一元一次不等式组测试题及答案

合集下载

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣23.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴表示正确的是()A.B.C.D.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种二.填空题(共10小题)11.3的解集是.12.不等式组的解集是.13.若不等式组无解,则m的取值范围是.14.当m的取值范围是时,关于x的方程1的解不大于11.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树棵;女同学种树棵.三.解答题(共8小题)21.解不等式组:.22.解不等式组:并把它的解集在数轴上表示出来.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a},min{﹣1,2,a}.(1)请填空:max{c﹣1,c,c+1}=;若m<0,n>0,min{3m,(n+3)m,﹣mn}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x<﹣1﹣3,合并同类项,得:2x<﹣4,系数化为1,得:x<﹣2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x﹣1>2x+2,得:x<﹣3,解不等式2+5x≤3(6﹣x),得:x≤2,则不等式组的解集为x<﹣3.故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣3≥0,得:x≥1,解不等式x﹣1<5﹣x,得:x<3,则不等式组的解集为1≤x<3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.不等式组的解集在数轴表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 【分析】分别求出每一个不等式的解集,根据口诀:同大取大及不等式组的最小整数解求解即可.【解答】解:解不等式2,得:x≥4+m,解不等式x﹣4≤3(x﹣2),得:x≥1,∵不等式组的最小整数解是2,∴1<4+m≤2,解得﹣3<m≤﹣2,故选:B.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 【分析】分别求出每个不等式的解集,结合不等式组整数解的个数可得a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,则不等式组的解集为a<x<2,∵不等式组有3个整数解,∴不等式组的整数解为1、0、﹣1,则﹣2≤a<﹣1,故选:B.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式的基本步骤,并根据不等式组整数解的情况确定字母a的取值范围.8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨【分析】首先根据题意可知总工作量为30×8=240吨不变,故卸货速度v与卸货时间t 之间为反比例关系,即vt=240,将t≤5代入,即可求出答案.【解答】解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数关系式为v,∵v,∴t,∵t≤5,∴5,解得:v≥48.即平均每天至少要卸载48吨.故选:B.【点评】本题考查了一元一次不等式的应用,解答该类问题的关键是确定两个变量之间的函数关系.9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b【分析】解方程求出x,根据方程的解是非负数得出0,求出不等式的解集即可.【解答】解:,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x,∵关于x的方程的解是非负数,∴0,解得:a b,b a,故选:C.【点评】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式等知识点,能求出方程的解是解此题的关键.10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过2000元的资金、两种商品均售完所获利润大于380元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.二.填空题(共10小题)11.3的解集是x≥7.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】解:去分母,得:x﹣1≥6,移项、合并,得:x≥7,故答案为:x≥7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.不等式组的解集是3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式1<1,得:x<4,解不等式2﹣3x≤﹣7,得:x≥3,则不等式组的解集为3≤x<4,故答案为:3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.若不等式组无解,则m的取值范围是m≤2.【分析】求出第一个不等式的解集,根据口诀:大大小小找不到可得答案.【解答】解:解不等式x﹣2<3x﹣6,得:x>2,∵不等式组无解,∴m≤2,故答案为:m≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.当m的取值范围是m≤1时,关于x的方程1的解不大于11.【分析】解关于x的方程得出x,再根据解不大于11得出关于m的不等式,解之可得答案.【解答】解:解关于x的方程1得x,根据题意,得:11,解得m≤1,故答案为:m≤1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为2<x<2.5.【分析】根据新定义得出2≤x+0.5<3且﹣2≤1﹣x<﹣1,再分别求出其解集,继而找到其解集的公共部分即可.【解答】解:∵[x+0.5]=2,且[1﹣x]=﹣2,∴2≤x+0.5<3且﹣2≤1﹣x<﹣1,解2≤x+0.5<3得1.5≤x<2.5,解﹣2≤1﹣x<﹣1得2<x≤3,∴2<x<2.5,故答案为:2<x<2.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价120元商店老板才能出售.【分析】设这件商品的进价为x,根据题意可得高出进价80%的价格标价为360元,列出方程,求出x的值,然后再求出最低出售价,用标价﹣最低出售价即可得出答案.【解答】解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.【点评】本题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为t.【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出:一定存在一个整数k,满足满足下列关系:,并分情况讨论得出k的取值,再得t的取值范围.【解答】解:解不等式①得:x,解不等式②得:x<3﹣2t,则不等式组的解集为:x<3﹣2t,∵不等式组有3个整数解,∴一定存在一个整数k,满足满足下列关系:,解不等式组①得,,解不等式组②得,,(1)当,即时,则,于是,,解得,,∴k,∵k为整数,∴k=3,∴,∴t;(2)当时,即时,不存在整数k,∴此时无解;(3)当,此时无解;(4)当,即k时,则,于是,,解得,,∴,不存在整数k,∴此时无解.综上,t.故答案为:t.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.难点是由不等式组有3个整数解,得出t的不等式组,以及分情况解k及t.难度大.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是2.【分析】根据题中已知条件得出关于bd的不等式,直接进行解答即可.【解答】解:已知13,即1<4﹣bd<3所以解得1<bd<3因为b,d都是整数,则bd一定也是整数,因而bd=2.【点评】读懂题目,把题目中的式子转化为一般的式子是解决本题的关键.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.【点评】此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树104棵;女同学种树96棵.【分析】关系式为:8×(原来每行树的棵数+1)>100;8×(原来每行树的棵数﹣1)<100,把相关数值代入求得整数解,根据男同学种的树比女同学种的树多可得男同学和女同学原来种的每行树的棵数,乘以8即为总的种树棵树.【解答】解:设原来每行树的棵数为x.,解得11.5<x<13.5,∵x为整数,∴x为12,13.∵男同学种的树比女同学种的树多,∴男同学每行种13棵树,女同学每行种12棵树.∴男同学种了13×8=104棵树,女同学种了12×8=96棵树.故答案为:104;96.【点评】考查一元一次不等式组的应用;得到种树总棵数和100的2个关系式是解决本题的关键.三.解答题(共8小题)21.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+5>3,得:x>﹣2,解不等式,得:x≥2,则不等式组的解集为x≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.解不等式组:并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+6>3(x+1),得:x,解不等式,得:x≤4,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.【分析】(1)先解每个不等式得出其解集,结合已知的不等式组的解集得出关于k的方程,解之即可;(2)根据不等式组只有2个整数解知01,解之即可.【解答】解:(1)解不等式2x+4>0,得:x>﹣2,解不等式3x﹣k<6,得:x,则不等式组的解集为﹣2<x,∵该不等式组的解集为﹣2<x<3,∴3,解得k=3;(2)∵不等式组只有2个正整数解,∴23,解得0<k≤3.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式的能力,并根据不等式组的整数解个数得出关于k的不等式组.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是3x﹣3=﹣3(答案不唯一);(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围0<m≤1.【分析】(1)求出三个方程的解,并解不等式组求出其解集,从而得出答案;(2)解不等式组求出其解集,得出其整数解,继而得出答案;(3)先求出方程的解和不等式组的解集,根据关联方程的概念得到关于m的不等式组,解之即可得出答案.【解答】解:(1)解方程3x﹣1=0得:x,解方程x+1=0得:x,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:x,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式,得:x,∴不等式组的解集为﹣1<x,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.【点评】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?【分析】(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元,列方程组求解.(2)设建立中型图书馆a个,根据要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,列出不等式组求解.【解答】解:(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据题意列方程组:.解得:.答:建立每个中型图书馆需要5万元,建立每个小型图书馆需要3万元.(2)设建立中型图书馆a个,根据题意得:.解得:5≤a≤7.∵a取正整数,∴a=5,6,7.∴10﹣a=5,4,3答:一共有3种方案:方案一:中型图书馆5个,小型图书馆5个;方案二:中型图书馆6个,小型图书馆4个;方案三:中型图书馆7个,小型图书馆3个.【点评】本题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式组求解.26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a≥3(100﹣a),解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80(100﹣a)],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.【点评】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费280元,在乙商场需花费270元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300﹣200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300﹣100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【解答】解:(1)当x=300时,小红在甲商场所花费用为200+(300﹣200)×80%=280(元);在乙商场所花费用为100+(300﹣100)×85%=270(元);故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x﹣200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x﹣100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,。

一元一次不等式组练习题(附答案)

一元一次不等式组练习题(附答案)

一元一次不等式组练习题(附答案)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是(). A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程: -9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.。

七年级下一元一次不等式组100题(有答案)

七年级下一元一次不等式组100题(有答案)

解不等式不等式组100题1.3(2x +5)<2(4x +6)2.10-4(x -3)≤2(x -2)3.3x -2(9-x )>3(7+2x )-(11-6x )4.2(3x -1)-3(4x +5)≤x -4(x -7)5.2(x -1)-x >3(x -1)-3x +56.3[y -2(y -7)]≤4y7.15-(7+5x )≤2x +(5-3x )8.2(x -4)-3<1-3(x -2)9.2+≤2-3(y +1)8y -3410.0.5x +3(1+0.2x )>0.4x -0.611.2[x -]≤x 43(x -2312)3412.-≥0.04x +0.090.050.3+0.2x 0.3x -5213.7(4-x )-2(4-3x )<-4x14.2+<3+3(y +1)8y -1415.+<1x 3x -1216.3[x -2(x -2)]>x -3(x -3)17.x ++<1+x 2x +13x +8618.x -4<3243(1+x )(x -216)19.5-≥-x 3122x +1420.+1<+3y +137y -352(y -2)1521.-1<x +523x +2222.{2x -5<3x>x -22x 323.{->-1x 2x 32-3>-6(x -3)(x -2)24.{+4≤1x2x -8>2(x +2)25.{x -3<4(x -2)≥x -12x +1326.{2≤10-4(x -3)(x +8)-<1x -124x +1627.{->x3x -322x +13<112[x -2(x +3)]28.{x -3>1-x x -5>5-x 2x -4>x 229.4≤<73x -2-230.2x -1≤x -5≤4-x 3231.y -≤+13y -832(10-y )732.>(1-)(+1)(1+y 3)(+1y 2)y -22y 233.{3x -2<82x -1>234.{5-7x ≥2x -41-<0.534(x -1)35.2x <1-x ≤x +536.{3<2(x +9)(1-x)-≤-14x -30.5x +40.237.{-3x ≤04x +7>038.{x -1<x122x -4>3x +339.{2x -5<3x >x -22x 340.{->-1x 2x 32-3>-6(x -3)(x -2)41.{+4≤1x 2x -8>2(x +2)42.{5x -3≥2x <43x -1243.{2x +7>3x -1≥0x -2544.{>x -11+2x34<3x -4(x -1)45.-1<<1-2-3x446.{2-1≥3(x +1)4+x <747.{2x -1≥3(x -2)-2x <448.{3x +1>x +32x -1<x +149.{x +3>42x <650.{2x -5≥3(x -1)-<1x 3x -1251.{x<2x +13x -2≤4(x -1)52.{x +3>02+3≥3x(x -1)53.{3x +1<2(x +2)-x ≤x +2135354.{>0x +132≥6(x -1)(x +5)55.{5x -9<3(x -1)1-x ≤x -1321256.{2≤5x +5(x -3)4x <3x +157.{2x +3≤x +6>x +22x +3358.{-3≤4-x(x -2)>x -11+2x359.{4x -3<5x +≤x-42x +261360.{<212(x +4)x -3>5(x -1)61.{x ->-31+3x 25x -12≤2(4x -3)62.{1-2(x -1)≤5<x +3x -221263.{+3>x +1x -321-3≤8-x(x -1)解不等式不等式组100题64.{5x +2>3(x -1)7-x ≥x -1321265.{2<x +4(x +2)≥x 3x +1466.{2x +5≤3(x +2)x -1<x2367.{3≥x +4(x +2)<1x -1268.{2-x >0+1≥5x +122x -1369.{-3x ≤5616(x +5)2-9x >5[x -2(x -3)](x +19)70.{3x -2≤x +6+1>x 5x -2271.{2x +2≥3x +3-<-2x-13x +4272.{5x +3(x -2)≤10>x -11+3x273.{+2≥xx -241-3<9-x (x -2)74.{5x -2>3(x +1)x -1≤7-x 123275.{4x -10<05x +2>3x11-2x ≥1+3x 76.{-≤12x -135x +125x -1<3(x +1)77.{2x -3<1+2≥-x x -1278.{3+4<5x (x -2)-x ≥3x +1x -1279.{x -3(x -2)≥4<2x -15x +1280.{>2+x 22x -135-2≤x -1(x -3)81.{5x -2<3x +4>-x x +8382.{10-4(x -3)≥2(x -1)x -1>1-2x383.{5x -2<3(x +1)≤x -222x +3384.{3>2(x +9)(1-x)-≤-14x -30.5x +40.285.{2-x >0+1≥5x +122x -1386.{-3-<8(x +1)(x -3)-≤12x +131-x287.{5x -2≤3(x +1)x -1≤7+x 123288.{1-≤x +2x +12x >x (x +3)(x +1)89.{-≤12x -135x +125x -1<3(x +1)90.{5x +4<3(x +1)≥x -122x -1591.{2x +7>3x -1≥0x -2592.{1-2(x -1)≤5<x +3x -221293.{2≤3x +3(x +2)<x 3x +1494.{3x -1<2(x +1)≥1x +3295.{3x -2>x +2x -1≤7-x 123296.{3x -1<2x +11-2≤3+5(x -1)(x +1)97.{x -(2x -1)≤432>2x -11+3x298.{+3<x -1x -231-3≥6-x(x +1)99.{2x -1≥03x +1>03x -2<0100.≤5|-2x +13|解不等式不等式组100题答案12345678910x >32x ≥133x <-4x ≥-15x >4y ≥6x ≥34x <185y ≤35x >-36711121314151617181920x ≥35x ≤9x <-203y <3x <95x <3x <65x >152x ≥-572y >33821222324252627282930x >12x >6-6<x <6x <-121<x ≤4-10<x ≤1无解x >8-4<x ≤-2x ≤-431323334353637383940y ≤256y >65<x <32103无解-2≤x <13x >-3x ≥0无解x >6-6<x <641424344454647484950x <-121≤x <32≤x <8x <0-2<x <231≤x <3-2<x ≤51<x <21<x <3-3<x ≤-251525354555657585960-1<x ≤2-3<x ≤1-1≤x <3-1<x ≤41≤x <3-<x <11130<x ≤31≤x <4-3<x ≤3X <-161626364656667686970-2≤x <5-1≤x <3-2≤x <1-<x ≤452无解-1≤x <31≤x <3-1≤x <20≤x <40<x ≤471727374757677787980-2<x ≤-1-3<x ≤8-<x ≤212<x ≤452-1<x ≤2-1≤x <2-1≤x <2-1<x ≤-37-7<x ≤14≤x <881828384858687888990-2<x <3<x ≤445-12≤x <52-4≤x <-3-1≤x <2-2<x ≤1-8≤x ≤52-1≤x <0-1≤x <2无解9192939495969798991002≤x <8-1≤x <31≤x <3-1≤x <32<x ≤4﹣1≤x <2﹣≤x <354无解≤x <1223-7≤x ≤8。

一元一次不等式 答案

一元一次不等式 答案

一元一次不等式和一元一次不等式组一、选择题(每小题3分,共30分)1.下列是一元一次不等式的有()x>0,<-1,2x<-2+x,x+y>-3,x=-1,x2>3,≥0.A. 1个B. 2个C. 3个D. 4个【答案】B2.不等式3(x-2)≤x+4的非负整数解有()个.A. 4B. 5C. 6D. 无数【答案】C3.已知a<3,则不等式(a﹣3)x<a﹣3的解集是()A. x>1B. x<1C. x>﹣1D. x<﹣1【答案】B4.下列说法正确的是()A. 不等式组的解集是5<x<3B. 的解集是-3<x<-2C. 的解集是x=2D. 的解集是x≠3【答案】C5.下列变形中不正确的是( )A. 由得B. 由得C. 若a>b,则ac2>bc2(c为有理数)D. 由得【答案】C6.x与3的和的一半是负数,用不等式表示为( )A. x+3>0B. x+3<0C. (x+3)<0D. (x+3)>0【答案】C7.不等式x<-2的解集在数轴上表示为( )A. B.C. D.【答案】D8.贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A. 18<t<27B. 18≤t<27C. 18<t≤27D. 18≤t≤27【答案】D9.如果点P(3-m,1)在第二象限,那么关于x的不等式(2-m)x+2>m的解集是( )A. x>-1B. x<-1C. x>1D. x<1【答案】B10.已知关于x的不等式x>表示在数轴上如图所示,则a的值为( )A. 1B. 2C. -1D. -2【答案】A二、填空题(每小题3分,共30分)11.若m<n,则不等式组的解集是__.【答案】x<m.12.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为__.【答案】0<x≤18.13.不等式组-2≤x+1<1的解集是__________________.【答案】-3≤x<014..x的与6的差不小于-4的相反数,那么x的最小整数解是______________.【答案】1515.下列结论正确的有__________(填序号).①如果,;那么②如果;那么③如果,那么;④如果,那么.【答案】①④16.三角形三边长分别为4,a,7,则a的取值范围是______________【答案】3<a<1117.不等式组的解集是____________【答案】18.在方程组中,若未知数x、y满足x+y>0,则m的取值范围是_______.【答案】m<319.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.【答案】x>64.20.若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有_____间。

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。

第二章一元一次不等式与一元一次不等式组综合测试题含答案

第二章一元一次不等式与一元一次不等式组综合测试题含答案

第二章 一元一次不等式与一元一次不等式组 综合测试题 一、选择题(每小题3分,共30分)1.若关于x 的不等式组的解集表示在数轴上如图1所示,则这个不等式组的解集是( )A. x ≤2B. x >1C. 1≤x <2D. 1<x ≤22.已知实数a ,b ,若a >b ,则下列结论正确的是( )A. a -5<b -5B. 2<2C. 3a <3bD. 3a >3b 3.不等式4-3x ≥2x -6的非负整数解有( )A. 1个B. 2个C. 3个D. 4个4.关于x 的不等式-≥1的解集如图2所示,则a 的值为( )A. -1B. 0C. 1D. 25.若不等式-2>0的解集为x <-2,则关于y 的方程2=0的解为( )A. y =-1B. y =1C. y =-2D. y =2图1 0 图-3 32 1 -2 -1 06.若>0,且b<0,则a,b,-a,-b的大小关系为()A. -a<-b<b<aB. -a<b<-b<aC. -a<b<a<-bD. b<-a<-b<a7.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在8.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 ,长与宽的比为3∶2,则该行李箱的长的最大值为()A. 30B. 160C. 26D. 789.图3是测量一颗玻璃球体积的过程:①将300 3的水倒进一个容量为500 3的杯子中;②将四颗相同的玻璃球放入水中,结果水没有满;③再将一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A. 20 3以上,30 3以下B. 30 3以上,40 3以下C. 40 3以上,50 3以下D. 50 3以上,60 3以下图Oxy-2y=ny=-4图10.如图4,直线y =-与y =4n (n ≠0)的交点的横坐标为-2,则关于x 的不等式->4n >0的整数解为( )A. -1B. -5C. -4D. -3二、填空题(每小题4分,共32分)11.写出一个解集为x ≥1的一元一次不等式___.12.如图5,已知函数y =2与函数y =-3的图象交于点P ,则不等式-3>2的解集是___.图4 O x y P -6 y =-3y =213.如果a<b ,那么3-23-2b.14.不等式13(x -m )>3-m 的解集为x >1,则m 的值为___.15.某市组织开展“吸烟有害健康”的知识竞赛,共25道题,答对一题得4分,不答或答错扣2分,得分不低于60分获奖,那么获奖至少需要答对道题.16.若关于x 的一元一次不等式组100x x a -<⎧⎨->⎩,无解,则a 的取值范围是__.17.定义新运算:对于任意实数a ,b 都有a △b =-a -1,例如:2△4=24-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x 的值大于5而小于9,那么x 的取值范围是___. 18.按下列程序进行运算(如图6):规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行___次才停止;若运算进行了5次才停止,则x 的取值范围是___.三、解答题(共58分)19.(6分)解不等式213x --926x +≤1,并把解集表示在数轴上. 图是 否 输入 x 乘以3 减去2停止 大于24420.(8分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥,>,并写出不等式组的整数解. 21.(10分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每只22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少只球拍?22.(10分)已知实数a 为常数且a ≠3,解不等式组()233112022x x a x -+≥-⎧⎪⎨-+<⎪⎩,①,②并根据a 的取值情况写出其解集.23.(12分)已知某工厂计划用库存的302 m 2木料为某学校生产500套桌椅,供该校1250名学生使用.该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x 套,生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)求总费用y 最小时的值.24.(12分)阅读下面的材料,回答问题:已知(x -2)(6+2x )>0,求x 的取值范围.解:根据题意,得20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<. 分别解这两个不等式组,得x >2或x <-3.故当x >2或x <-3时,(x -2)(6+2x )>0.(1)由(x -2)(6+2x )>0,得出不等式组20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<,体现了 思想.(2)试利用上述方法,求不等式(x -3)(1-x )<0的解集.附加题(15分,不计入总分)25.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:(1)[-4.5]=___,<3.5>=___;(2)若[x ]=2,则x 的取值范围是___;若<y >=-1,则y 的取值范围是___.(3)已知x ,y 满足方程组[][]3233 6.x y x y ⎧+=⎪⎨-=-⎪⎩,求x ,y 的取值范围.参考答案一、1. D 2. D 3. C 4. D 5. D 6. B 7. A 8. D 9. C 10. D二、11. 答案不唯一,如2≥3 12. x <4 13. > 14. 4 15. 19 16. a ≥1 17. 72<x <11218. 4 2<x ≤4 提示:通过计算知,经过4次运算后结果大于244. 若运算进行了5次才停止,则有第一次结果为3x -2,第二次结果为3(3x -2)-2=9x -8,第三次结果为3(9x -8)-2=27x -26,第四次结果为3(27x -26)-2=81x -80,第五次结果为3(81x -80)-2=243x -242.由题意,得8180244243242244.x x -≤⎧⎨->⎩,解得2<x ≤4.三、19. 不等式的解集为x ≥-2,在数轴上表示如图所示:20. 不等式组的解集是-1≤x <2,不等式组的整数解是-1,0,1.21. 解:设购买球拍x 只.根据题意,得1.5×20+22x ≤200,解得x ≤8711. 由于x 取整数,故x 的最大值为7.----0 1 2答:孔明应该买7只球拍.22. 解:解不等式①,得x ≤3;解不等式②,得x <a .因为a 是不等于3的常数,所以当a >3时,不等式组的解集为x ≤3;当a <3时,不等式组的解集为x <a .23. 解:(1)由题意,得生产B 型桌椅(500-x )套,则y =(100+2)(120+4)(500-x )=-2262 000.又()()2350012500.50.7500302x x x x +-≥⎧⎪⎨+-≤⎪⎩,,解得240≤x ≤250,所以y =-2262 000(240≤x ≤250).(2)因为-22<0,所以y 随x 的增大而减小.所以当x =250时,总费用y 最小,最小值为56 500元.24. 解:(1)转化(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x>3或x<1.所以不等式(x-3)(1-x)<0的解集是x>3或x<1.25. 解:(1)-5 4(2)2≤x <3 -2≤y <-1提示:因为 [x ]=2表示不大于x 的最大整数是2,所以[2]=2,[3]=3.所以x 可以等于2,不可以等于3,即2≤x <3;因为<y >=-1表示大于y 的最小整数是-1,所以<-2>=-1,<-1>=0.所以y 可以等于-2,不可以等于-1,即-2≤y <-1.(3)解方程组[][]32336x y x y ⎧+=⎪⎨-=-⎪⎩,,得[]13x y ⎧=-⎪⎨=⎪⎩,.因为[x]=-1表示不大于x的最大整数是-1,所以[-1]=-1,[0]=0.所以x可以等于-1,不可以等于0,即-1≤x<0;因为<y>=3表示大于y的最小整数是3,所以<2>=3,<3>=4.所以y可以等于2,不可以等于3,即2≤y<3.。

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)1、选择题1、选B。

解集为2<x<3的不等式组是x<3且x>2.2、选B。

根据题意可列出不等式组:a<1+a,1+a<-a,-a<a,解得a<0.3、选D。

将不等式组化简可得x≤1或x>2,所以解集在数轴上表示为(-∞,1]∪(2,+∞)。

4、选C。

将不等式组化简可得2<x<5/3,所以整数解的个数是3个。

5、选C。

根据题意可列出不等式组:2x-6>0,x-5<0,解得-5<x<3.6、选D。

将每个不等式化简,得到①x>1,②x>4,③x <2,④x<3,所以选项D符合条件。

7、选B。

根据题意可得2-b<a<2-a,即b-2<x<a-2.8、选A。

将方程组化简可得x=(3m-2)/7,y=(8x-m)/3,代入x>y中得到4m<25,即m>9/4,所以m的取值范围是m>xxxxxxx。

二、填空题9、解得y<1或y>3,所以取值范围为y<1或y>3.10、将不等式组化简可得x<2或x≥3,所以解集是(-∞,2)∪[3,+∞)。

11、将不等式组化简可得x≤-0.25或x≥0.8333,所以解集是(-∞,-0.25]∪[0.8333,+∞)。

12、将不等式组化简可得m≤0.5或m≥1.5,所以取值范围是m≤0.5或m≥1.5.13、解得x≥2,所以解集为[2,+∞)∩(-∞,5)=[2,5)。

14、将不等式组化简可得x>a且x>2,所以解得a<2.15、将不等式组化简可得x<2b-1且x>(x+3)/2,所以解得b>3/2且a<1/2,所以(a+1)(b-1)=ab+a-b+1=(3/2)a+1/2.16、将不等式组化简可得x<4a-1且x>x-2b-3,所以解得a<(x+1)/4且b<(x-3)/2,所以(a+1)(b-1)<(x+1)/4·(x-3)/2=(x²-2x-3)/8.1)解不等式组begin{cases}3x-2<8\\2x-1>2end{cases}化简得begin{cases}x<10/3\\x>3/2end{cases}因此解集为$(3/2,10/3)$。

人教版八年级数学一元一次不等式组试题及答案

人教版八年级数学一元一次不等式组试题及答案

一元一次不等式组知识点1 解一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A )A .⎩⎪⎨⎪⎧x>2x<-3B .⎩⎪⎨⎪⎧x +1>0y -2<0C .⎩⎪⎨⎪⎧3x -2>0(x -2)(x +3)>0 D .⎩⎪⎨⎪⎧3x -2>0x +1>1x2.下列四个数中,为不等式组⎩⎪⎨⎪⎧3x -6<0,3+x>3的解的是(C )A .-1B .0C .1D .23.(福州中考)不等式组⎩⎪⎨⎪⎧x ≥-1,x<2的解集在数轴上表示正确的是(A )4.(福州中考)不等式组⎩⎪⎨⎪⎧x +1>0,x -3>0的解集是(B )A .x >-1B .x >3C .-1<x <3D .x <35.(湘西中考)不等式组⎩⎪⎨⎪⎧2x -1≤3,x +3>4的解集是(B )A .x >1B .1<x ≤2C .x ≤2D .无解6.(雅安校级月考)不等式组⎩⎪⎨⎪⎧x -3>2,x<3的解集是(D )A .x <3B .3<x <5C .x >5D .无解7.(周口一模)不等式组⎩⎪⎨⎪⎧x -1≤1,5-2x ≥-1的解集在数轴上表示为(A )8.(自贡中考)不等式组⎩⎪⎨⎪⎧-2x +3≥0,x -1>0的解集是1<x ≤32.9.代数式1-k 的值大于-1而又不大于3,则k 的取值范围是-2≤k<2.10.若y 同时满足y +1>0与y -2<0,则y 的取值范围是-1<y <2.11.(天津中考)解不等式组:⎩⎪⎨⎪⎧x +2≤6,①3x -2≥2x.②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得x ≤4; (Ⅱ)解不等式②,得x ≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为2≤x ≤4. 12.解不等式组:(1)(济南中考)⎩⎪⎨⎪⎧x -3<1,①4x -4≥x +2;②解:解不等式①,得x <4.解不等式②,得x ≥2. ∴不等式组的解集为2≤x <4.(2)(郴州中考)⎩⎪⎨⎪⎧x -1>0,①3(x -1)<2x ;②解:解不等式①,得x >1. 解不等式②,得x <3. ∴不等式组的解集是1<x <3.(3)(云南中考)⎩⎪⎨⎪⎧2(x +3)>10,①2x +1>x ;②解:解不等式①,得x >2. 解不等式②,得x >-1. ∴不等式组的解集为x >2.(4)(无锡中考)⎩⎪⎨⎪⎧2(x -1)≥x +1,①x -2>13(2x -1).② 解:解不等式①,得x ≥3. 解不等式②,得x>5. ∴不等式组的解集为x>5.知识点2 不等式组的运用13.(威海中考)已知点P(3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是(A )14.若不等式组⎩⎪⎨⎪⎧x>3,x>m的解集是x>3,则m 的取值范围是m ≤3.15.(达州中考)不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )16.(株洲中考)一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是(C )A .4B .5C .6D .717.若不等式组⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A )A .1B .2C .3D .418.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m的解集是x <2,那么m 的取值范围是(D )A .m =2B .m >2C .m <2D .m ≥219.(潍坊中考)若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x>x -2无解,则实数a 的取值范围是(D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-120.(绵阳中考)在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为(C )21.(烟台中考)不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x<0的最小整数解是3.22.(龙东中考)不等式组2≤3x -7<8的解集为3≤x <5.23.(鄂州中考)若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为x >32.24.(遂宁中考)解下列不等式组,并把解集在数轴上表示出来.(1)⎩⎪⎨⎪⎧3(x +2)>x +8,①x 4≥x -13;②解:解不等式①,得x >1. 解不等式②,得x ≤4.∴这个不等式的解集是1<x ≤4. 其解集在数轴上表示为:(2)⎩⎪⎨⎪⎧2x +3>3x ,①x +33-x -16≥12.②解:解不等式①,得x<3. 解不等式②,得x ≥-4.∴这个不等式组的解集是-4≤x<3. 其解集在数轴上表示为:25.(毕节中考)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),①2x -1+3x2<1,②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.解:解不等式①,得x ≥-1. 解不等式②,得x <3.∴原不等式组的解集是-1≤x <3. 其解集在数轴上表示如下:∴不等式组的非负整数解有:0,1,2.26.(南通中考)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围.解:解不等式①,得x >-25.解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3. ∴1<a ≤32.27.(安徽中考)解不等式:x 3>1-x -36.解:去分母,得2x >6-(x -3). 去括号,得2x >6-x +3.移项,合并同类项,得3x >9. 系数化为1,得x >3.28.(大庆中考)解关于x 的不等式:ax -x -2>0.解:由ax -x -2>0,得(a -1)x >2. 当a -1=0,则ax -x -2>0无解.当a -1>0,则x>2a -1.当a -1<0,则x<2a -1.29.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.解:去括号,得2x +2<3x.移项,合并同类项,得-x <-2. 系数化为1,得x >2. 其解集在数轴上表示为:30.(南京中考)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.解:去括号,得2x +2-1≥3x +2. 移项,得2x -3x ≥2-2+1. 合并同类项,得-x ≥1. 系数化为1,得x ≤-1.∴这个不等式的解集为x ≤-1,在数轴上表示如下:31.求不等式2x -7<5-2x 正整数解.解:移项,得2x +2x <5+7. 合并同类项,得4x<12. 系数化为1,得x <3.∴不等式的正整数解为1,2.32.已知不等式x +8>4x +m(m 是常数)的解集是x <3,求m.解:移项,得x -4x >m -8. 合并同类项,得-3x >m -8.系数化为1,得x <-13(m -8).∵不等式的解集为x <3,∴-13(m -8)=3.解得m =-1.33.(济南中考)解不等式组:⎩⎨⎧2x -1>3,①2+2x ≥1+x.②解:解不等式①,得x>2. 解不等式②,得x ≥-1. ∴不等式组的解集为x>2.34.(泰州中考)解不等式组:⎩⎪⎨⎪⎧x -1>2x ,①12x +3<-1.②解:解不等式①,得x <-1.解不等式②,得x <-8.∴不等式组的解集为x <-8.35.解不等式组⎩⎪⎨⎪⎧2(x +2)≤x +3,①x 3<x +14,②并它的解集表示在数轴上.解:解不等式①,得x ≤-1.解不等式②,得x <3.∴不等式组的解集是x ≤-1.不等式组的解集在数轴上表示为:36.解不等式组⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -2≤7-52x ,②并在数轴上表示出该不等式组的解集. 解:解不等式①,得x >52.解不等式②,得x ≤3.∴不等式组的解集是52<x ≤3.其解集在数轴上表示为:37.求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解. 解:解不等式①,得x ≤5.解不等式②,得x <23.∴不等式组的解集为x <23.∴这个不等式组不存在正整数解.38.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x>-52.解不等式②,得x ≤1.∴-52<x ≤1.故满足条件的整数有-2,-1,0,1.39.(呼和浩特中考)若关于x ,y 的二元一次方程组⎩⎨⎧2x +y =-3m +2,x +2y =4的解满足x +y>-32,求出满足条件的m 的所有正整数值. 解:⎩⎨⎧2x +y =-3m +2,①x +2y =4.②①+②,得3(x +y)=-3m +6, ∴x +y =-m +2.∵x +y>-32,∴-m +2>-32.∴m<72.∵m 为正整数, ∴m =1,2或3.40.已知:2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,3b -2x -16=0,可得a =3x -12,b =2x +163.∵a ≤4<b ,∴⎩⎪⎨⎪⎧3x -12≤4,①2x +163>4.②解不等式①,得x ≤3. 解不等式②,得x >-2.∴x 的取值范围是-2<x ≤3.。

《第7章 一元一次不等式与不等式组》试卷及答案_初中数学七年级下册_沪科版_2024-2025学年

《第7章 一元一次不等式与不等式组》试卷及答案_初中数学七年级下册_沪科版_2024-2025学年

《第7章一元一次不等式与不等式组》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知一元一次不等式(3x−5<4), 那么解集为:A.(x<3)B.(x>3)C.(x<−3)D.(x>−3)2、若不等式组$({.)$的解集是下列哪一项?A.(x>2)且(x≤2)B.(x<2)且(x≥2)C.(x>2)且(x≤6)D. 无解3、下列哪个不是一元一次不等式的正确形式?A. 2x + 3 > 5B. x - 4 ≤ 2C. 3x = 7D. x + 2 < 54、不等式 3x - 5 < 2x + 1 的解集是:A. x < 6B. x < 4C. x > 6D. x > 45、若不等式(3x−7<2x+5)成立,则(x)的取值范围是:A.(x<12)B.(x>12)C.(x<2)D.(x>2)6、设(a<b),下列哪个不等式一定成立?A.(−a<−b)B.(2a<2b)C.(a−3<b−3)D.(a−5<b−5)7、已知不等式 -2x + 3 > 5,解得 x 的取值范围是:A. x < -1B. x > -1C. x ≤ -1D. x ≥ -18、若不等式 3(x - 2) < 2x + 4 成立,则 x 的取值范围是:A. x < 4B. x ≤ 4C. x > 4D. x ≥ 49、若不等式 -3x + 4 > 2x - 1,那么x的取值范围是:A. x < 1B. x > 1C. x < 3D. x > 3 10、不等式组[{2x+3<7x−4>−5]的解集是:A. -4 < x < 2B. -3 < x < 3C. -2 < x < 6D. -1 < x < 5二、计算题(本大题有3小题,每小题5分,共15分)第一题:已知不等式(3x−2<4x+1),求解不等式。

(完整版)一元一次不等式组练习题(含答案)(最新整理)

(完整版)一元一次不等式组练习题(含答案)(最新整理)

x4 0.2
14
18、(2007
年滨州)解不等式组
1x2332x(2x2x1)
≤ 1.
4,
把解集表示在数轴上,并求出不等式组的整数解.
19、求同时满足不等式 6x-2≥3x-4 和 2x 1 1 2x 1 的整数 x 的值.
3
2
x y m5
20、若关于
x、y
的二元一次方程组
x
y
3m
3
中,x
的值为负数,y
的值为正数,求
m
的取值范围.
参考答案
1、C 2、D 3、C 4、B 5、A 6、D 7、A 8、D 9、1<y<2 10、-1≤x<3
1
11、- ≤x≤4 12、m>2 13、2≤x<5 14、a<2
4
15、-6
16、a≤1
17、(1) 3 x 10 (2)无解(3)-2<x< 1 (4)x>-3 18、2,1,0,-1
1
A、a<
2
B、a<0
C、a>0
1
D、a<-
2
x 1≤ 0, 3、(2007 年湘潭市)不等式组 2x 3 5 的解集在数轴上表示为(
) )
1 1 x
A
1 1 x
B
1 1 x
C
1 1 x
D
3x 1 0 4、不等式组 2x 5 的整数解的个数是( )
A、1 个
B、2 个
C、3 个
D、4 个
5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则 x 的取值范围为(
2
3
3
19、不等式组的解集是- 2 x 7 ,所以整数 x 为 0 3 10
20、-2<m<0.5

第二章《一元一次不等式(组)》2020年单元测试卷(三)及答案解析

第二章《一元一次不等式(组)》2020年单元测试卷(三)及答案解析

第二章一元一次不等式(组)单元测试卷(三)一.选择题(共18小题)1.下列式子,其中不等式有()①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.A.1个B.2个C.3个D.4个2.下列不等式的变形不正确的是()A.若a>b,则a+3>b+3 B.若a<b,则﹣a>﹣bC.若﹣x<y,则x>﹣2y D.若﹣2x>a,则x>﹣a3.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.4.已知x=3是关于x的不等式3x﹣的一个解,求a的取值范围为()A.a>3 B.a<3 C.a<4 D.a>45.下列说法正确的是()A.x=﹣3是不等式x>﹣2的一个解B.x=﹣1是不等式x>﹣2的一个解C.不等式x>﹣2的解是x=﹣3 D.不等式x>﹣2的解是x=﹣16.下列不等式中是一元一次不等式的是()A.y+3≥x B.3﹣4<0 C.2x2﹣4≥1D.2﹣x≤47.若不等式(a﹣3)x>2的解集是x<,则a的取值范围是()A.a≠3B.a>3 C.a<3 D.a≤38.使不等式2x﹣4≥0成立的最小整数是()A.﹣2 B.0 C.2 D.39.用不等式表示“y减去1不大于2”,正确的是()A.y﹣1<2 B.y﹣1>2 C.y﹣1≤2D.y﹣1≥210.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了()道题.A.13 B.14 C.15 D.1611.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0 B.x>1 C.x<1 D.x<012.如图,一次函数y1=kx+b的图象与直线y2=m相交于点P(﹣1,3),则关于x的不等式kx+b﹣m>0的解集为()A.x>3 B.x<﹣1 C.x>﹣1 D.x<313.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论中正确的个数是()①y2随x的增大而减小;②3k+b=3+a;③当x<3时,y1<y2;④当x>3时,y1<y2.A.3 B.2 C.1 D.014.下列选项中是一元一次不等式组的是()A.B.C.D.15.已知[x]表示不小于x的最小整数,若(x)表示不大于x的最大整数,当x≥1时,[x]﹣(x)的值可能有()①0 ②1 ③2 ④﹣1A.1个B.2个C.3个D.4个16.不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.017.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.若小朋友的人数为x,则列式正确的是()A.0≤5x+12﹣8(x﹣1)<8 B.0<5x+12﹣8(x﹣1)≤8C.1≤5x+12﹣8(x﹣1)<8 D.1<5x+12﹣8(x﹣1)≤818.现有57本书,计划分给各学习小组,如每组6本则有剩余,每组7本却不够分,则学习小组共有()A.7个B.8个C.9个D.10个二.填空题(共15小题)19.一种药品的说明书上写着:“每日用量120~180mg,分3~4次服完,”一次服用这种药的剂量范围为.20.若2a<2b,则a b.(填“>”或“=”或“<”)21.若关于x的不等式组无解,则a的取值范围.22.若关于x的不等式(2m﹣n)x+3m﹣4n<0的解集是x>,则关于x的不等式(m﹣4n)x+2m﹣3n<0的解集是.23.如图表示的是某一不等式的解集,这个不等式可以是.24.若>5是关于x的一元一次不等式,则m=.25.若不等式(a﹣4)≤4﹣a的解集在数轴上表示如图所示,则a的取值范围是.26.已知关于x的不等式x﹣a≥0只有3个负整数解,则a的取值范围是.27.根据数量“m的3倍与2的和大于1”,列不等式为.28.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是km.29.若直线l1:y1=k1x+b1经过点(0,2),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为.30.写出一个无解的一元一次不等式组为.31.a的5倍与3的差不小于10,且不大于20(只列关系式).32.把一批书分给小朋友,每人5本,则余9本;每人7本,则最后一个小朋友得到书且不足4本,这批书有本.33.按下面的程序计算,若开始输入的值x为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果=.若经过2次运算就停止,则x可以取的所有值是.三.解答题(共1小题)34.如图,直线y=kx+b经A(2,1)、B(﹣1,﹣2)两点.(1)求直线y=kx+b的表达式;(2)求不等式x>kx+b>﹣2的解集.参考答案与试题解析一.选择题(共18小题)1.【解答】解:不等式有①2>0;②4x+y≤1;⑤m﹣2.5>3.故选:C.2.【解答】解:A.若a>b,不等式两边同时加上3得:a+3>b+3,即A项正确,B.若a<b,不等式两边同时乘以﹣1得:﹣a>﹣b,即B项正确,C.若﹣x<y,不等式两边同时乘以﹣2得:x>﹣2y,即C项正确,D.若﹣2x>a,不等式两边同时乘以﹣得:x<﹣a,即D项错误,故选:D.3.【解答】解:由图示可看出,这个不等式组的解集是﹣5<x≤4.故选:D.4.【解答】解:由题意可知:9﹣>,∴a<4,故选:C.5.【解答】解:A.x=﹣3不是不等式x>﹣2的一个解,此选项错误;B.x=﹣1是不等式x>﹣2的一个解,此选项正确;C.不等式x>﹣2的解有无数个,此选项错误;D.不等式x>﹣2的解有无数个,此选项错误;故选:B.6.【解答】解:下列不等式中是一元一次不等式的是2﹣x≤4,故选:D.7.【解答】解:∵(a﹣3)x>2的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故选:C.8.【解答】解:2x﹣4≥0,2x≥4,x≥2,则使不等式2x﹣﹣4≥0成立的最小整数是2,故选:C.9.【解答】解:由题意可得:y﹣1≤2.故选:C.10.【解答】解:设小明答对x道题,则答错20﹣3﹣x=17﹣x道题.根据题意得:5x﹣2(17﹣x)>60即7x>94∴x>13.∵x≤20﹣3=17,∴13<x≤17.成绩超过60分,则小明至少答对了14道题.故选:B.11.【解答】解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.12.【解答】解:观察函数图象可知:当x<﹣1时,一次函数y1=kx+b的图象在y2=m的图象的上方,∴关于x的不等式x+b﹣m>0的解集是x<﹣1.故选:B.13.【解答】解:对于y2=x+a,y2随x的增大而增大,所以①错误;∵x=3时,y1=y2,∴3k+b=3+a,所以②正确;当x<3时,y1>y2;所以③错误;当x>3时,y1<y2;所以④正确.故选:B.14.【解答】解:A、含有两个未知数,错误;B、未知数的次数是2,错误;C、含有两个未知数,错误;D、符合一元一次不等式组的定义,正确;故选:D.15.【解答】解:∵x≥1,当x为大于1的整数时,[x]﹣(x)=x﹣x=0,当x为大于1的小数时,则[x]﹣(x)=1;则[x]﹣(x)的值可能有两个,故选:B.16.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.17.【解答】解:根据小朋友的人数为x,根据题意可得:1≤5x+12﹣8(x﹣1)<8,故选:C.18.【解答】解:设学习小组共有x个,根据题意得6x<57<7x,解得8<x<9,而x为整数,所以x=9.即学习小组共有9个.故选:C.二.填空题(共15小题)19.【解答】解:由题意,每日用量120~180mg,分3~4次服完,则120÷3=40mg,120÷4=30mg,180÷3=60mg,180÷4=45mg,∴若每天服用3次,则所需剂量为40~60mg之间,若每天服用4次,则所需剂量为30~45mg之间,故一次服用这种药的剂量为30~60mg之间.20.【解答】解:∵2a<2b,不等式的两边同时除以2得:a<b,故答案为:<.21.【解答】解:∵关于x的不等式组无解,∴a≥3.故答案为:a≥3.22.【解答】解:∵不等式(2m﹣n)x+3m﹣4n<0的解集为x>,∴解不等式(2m﹣n)x+3m﹣4n<0得:x>,且2m﹣n<0,∴=,即n=m,2m﹣m<0,解得:m<0,n<0,∵(m﹣4n)x+2m﹣3n<0,∴(m﹣m)x<﹣2m+m,﹣mx<m,x<﹣,即不等式(m﹣4n)x+2m﹣3n>0的解集是x<﹣,故答案为:x<﹣.23.【解答】解:由图示可看出,从3出发向左画出的线且3处是空心圆,表示x<3.所以这个不等式x<324.【解答】解:∵>5是关于x的一元一次不等式,∴2m+1=1∴m=0故答案为:025.【解答】解:由题意得a﹣4<0,解得:a<4,故答案为:a<4.26.【解答】解:∵关于x的一元一次不等式x﹣a≥0只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.27.【解答】解:由题意得:3m+2>1,故答案为:3m+2>1.28.【解答】解:设行驶xkm,∵油箱内剩余油量不低于油箱容量的,∴40﹣x≥40×.∴x≤350故该辆汽车最多行驶的路程是350km,故答案为:350.29.【解答】解:依题意得:直线l1:y1=k1x+b1经过点(0,2),(3,1),则.解得.故直线l1:y1=﹣x+2.所以,直线l2:y2=x﹣2.由k1x+b1>k2x+b2的得到:﹣x+2>x﹣2.解得x<6.故答案是:x<6.30.【解答】解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.31.【解答】解:依题意,得:.故答案为:.32.【解答】解:设共有x个小朋友,则共有(5x+9)本书,依题意,得:,解得:6<x<8.∵x为正整数,∴x=7,∴5x+9=44.故答案为:44.33.【解答】解:当x=2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x=2时,输出结果=11,若运算进行了2次才停止,则有,解得:<x≤4.5.∴x可以取的所有值是2或3或4,故答案为:11,2或3或4.三.解答题(共1小题)34.【解答】解:(1)∵直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,∴代入得:,解得:k=1,b=﹣1.∴直线y=kx+b的表达式为y=x﹣1;(2)由(1)得:x>x﹣1>﹣2,即,解得:﹣1<x<2.所以不等式x>kx+b>﹣2的解集为﹣1<x<2.11。

第二章 一元一次不等式与一元一次不等式组测试题(含答案)

第二章 一元一次不等式与一元一次不等式组测试题(含答案)

第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。

一元一次不等式组练习题(含答案)

一元一次不等式组练习题(含答案)
解不等式②得:x>–a,
∴不等式组的解集是:–a<x<b,
∵不等式组 的解集为2<x<3,
∴–a=2,b=3,即a=–2,
故选A.
13.【答案】C
【解析】把方程组 的两式相加,得3x+3y=2+2m,
两边同时除以3,得x+y= ,所以 <0,即m<–1.故选C.
14.【答案】0
【解析】–1< ≤2,
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
所以整数解为0,1,2共3个.
故选C.
22.【解析】由①,得3x–2x<3–1,∴x<2.
由②,得4x>3x–1,∴x>–1.
∴不等式组的解集为–1<x<2.
23.【解析】解①得:x≤4,
解②得:x>2,
故不等式组的解为:2<x≤4,
在数轴上表示如下:

24.【解析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
第九章不等式与不等式组
9.3一元一次不等式组
1.不等式组 的解集为
A. B.
C. 或 D.
2.在下列各选项中,属于一元一次不等式组的是
A. B.
C. D.

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)一.选择题:(共10题)1.从−7,−5,−1,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组{x−m2>0x −4<3(x −2)的解集为x >1,且关于x 的分式方程1−x 2−x +m x−2=3有非负整数解,则符合条件的m 的值的个数是( ) A .1个B .2个C .3个D .4个2.若方程组{3x +2y =2k 2y −x =3的解满足x <1,且y >1,则整数k 的个数是( )A .4B .3C .2D .13.若关于x 的不等式组{x <2(x −a)x −1≤23x恰有3个整数解,则a 的取值范围是( ) A .0≤a <12B .0≤a <1C .−12<a ≤0 D .−1≤a <04.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A −B −C −D −E −A 的方向绕广场行走,甲的速度为 50米/分,乙的速度为 46米/分,则两人第一次刚走到同一条边上时 ( )A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D 处 5.若不等式组{x −2<3x −6x <m无解,则m 的取值范围是( )A .m >2B .m <2C .m ≥2D .m ≤26.若不等式组{1<x ≤2x >k无解,则k 的取值范围是( )A .k ≤2B .k >2C .k ≥2D .1≤k <27.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx+b )(mx+n )<0的解集为( )A .x >2B .﹣0.5<x <2C .0<x <2D .x <﹣0.5或x >28.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( ) A .−6≤m <−92 B .−6<m ≤−92 C .−92≤m <−3 D .−92<m ≤−3 9.如图,经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),则0<kx+b<4x+4的解集为( )A .x <-13B .-13<x <1 C .x <1 D .-1<x <110.若数a 使关于x 的不等式组{13x −1≤12(x −1)2x −a ≤3(1−x),有且仅有三个整数解,且使关于y 的分式方程3yy−2+a+122−y=1有整数解,则满足条件的所有a 的值之和是( )A .﹣10B .﹣12C .﹣16D .﹣18 二.填空题:(共10题)11.若数a 使关于x 的不等式组{x−12<1+x 35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+a y−1+2a 1−y=2的解为非负数,则符合条件的正整数a 的值为______.12.如果不等式mx+13>1+x+33的解集为x>5,则m 的值为_______.13.若关于x ,y 的方程组{3x +2y =k −12x −3y =2 的解使4x +7y >2成立,则k 的取值范围是________.14.冬至节快到了,李老师和杨老师都准备给班级同学买饺子吃.到了超市两人均买了两款饺子,A 款单价为33元/袋,B 款41元/袋.其中李老师购买A 款数量少于B 款数量,合计花了500多元.杨老师购买的A ,B 两款的数量刚好与李老师互换,也花了500多元,巧合的是所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互换.则李老师购买A ,B 两款饺子共计____袋.15.若不等式组{x −a ≻0x −a ≺1-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.16.如果不等式组{3x −a ≥02x −b <0 的整数解仅为 2,且 a 、b 均为整数,则代数式 2a 2+b 的最大值=________.17.使得关于x 的分式方程x+kx+1−kx−1=1的解为负整数,且使得关于x 的不等式组{3x +2≥2x −14x −4≤k有5个整数解的所有k 的和为_____.18.关于x 的不等式组{4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是_____________.19.若关于x 的一元一次不等式组{x −a >02x −3<1有2个负整数解,则a 的取值范围是_____.20.在一次智力测验中有20道选择题,评分标准为:对l 题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,如果总分才不会低于70分,则他至少答对____道题.三.解答题:(共20题)21.某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 22.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)设商场购进甲种节能灯x 只,求出商场销售完节能灯时总利润w 与购进甲种节能灯x 之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 23.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.在平面直角坐标系中,已知直线l1:y=2x+1(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;(2)若直线l2:y=x+m与直线l1的交点在第二象限,求m的取值范围;(3)如图,直线y=x+b与直线y=nx+2n(n≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2n<x+b的解集.25.为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的汽油量不低于22.4万升,请问有哪几种购车方案?(3)求(2)中最省钱的购买方案所需的购车款.26.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入−进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.27.(题文)小雨的外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小雨3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小雨惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗?28.夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)分别求出A ,B 两种型号电风扇的销售单价;(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.29.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.30.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元. (1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?31.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有多少块?32.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机 进价(元/台) 2000 1600 1000 售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x 台. (1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元? 33.一幢学生宿舍楼有一些空房间,现要安排一批学生入住.若每间住4人,则有20人无法入住;若每间住8人,则有1间房间还剩余一些空床位. (1)求空房间的间数和这批学生的人数;(2)这批学生入住后,男生房间的间数恰好是女生房间间数的2倍,每间房间都有8个床位,每间女生房间都空出数量相同的床位,问:男女学生各多少人?34.(2016黑龙江省牡丹江市)某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.35.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.36.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.37.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如表.(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?38.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.39.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出5套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的m%,这样一天的利润达到了31250元,求m.数量增加了1240.某校九年级6个班举行毕业文艺汇演,每班3个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少6个.设舞蹈类节目有x个.(1)用含x的代数式表示:歌唱类节目有______________个;(2)求九年级表演的歌唱类与舞蹈类节目数各有多少个?(3)该校七、八年级有小品节目参与汇演,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计全场节目交接所用的时间总共16分钟.若从19:00开始,21:30之前演出结束,问参与的小品类节目最多能有多少个?答案与解析1.解{x−m2>0①x−4<3(x−2)②,解不等式①得:x>m,解不等式②得:x>1,∵该不等式组的解集为:x>1,∴m≤1,即m取−7,−5,−1,0;1−x 2−x +mx−2=3,方程两边同时乘以(x−2)得:x−1+m=3(x−2),去括号得:x−1+m=3x−6,移项得:x−3x=1−6−m,合并同类项得:−2x=−5−m,系数化为1得:x=m+52,∵该方程有非负整数解,∴即m+52≥0,m+52≠2,且m+52为整数,∴m取−5,3,综上:m取−5,即符合条件的m的值的个数是1个,故选A.2.解{3x +2y =2k ①2y −x =3②,①﹣②,得:4x=2k ﹣3,∴x =2k−34.∵x <1,∴2k−34<1,解得:k <72.将x =2k−34代入②,得:2y −2k−34=3,∴y =2k+98.∵y >1,∴2k+98>1,解得:k >−12,∴−12<k <72.∵k 为整数,∴k 可取0,1,2,3,∴k 的个数为4个. 故选A . 3.A解:解不等式x <2(x ﹣a ),得:x >2a ,解不等式x ﹣1≤23x ,得:x ≤3. ∵不等式组恰有3个整数解,∴0≤2a <1,解得:0≤a <12.故选A .4.解:两人如果在同一条边上,说明两人的距离小于等于80米,∵甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,两人相差160米,甲要追回80米需要的时间是80÷(50-46)=20分钟,20分钟甲走了1000米,正好走到CD 的中点设为F;20分钟乙走920米走到DE 距D 点40米处设为G.甲从F 走到D 是40比50等于0.8分钟;乙用0.8分从G 点走出0.8乘46等于36.8米距E 点80-36.8-40=3.2米由此得知甲走到D 点时乙走在DE 线上距E3.2米处. ∴D 选项是正确的 5.解{x −2<3x −6①x <m ②.∵解不等式①得:x >2,不等式②的解集是x <m . 又∵不等式组{x −2<3x −6x <m无解,∴m ≤2.故选D .6.解:由题意可知不等式组{1<x ≤2x >k无解所以k ≥4.故选:C.7.解∵(kx+b )(mx+n )<0,∴{kx +b >0mx +n <0 ①或{kx +b <0mx +n >0②.∵直线y=kx+b 与直线y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),∴①的解集为:x <﹣0.5,②的解集为:x >2,∴不等式(kx+b )(mx+n )<0的解集为x <﹣0.5或x >2.故选D .8.解:3x −2m ≥0,得x ≥23m ,根据题意得,-3<23m ≤-2,解得−92<m ≤−3,故选D. 点睛:本题主要考查了一元一次不等式的解法,先用含m 的式子表示出不等式的解集,再根据不等式的负整数解得到含m 的式子的范围,即关于m 的不等式组,解这个不等式组即可求解.9.解∵经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),∴4m+4=83,∴m=−13,∴直线y=kx+b 与直线y=4x+4的交点A 的坐标为(−13,83),直线y=kx+b 与x 轴的交点坐标为B (1,0),又∵当x <1时,kx+b >0,当x >−13时,kx+b <4x+4,∴0<kx+b <4x+4的解集为−13<x <1.故选B .10.解{13x −1≤12(x −1)①2x −a ≤3(1−x)②, 解①得x ≥-3,解②得x ≤3+a 5,不等式组的解集是-3≤x ≤3+a 5. ∵仅有三个整数解,∴-1≤3+a 5<0∴-8≤a <-3,3y y−2+a+122−y =1,3y-a-12=y-2.∴y=a+102,∵y ≠-2,∴a ≠-6,又y=a+102有整数解,∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .11.解:{x−12<1+x 3①5x −2≥x +a ② ,解不等式①得:x <5,解不等式②得:x ≥a+24,∵该不等式组有且只有四个整数解,∴该不等式组的解集为:a+24≤x <5,且0<a+24≤1, 解得:−2<a ≤2,又∵y+a y−1+2a 1−y =2,方程两边同时乘以(y −1)得:y +a −2a =2(y −1),去括号得:y −a =2y −2,移项得:y =2−a ,∵该方程的解为非负数,∴2−a ≥0且2−a ≠1,解得:a ≤2且a ≠1,综上可知:符合条件的正整数a 的值为2,故答案为:2.12.解:由不等式mx+13>1+x+33可得(1-m )•x <-5,∵不等式的解集为x >5,∴1-m <0,∴(1-m )•5=-5,∴m=2.故答案为:2.13.解{3x +2y =k −1①2x −3y =2②由①×2﹣②得:4x+7y=2k-2-2,∴2k-2-2>2,∴2k >6,解得:k >3.故答案为:k >3.14.解:依题意设李老师买了A 款饺子x 袋,B 款饺子y 袋,购买的金额十位上的数字为a ,各位上的数字为b ,则可列出方程组:{33x +41y =500+10a +b ①33y +41y =500+10b +a ②①+②得x+y=1000+11a+11b 74③,∵500<33x +41y <600,500<41x +33y <600∴1000<74(x+y )<1200,即13.5<x+y <16.2x+y 可能为14、15、16当x+y=14时,代入③得11a+11b=36,不符题意,当x+y=15时,代入③得11a+11b=110,a+b=10符题意,当x+y=16时,代入③得11a+11b=184,不符题意,故x+y=15,填15.15.解:不等式组{x −a >0x −a <1的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x ≤5范围内,∴x <2或x >5,∴a+1≤2或a ≥5,解得,a ≤1或a ≥5,∴a 的取值范围是:a ≤1或a ≥5,故答案为:a ≤1或a ≥5.16.解:解不等式3x-a ≥0,得:x ≥a 3,解不等式2x-b <0,得:x <b 2,∵整数解仅为2,∴{1<a 3≤22<b 2≤3, 解得:3<a ≤6,4<b ≤6,∵a 、b 均为整数,∴当a=6、b=6时,2a 2+b 取得最大值,最大值为2×62+6=78,故答案为:78.17.解:解分式方程x+k x+1−k x−1=1,可得x=1-2k ,∵分式方程x+k x+1−k x−1=1的解为负整数,∴1-2k <0,∴k >12,又∵x ≠-1,∴1-2k ≠-1,∴k ≠1,解不等式组{3x +2≥2x −14x −4≤k ,可得{x ≥−3x ≤k +44, ∵不等式组{3x +2≥2x −14x −4≤k有5个整数解, ∴1≤k+44<2,解得0≤k <4,∴12<k <4且k ≠1,∴k 的值为1.5或2或2.5或3或3.5,∴符合题意的所有k 的和为12.5,故答案为:12.5.18.解:解不等式4a+3x>0得:x>-43a ,解不等式3a-4x ≥0得:x ≤34a , ∴不等式的解集为:-43a<x ≤34a ,∵方程组只有三个整数解,∴方程组的解包括0,∴方程组的整数解为:0、1、2或-1、0、1或-2、-1、0,当整数解为0、1、2时:{−1≤−43a ≤02≤34a <3 ,方程组无解,当整数解为-1、0、1时:{−2≤−43a ≤−11≤34a <2,解得:43≤a ≤32, 当整数解为-2、-1、0时:{−3≤−43a ≤−20≤34a <1方程组无解, ∴a 的取值范围为:43≤a ≤32, 故答案为:43≤a ≤3219.解:2x -3<1,得x <2,进而得负整数解为-1,-2,解得-3≤a <-2.20.解:设小明至少答对的题数是x 道,5x-2(20-1-x )≥70,x ≥1537故至少答对16题,总分才不会低于70分.故答案为:16.21.解(1)设甲钟材料每千克x 元,乙种材料每千克y 元,根据题意列方程组得: {x +y =402x +3y =105解之{x =15y =25甲钟材料每千克15元,乙种材料每千克25元.(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,由题意:-100m+40000≤38000,解得m ≥20,又∵50-m ≥28,解得m ≤22,∴20≤m ≤22,∵m 为正整数∴m 的值为20,21,22,共有三种方案,如下表:(3)设总生产成本为W元,加工费为:200m+300(50-m),则W=-100m+40000+200m+300(50-m)=-200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元,∴选择第三种方案. 22.解(1)设商场应购进甲型节能灯x只,则乙型节能灯为(1200﹣x)只.根据题意得:25x+45(1200﹣x)=46000解得:x=400.当x=400时,1200-x=800.答:购进甲型节能灯400只,乙型节能灯800只时,进货款恰好为46000元.(2)设商场应购进甲型节能灯x只,商场销售完这批节能灯可获利w元.根据题意得:w=(30﹣25)x+(60﹣45)(1200﹣x)=5x+18000﹣15x=﹣10x+18000所以w=﹣10x+18000;(3)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,利润为w元,根据题意得:﹣10x+18000≤[25x+45(1200﹣x)]×30%解得:x≥450.∵w=﹣10x+18000,∴k=﹣10<0,∴w随x的增大而减小,∴x=450时,w最大=13500元.答:商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.23.解(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.24.解(1)设平移后的直线解析式为y=2x+t ,把(1,-5)代入得2+t=-5,解得t=-7,所以平移后直线的解析式y=2x-7;(2)解方程组{y =x +m y=2x+1 得{y =2m −1x=m−1 ,所以y=x+m 与直线l 1的交点坐标为(m-1,2m-1)因为{2m −1>0m−1<0所以12<m <1; (3)当y=0时,nx+2n=0,解得x=-2,直线y=nx+2n 与x 轴的交点坐标为(-2,0), 所以不等式组0<nx+2n <x+b 的解集为-5<x <-2.25.解(1)由题意可得:{a =b +202a =3b −60,解得:{a =120b =100 . 答:a 的值是120,b 的值是100.(2)设购买A 型公交车x 辆,则购买B 型公交车(10﹣x )辆,根据题意得:2.4x+2(10﹣x )≥22.4,解得:x ≥6.∵两种车型都要有,∴x <10,∴6≤x <10.∵x 为整数,∴x=6、7、8、9,∴有四种购车方案.方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆;方案四:购买A 型公交车9辆,购买B 型公交车1辆.(3)设购车款为w 元,购买A 型车x 辆,根据题意得:w=120x+100(10﹣x )=20x+1000∴当x=6时,w 取得最小值,此时w=1120.答:(1)解:设A 、B 两种型号的足球销售单价分别是x 元和 y 元,列出方程组:{5x +3y =14503x+4y=1200解得{y =150x=200A 型号足球单价是200元,B 型号足球单价是150元.(2)解:设A 型号足球购进a 个,B 型号足球购进(60−a)个,根据题意得:150a +120(60−a)≤8400解得a ≤40,所以A 型号足球最多能采购40个.(3)解:若利润超过2550元,须 50a +30(60−a)>2550a >37.5,因为a 为整数,所以38<a ≤40能实现利润超过2550元,有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.27.解:设小明第一次数了x 次,第二次数了y 次,由题意,得3x+1=5y+2,3x=5y+1,x=5y+13,3x+1≤55,5y+2≤55,∴x ≤18,y ≤10.6,∵x >0,y >0,且x 、y 为整数,且5y+1是3的倍数,∴5y+1=6,9,12,15,18…,y=1,4,7,10,13…,∴y 最大=10,∵篮子是装满的,并且最多只能装55只,∴(5y+2)中,y 的值只能取y=10,∴篮子的鸡蛋数量为:5×10+2=52(只).28.解(1)设A ,B 两种型号电风扇的销售单价分别为x 元、y 元.......1分根据题意,得{2x +3y =1130,5x +6y =2510.解这个方程组,得{x =250,y =210.答:A ,B 两种型号电风扇的销售单价分别为250元、210.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台,根据题意,得 200a+170(30﹣a )≤5400,解这个不等式,得a ≤10.答:A 种型号的电风扇最多能采购10台(3)根据题意,得(250﹣200)a+(210﹣170)(30﹣a )=1400,解这个方程,得a=20,由(2)可知,a ≤10,∴在(2)的条件下超市不能实现利润1400元的目标.29.解:该人共有x 张邮票,根据题意列方程得:14x+18x+119x >x-100,解得:x <167391.∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.30.解(1)设五经的单价为x 元,则四书的单价为(2x −60)元,依题意得x +2x −60=660,解得x =240,∴2x −60=420,∴五经的单价为240元,则四书的单价为420元;(2)设购买四书a 套,五经b 套,依题意得{420a +240b ≤30600a ≥33b =2a, 解得33≤a ≤34,∵a 为正整数,∴a =33或34,∴当a =33时,b =66;当a =34时,b =68;∴该校共有2种购买方案:①四书33套,五经66套;②四书34套,五经68套.31.解:设这批手表有x 块,550×60+(x ﹣60)×500>55000解得,x >104答:这批电话手表至少有105块.32.解:(1)根据题意,得:2000⋅2x+1600x+1000(100−3x)⩽170000,解得:x ≤261213, ∵x 为正整数,∴x 最多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y=(2300−2000)2x+(1800−1600)x+(1100−1000)(100−3x)=500x+10000,∵k=500>0,∴y 随x 的增大而增大,∵ x ≤261213且x 为正整数, ∴当x=26时,y 有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得的利润最大,最大利润为23000元.33.解:(1)设空房间有x 间,根据题意,得:8(x-1)<4x+20<8x ,解得:5<x <7,∵x 为整数,∴x=6,这批学生人数为4×6+20=44(人)答:空房间的间数为6间,这批学生的人数为44人.(2)设女生房间为m 间,则男生房间为2m 间,由m+2m=6,得:m=2,2m=4,又设每间女生房间都空出a 个床位,其中a >0则44-(8×2-2a)≤8×4,解得:a ≤2,∴0<a ≤2,且a 为整数,则a 为1或2,∴当a=1时,女生人数为16-2=14(人),男生人数为44-14=30(人);当a=2时,女生人数为16-4=12(人),男生人数为44-12=32(人).34.解:(1)设每吨A 种蔬菜的进价为x 万元,则每吨B 种蔬菜的进价为(x+0.5)万元,依题意得:4.5x =6x+0.5,解得x=1.5,经检验:x=1.5是原方程的解,∴x+0.5=2. 答:每吨A 种蔬菜的进价为1.5万元,每吨B 种蔬菜的进价为2万元;(2)根据题意得,W=(2﹣1.5)×a 1.5+(3﹣2)×14−a 2=−16a +7,∴所获利润W (万元)与购买A 种蔬菜的资金a (万元)之间的函数关系式为:W=−16a +7; (3)当a 1.5≥14−a 2时,a ≥6,∵在一次函数W=−16a +7中,W 随着a 的增大而减小,∴当a=6时,W 有最大值,W 的最大值为﹣1+7=6(万元).设购买甲种电脑a 台,购买乙种电脑b 台,则2100a+2700b=60000,∵a 和b 均为整数,∴{a =8b =16 或{a =17b =9 或{a =26b =2,∴有三种购买方案. 35.解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+10)元. 由题意:16000x+10=7500x ×2,解得x=150,经检验x=150是分式方程的解.答:一件B 型商品的进价为150元,一件A 型商品的进价为160元.(2)因为客商购进A 型商品m 件,所以客商购进B 型商品(250﹣m )件.由题意:v=80m+70(250﹣m )=10m+17500,∵80≤m ≤250﹣m ,∴80≤m ≤125,∴v=10m+17500(80≤m ≤125);(3)设利润为w 元.则w=(80﹣a )m+70(250﹣m )=(10﹣a )m+17500:①当10﹣a >0时,w 随m 的增大而增大,所以m=125时,最大利润为(18750﹣125a )元. ②当10﹣a=0时,最大利润为17500元.③当10﹣a <0时,w 随m 的增大而减小,所以m=80时,最大利润为(18300﹣80a )元,∴当a <10时,最大利润为(18750﹣125a )元;当a=10时,最大利润为17500元;当a >10时,最大利润为(18300﹣80a )元.36.解:(1)根据题意得:.(2)因为,解得,又因为为正整数,且. 所以,且为正整数. 因为,所以的值随着的值增大而减小, 所以当时,取最大值,最大值为. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.37.解:(1)设购进A 种商品x 件,B 种商品y 件,根据题意得,{1200x +1000y =360000(1380−1200)x +(1200−1000)y =60000解得{x=200y=120.答:该商场购进A.B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380-1200)×400=72000(元),从而B商品售完获利应不少于81600-72000=9600(元).设B商品每件售价为z元,则120(z-1000)≥9600,解之得z≥1080.所以B种商品最低售价为每件1080元.38.解:(1)设大货车用x辆,则小货车用(18﹣x)辆,根据题意得:14x+8(18﹣x)=192,解得:x=8,18﹣x=18﹣8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a,那么运往乙地的大货车就应该是(8﹣a),运往甲地的小货车是(10﹣a),运往乙地的小货车是10﹣(10﹣a),w=720a+800(8﹣a)+500(10﹣a)+650[10﹣(10﹣a)]=70a+11400(0≤a≤8且为整数);(3)14a+8(10﹣a)≥96,解得:a≥83.又∵0≤a≤8,∴3≤a≤8 且为整数.∵w=70a+11400,k=70>0,w随a的增大而增大,∴当a=3时,W最小,最小值为:W=70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.39.解:(1)设降价x元,列不等式:8000×0.9-x≥5000(1+20%),解得:x≤1800.答:最多降价1800元,才能使得利润不低于20%.设m%=a,根据题意得:[8000(1+a)-4000a-5000]×5(1+12a)=31250,整理得,8a2+22a-13=0,解得a=12或a=-2(舍).所以m%=1,则m=50.2答:m的值为50.40.解:(1)(2x−6).(2)根据题意得:x+(2x−6)=6×3,解得:x=8.经检验,符合题意.当x=8时,2x−6=10.答:表演的歌唱类节目10个,舞蹈类节目8个.(3)设参与的小品类节目有a个,根据题意得:5×10+6×8+8a+16<150,解得:a<4.5.∵a为整数,∴a最多为4.答:参与的小品类节目最多能有4个.。

一元一次不等式练习习题附答案

一元一次不等式练习习题附答案

一元一次不等式练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >0【答案】B 【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断. 【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大, 即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意; C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意; D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意; 故选:B . 【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101a b c <-<<<<.2.若不等式组4101x m x x m-+<+⎧⎨+>⎩解集是4x >,则( )A .92m ≤B .5m ≤C .92m =D .5m =【答案】C 【分析】首先解出不等式组的解集,然后与x >4比较,即可求出实数m 的取值范围. 【详解】解:由①得2x >4m -10,即x >2m -5; 由②得x >m -1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.3.下列不等式组,无解的是()A.1030xx->⎧⎨->⎩B.1030xx-<⎧⎨-<⎩C.1030xx->⎧⎨-<⎩D.1030xx-<⎧⎨->⎩【答案】D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.4.海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<80【答案】C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5.不等式组31xx<⎧⎨≥⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】根据不等式组的解集的表示方法即可求解. 【详解】解:∵不等式组的解集为31x x <⎧⎨≥⎩ 故表示如下:故选:C . 【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.如果0b a <<,则下列哪个不等式是正确的( ) A .2b ab < B .2a ab >C .22b a ->-D .22b a >【答案】C 【分析】运用不等式的基本性质逐一判断即可. 【详解】 ∵0b a <<, ∴2b ab > , ∴A 不符合题意; ∵0b a <<, ∴2ab a > , ∴B 不符合题意; ∵0b a <<, ∴22b a ->- , ∴C 符合题意; ∵0b a <<, ∴22b a < , ∴D 不符合题意; 故选C .【点睛】本题考查了不等式的性质,熟练运用基本性质是解题的关键.7.如图,数轴上表示的解集是()A.﹣3<x≤2B.﹣3≤x<2 C.x>﹣3 D.x≤2【答案】A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8.能说明“若x>y,则ax>ay”是假命题的a的值是()A.3 B.2 C.1 D.1-【答案】D【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.【详解】解:“若x>y,则ax>ay”是假命题,则0a<,故选:D.【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.二、填空题912x-x的取值范围为_______________.【答案】12x ≤且1x ≠- 【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解. 【详解】解:由题意得:120x -≥,且10x +≠ 解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠- 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键. 10.若m 与3的和是正数,则可列出不等式:___. 【答案】30m +> 【分析】根据题意列出不等式即可 【详解】若m 与3的和是正数,则可列出不等式30m +> 故答案为:30m +> 【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键.11.不等式组21054x x -≤⎧⎨+≥⎩的整数解是__________.【答案】-1、0 【分析】分别求出各不等式的解集,再求出其公共解集即可得出答案. 【详解】解:解不等式210x -≤, 得:12x ≤, 解不等式54x +≥, 得:1x ≥-,则不等式组的解集为112x ≤≤-, ∴不等式组的整数解为-1、0, 故答案为:-1、0. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解题的关键.12.a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0; (3)35a __________35b ;(4)2a -________2b -;(5)14a -________14b -;(6)a c ⋅_______b c ⋅; (7)a c -________b c -;(8)ab _______2b .【答案】> > > < < > > > 【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变; (2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变; (3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变. 据此可以对不等号的方向进行判断. 【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +; (2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0; (3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ;(4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅; (7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -; (8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.13.不等式组53xx m<⎧⎨>+⎩有解,m的取值范围是______.【答案】m<2【分析】根据不等式组得到m+3<x<5,【详解】解:解不等式组53xx m<⎧⎨>+⎩,可得,m+3<x<5,∵原不等式组有解∴m+3<5,解得:m<2,故答案为:m<2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.14.如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)【答案】<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.三、解答题15.解下列不等式:(1)5132x x -+>-;(2)1515x x -+≤-;(3)112135x x -<-;(4)(31)2x x x --≤+.【答案】(1)3x <;(2)152x ≥;(3)458x <;(4)13x ≥-. 【分析】根据解一元一次不等式的步骤以及不等式的基本性质,解一元一次不等式即可. 【详解】 (1)5132x x -+>- 去分母,5226x x -+>- 移项,合并同类项,3x ->- 化系数为1,3x <; (2)1515x x-+≤- 去分母,315x x -+≤- 移项,合并同类项,215x -≤- 化系数为1, 152x ≥; (3)112135x x -<-去分母,530153x x -<- 移项,合并同类项,845x < 化系数为1,458x <; (4)(31)2x x x --≤+ 去括号,312x x x -+≤+ 移项,合并同类项,31x -≤ 化系数为1,13x ≥-.【点睛】本题考查了解一元一次不等式,正确的计算是解题的关键. 16.解下列不等式组: (1)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ (2)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩【答案】(1)12x -≤<;(2)1x ≥-.【分析】(1)(2)分别先根据一元一次不等式的解法分别求出每个不等式的解集,并将两个不等式的解集表示在同一数轴上,再利用不等式组的解集的确定方法:“同大取大;同小取小;大小小大中间找;大大小小无解”求解即可. 【详解】解:(1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①,得1x ≥-. 解不等式②,得2x <.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为12x -≤<.(2)()2731423133x x x x ⎧-<-⎪⎨+≥-⎪⎩①② 解不等式①,得4x ->. 解不等式②,得1x ≥-.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为1x ≥-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键. 17.已知-x <-y ,用“<”或“>”填空: (1)7-x ________7-y . (2)-2x ________-2y . (3)2x ________2y . (4)23x _______23y .【答案】(1)<(2)<(3)>(4)>【分析】根据不等式的性质求解即可.(1)解:∵x y-<-,∴不等号两边都加7,依据不等式的性质1,得7-x<7-y.(2)解:∵x y-<-,∴不等号两边都乘以2,依据不等式的性质2,得-2x<-2y.(3)解:∵x y-<-,∴不等号两边都乘以-2;依据不等式的性质3,得2x>2y.(4)解:∵x y-<-,∴不等号两边都乘以23-,依据不等式的性质3,得23x>23y.故答案为:(1)<(2)<(3)>(4)>【点睛】本题考查了不等式的性质:1、把不等式的两边都加(或减去)同一个数或式子,不等号的方向不变;2、不等式两边都乘(或除以)同一个正数,不等号的方向不变;3、不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0;(2)2x+3>5;(3)384x<;(4)1x≥2;(5)2x+y≤8【答案】(2)、(3)是一元一次不等式【分析】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.【详解】解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,所以一元一次不等式有:(2)、(3)【点睛】本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键. 19.解不等式(组)(1)2151132x x -+-> (2)321125123x x x x -≥+⎧⎪+⎨-<-⎪⎩ 【答案】(1)1x -<;(2)不等式组的解集为83x ≤-. 【分析】(1)先去分母,再去括号,移项合并,系数化1即可;(2)分别解每个不等式,再取它们的公共解集即可.【详解】解:(1)2151132x x -+->, 去分母得()()2213516x x --+> ,去括号得421536x x --->,移项合并得 1111x ->,解得1x -<;(2)321125123x x x x -≥+⎧⎪⎨+-<-⎪⎩①②, 解不等式①得83x ≤-, 解不等式②得45x <, ∴不等式组的解集为83x ≤-. 【点睛】本题考查不等式的解法,不等式组的解法,掌握不等式的解法与步骤,不等式组的解法,特别是不等式组的解集取法,同大取大,同小取小,大小小大取中间,大大小小无解是解题关键.20.解不等式:(1)2(x ﹣1)﹣3(3x +2)>x +5.(2)221235x x +->-. 【答案】(1)138x <-(2)43x < 【分析】(1)去括号,移项合并同类项,求解不等式即可;(2)去分母,去括号,移项合并同类项,求解不等式即可.【详解】解:(1)去括号,得:2x ﹣2﹣9x ﹣6>x +5,移项,得:2x ﹣9x ﹣x >5+2+6,合并,得:﹣8x >13,系数化为1,得:138x <-; (2)去分母,得:5(2+x )>3(2x ﹣1)﹣30,去括号,得:10+5x >6x ﹣3﹣30,移项,得:5x ﹣6x >﹣3﹣30﹣10,合并同类项,得:﹣x >﹣43,系数化为1,得:x <43.【点睛】此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤. 21.计算:解下列不等式(组),并把解集在数轴上表示出来.(1)6341213x x x x +≤+⎧⎪+⎨>-⎪⎩ (2)()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩ 【答案】(1)14x ≤<,数轴见解析;(2)723x -<≤,数轴见解析 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,再将解集表示在数轴上即可.【详解】(1)634 1213x xxx+≤+⎧⎪⎨+>-⎪⎩①②解不等式①,得x≥1.解不等式②,得x<4.因此,原不等式组的解集为1≤x<4.在数轴上表示其解集如下:(2)()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩①②.由①,得x>﹣2.由②,得x≤73.故此不等式组的解集为723x-<≤.在数轴上表示为,【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.22.列一元一次方程解应用题:某校七年级将进行广播操比赛,七年级(1)班准备在网上找商家将班徽制作成胸牌,下列图表是负责这项事务的同学了解到的信息及他们的对话:材料费(元/个)总设计费(元)甲商家10150乙商家12160(1)当制作多少个胸牌时,在甲、乙两个商家购买费用相同?(2)七年级(1)班应该如何根据本班定制胸牌数量选择不同的商家才更省钱?【答案】(1)当制作23个胸牌时,甲乙两个商家购买费用相同;(2)当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当制作23个胸牌时,甲乙两个商家购买费用相同.【分析】(1)根据题意设当制作x 个胸牌时,甲乙两个商家购买费用相同,依据所花费用相同列出方程,求解即可;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,根据题意分三种情况讨论即可.【详解】解:(1)设当制作x 个胸牌时,甲乙两个商家购买费用相同,根据题意可得:100.915015121600.6x x ⨯++=+⨯,解得:23x =,当制作23个胸牌时,甲乙两个商家购买费用相同;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,当100.915015121600.6y y ⨯++>+⨯,解得:23y <,当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当100.915015121600.6y y ⨯++<+⨯,解得:23y >,当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当100.915015121600.6y y ⨯++=+⨯,解得:23y =,当制作23个胸牌时,甲乙两个商家购买费用相同.【点睛】题目主要考查一元一次方程及一元一次不等式的应用,理解题意,列出相应方程是解题关键.23.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,在每辆车都满载的情况下,甲种运输车至少需要安排多少辆.【答案】甲种运输车至少需要安排6辆【分析】设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨,根据两种运输汽车不超过10辆建立不等式求出其解,就可以求出甲种车运输的吨数,从而求出结论.【详解】解:设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨, 根据题意,得:4654x x -+≤10, 去分母得:4x +230-5x ≤200,-x ≤-30,x ≥30,则5x ≥6. 答:甲种运输车至少需要安排6辆.【点睛】本题考查了一元一次不等式的应用,关键是以运输车的总数不超过10辆作为不等量关系列方程求解.24.(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 【答案】(1)x ≥﹣1,数轴见解析;(2)733x -<≤,2 【分析】 (1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x ﹣5x ≤2,合并同类项,得:﹣2x ≤2,系数化为1,得:x ≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.。

一元一次不等式组测试题(含答案)

一元一次不等式组测试题(含答案)

一元一次不等式(组)测试题(总分:150分 时间60分钟) 姓名 分数 一、选择题(每题4分,共40分)1.已知实数a b 、满足11a b +>+,则下列选项可能错误....的是( ) A .a b > B .22a b +>+ C .a b -<- D .23a b >2.下列不等式组中,解集是2<x <3的不等式组是( )A 、⎩⎨⎧>>23x xB 、⎩⎨⎧<>23x xC 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x 3.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A 、B 、C 、D 、 4.不等式组31025x x +>⎧⎨<⎩的整数解的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个5.若6556x x -=-,则x 的取值范围是( )A.56x > B.56x < C.56x ≤ D.56x ≥ 6.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-127. 方程|4x -8|+2(x-y-m )=0,当y >0时,m 的取值范围是( ) A .O <m <1 B .m≥2 C .m <2 D .m≤28.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与②B 、②与③C 、③与④D 、①与④ 9.如果不等式组x a x b ≥⎧⎨≤⎩无解,那么不等式组⎩⎨⎧-<->b x a x 22的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解 10.关于x 的方程211x a x +=-的解是正数,则以的取值范围是( )A .a >-1B .a >-1且a≠0C .a <-1D .a <-1且a≠-2二、填空题(每题4分,共32分)11.不等式1732x ->的正整数解是 .12.已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是 .13.不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 . 14.不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________15.已知不等式03≤-a x 的正整数解恰好是1、2、3,则a 的取值范围是___________。

40道一元一次不等式组计算及答案

40道一元一次不等式组计算及答案

(1)2X-4秋+2 与X為解集为3秋詬(2)2X-1 > 1与4-2X切解集为无解(3)3X+2 >5 与5-2 羽解集为 1 VX<2(4)X - 1 V 2 与2X+3 >2+X 解集为-1 V X V 3(5)X+3 > 1 与X + 2 (X-1 ) < 解集为-2 V X<(6)2X+1 <3 与X>-3 解集为1>-3(7)2X+5 > 1 与3X+7X <0 解集为 1 冰>2(8)2X-1 >X+1 与X+8 V4X-1 解集为X>3(9)1-2 (X-1) <5与2/ (3X-2) V X+1/2 解集为-1 V 3(10)2X<4+X 与X+2 V4X-1 解集为 1 V X<1(11)2-X > 0 与2/ (5X+1 ) +1 冯/ (2X-1 ) 解集为-1 «V 2(12)1-X V0 与2/ (X-2) V 1 解集为 1 V X V4(13)2-X V3与2-X为解集为2冰> 1(14)2X+10 >-5 与6X-7 羽0 解集为X> 17/6(15)6X+6 >8 与3X+10 V 5 解集为-(3/5) > X>-3(16)6X+6X24 与10X+ (1/2) X V -42 解集为无解(17)24X-20X >4 与8X+4X <24解集为 2 冰> 1(18)9X-5X V 8 与15X+5X >80 解集为无解(19)X+X < 与2X+ (1/2) X > 100 解集为无解(20)2011X-2012X W1 与2013X-2012X 羽解集为 1 秋(21)4X-X > 6 与10X+5X V 15 解集为无解(22)-5X-6X <22 与5X-9X ^24 解集为无解 (23) (1/5)X+ (1/5 ) X > 2/5 与X+10X > 22 解集为X > 2(24)55X+55X V 220 与66X+10X V 38 解集为X V 1/2(25)70X+1 <71 与53X-13X <40 解集为X <1(26)X+1 V 7与X-1 > 10解集为无解(27)5X+5 > 5 与2X+3X > 9 解集为X > 9/5 (28) 85X-5X V 8 与50X+30X V 5 解集为X V 1/16 (29) 2X <14 与6X V 6解集为X V 1(30)15X+15 ^30与6X-8X纽解集为-2冰羽(31)2X 羽60 与4X 冯16 解集为X%0 (32) 35X-27X > 136 与20X+20X V 800 解集为20 > X > 17(33)55X <165 与56X > 112 解集为 2 V X <5(34)20X+18X身6 与2X场解集为X缎(35)59X+X > 600 与55X+35X V 1350 解集为10 V X V 15(36)60X V 120 与5X+5X V 10 解集为X V 1(37)100X V 20X+1200 与2X V 30X+10 解集为X V 5/14 ((38)50X羽00与50X为0 解集为X羽(39)25X > 250 与26X > 26解集为X > 10 (40) 2X > 2与3X V -5解集为无解。

新鲁教版七年级下册数学一元一次不等式(组)综合练习含答案

新鲁教版七年级下册数学一元一次不等式(组)综合练习含答案

一元一次不等式(组)综合能力检测题一、选择(共103⨯=30分)1.一罐饮料净重500克,商标上注明“蛋白质含量≥0.4%”,这句话的含义是( ) A .每500克内含有蛋白质不低于2克 B .每500克内含有蛋白质2克C .每500克内含有蛋白质高于2克D .每5 00克内含有蛋白质不超过2克2.明明同学粗心大意,根据不等式性质他将“a >b ”作如下变形,其中正确的是( ) A .由a >b ,得a -2<b -2 B .由a >b ,得-2a <-2b C .由a >b ,得a >b D .由a >b ,得a 2>b 23.把不等式2x -< 4的解集表示在数轴上,正确的是( )4.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是A . 1℃~3℃B . 3℃~5℃C . 5℃~8℃D . 1℃~8℃ 5.不等式组⎩⎨⎧-<++≤14242x x xx 的正整数解有( )解析:解不等式①,得x ≤4,解不等式②,得x >1,所以不等式组的解集为1<x ≤4,其中正整数解有2,3,4,合计3个.6在一次阅读课上,班长问老师分成几个学习小组,老师风趣的说:我有43本书,计划分给各小组,每组8本有剩余,每组9本却不足,猜猜分成几个组?( ) A .4 B .5 C .6 D .77.不等式组⎩⎨⎧<->-21312x x 的解集恰好是x ─ 1 >a 的解集,则a 的值是( )A .1B .4C .3D .8. 若不等式2->+b kx 的解集为3>x ,则直线b kx y +=图像大致是( )9. 5有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、大砝码皆为1克,且图1A .B . D .C .D-1 2图2是将糖果与砝码放在等臂天平上的两种情形.判断情形( )是正确的?10.已知a ,b 为实数,则解可以为 – 2 < x < 2的不等式组是( )A .⎩⎨⎧>>11bx axB .⎩⎨⎧<>11bxax C . ⎩⎨⎧><11bx ax D . ⎩⎨⎧<<11bx ax 二、填空(共103⨯=30分)11.“80”后是近几年的新名词,是指介于1980--1989之间出生的人,是当今中国崛起的一代!同学们都是“90”后,用“x ”表示“90”后现在的年龄,“x ”范围是___________________. 12.请你写出一个解集如图2所示的一元一次不等式组___________________.13.(m -1)x >m -1的解集是x <1,m 的范围________________.14.下列说法:①5是y -1>6的解;②不等式m -1>2的解有无数个;③x >3是不等式x +3>的解集;④不等式x +1<2有无数个整数解,把其中正确的序号是________________. 15.按下列程序进行运算的取值范围是________________. 16.如图3,点B 表示的21x -3,则x 的范围是________________.图1B .A .C .D .2,图317.如图4,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n +的解集为 . .18.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是________________.19.我们定义a b c dad bc =-,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x y +的值是_________.20.当实数a 的取值范围是_________________时,使不等式组)(⎪⎪⎩⎪⎪⎨⎧++++++a x >a x >x x 1343450312恰有两个整数解.三、解答:(共103⨯=30分) 21.(5分)小马虎解不等式03121≥+-x 的过程如下:两边同乘以3得:0121≥+-x , 整理得:22-≥-x , 两边同除-2得 : 1≥x .解题过程有错误,请你指出来,并写出正确解答过程. 22.(5分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:图4一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d (用“>”或“<”填空).你能应用不等式的性质证明上述关系式吗?23. (7分)已知不等式①13263<-x ,②131223--≤-x x ,③1263-<+-x ,从中任意选取两个组成不等式组,解这个不等式组,并在这个不等式组解集内求出第三个不等式组整数解的个数. 24.(7分)已知整数x 满足-5≤x ≤5,y 1=x +1,y 2=-2x +4对任意一个x ,m 都取y 1,y 2中的较小值,结合函数图象,求m 的最大值. 25.(8分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?26.(8分)如图5:△ABC 是由直线x y =1、直线22+-=x y 和直线2213+=x y 围成的三角形,请用不等式的知识说明△ABC 内部点横坐标的范围.1 y 227. (10分) 对非负实数x “四舍五入”到个位的值记为<x >即:当n 为非负整数时,如果11,22nx n ≤<则<x >=n 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,… 试解决下列问题:(1)填空:①<π>= (π为圆周率);②如果<2x -1>=3,则实数x 的取值范围为 ; (2)求满足43xx 的所有非负实数x 的值. 28.(10分)如图6所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为a cm ,宽为b cm ,厚为c cm ,如果按如图所示的包书方式,将封面和封底各折进去3cm ,用含a ,b ,c 的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm ,宽为16cm ,厚为6cm 的字典,你能用一张长为43cm ,宽为26cm 的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm 吗?请说明理由.(图6)参考答案: 一、1.A . 2.B .3.A .解析:不等式的两边现时除以-2,得x >-2,在解集上表示应为A .4. B .解析:可将问题转化求不等式组15,38.x x ⎧⎨⎩≤≤≤≤的解集,可得解集为3≤x ≤5;也可将问题理解为:适宜两种蔬菜放在一起同时保鲜的温度是指同时满足“1℃~5℃”与“3℃~8℃”,因此需要取这两部分温度的共同部分(即两个集合的交集).5.C .解析:解不等式①,得x ≤4,解不等式②,得x >1,所以不等式组的解集为1<x ≤4,其中正整数解有2,3,4,合计3个. 6 B .解析:可将问题转化求不等式组⎩⎨⎧><439438x x 解集的整数解,可得解集为843943<<x ,其中整数解是5.7. A .1 解析:⎩⎨⎧<->-21312x x 的解集是2>x ,x ─ 1 >a 的解集是a x +>1,因为2>x 和a x +>1相同,所以21=+a ,a =1.8. C.解析: 2->+b kx 的解集为3>x ,则直线b kx y +=中的k >0,可排除A 、B 选项;D 选项3>x 时,0>+b kx ,也不符合题意,故选C. 9. D .解析:由图1知一颗糖果重量大于5克,小于316克,可排除A 选项;故两颗糖果重量大于10克,但小于332克可排除B 选项;故三颗糖果重量大于15克,可排除C 选项,故需D .10.D .解析:由不等式组的解集是– 2 < x < 2,∴a =12或a =-12,b =12或b =-12;且a 、b 异号.当a =12或a =-12时,排除A 、B ;当b =12或b =-12时排除C ;只有当a =12,b =-12或a =-12,b =12时,选项D 中不等式组的解集是-2<x <2,故选D .二、11.1 ≤ x ≤ 21.12.答案不唯一,略.13.m<1.解析:不等号方向改编,故m -1<0,所以m<1.14.②④.15.x>2.解析:第五次输入数字:大于(244+2)÷ 3=82;第四次输入数字:大于(82+2)÷ 3=28;第三次输入数字:大于(28+2)÷ 3=10;第二次输入数字:大于(10+2)÷ 3=4;第一次输入数字:大于(4+2)÷ 3=2.16.6<x <10.0<21x -3<2,解得6<x <10. 17.1≥x .解析:根据函数图象可知,不等式1x +≥mx n +的解集即当直线1y x =+不低于直线y mx n =+时x 应满足的取值范围,即a x ≥.把P (a ,2)代入直线1y x =+解析式,21=+a ,所以1=a ,所以x 应满足1≥x .19.3.解析: 14xy =xy -⨯41,即1<xy -⨯41<3,故有⎩⎨⎧<->-3414xy xy ,所以31<<xy ,又因为x 、y 均为整数,所以2=xy ,故有2,1==y x 、2,1-=-=y x 或1,2==y x 、1,2-=-=y x ,所以x y +的值是.20.21<a ≤1.解析:由不等式0312>x x ++两边同乘以6得到3x +2(x +1)>0,可以求出x >-52,由不等式)(a x >a x ++++134345两边都乘以3得到3x +5a +4>4x +4+3a 可以解出x <2a ,所以不等式组的解集为a <x<252-,因为该不等式组恰有有两个整数解,所以1<2a ≤2,所以21<a ≤1.三、21.解:错误一:去分母漏乘整数项;错误二:去分母后12+x 未加括号;错误三:不等式两边同除以-2,不等号没改变. 正解:①两边同乘以3得:0123≥+-)(x ,②整理得:22-≥-x ,③两边同除-2得 : 1≤x . 22.解:>,>,<,>; 证明:∵a >b ,∴a+c >b+c .又∵c >d ,∴b +c >b +d ,∴a+c >b+d . .23. 解:以①②组成不等式组为例,可得解集131<≤-x ,再解得③的解集,6>x 故在131<≤-x 内,③的整数解有7、8、9、10、11、12六个.24.解析:易求y 1=x +1,y 2=-2x +4的交点为(1,2),结合二者图像(图像略),当x <1时,y 1<y 2,此时m 取y 1的值,都小于2;当x >1时,y 1>y 2,此时m 取y 2的值,也都小于2,只有当所以当x =1时,y 1=y 2,此时m 取值是2,当-5≤x ≤5时,m 的最大值是2. 25.解:设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800. 答:调进绿豆的吨数应不少于600吨,并且不超过800吨.26.解:在三角形内部点满足⎩⎨⎧<<3231y y y y 即⎪⎪⎩⎪⎪⎨⎧+<+-+<2212221x x x x ,解得04<<x .27. (1)①3;②x 79≤<44; (2)[法一]作x y x y 34,=>=<的图象,如图y =<x >的图象与y =43x 图象交于点(0,0)、3(,1)4、3(,2)2,∴x =0,33,42; [法二]∵x ≥0,43x 为整数,设43x =k ,k 为整数,则x =34k ,∴<34k >=k ,∴131,0242k k k k -≤<+≥,∵0≤k ≤2,∴k =0,1,2,∴x =0,33,4228.解:(1)矩形包书纸的长为:(2b +c +6)cm ,矩形包书纸的宽为(a +6)cm . (2)设折叠进去的宽度为x cm , 分两种情况:①当字典的长与矩形纸的宽方向一致时,根据题意,得⎩⎨⎧++⨯+.4326216,26219x x解得x ≤2.5.所以不能包好这本字典.②当字典的长与矩形纸的长方向一致时,同理可得x ≤-6. 所以不能包好这本字典.综上,所给矩形纸不能包好这本字典.≤ ≤。

一元一次不等式组试题(含答案)

一元一次不等式组试题(含答案)

一元一次不等式组A卷:基础题一、选择题1.下列不等式组中,是一元一次不等式组的是()A.2,3 xx>⎧⎨<-⎩B.10,20xy+>⎧⎨-<⎩C.320,(2)(3)0xx x->⎧⎨-+>⎩D.320,11xxx->⎧⎪⎨+>⎪⎩2.下列说法正确的是()A.不等式组3,5xx>⎧⎨>⎩的解集是5〈x〈3 B.2,3xx>-⎧⎨<-⎩的解集是-3<x<-2C.2,2xx≥⎧⎨≤⎩的解集是x=2 D.3,3xx<-⎧⎨>-⎩的解集是x≠33.不等式组2,3482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解为( )A.-1 B.0 C.1 D.44.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3〈x〈5 B.-3<x〈5 C.-5<x<3 D.-5〈x<-35.不等式组20,30xx->⎧⎨-<⎩的解集是()A.x〉2 B.x〈3 C.2〈x<3 D.无解二、填空题6.若不等式组2,xx m<⎧⎨>⎩有解,则m的取值范围是______.7.已知三角形三边的长分别为2,3和a,则a的取值范围是_____.8.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;•如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_____个儿童,分_____个橘子.9.若不等式组2,20x ab x->⎧⎨->⎩的解集是-1〈x<1,则(a+b)2006=______.三、解答题10.解不等式组2(2)4,(1) 10(2) 32x xx x-≤-⎧⎪+⎨-<⎪⎩11.若不等式组1,21x mx m<+⎧⎨>-⎩无解,求m的取值范围.12.为节约用电,某学校于本学期初制定了详细的用电计划.•如果实际每天比计划多用2度电,那么本学期用电量将会超过2530度;如果实际每天比计划节约了2度电,那么本学期用电量将会不超过2200度.若本学期的在校时间按110天计算,那么学校每天计划用电量在什么范围内?B卷:提高题一、七彩题1.(一题多变题)如果关于x的不等式(a-1)x〈a+5和2x<4的解集相同,则a•的值为______.(1)一变:如果(1)5,24a x ax-<+⎧⎨<⎩的解集是x〈2,则a的取值范围是_____;(2)二变:如果24,1,51xxaxa⎧⎪<⎪≥⎨⎪+⎪<-⎩的解集是1≤x〈2,则a的取值范围是____二、知识交叉题2.(科内交叉题)在关于x1,x2,x3的方程组121232133,,x x ax x ax x a+=⎧⎪+=⎨⎪+=⎩中,已知a1>a2>a3,请将x1,x2,x3按从大到小的顺序排列起来.3.(科外交叉题)设“○”、“□”、“△"分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1-6-1所示,那么每个“○”、“□”、 “△”这样的物体,按质量从小到大的顺序排列为()A.○□△B.○△□ C.□○△D.△□○三、实际应用题4.某宾馆底层客房比二楼少5间,某旅游团有48人,若全安排在底层,每间4人,则房间不够;若每间5人,则有房间没有住满5人;若全安排在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,求该宾馆底层有客房多少间?四、经典中考题5.(2007,厦门,3分)小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为69•千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,•这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,•加在他和妈妈坐的一端,结果爸爸被跷起,那么小宝的体重可能是( )A.23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式组测试题(提高)
一、选择题
1.如果不等式的解集是x<2,那么m的取值范围是( )
A.m=2 B.m>2 C.m<2 D.m≥2
2.(贵州安顺)若不等式组有实数解.则实数m的取值范围是 ( )
A. B. C. D.
3.若关于x的不等式组无解,则a的取值范围是 ( )
A.a<1 B.a≤l C.1 D.a≥1
4.关于x的不等式的整数解共有4个,则m的取值范围是 ( )
A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7
5.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()
A.20人 B.19人 C.11人或13人 D.20人或19人
6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价元(不足1km按1km计算),现某人付了元车费,求这人乘的最大路程是()
A.10km B.9 km C.8km D.7 km
7.不等式组的解集在数轴上表示为().
8.解集如图所示的不等式组为().
A. B. C. D.
二、填空题
1.已知,且,则k的取值范围是________.
2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,
则x范围是 .
3.如果不等式组的解集是0≤x<1,那么a+b的值为_______.
4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.
5.对于整数a、b、c、d,规定符号.已知则b+d的值是________.
6. 在△ABC中,三边为、、,
(1)如果,,,那么的取值范围是;
(2)已知△ABC的周长是12,若是最大边,则的取值范围是;
(3).
7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围为.
三、解答题
13.解下列不等式组.
(1) (2)
(3)(4)
14.已知:关于x,y的方程组的解是正数,且x的值小于y的值.
(1)求的范围;
(2)化简|8+11|-|10+1|.
15.试确定实数a的取值范围.使不等式组恰好有两个整数解.
16,一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?
17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
18. 不等式组是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.
19,“”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.
(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;
(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.
【答案与解析】
一、选择题
1. 【答案】D ;
【解析】原不等式组可化为,又知不等式组的解集是x<2根据不等式组解集的确定方法“同小取小”可知m≥2.
2. 【答案】A;
【解析】原不等式组可化为而不等式组有解,根据不等式组解集的确定方法“大小小大中间找”可知m ≤.
3. 【答案】B;
【解析】原不等式组可化为根据不等式组解集的确定方法“大大小小没解了”可知a≤1.
4. 【答案】D;
【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.
5. 【答案】D;
6. 【答案】B;7,A 8,A
【解析】设这人乘的路程为xkm,则13<7+(x-3)≤,解得8<x≤9.
二、填空题
1. 【答案】<k<1;
【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可.
2. 【答案】10≤x≤30;
3.【答案】1
【解析】由不等式解得x≥4—2a.由不等式2x-b<3,解得.
∵ 0≤x<1,∴ 4-2a=0,且,∴ a=2,b=-1.∴ a+b=1.
4.【答案】7, 37;
【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3.
5.【答案】3或-3 ;
【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;
③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.
6,【答案】(1) 4<x<28 (2)4<b<6 (3)2a;
7.【答案】1<m<2;
三、解答题
13.解:(1)解不等式组
解不等式①,得x>5,
解不等式②,得x≤-4.
因此,原不等式组无解.
(2)把不等式进行整理,得,即,
则有①或②解不等式组①得;解不等式组②知其无解,
故原不等式的解集为.
(3)解不等式组
解①得:,
解②得:,
解③得:,
将三个解集表示在数轴上可得公共部分为:≤x<
所以不等式组的解集为:≤x<
(4) 原不等式等价于不等式组:
解①得:,
解②得:,
所以不等式组的解集为:
14.解:(1)解方程组,得
14,根据题意,得
解不等式①得.解不等式②得<5,解不等式③得,①②③的解集在数轴上表示如图.
∴ 上面的不等式组的解集是.
(2)∵ .
∴ 8+11>0,10+1<0.
∴ |8+11|-|10+1|=8+11-[-(10+1)]=8+11+10+1=18+12.
15,解:由不等式,分母得3x+2(x+1)>0,
去括号,合并同类项,系数化为1后得x >.
由不等式去分母得
3x+5a+4>4x+4+3a ,可解得x <2a .
所以原不等式组的解集为,因为该不等式组恰有两个整数解:0和l ,故有:1<2a ≤2,所以:≤1. 16,解:设这件商品原价为x 元,根据题意可得:
88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩
解得:37.540x ≤<
答:此商品的原价在37.5元(包括37.5元)至40元范围内.
17.解:(1)设饮用水有x 件,蔬菜有y 件,依题意,得
解得 所以饮用水和蔬菜分别为200件和120件.
(2)设租用甲种货车m 辆,则租用乙种货车(8-m)辆.
依题意得 解得2≤m ≤4.
又因为m 为整数,所以m =2或3或4.所以安排甲、乙两种货车时有3种方案.
设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);
③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.
18,解:解不等式(1),得:x <2;
解不等式(2),得:x-3;
解不等式(3),得:x-2;
在数轴上分别表示不等式(1)、(2)、(3)的解集:
∴原不等式组的解集为:-2≤x <2.
∴原不等式组的整数解为:-2、-1、0、1. 19,解:(1)设租用甲种汽车x 辆,则租用乙种汽车,则:

解得:,
∵应为整数,∴或8,
∴有两种租车方案,分别为:
方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.
(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元). ∴ 方案1花费最低,所以选择方案1.。

相关文档
最新文档