //此范围内为负温度值-9~-10,1,2,3,4,5,6,6,7,8, /*21-30*/ //以下为正温度0-1119,9,10,11,11,12,13,13,14,15, /*31-40*/15,16,17,17,18,18,19,19,20,21,/*41-50*/21,22,22,23,23,24,24,25,25,26, /*51-60*/26,27,27,28,28,29,29,30,30,30, /*61-70*/31,31,32,32,33,33,33,34,34,35, /*71-80*/35,36,36,36,37,37,38,38,39,39, /*81-90*/39,40,40,41,41,42,42,42,43,43, /*91-100*/44,44,44,45,45,46,46,47,47,47, /*101-110*/48,48,49,49,49,50,50,51,51,51, /*111-120*/52,52,53,53,54,54,54,55,55,56, /*121-130*/56,57,57,57,58,58,59,59,60,60, /*131-140*/60,61,61,62,62,63,63,64,64,65, /*141-150*/65,65,66,66,67,67,68,68,69,69, /*151-160*/70,70,71,71,72,72,73,73,74,74, /*161-170*/75,75,76,76,77,78,78,79,79,80, /*171-180*/80,81,82,82,83,83,84,85,85,86, /*181-190*/87,87,88,89,89,90,91,91,92,93, /*191-200*/94,94,95,96,97,98,99,99,100,101,/*201-210*/102,103,104,105,106,107,108,109,110,111 /*211-220*/ };sbit Wei1 = P2^7;sbit Wei2 = P2^6;sbit Wei3 = P2^5;sbit Wei4 = P2^4;//函数声明void Display(uchar Data);uint temp,temp1;uchar p;//ADC0809读取信息uchar ADC0809(){uchar temp_=0x00;//初始化高阻太OE=0;//转化初始化ST=0;//开始转换ST=1;ST=0;//外部中断等待AD转换结束while(EOC==0);//读取转换的AD值OE=1;temp_=Data_ADC0809;OE=0;return temp_;}//延时void delay(uint t){uint i,j;for(i=0;i<t;i++)for(j=0;j<10;j++);}void main(){uchar i;uint pp;while(1){for(i=0;i<50;i++){temp=ADC0809();pp=pp+temp;Display(temp1);}temp1=pp/50;pp=0;temp1=Data_T[temp1];for(p=0;p<50;p++)Display(temp1);}}//显示Data表示数据void Display(uchar Data){Wei1=1;Wei2=1;Wei3=1;Wei4=1;P0=0xff;if(Data>128){Data=Data-128;P0=~Data_[12];Wei1=0;Wei2=1;Wei3=1;Wei4=1;delay(10);Wei1=1;Wei2=1;Wei3=1;Wei4=1;P0=~Data_[Data/10];Wei1=1;Wei3=1;Wei4=1;delay(10);Wei1=1;Wei2=1;Wei3=1;Wei4=1;P0=~Data_[Data%10]; Wei1=1;Wei2=1;Wei3=0;Wei4=1;delay(10);Wei1=1;Wei2=1;Wei3=1;Wei4=1;P0=0xa7;Wei1=1;Wei2=1;Wei3=1;Wei4=0;delay(10);Wei1=1;Wei3=1;Wei4=1;}else if(Data<128){if(Data/100==0)P0=0xff;elseP0=~Data_[Data/100];Wei1=0;Wei2=1;Wei3=1;Wei4=1;delay(10);Wei1=1;Wei2=1;Wei3=1;Wei4=1;P0=~Data_[Data/10%10];Wei1=1;Wei2=0;Wei3=1;Wei4=1;delay(10);Wei2=1;Wei3=1;Wei4=1;P0=~Data_[Data%10]; Wei1=1;Wei2=1;Wei3=0;Wei4=1;delay(10);Wei1=1;Wei2=1;Wei3=1;Wei4=1;P0=0xa7;Wei1=1;Wei2=1;Wei3=1;Wei4=0;delay(10);Wei1=1;Wei2=1;Wei3=1;} }。