圆的综合解答题
中考数学总复习《圆综合解答题》专题训练-附答案
中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。
圆的综合解答题练习(提高题)
圆一.解答题(共23小题)1.(2015•)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=,求AO的长.2.(2011•)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)若∠A+∠CDB=90°,求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.3.(2011•)如图,在△ABC中,D为AB上一点,⊙O经过B、C、D三点,∠COD=90°,∠ACD=∠BCO+∠BDO.(1)求证:直线AC是⊙O的切线;(2)若∠BCO=15°,⊙O的半径为2,求BD的长.4.(2016•株洲)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.5.(2016•)如图,正形ABCD接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.6.(2013•模拟)已知:△ABC是⊙O的接正三角形,P为弧BC上一点(与点B、C不重合),(1)如果点P是弧BC的中点,求证:PB+PC=PA;(2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.7.(2011•南漳县模拟)如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(,0),解答下列各题:(1)求线段AB的长;(2)求⊙C的半径及圆心C的坐标;(3)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,请求出∠BOP的度数;若不存在,请说明理由.8.(2002•聊城)如图,BC为⊙O的直径,AD⊥BC于D,P是上一动点,连接PB分别交AD、AC于点E,F.(1)当=时,求证:AE=BE;(2)当点P在什么位置时,AF=EF?证明你的结论.9.(2015•上城区二模)如图,已知四边形ABCD接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40°,求∠CBF的度数;(2)求证:CD⊥DF.10.(2015秋•期中)如图,四边形ABCD接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.求证:DB=DC.11.(2016•上海)已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.12.(2016•模拟)如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF.13.(2016•)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.14.(2016•黄冈校级自主招生)如图,四边形ABCD为正形,⊙O过正形的顶点A和对角线的交点P,分别交AB、AD于点F、E.(1)求证:DE=AF;(2)若⊙O的半径为,AB=,求的值.15.(2016•禅城区一模)如图,BC是圆O的直径,AD垂直BC于D,弧BA等于弧AF,BF与AD交于E,求证:(1)∠BAD=∠ACB;(2)AE=BE.16.(2016•颍泉区一模)如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.(1)求证:E为BC的中点;(2)若BC=8,DE=3,求AB的长度.17.(2016•校级模拟)如图,以Rt△ABC的边AC为直径的⊙O交斜边AB于点D,点F 为BC上一点,AF交⊙O于点E,且DE∥AC.(1)求证:∠CAF=∠B.(2)若⊙O的半径为4,AE=2AD,求DE的长.18.(2016•校级模拟)如图,⊙O是△ABC的外接圆,D是的中点,DE∥BC交AC的延长线于点E,若AE=10,∠ACB=60°,求BC的长.19.(2016•冷水江市三模)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:四边形ADPO是菱形;(2)求证:△CDP≌△POB.20.(2016•模拟)如图,AB是⊙O的直径,C,D是⊙O上的两点(在直径AB的同一侧),且=,弦AC、BD相交于点P,如果∠APB=110°,求∠ABD的度数.21.(2016•房山区一模)如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D 为弧AB的中点,AC=4.求CD的长.22.(2015•)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.23.(2007•)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.。
初三有关圆的解答题及答案
初三有关圆的解答题及答案初三数学教学中,圆是一个非常重要的内容,也是经常考察的一道题型。
下面,我们来探讨一些初三有关圆的解答题及其答案。
一、相切问题问题:两个圆相切,半径分别为$r_1$和$r_2$,求它们的公切线的长度$L$。
解析:根据勾股定理,可得:$(r_1 + r_2)^2 = L^2 + (r_1 - r_2)^2$化简得:$L = 2\sqrt{r_1r_2}$答案:$L = 2\sqrt{r_1r_2}$二、切线问题问题:已知一个圆心坐标$(a, b)$,与一直线$y=k$相切,求这个圆的方程。
解析:由于圆与直线相切,所以该直线的距离等于圆的半径。
直线$y=k$与圆的距离为$|b-k|$,因此圆的方程为:$(x-a)^2 + (y-b)^2 = (b-k)^2$答案:$(x-a)^2 + (y-b)^2 = (b-k)^2$三、垂直问题问题:已知直线$y=k$和圆$(x-a)^2+(y-b)^2=r^2$相交于点$P(x_0,y_0)$,求直线$OP$的斜率,其中$O(a,b)$为圆心。
解析:首先,求点$P$的坐标。
因为$P$是圆和直线的交点,所以可以列出以下方程组:$\begin{cases} y=k \\ (x-a)^2 + (y-b)^2 = r^2 \end{cases}$将$y=k$代入第二个方程,可得:$(x-a)^2 + (k-b)^2 = r^2$将$(x,y)$代入,得到:$(x_0-a)^2 + (k-b)^2 = r^2$整理可得:$x_0 = a\pm \sqrt{r^2-(k-b)^2}$由于直线$OP$与$x$轴垂直,所以直线$OP$的斜率为$-\frac{1}{\frac{y_0-b}{x_0-a}}$。
代入$x_0$和$y_0$,即可得到答案。
答案:$-\frac{1}{\frac{y_0-b}{x_0-a}}$四、分割问题问题:一个圆$O$被圆弧$AB$和直径$CD$所分割,分别为弧$AB$和弧$BCD$。
初中圆的综合试题及答案
初中圆的综合试题及答案一、选择题(每题3分,共30分)1. 圆的周长公式是()A. C = 2πrB. C = πdC. C = 2πr + 2dD. C = πr2. 圆的面积公式是()A. S = πr^2B. S = 2πrC. S = πd^2D. S = πr^2 + πd3. 圆的直径是半径的()A. 2倍B. 4倍C. 1/2倍D. 1/4倍4. 圆的半径增加一倍,面积增加()A. 2倍B. 4倍C. 8倍D. 16倍5. 一个圆的半径是5cm,那么它的直径是()A. 10cmC. 2.5cmD. 15cm6. 圆的周长和直径的比值是()A. 2πB. πC. 1D. 27. 圆的直径和半径的比值是()A. 2B. πC. 1D. 48. 圆的面积和半径的比值是()A. πrB. 2πrC. πr^2D. 4πr^29. 圆的周长和面积的比值是()A. 2πrB. πr^2C. 1/πrD. 2/πr10. 如果一个圆的周长是31.4cm,那么它的半径是()A. 5cmB. 10cmD. 20cm二、填空题(每题3分,共30分)1. 一个圆的半径是7cm,那么它的周长是_______cm。
2. 圆的面积公式是S = ________。
3. 圆的直径是半径的______倍。
4. 圆的周长公式是C = ________。
5. 一个圆的直径是14cm,那么它的半径是_______cm。
6. 圆的面积和半径的平方成正比,比例系数是______。
7. 圆的周长和半径的比值是______。
8. 圆的直径和半径的比值是______。
9. 圆的周长和面积的比值是______。
10. 如果一个圆的面积是78.5平方厘米,那么它的半径是_______cm。
三、解答题(每题10分,共40分)1. 已知一个圆的半径是8cm,求它的周长和面积。
2. 一个圆的直径是12cm,求它的周长和面积。
3. 一个圆的周长是62.8cm,求它的半径和面积。
【期末专项】九年级上《第24章圆》解答题综合培优训练(含答案)
【期末专项复习】第24章:圆解答题综合培优训练1.如图,已知△ABC内接于⊙O,BC为⊙O直径,延长AC至D,过D作⊙O 切线,切点为E,且∠D=90°,连接BE.DE=12,(1)若CD=4,求⊙O的半径;(2)若AD+CD=30,求AC的长.2.如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,在上取点G,连结CG,DG,AC.求证:∠DGC=2∠BAC.4.如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC 于点D,且D点是弧BE的中点,(1)求证AB是圆的直径;(2)若AB=8,∠C=60°,求阴影部分的面积;(3)当∠A为锐角时,试说明∠A与∠CBE的关系.5.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC =∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.6.如图,矩形ABCD中AB=3,AD=4.作DE⊥AC于点E,作AF⊥BD于点F.(1)求AF、AE的长;(2)若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求⊙A的半径r的取值范围.7.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.8.如图,Rt△ABC中,∠C=90°,AC=,BC=2AC,半径为2的⊙C,分别交AC、BC于点D、E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.9.如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于C,OC平分∠AOB.(1)求∠AOB的度数;(2)若线段CD的长为2cm,求的长度.10.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点D 是AB的中点,连接DO并延长交⊙O于点P.(1)求劣弧PC的长(结果保留π);(2)过点P作PF⊥AC于点F,求阴影部分的面积(结果保留π).11.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.(1)求证:EM是⊙O的切线;(2)若∠A=∠E,BC=,求阴影部分的面积.(结果保留π和根号).12.如图,△ABC的三边分别切⊙O于D,E,F.(1)若∠A=40°,求∠DEF的度数;(2)AB=AC=13,BC=10,求⊙O的半径.13.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E 为的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径14.如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.15.如图,在⊙O中,弦AD,BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的直径为10,DE=1,求AE的长.16.如图,四边形ABCD是⊙O的内接四边形,BD是∠ABC的角平分线,过点D分别作DE⊥AB,DF⊥BC,垂足分别为E、F.(1)求证:△AED≌△CFD;(2)若AB=10,BC=8,∠ABC=60°,求BD的长度.17.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当DE与⊙O相切时,求∠CFB的度数;(2)如图2,当点F是C D的中点时,求△CDE的面积.参考答案1.(1)解:连接OE,作OH⊥AD于H,∵DE是⊙O的切线,∴OE⊥DE.又∵∠D=90°,∴四边形OHDE是矩形,设⊙O的半径为r,在Rt△OCH中,OC2=CH2+OH2,∴r2=(r﹣4)2+144,∴半径r=20.(2)解:∵OH⊥AD,∴AH=CH.又∵AD+CD=30,即:(AH+HD)+(HD﹣CH)=30.∴2HD=30,HD=15,即OE=HD=OC=15,∴在Rt△OCH中,CH===9.∴AC=2CH=18.【点评】考查了圆的切线的性质,矩形的判定和性质及垂径定理.解答此类题目的关键是通过作辅助线构造直角三角形,利用勾股定理求得相关线段的长度.2.(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠A BE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点评】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.证明:连结AD,∵弦CD⊥直径AB,∴2∠BAC=2∠BAD=∠DAC(垂径定理),又∵∠DGC=∠DAC(圆周角定理),∴∠BAC=∠DGC,∴∠DGC=2∠BAC.【点评】此题考查了垂径定理、圆周角定理.此题难度不大,注意掌握辅助线的作法与数形结合思想的应用.4.解:(1)连结AD,∵D是中点,∴∠BAD=∠CAD,又∵AB=AC,∴AD⊥BD,∴∠ADB=90°,∴AB是⊙O直径;(2)连结OE,∵∠C=60°,AB=AB,∴∠BAC=60°,∴∠AOE=60°,∴∠BOC=120°,∴∠OBE=30°,∵AB=8,∴OB=4,∴S阴影=S扇形AOE+S△BOE=+×2×4=π+4.(3)由(1)知AB是⊙O的直径,∴∠BEA=90°,∴∠EBC+∠C=∠CAD+∠C=90°,∴∠EBC=∠CAD,∴∠CAB=2∠EBC.【点评】本题考查了扇形面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.5.证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.6.解:(1)∵矩形ABCD中AB=3,AD=4,∴AC=BD==5,∵AF•BD=AB•AD,∴AF==,同理可得DE=,在Rt△ADE中,AE==;(2)∵AF<AB<AE<AD<AC,∴若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,即点F在圆内,点D、C在圆外,∴⊙A的半径r的取值范围为2.4<r<4.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.解:(1)如图1,连接OD,∵AB是⊙O的直径,弦CD与AB相交,∠BAC=40°,∴∠ACB=90°.∴∠ABC=∠ACB﹣∠BAC=90°﹣40°=50°.∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)如图2,连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°.由DP∥AC,又∠BAC=40°,∴∠P=∠BAC=40°.∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=130°.∴∠ACD=65°.∵OC=OA,∠BAC=40°,∴∠OCA=∠BAC=40°.∴∠OCD=∠ACD﹣∠OCA=65°﹣40°=25°.【点评】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.(1)证明:过C作CF⊥AB于F,∵在Rt△ABC中,∠C=90°,AC=,BC=2AC,∴BC=2,由勾股定理得:AB==5,∵△ACB的面积S=×AB×CF=×AC×BC,∴CF==2,∴CF为⊙C的半径,∵CF⊥AB,∴AB为⊙C的切线;(2)解:图中阴影部分的面积=S△ACB ﹣S扇形DCE=××2﹣=5﹣π.【点评】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解此题的关键.9.解:(1)∵AM为圆O的切线,∴OA⊥AM,∵BD⊥AM,∴∠OAD=∠BDM=90°,∴OA∥BD,∴∠AOC=∠OCB,∵OB=OC,∴∠OBC=∠OCB,∵OC平分∠AOB,∴∠AOC=∠BOC,∴∠BOC=∠OCB=∠OBC=60°,∴∠AOB=120°;(2)如图:过点O作OE⊥BD,垂足为E∵∠BOC=∠OCB=∠OBC=60°,∴OB=OC=BC∵OE⊥BD,∴BE=CE=BC=OA∵OE⊥BD,且OA⊥AD,BD⊥AD∴四边形ADEO是矩形∴OA=DE∴CD+CE=OA=2CE,且CD=2cm∴CE=2cm∴OA=4cm∴的长度==π【点评】本题考查了切线的性质,平行线的判定与性质以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.10.解:(1)连接OB,∵OA=OB,点D是AB的中点,∴PD⊥AB,∵∠A=30°,∴∠POC=∠AOD=60°,∵AC是直径,∴∠ABC=90°,∠A=30°,∴AC=2BC=8,∴OC=4∴劣弧PC的长==π;(2)∵PF⊥AC,∠OPF=30°,∴OF=OP=2,PF=2,∴S=﹣×2×2=π﹣2.阴影【点评】本题考查的是三角形的外接圆与外心,扇形面积计算,弧长的计算,掌握扇形面积公式和弧长公式是解题的关键.11.解:(1)连接OC,∵OF⊥AB,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A,∵OA=OC,∴∠A=∠ACO,∴∠ACE=90°+∠ACO=∠ACO+∠OCE,∴∠OCE=90°,∴OC⊥CE,∴EM是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE,∵∠A=∠E,∴∠A=∠ACO=∠BCE=∠E,∴∠ABC=∠BCO+∠E=2∠A,∴∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,∴OB=BC=,∴阴影部分的面积=﹣××=﹣.【点评】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC是解题的关键.12.(1)连OD,OF,如图,则OD⊥AB,OF⊥AC,∴∠DOF=180°﹣∠A=180°﹣40°=140°,又∵∠DEF=∠DOF=×140°=70°;(2)过A作AM⊥BC于M,∵AB=AC,∴BM=BC=×10=5,则AM=12,则S=60,△ABC设圆O的半径的半径是r,则(13+13+10)•r=60,解得:r=.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了切线长定理.13.解:(1)连结AE,BD,∵E为的中点,∴=,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,∴∠AEB=90°,即AE⊥BC,∴∠AEB=∠AEC=90°,在△AEC和△AEB中,∴△AEC≌△AEB(ASA),∴CE=BE,∴DE=CE=BE=BC;(2)在Rt△CBD中,BD2=BC2﹣CD2=32,设半径为r,则AB=2r,由(1)得AC=AB=2r,AD=AC﹣CD=2r﹣2,在Rt△ABD中AD2+BD2=AB2,∴(2r﹣2)2+32=(2r)2,解得:r=4.5,∴⊙O的半径为4.5.【点评】本题考查了圆周角、弧、弦的关系,全等三角形的判定和性质,勾股定理,圆周角定理,正确的作出辅助线是解题的关键.14.(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.15.(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=5.则AF=3+1=4,即AE=AF+3=7.【点评】本题考查了勾股定理,正方形的判定与性质,垂径定理以及圆周角、弧、弦间的关系.注意(2)中辅助线的作法.16.证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,又∵∠DCF+∠BCD=180°,∴∠A=∠DCF,∵BD是∠ABC的角平分线,又∵DE⊥AB,DF⊥BC,∴DE=DF,∠DEA=∠F=90°,在△AED与△CFD中,∴△AED≌△CFD(AAS)(2)∵△AED≌△CFD,∴AE=CF,BE=BF,设AE=CF=x,则BE=10﹣x,BF=8+x,即10﹣x=8+x,解得x=1,在Rt△BFD,∠DBC=30°,设DF=y,则BD=2y,∵BF2+DF2=BD2,∴y2+92=(2y)2,y=3,BD=6.【点评】考查了圆周角定理,全等三角形的判定与性质.解答此题的关键是证明△AED≌△CFD.17.解:(1)如图:连接OD∵DE与⊙O相切∴∠ODE=90°∵AB∥DE∴∠AOD+∠ODE=180°∴∠AOD=90°∵∠AOD=2∠C∠C=45°∵∠CFB=∠CAB+∠C∴∠CFB=75°(2)如图:连接OC∵AB是直径,点F是CD的中点∴AB⊥CD,CF=DF,∵∠COF=2∠CAB=60°,∴OF =OC =,CF =OF =,∴CD=2CF =,AF=OA+OF =,∵AF∥AD,F点为CD的中点,∴DE⊥CD,AF为△CDE的中位线,∴DE=2AF=3,=×3×=∴S△CED【点评】本题考查切线的性质和判定、圆的有关知识、勾股定理等知识,解题的关键是灵活运用这些知识,属于基础题,中考常考题型.21 / 21。
圆的解答题练习2
B A圆的解答题练习21、如图AB 是⊙O 的直径, ⌒AM=⌒BM,C 在⌒AM 上,且不与A 、M 重合,MF ⊥BC 于F,ME ⊥AC 于E,连CM.①求证:ME=MF ②若AC=6,BC=8,求线段CM 的长。
2、如图,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长3、如图,A B 为⊙O 的直径,弦CD 与AB 相交于E ,DE =EC ,过点B 的切线与AD 的延长线交于F ,过E 作EG ⊥BC 于G ,延长GE 交AD 于H .(1)求证:AH=HD ;(2)若CE :BC==,DF =9,求⊙O 的半径.45FBA4、如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC 于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)若OA=2,求线段AP的长.5、如图1,AB是⊙O的直径,AC是弦,点P是的中点,PE⊥AC交AC的延长线于E.(1)求证:PE是⊙O的切线;(2)如图2,作PH⊥AB于H,交BC于N,若NH=3,BH=4,求PE 的长.6、如图1,△ABC中,以BC为直径的⊙O分别与AB、AC交于F、D,过D作DE⊥AB于E,且AE=FE;(1)求证:DE是⊙O的切线;(2)如图2,连OE.若OE=2,BC=12,求AE 的长.GC A 7、如图(8)所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD .(1)求证:DC =BC ;(2)若AB =5,AC =4,求AD8、如图,Rt△ABC 中,∠ACB = 90°,以AC 为直径作⊙O 交斜边AB 于点D,连结AF 交BC 于G,连结CF 交AB 于E ,(1)求证:DF=EF ;(2)DE = 3,FD = 5,求⊙O 的半径.9、如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,连接CD ,且AE=DE ,BC=CE . (1)求∠ACB 的度数;(2)过点O 作OF ⊥AC 于点F ,延长FO 交BE 于点G ,DE=3,EG=2,求AB的长.CF DF10、如图,P 是⊙O 直径 AB 延长线上的一点,过 P 作直线分别交⊙O 于 C、D 两点,弦DF⊥AB 于 H点,CF交 AB 于点E. (1)求证:DE=EF; (2)若DE⊥CF,∠P=15°,⊙O 半径为4,求 CF的长.11、如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF 交AD的延长线于F.(1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5.求BF的长.12、如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.A BCDO13、已知:如图,在△ABC 中,AB = AC ,点D 是边BC 的中点.以BD 为直径作圆O ,交边AB 于点P ,联结PC ,交AD 于点E .(1)求证:AD 是圆O 的切线;(2)若PC 是圆O 的切线,BC = 8,求DE 的长.14、如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:;(2)若,⊙O 的半径为3,求BC 的长.15、如图,△ABC 中,AB=AC,以AB 为直径的⊙O 交BC 于D ,交AC 于E.(1)求证:D 为BC 的中点;(2)过点O 作OF ⊥AC 于F ,若74AF =,BC=2,求⊙O 的直径.CF BF =2AD =A BCDPE .OC BEF A DO16、如图,D为Rt△ABC斜边AB上一点,以CD为直径的圆分别交△ABC三边于E,F,G三点,连接FE,FG.(1)求证:∠EFG=∠B;(2)若AC=2BC=4,D为AE的中点,求CD的长.。
中考数学《圆的综合》专题训练(含有答案)
中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。
2022-2023学年北师大版九年级数学下册《第3章 圆 》综合解答题优生辅导训练(附答案)
2022-2023学年北师大版九年级数学下册《第3章圆》综合解答题优生辅导训练(附答案)1.已知点C是△ABD的边AB上一点,且,AC为⊙O的直径,BD切⊙O于点D,连接DO并延长交⊙O于点E,连接BE交⊙O于点M.(1)求证:∠BAD=∠ABD;(2)若⊙O的半径为1,求线段EM的长.2.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左做匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上做匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)求四边形QPCQ的面积.3.如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE于点G,连接CD、CG,且∠CBE=∠ACG.(1)求证:∠CAG=∠ABE;(2)求证:CG=CD;(3)若AB=4,BC=2,求GF的长.4.如图,△ABC内接于⊙O,AB为⊙O的直径,AD=16,CE=6,连接OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求AB的长.5.如图,△ABC内接于⊙O,AE⊥BC于点E,BD⊥AC于点D,延长BD交⊙O于点G,连接AG.(1)求证:AF=AG;(2)连接DE,若DE=,∠F AG=105°,求⊙O的半径.6.如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.7.如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为,BD=3,求CE的长.8.如图所示,已知A,B两点的坐标分别为(2,0),(0,2),点P是△AOB外接圆上一点,且∠AOP=45°,OP与AB交于C点.(1)求∠BAO的度数;(2)求OC及AC的长;(3)求OP的长及点P的坐标.9.如图,△ABC内接于⊙O,AB=AC,射线AD切⊙O于点A,过点B作BF∥AC,交⊙O 于点E,交AD于点F.(1)求证:四边形ACBF为平行四边形;(2)连接CE,延长BO交F A的延长线于点G,若BC=6.CE=3,求BG的长.10.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)若∠OF A=60°,半径为4,在圆O上取点P,使∠PDE=15°,求点P到直线DE 的距离.11.如图,⊙O是△ABC的外接圆,AE平分△ABC的外角∠DAC,OM⊥AB,ON⊥AC,垂足分别是点M、N,且OM=ON.(1)求证:AE∥BC;(2)如图,延长ON交AE于E点,若OE=7,ON=1,求⊙O的半径长.12.在⊙O中,AB是⊙O的直径,P A,PC分别与⊙O相切于点A,C,连接AC,BC,点D是上一点,连接CD,OD,∠P=48°.(Ⅰ)如图①,若CD⊥AB,求∠BOD的大小;(Ⅱ)如图②,若∠AOD=70°,求∠ODC的大小.13.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.14.如图,AB是⊙O的直径,AB=13,C,D在圆上,且AC=CD=12,过点C的切线和DB的延长线交于点E.(1)求证:OC∥DE;(2)求DE的长.15.已知AB是⊙O直径,PC,PB分别切⊙O于点C,B.(Ⅰ)如图①,若∠A=58°,求∠P的度数;(Ⅱ)如图②,延长OB到点D,使BD=OB,连接PD,若∠DPC=81°,求∠D的度数.16.已知P A,PB分别与⊙O相切于点A,B,C为⊙O上一点,连接AC,BC.(Ⅰ)如图①,若∠APB=70°,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径交BC于点D,若四边形P ACB是平行四边形,求∠EAC 的大小.17.如图,△ABC内接于⊙O,AB为⊙O的直径,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于E.(1)求证:DE是⊙O的切线;(2)当AC=6,BC=8时,求DE的长.18.如图,在矩形ABCD中,E为AD的中点,△EBC的外接圆⊙O分别交AB,CD于点M,N.(1)求证:AD与⊙O相切;(2)若DN=1,AD=4,求⊙O的半径r.19.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,CD交AB于点G,∠ABD=2∠BDG,M为AC上的点,过点M的弦DN⊥AB于点H.过点C的切线交DB 的延长线于点E,交AB的延长线于点F.(1)求证:DE⊥CF.(2)当BF=5,BD=3BE时,求MN的长.20.在△ABC中,∠C=α,设BC=a,AC=b,AB=c.⊙O是△ABC的内切圆,⊙P分别与CA的延长线、CB的延长线以及直线AB均只有一个公共点,⊙O的半径为m,⊙P 的半径为n.(1)当α=90°时,b=6,a=8时,m=,n=.(2)如图①,α=90°,则m=,n=.(用含有a、b、c的代数式表示);并求出△ABC的面积(用含有m、n的代数式表示)(3)如图②,α=60°,求出△ABC的面积(用含有m、n的代数式表示).参考答案1.(1)证明:如图,连接CD,∵,AC为⊙O的直径,∴BC=OC,∵BD切⊙O于点D,∴∠ODB=90°,∴DC是Rt△OBD斜边上的中线,∴BC=OC=CD,∵OC=OD,∴BC=OC=CD=OD,∴△OCD是等边三角形,∴∠DOC=∠OCD=60°,∴∠CBD=∠OAD=30°,∴∠BAD=∠ABD;(2)解:如图,连接DM,∵OD=1,∴DE=2,BD=,∴BE==,∵DE为⊙O的直径,∴∠DME=90°,∴∠DMB=90°,∵∠EDB=90°,∴∠EDB=∠DME,又∵∠DBM=∠EBD,∴△BMD∽△BDE,∴=,∴BM===,∴EM=BE﹣BM=﹣=.∴线段EM的长为.2.解:(1)由题意可得,OP=(8﹣t)cm,OQ=tcm,∴OP+OQ=8﹣t+t=8(cm).(2)∵∠POQ=90°,∴PQ是圆的直径,∴∠PCQ=90°,∵OT是∠MON的平分线,∴∠QOC=∠POC=45°,∴∠PQC=∠POC=45°,∴△PCQ是等腰直角三角形,∴S△PCQ=PC•QC=×PQ•PQ=PQ2,在Rt△POQ中,PQ2=OP2+OQ2=(8﹣t)2+t2,∴四边形OPCQ的面积S=S△POQ+S△PCQ=OP•OQ+PQ2=t(8﹣t)+[(8﹣t)2+t2]=4t﹣t2+t2﹣4t+16=16.∴四边形OPCQ的面积为16cm2.3.(1)证明:∵BC是⊙O的直径,∴∠CAB=90°,∴∠CAG+∠BAG=90°,∵AD⊥BE,∴∠AGB=90°,∴∠BAG+∠ABE=90°,∴∠CAG=∠ABE;(2)证明:∵∠CGD=∠CAG+∠ACG,∠ABC=∠ABE+∠CBE,由(1)知,∠CAG=∠ABE,∵∠CBE=∠ACG,∴∠CGD=∠ABC,∵∠ABC=∠D,∴∠DGC=∠D,∴CG=CD;(3)解:连接AE、CE,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠EBC,∠ACG=∠EBC,∴∠CAE=∠ACG,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=AC,∵AC2=BC2﹣AB2,∴AC2=﹣42,∴AC=6,∴AF=×6=3,∵BF2=AF2+AB2,∴BF2=32+42,∴BF=5,∵∠ABG=∠ABF,∠AGB=∠BAF,∴△BAG∽△BF A,∴BA:BF=BG:BA,∴4:5=BG:4,∴BG=,∵FG=BF﹣BG,∴FG=5﹣=.4.(1)证明:∵点E是AD的中点,∴AE=DE,∵OC是半径,∴=,∴∠CAD=∠CBA;(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE=AD=8,,∴OC⊥AD,∴∠AEC=90°,∵CE=6,∴AC==10,∵∠AEC=∠ACB,∠CAD=∠CBA,∴△AEC∽△BCA,∴=,∴=,∴AB=.5.(1)证明:∵AE⊥BC于点E,BD⊥AC于点D,∴∠ACB+∠EFD=180°,∵∠AFD+∠EFD=180°,∴∠AFD=∠ACB,∵∠AGD=∠ACB,∴∠AFD=∠AGD,∴AF=AG;(2)解:延长AE交⊙O于M,连接BM,GM,GC,MC,MO,作直径GN,作MH⊥GN于H,∵AF=AG,AC⊥FG,∴FD=DG,同理,FE=EM,∴MG=2DE=2(+),∵∠MAG+∠MCG=180°,∴∠MCG=180°﹣∠MAG=180°﹣105°=75°,∴∠MOG=2∠MCG=150°,∴∠MOH=30°,设MH=x,∴OM=OG=2x,OH=x,∵MH2+GH2=GM2,∴x2+(2+)2x2=22(+)2,∴(8+4)x2=4(8+4),∴x2=4,∴x=2,∴⊙O半径长为2x=4.6.(1)证明:连接OB,∵OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=2,∴⊙O的半径为.7.(1)证明:连接OD,∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD即EF⊥OD,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接AD,∵AB是⊙O直径,∴AD⊥BC,∵DE⊥AC,∴∠ADC=∠DEC,∵∠C=∠C,∴△CDE∽△CAD,∴CD:CA=CE:CD,∵AB=AC,∴DC=DB=3,∵AC=AB=7,∴3:7=CE:3,∴CE=.8.解:(1)∵A(2,0),B(0,2),∴OA=2,OB=2,∴∠BAO=30°;(2)如图,过点C作CD⊥x轴于点D,∵∠AOP=45°,∴∠OCD=45°,∴DC=DO,∴OC=OD,由(1)知:∠BAO=30°,∴AC=2CD=2OD,AD=CD=OD,∵AO=OD+AD=(+1)OD=2,∴OD=3﹣,∴OC=(3﹣)=3﹣,AC=2(3﹣)=6﹣2;∴OC及AC的长分别为3﹣,6﹣2;(3)作PH⊥x轴于H,连接P A、PB,如图,∵∠AOB=90°,∴AB为△AOB外接圆的直径,∴∠BP A=90°,∵A(2,0),B(0,2),∴OA=2,OB=2,∴AB==4,∵∠AOP=45°,∴∠PBA=45°,∴△P AB和△POH都为等腰直角三角形,∴P A=AB=2,PH=OH,设OH=t,则PH=t,AH=2﹣t,在Rt△PHA中,∵PH2+AH2=P A2,∴t2+(2﹣t)2=(2)2,整理得t2﹣2t+2=0,解得t1=+1,t2=﹣1(舍去),∴OH=PH=+1,∴OP=OH=+;∴P点坐标为(+1,+1).9.(1)证明:如图,连接AO并延长交BC于点H,∵AB=AC,∴弧AB=弧AC,∵AH经过圆心O,∴AH⊥BC,∵AD切⊙O于点A,∴AO⊥AD,∴AD∥BC,∵BF∥AC,∴四边形ACBF为平行四边形;(2)解:∵BF∥AC,∴∠ABF=∠BAC,∴弧AE=弧BC,∴弧AB=弧EC,∴EC=AB=3,∵BH=BC=3,∴AH=9,设半径OA=OB=x,则OH=9﹣x,在Rt△OBH中,根据勾股定理得,32+(9﹣x)2=x2,∴x=5,∴OH=4,∵AG∥BH,∴△AOG∽△HOB,∴=,∴=,∴OG=,∴BG=OB+OG=5+=.10.(1)证明:连接OD,如图,∵AD平分∠BAC交BC于点D,∴∠OAD=∠CAD.∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODC+∠C=180°.∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD是⊙O的半径,∴BC是⊙O的切线;(2)解:①当点P在上时,PH的长为点P到直线DE的距离,连接OD,OP,过点O作OM⊥DE于点M,过点P作PN⊥OM于点N,如图,∵OA=OF,∴∠OAF=∠OF A=60°,∵AD平分∠BAC,∴∠BAD=∠DAC=30°,∴∠EOD=60°,∴△ODE是等边三角形,∴DE=OE=4.∵OM⊥DE,∴DM=EM=2,∠EOM=∠EOD=30°,∴OM=2.∵∠PDE=15°,∴∠POE=30°,∴∠POM=∠POE+∠EOM=60°.∵PN⊥OM,∴ON=OP•cos60°=2,∴MN=OM﹣ON=2﹣2.∵PH⊥DE,OM⊥DE,PN⊥OM,∴四边形PHMN为矩形,∴PH=MN=2﹣2.∴点P到直线DE的距离为2﹣2;②当点P在上时,连接OP,交DE于点H,如图,∵∠EOP=2∠PDE,∠PDE=15°,∴∠EOP=30°.由①知:∠EOD=60°,∴∠EOP=∠EOD,即OP为∠EOD的平分线,∴OH⊥DE,∴PH的长为点P到直线DE的距离,∵OH=OD•cos30°=2,∴PH=OP﹣OH=4﹣2.综上,若∠PDE=15°,则点P到直线DE的距离为2﹣2或4﹣2.11.(1)证明:∵AE平分△ABC的外角∠DAC,∴∠DAC=2∠DAE,∵OM⊥AB,ON⊥AC,且OM=ON.∴AB=AC,∴∠B=∠C,∵∠DAC=∠B+∠C=2∠B,∴∠DAE=∠B,∴AE∥BC;(2)解:延长AO交⊙O于F点,连接CF,由(1)知AE∥BC∴∠EAC=∠ACB=∠B,又∵∠B=∠F,∴∠F=∠EAC,∴∠EAC+∠CAO=∠F+∠CAO=90°=∠ONA,∵∠AON=∠EOA,∴△ONA∽△OAE,∴OA:ON=OE:OA,∴OA2=OE•ON=7×1=7,∴OA=.12.(Ⅰ)解:如图,连接OC,∵P A,PC分别是OO的切线,∴P A⊥AB,PC⊥OC,∴∠P AB=∠PCO=90°,∴∠CAB+P AC=∠OCA+∠PCA=90°,∵OA=OC,∴∠CAB=∠OCA,∴∠P AC=∠PCA,∴∠P=48°,∴∠P AC=∠PCA=(180°﹣∠P)=66°,∴∠CAB=∠P AB﹣∠P AC=90°﹣66°=24°,∴∠OCA=∠CAB=24°,∵AB是⊙O的直径,CD⊥AB,∴∠OCD+∠BOC=∠ODC+∠BOD=90°,∵OC=OD,∴∠OCD=∠ODC,∴∠BOD=∠BOC,∵∠BOC=∠CAB+∠OCA=48°,∴∠BOD=48°;(Ⅱ)解:AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,由(1)知∠CAB+∠P AC=90°,∠P AC=66°,∴∠CBA=∠P AC=66°,∵∠AOD=70°,∴∠BOD=180°﹣∠AOD=110°,∴∠BCD=BOD=55°,∵∠BOD+∠ODC=∠BCD+∠CBA,∴∠ODC=∠BCD+∠CBA﹣∠BOD=55°+66°﹣110°=11°.13.(1)证明:连接OC,如图,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠DAB.∵∠COB=2∠CAB,∴∠COB=2∠BAD.∵∠ECD=2∠BAD,∴∠ECD=∠COB.∵AB⊥CD,∴∠COB+∠OCH=90°,∴∠OCH+∠ECD=90°,∴∠OCE=90°.∴OC⊥CF.∵OC是⊙O的半径,∴CF是⊙O的切线;(2)解:①∵AB=10,∴OA=OB=OC=5,∵AB是⊙O的直径,AB⊥CD,∴CH=DH=CD=3.∴OH==4,∵OC⊥CF,CH⊥OE,∴△OCH∽△OEC,∴,∴,∴OE=.∴AE=OA+OE=5+=;②过点F作FG⊥AB,交AB的延长线于点G,如图,∵∠OCF=∠FGE=90°,∠CEO=∠GEF,∴△OCE∽△FGE.∴,设FG=4k,则FE=5k,∴EG==3k,∵DH⊥AB,FG⊥AB,∴DH∥FG.∴,∴,解得:k=.∴FG=4k=5.∴△AEF的面积=×AE•FG=.14.(1)证明:∵∠EBC为圆内接四边形ACBD的外角,∴∠EBC=∠CAD.∵AC=DC,∴∠CAD=∠CDA.∵∠CDA=∠CBA,∴∠EBC=∠CBA,∵OC=OB,∴∠OCB=∠CBA,∴∠OCB=∠EBC,∴OC∥DE;(2)解:∵EC为⊙O的切线,∴∠ECO=90°.∵OC∥DE,∴∠ECO+∠E=180°,∴∠E=90°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠E=90°.∵∠EDC=∠CAB,∴△EDC∽△CAB,∴=,∵AB=13,AC=DC=12,∴=,∴DE=.15.解:(Ⅰ)如图,连接OC,∵PC,PB分别切⊙O于点C,B,AB是直径,∴∠PCO=∠PBO=90°,∵OC=OA,∴∠A=∠ACO=58°,∴∠BOC=∠A+∠ACO=116°,∴∠P=360°﹣90°﹣90°﹣116°=74°;(Ⅱ)如图,连接OP,∵PC,PB分别切⊙O于点C,B,AB是直径,∴∠CPO=∠BPO,∠PBO=90°,∵BD=OB,∴PB是OD的垂直平分线,∴PO=PD,∴∠OPB=∠DPB,∴∠OPB=∠DPB=∠CPO,∵∠DPC=81°,∴∠OPB=∠DPB=∠CPO=81°=27°,∴∠D=90°﹣27°=63°.16.解:(Ⅰ)如图①,连接OA、OB,∵P A,PB是⊙O的切线,∴P A⊥OA,PB⊥OB,∴∠OAP=∠OBP=90°,∵∠APB=70°,∴∠AOB=360°﹣90°﹣90°﹣70°=110°,∴∠ACB=∠AOB=55°,∴∠ACB的大小为55°;(Ⅱ)连接CE,AB,OB,∵AE为⊙O的直径,∴∠ACE=90°,∵四边形P ACB是平行四边形,∴∠ACB=∠P,∴∠BCE=90°﹣∠P,∴∠BAE=∠BCE=90°﹣∠P,∵∠AOB=180°﹣∠P,∵OA=OB,∴∠OAB=∠ABO=(180°﹣∠AOB)=∠P,∴∠ACE=∠ACB+∠BCE=∠P+∠P=90°,∴∠P=60°,∴∠ACB=60°,∠BAE=∠BCE=30°,∵AC∥PB,∴=,∴∠EAC=30°.17.(1)证明:连接OD,如图,∵AB为⊙O的直径,∴∠ACB=90°.∵CD是∠ACB的平分线,∴∠BCD=∠DCE=∠ACB=45°,∴∠BOD=2∠BCD=90°.∴OD⊥AB.∵DE∥AB,∴OD⊥DE,∵OD为圆的半径,∴DE是⊙O的切线;(2)解:过点A作AF⊥DE于点F,如图,∵AC=6,BC=8,∴AB==10,∴OA=OD=5.∵OD⊥DE,OD⊥AB,AF⊥DE,∴四边形ODF A为矩形,∵OA=OD,∴矩形ODF A为正方形.∴DF=AF=5.∵DE∥AB,∴∠BAC=∠E.∵∠ACB=∠AFE=90°,∴△ABC∽△EAF.∴.∴,∴EF=.∴DE=DF+FE=.18.(1)证明:连接EO并延长交BC于点F,连接OB、OC,∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠A=∠D=90°,∵E为AD的中点,∴AE=DE.∴△ABE≌△DCE(SAS),∴EB=EC,∵OB=OC,∴EF垂直平分BC,即∠EFC=90°,∴∠DEF+∠EFC=180°,∴∠DEF=180°﹣∠EFC=180°﹣90°=90°,即EF⊥AD.∵点E在⊙O上,OE是⊙O的半径,∴AD与⊙O相切;(2)解:过点O作OH⊥CD,垂足为H,连接OE、ON,∵四边形ABCD是矩形,∴∠D=90°.∵AD切⊙O于点E,∴∠OED=90°.∵∠OHD=90°,∴四边形OEDH是矩形,∴OH=ED,DH=OE=r,∵E是AD的中点,∴OH=ED=AD=2.在Rt△OHN中,由勾股定理得:OF2+NF2=ON2,即22+(r﹣1)2=r2.∴解得r=2.5,故⊙O的半径r为2.5.19.(1)证明:如图,连接OC,∵∠BDG=∠A,∠COB=2∠A,∴∠COB=2∠BDG.∵∠ABD=2∠BDG,∴∠COB=∠ABD.∴DE∥OC.∵FC是⊙O的切线,∴OC⊥FC.∴DE⊥CF.(2)解:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°.∵DE⊥CF,∴∠BEF=90°.∴∠ADB=∠BEF=90°.∵∠ABD=∠EBF,∴△ADB∽△FEB.∴.∵BF=5,BD=3BE,∴AB=3BF=15.∴OB=OC=7.5.∴OF=OB+BF=12.5.∵OC⊥CF,∴FC==10,sin F=.∵∠BAD=∠F,∴sin∠BAD=sin F=.∴sin∠BAD=.∴BD=9.∴BE=BD=3.∴DE=DB+BE=12.∴AD==12.∵DN⊥AB,∴sin∠BAD=.∴DH=.∵DN⊥AB,AB为⊙O的直径,∴NH=DH=.∵FE==4,∴CE=FC﹣FE=6.∵DE⊥FC,∴tan∠CDE=.∴tan∠CAB=tan∠CDE=.∵tan∠CAB=,∴.∴HM=AH===.∴MN=NH﹣MH==.20.解:(1)∵α=90°,b=6,a=8,∴c=10,如图①,设点D,E,F分别是⊙O的切点,连接PD,PE,PF,连接OA,OB,OC,∵S△BCA=S△ABO+S△ACO+S△BCO,∴×6×8=×10m+×6m+×8m,∴m=2,由已知,四边形DPEC为正方形,∴n=PD=(CD+CE),由切线长定理可知,AF=AD,BF=BE,∴n=(CD+CE)=(AD+AC+BE+BC)=(AB+AC+BC)=(10+6+8)=12;故答案为:2,12;(2)如图①,由切线的性质可知:PD⊥CD,PE⊥BC,PF⊥AB,∵PD=PE=PF,设△ABC的面积为S△ABC,周长为C△ABC,同(1),根据面积法可知m===,∵n=(CD+CE)=(AD+AC+BE+BC)=(AB+AC+BC)=C△ABC=,∴S△ABC==mn.故答案为:,;(3)如图②,连接CP,由切线长定理得:CD=CE=(CD+CE)=(AD+AC+BE+BC)=(AB+AC+BC)=C△ABC,∵PD⊥CD,PE⊥BC,∴CP平分∠ACB,∴∠PCE=30°,∴n=PE===,∵m=,∴S△ABC==mn.。
初中圆的综合试题及答案
初中圆的综合试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,直径为d,则d与r的关系是()。
A. d = 2rB. d = rC. d = r/2D. d = 4r答案:A2. 圆的周长C与半径r的关系是()。
A. C = 2πrB. C = πrC. C = 4πrD. C = 2r答案:A3. 圆的面积S与半径r的关系是()。
A. S = πr^2B. S = 2πrC. S = πrD. S = r^2答案:A4. 圆心角为90°的扇形面积是整个圆面积的()。
A. 1/4B. 1/2C. 3/4D. 1答案:A5. 已知圆的半径为5cm,那么圆的直径是()。
A. 10cmB. 15cmC. 20cmD. 25cm答案:A6. 圆的切线与半径的关系是()。
A. 垂直B. 平行C. 相交D. 重合答案:A7. 圆的内接正方形的对角线长度等于圆的()。
A. 半径B. 直径C. 周长D. 面积答案:B8. 圆的外切正方形的边长等于圆的()。
A. 半径B. 直径C. 周长D. 面积答案:A9. 两个半径相等的圆是()。
A. 同心圆B. 等圆C. 相切圆D. 相交圆答案:B10. 圆的直径是半径的()倍。
A. 1B. 2C. 4D. 8答案:B二、填空题(每题3分,共30分)11. 圆的周长公式为C=2πr,其中r代表圆的________。
答案:半径12. 圆的面积公式为S=πr^2,其中r代表圆的________。
答案:半径13. 一个圆的半径为3cm,那么它的周长是________cm。
答案:18.8414. 一个圆的半径为4cm,那么它的面积是________cm^2。
答案:50.2415. 圆的切线垂直于经过切点的________。
答案:半径16. 圆的内接正六边形的边长等于圆的________。
答案:半径17. 圆的外切正六边形的边长等于圆的________。
答案:半径18. 两个圆的半径之和等于它们圆心距的圆是________圆。
2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练
2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练(附答案)1.如图,AB是⊙O的直径,且AB=10,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.(1)若G是弧AC上任意一动点,请找出图中和∠G相等的角(不在原图中添加线段或字母),并说明理由.(2)当点C是弧BG的中点时,①若∠G=60°,求弦DG的长,②连接BG,交CD于点F,若BE=2,求线段CF的长.2.如图,等腰△ABC内接于⊙O,AB=AC,连结OC,过点B作AC的垂线,交⊙O于点D,交OC于点M,交AC于点E,连结AD.(1)若∠D=α,请用含α的代数式表示∠OCA;(2)求证:CE2=EM•EB;(3)连接CD,若BM=4,DM=3,求tan∠BAC的值及四边形ABCD的面积与△BMC 面积的比值.3.已知:AB为⊙O的直径,=,D为弦AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=2,求AD的长.(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.4.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4.求⊙O的半径;(3)在(2)条件下,求BE、DE、弧围成的阴影部分的面积.5.如图1,⊙O的弦BC=6,A为BC所对优弧上一动点且sin∠BAC=,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)求证:点P为的中点;(2)如图2,求⊙O的半径和PC的长;(3)若△ABC不是锐角三角形,求P A•AE的最大值.6.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC,AC与BD相交于点G.(1)求证:∠ACF=∠ADB;(2)求证:CF=DF;(3)∠DBC=°;(4)若OB=3,OA=6,则△GDC的面积为.7.如图,⊙O是直角三角形ABC的外接圆,直径AC=4,过C点作⊙O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与⊙O相切;(2)当∠BAC=60°时,求弦AB和弧AB所夹图形的面积;(3)在(2)的条件下,在弧AB上取一点F,使∠ABF=15°,连接OF交弦AB于点H,求FH的长度是多少?8.如图,AB是⊙O的直径,AC是弦,P为AB延长线上一点,∠BCP=∠BAC.∠ACB的平分线交⊙O于点D,交AB于点E,(1)求证:PC是⊙O的切线;(2)求证:△PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.9.圆内接四边形ABCD,AB为⊙O的直径.(1)如图1,若D为弧AB中点,AB=4.①求∠DCB的度数;②求四边形ABCD面积的最大值.(2)如图2,对角线AC,BD交于点E,连结OE并延长交CD于点F,若OE=3EF=3,求AB的长.10.已知:∠MBN=90°,点A在射线BM上,点C在射线BN上,D在线段BA上,⊙O 是△ACD的外接圆;(1)若⊙O与BN的另一个交点为E,如图1,当,BD=1,AD=2时,求CE的长;(2)如图2,当∠BCA=∠BDC时,判断BN与⊙O的位置关系,并说明理由;(3)如图3,在BN上作出C点,使得∠ACD最大,并求当AD=2,时,⊙O 的半径.11.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD 的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.12.如图,线段AB=6,以AB为直径作⊙O,C为⊙O上一点,过点B作⊙O的切线交AC 的延长线于点D,连接BC.(1)求证:△BCD∽△ABD;(2)若∠D=50°,求的长.(3)点P在线段AC上运动,直接写出△PBD的外心运动的路径长.13.如图,在平面直角坐标系中,已知A(0,3),点B在x轴正半轴上,且∠ABO=30°,C为线段OB上一点,作射线AC交△AOB的外接圆于点D,连接OD,∠COD=∠OAD.(1)求∠BAD的度数;(2)在射线AD上是否存在点P,使得直线BP与△AOB的外接圆相切?若存在,请求出点P的坐标;若不存在,请说明理由.14.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,直径AE交BC于点H,点D 在弧AC上,过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF的长;(3)在(2)的条件下,直接写出CD的长.15.如图,AB是⊙O的直径,P A是⊙O的切线,连接OP交⊙O于点E,点C在⊙O上,四边形OBCE为菱形,连接PC.(1)求证:PC是⊙O的切线;(2)连接BP交⊙O于点F,交CE于点G.①连接OG,求证:OG⊥CG;②若OB=3,求BF的长.16.如图,在平面直角坐标系xOy中,直线m:y=x+与x轴交于点A,与y轴交于点B,点P在直线m上,以点O为圆心,OP为半径的⊙O交x轴于点C、D(点C 在点D的左侧),与y轴负半轴交于点E,连接PE,交x轴于点F,且AF=AP.(1)判断直线m与⊙O的位置关系,并说明理由;(2)求∠PEB的度数;(3)若点Q是直线m上位于第一象限内的一个动点,连接EQ交x轴于点G,交⊙O于点H,判断EG•EH是否为定值,若是,求出该定值;若不是,请说明理由.17.如图,线段AB是⊙O的直径,过点B作一条射线BC与AB垂直,点P是射线BC上的一个动点,连接PO交⊙O于点F,连接AF并延长交线段BP于点E,设⊙O的半径为r,PB的长为t(t>0).(1)当r=3时,①若∠F AO=∠EPF,求的长,②若t=4,求PE的长;(2)设PE=n2t,其中n为常数,且0<n<1,若t﹣r为定值,求n的值及∠EAB的度数.18.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径作⊙O,⊙O 与BC相切于点E,连结AE,过点C作CG⊥AB于点G,交AE于点F,过点E作EP⊥AB于点P.(1)求证:∠BED=∠EAD;(2)求证:CE=EP;(3)连接PF,若CG=8,PG=6,求四边形CFPE的面积.19.如图,以△ABC的边AB为直径作⊙O交BC于点D,过点D作⊙O的切线交AC于点E,AB=AC.(1)求证:DE⊥AC;(2)延长CA交⊙O于点F,点G在上,.①连接BG,求证:AF=BG;②经过BG的中点M和点D的直线交CF于点N,连接DF交AB于点H,若AH:BH=3:8,AN=7,试求出DE的长.20.如图,△ABC为⊙O的内接三角形,AD⊥BC,垂足为D,直径AE平分∠BAD,交BC 于点F,连结BE.(1)求证:∠AEB=∠AFD.(2)若AB=10,BF=5,求AD的长.(3)若点G为AB中点,连结DG,若点O在DG上,求BF:FC的值.参考答案1.解:(1)∠AGD=∠B,理由如下:连接AC,∵AB是直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠CEB=90°,∴∠BCD+∠B=90°,∴∠ACD=∠B,∵∠AGD=∠ACD,∴∠AGD=∠B;(2)连接OC,OG,OD,OC交CD于M,∵∠AGD=∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠BOC=60°,∵点C是的中点,∴∠COG=∠COB=∠BOD=60°,∴CD是⊙O的直径,∴CD=AB=10;(3)连接BG,交CD于F,连接AC,∵==,∴∠BCD=∠GBC,∴CF=BF,∵∠ACD=∠ABC,∠AEC=∠BEC,∴△ACE∽△CBE,∴CE2=AE×BE=8×2=16,∵CE>0,∴CE=4,设BF=CF=x,则EF=4﹣x,∴(4﹣x)2+22=x2,解得x=,∴CF=.2.(1)解:如图,连接OA,OB,在△AOB与△AOC中,,∴△AOB≌△AOC(SSS),∴∠OAB=∠OAC=,∵,∴∠ACB=∠D=α,∵AB=AC,∴∠ABC=∠ACB=α,∴∠BAC=180°﹣2α,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α;(2)证明:∵BD⊥AC,∴∠BEC=90°,∴∠CBE=90°﹣∠ACB=90°﹣α,∴∠OCA=∠CBE,∵∠CEM=∠CEB,∴△CEM∽△BEC,∴,∴CE2=EM•EB;(3)解:如图,连接AO并延长交BD于点N,连接CN,CD,∵AB=AC,∠OAB=∠OAC,∴AO垂直平分BC,∴BN=CN,∵∠OCA=∠DAC,∴OC∥AD,∴∠DMC=∠ABD=∠ACB,∵,∴∠BAC=∠CDM,∴∠DCM=∠ABC,∴∠DCM=∠DMC,∴CD=DM=3,∵AC⊥BD,∴∠AED=∠AEN,∵∠OAC=∠DAC,AE=AE,∴△AEN≌△AED(ASA),∴EN=ED,∴AC垂直平分DN,∴CN=CD=3,∴BN=CN=3,∴MN=BM﹣BN=4﹣3=1,由EN=DE得:MN+EM=DM﹣EM,∴1+EM=3﹣EM,∴EM=1,∴EB=BM+EM=4+1=5,DE=DM﹣EM=3﹣1=2,由(2)知,CE2=EM•EB=1×5=5,∴CE=(负值已舍),∵∠BAC=∠BDC,∠DEC=∠AEB,∴△DEC∽△AEB,∴,∴AE=,在Rt△ABE中,tan∠BAC=,由(2)知,∠OCA=∠CBE=∠CAD,∴AD∥OC,∴=,∴CE=,∴S四边形ABCD=AC×BD==,S△BMC===2,∴四边形ABCD的面积与△BMC面积的比值为.3.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵=,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA=22.5°,∵∠CED=∠CBD+∠BCE=67.5°,∠CDE=∠ABD+∠BAC=67.5°,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴OG∥AD,AD=2OG,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴∠OGE=∠OEG,∴OG=OE=2,∴AD=2OG=4;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵=,∴BC=AC,∴CP=CD,∵∠ACB=90°∴∠CPD=45°,∴∠BPD=135°,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DF A≌△BDP(SAS),∴∠F AD=∠BPD=135°,∴∠F AB=∠F AD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,又∵OA为半径,∴AF为⊙O的切线.4.解:(1)连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BCD中,BE=EC,∴DE=EC=BE,∴∠EBD=∠EDB,∵BC是⊙O的切线,∴AB⊥BC,∴∠EBD+∠DBO=90°,∴∠EDB+∠DBO=90°,∵OD=OB,∴∠DBO=∠BDO,∴∠EDB+∠BDO=90°,即∠ODF=90°,∴DF⊥OD,∵OD为⊙O的半径,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OB=2OD,∴sin F==,∴∠F=30°,∴OB=BF=EF•cos F=4×cos30°=2,即⊙O的半径为2;(3)由(2)知,OD=2,∠BOD=90°﹣∠F=60°,∴DF=OD•tan∠BOD=2×=6,∵EF=4,∠F=30°,∴BE=EF•sin30°=2,∵阴影部分的面积=三角形ODF的面积﹣三角形FEB的面积﹣扇形BOD的面积,∴S阴=S△ODF﹣S△FEB﹣S扇形BOD=OD•DF﹣BF•BE﹣π•OD2==4﹣2π,∴阴影部分的面积为4﹣2π.5.(1)证明:①如图1,连接OC,AB,∵AP平分∠BAF,∴∠BAP=∠P AF,∵∠P AF+∠P AC=180°,∠P AC+∠PBC=180°,∴∠P AF=∠PBC,又∠BAP=∠PCB,∴∠PBC=∠PCB,∴PB=PC,∴=,∴点P为的中点;(2)解:连接OB,OC,过O作OM⊥BC于M,∴OM垂直平分BC,∴BM=CM=BC=3,∠BOM=∠BOC=∠BAC,∵sin∠BAC=,∴sin∠BOM==,∴OB=5,∴⊙O的半径是5,在Rt△OMC中,OM==4,在Rt△PMC中,PM=OM+OP=9,∴PC==3;(3)∵∠ACE+∠BCA=∠BPE+∠BCA=180°,∴∠ACE=∠BPE,同理,∠CAE=∠PBC=∠P AB,∴△ACE∽△APB,∴=,∴P A•AE=AC•AB,如图4,过C作CQ⊥AB于Q,∵sin∠BAC=,∴CQ=AC•sin∠BAC,∴S△ABC=AB•CQ=AB•AC,∴P A•AE=S△ABC,∵△ABC非锐角三角形,且BC=6,∴当A运动到使∠ACB=90°时,△ABC面积最大,在Rt△ABC中,BC=6,AB=10,∴AC==8,∴S△ABC=BC•AC=24,∴此时,P A•AE=80,即P A•AE的最大值为80.6.(1)证明:连接AB,∵OP⊥BC,∴BO=CO,∴AB=AC,又∵AC=AD,∴AB=AD,∴∠ABD=∠ADB,又∵∠ABD=∠ACF,∴∠ACF=∠ADB;(2)证明:∵AC=AD,∴∠ACD=∠ADC,∵∠ACF=∠ADF,∵∠ACD﹣∠ACF=∠ADC﹣∠ADF,即∠FCD=∠FDC,∴CF=DF;(3)解:连接AF,由(2)知CF=DF,则点F在CD的垂直平分线上,∵AC=AD,∴点A在CD的垂直平分线上,∴AF是CD的垂直平分线,∴AF平分∠CAD,∴∠CAF=45°,∴∠CBD=45°,故答案为:45;(4)解:作CH⊥BD于H,∵OB=OC=3,∠DBC=45°,∴CH=BH=3,∵OA=6,OC=3,∴AC=3,∴CD=AC=3,∴DH=,∴DB=BH+DH=9,∵∠ACD=∠DBC,∠CDG=∠BDC,∴△DCG∽△DBC,∴DC2=DG•DB,∴(3)2=DG•9,∴DG=5,∴△GDC的面积为=15,故答案为:15.7.(1)证明:如图,连接OB,∵⊙O是直角三角形ABC的外接圆,∴∠ABC=∠DBC=90°.在Rt△DBC中,M为CD的中点,∴BM=MC,∴∠MBC=∠MCB.又∵OB=OC,∴∠OCB=∠OBC.∵CD为⊙O的切线,∴∠ACD=90°.∴∠MCB+∠OCB=∠MBC+∠OBC=90°,即OB⊥BM.又∵OB为⊙O的半径,∴BM与⊙O相切;(2)解:∵∠BAC=60°,OA=OB,∴△ABO为等边三角形,∴∠AOB=60°.∵AC=4,∴OA=2,∴弦AB和弧AB所夹图形的面积=S扇形AOB﹣S△AOB=.(3)解:连接OB,∠ABF=15°时,∠AOF=30°,∴等边△ABO中,OF平分∠AOB,∴OF⊥AB.在Rt△AOH中,AO=2,∠AOH=30°,∴AH=1,∴OH=,∴FH=.8.(1)证明:连接OC,∵AB为直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∵OA=OC,∴∠BAC=∠ACO,∠BCP=∠BAC,∴∠BCP=∠ACO,∴∠BCP+∠OCB=90°,∴OC⊥PC,∵OC为半径,∴PC是⊙O的切线;(2)证明:∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∵∠PCE=∠PCB+∠BCD,∠PEC=∠BAC+∠ACD,∴∠PEC=∠PCE,∴△PEC是等腰三角形;(3)解:作DM⊥AC于M,DN⊥CB交CB的延长线于N,∵CD平分∠ACB,DM⊥∠AC,DN⊥CB,∴DM=DN,,∵∠AMD=∠BND=90°,∴Rt△AMD≌Rt△BND(HL),∴AM=BN,∵∠DMC=∠MCN=∠CND=90°,∴四边形CMDN为矩形,∵DM=DN,∴矩形CMDN为正方形,∴CN=,∵AC+BC=CM+AB+CB=2CN,∴AC+BC=CD,∵AC+BC=2,∴CD=.9.解:(1)①∵AB为直径,D为的中点,∴∠DCB=180°﹣∠A=180°﹣45°=135°,②连接BD,AC交于点E,当四边形ABCD面积最大时,即△BCD面积最大,当OC⊥BD时,CE最大,∵AB=4,∴BD=AD=2,∴OE=,∴S,∴S四边形ABCD的最大值为:S;(2)直线OF交⊙O于点M,N,过F作PQ∥AB交直线BD,AC于点P,Q,∵∠Q=∠A=∠CDE,∴△PFD∽△CFQ,∴PF•FQ=FD•FC,∵∠N=∠MDF,∠MFD=∠CFN,∴△MFD∽△CFN,∴MF•FN=FD•FC,∴PF•FQ=MF•FN,∴,∴FP=FQ=,设半径为r,∴(r﹣4)(r+4)=,∵r>0,∴r=3,∴AB=6.10.解:(1)连接AE,∵∠AEC+∠ADC=180°,∠BDC+∠ADC=180°,∴∠BDC=∠AEC,∵∠CBD=∠ABE,∴△ABE∽△CBD,∴,∵BC=,AD=2,BD=1,∴AB=AD+BD=2+1=3,∴,∴BE=2,∴CE=BE﹣BC=;(2)BN是⊙O的切线,理由如下:连接CO并延长交⊙O于点F,连接DF,则∠CDF=90°,∴∠CFD+∠FCD=90°,∵∠BCA=∠BDC,∠B=∠B,∴∠BAC=∠BCD,∵∠CAD=∠CFD,∴∠CFD=∠BCD,∴∠FCB=∠FCD+∠BCD=∠FCD+∠CFD=90°,∴BC⊥OC,∵OC是半径,∴BC是⊙O的切线,即BN是⊙O的切线;(3)过点A,C,D三点作⊙O,当BC是⊙O的切线时,∠ACD最大,连接CO并延长交⊙O于点G,连接AG,DG,则∠CDG=90°,∠CAG=90°,∴∠CGD+∠DCG=90°,∵BC是⊙O的切线,∴BC⊥OC,∴∠BCO=90°,∴∠BCD+∠DCG=90°,∴∠BCD=∠CGD,∵∠CGD=∠CAD,∴∠BCD=∠BAC,∵∠B=∠B,∴△BCD∽△BAC,∴,∴BC2=BD•BA,∵AD=2,∴BA=BD+AD=BD+2,∴BC2=BD(BD+2)=BD2+2BD,∵BC2+BA2=AC2,AC=2BD,∴BC2=AC2﹣BA2=(2BD)2﹣(BD+2)2=11BD2﹣4BD﹣4,∴11BD2﹣4BD﹣4=BD2+2BD,∴5BD2﹣3BD﹣2=0,∴BD=﹣(舍去)或BD=1,∴BD=1,∴BA=BD+AD=1+2=3,AC=2BD=2,∵∠B=90°,∴AB⊥BC,∵CG⊥BC,∴CG∥AB,∴∠BAC=∠ACG,∵∠B=∠CAG=90°,∴△BAC∽△ACG,∴,∴,∴CG=4,∴OC=2,即⊙O的半径为2.11.(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.12.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠DCB=90°,∵BD切⊙O于点B,∴∠ABD=90°,∴∠DCB=∠ABD,∵∠D=∠D,∴△BCD∽△ABD;(2)解:连接OC,∵∠D=50°,∠ABD=90°,∴∠A=40°,∴∠COB=2∠A=80°,∵直径AB=6,∴半径r=3,∴的长为=;(3)解:取BD的中点E,AD的中点F,连接EF,当点P在点C处时,△PBD为直角三角形,E为△PBD的外心,当点P在点A处时,△ABD为直角三角形,F为△PBD的外心,∵AB=6,EF为△ABD的中位线,∴EF=AB=3,∴△PBD的外心运动的路径长为3.13.解:(1)∵∠AOB=90°,∠ABO=30°,∴∠OAB=90°﹣∠ABO=60°,∵=,∴∠COD=∠BAD,∵∠COD=∠OAD,∴∠BAD=∠OAD=,即∠BAD的度数为30°;(2)如图,存在点P,使得直线BP与△AOB的外接圆相切,∵∠AOB=90°,∴AB是△AOB外接圆的直径,∴AB⊥PB,∴∠ABP=90°,∴∠PBC=90°﹣∠ABO=90°﹣30°=60°,由(1)得,∠OAC=30°,∴∠ACO=90°﹣∠OAC=60°,∴∠PCB=∠ACO=60°,∴△PBC是等边三角形,∵A(0,3),∴OA=3,∴OC=OA•tan∠OAC=3×=,在Rt△AOB中,OA=3,∠OAB=60°,∴OB=OA•tan60°=3,∴BC=OB﹣OC=3﹣=2,作PQ⊥BC于Q,∴PQ=CQ•tan∠PCB=×=3,∴OQ=OC+CQ=2,∴P(3,﹣2).即:存在点P,使得直线BP与△AOB的外接圆相切,此时点P(3,﹣2).14.(1)证明:∵AB=AC,∴,∵AE是直径,∴,∴∠BAE=∠CAE,又∵AB=AC,∴AE⊥BC,又∵EF∥BC,∴EF⊥AE,∵OE是半径,∴EF是⊙O的切线;(2)解:连接OC,设⊙O的半径为r,∵AE⊥BC,∴HG=HC+CG=4,∴AG===5,在Rt△OHC中,OH2+CH2=OC2,∴(3﹣r)2+1=r2,解得:r=,∴AE=,∵EF∥BC,∴△AEF∽△AHG,∴,∴,∴EF=;(3)解:∵AH=3,BH=1,∴AB===,∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC+∠CDG=180°,∴∠B=∠CDG,又∵∠DGC=∠AGB,∴△DCG∽△BAG,∴,∴,∴CD=.15.(1)证明:连接OC,∵四边形OBCE为菱形,∴OB=BC,OB∥CE,∴OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=∠COE=60°,∴∠AOP=∠COP=60°,∵OA=OC,OP=OP,∴△APO≌△CPO(SAS),∴∠PCO=∠BAP,∵AB是⊙O的直径,P A是⊙O的切线,∴∠P AO=90°,∴∠PCO=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)①证明:由(1)知,∠AOP=60°,∠P AO=90°,∴∠APO=30°,∵OA=OP,∴OE=PE,∴PE=BC,∵PO∥BC,∴∠PEG=∠BCG,∠EPG=∠CBG,∴△PEG≌△BCG(ASA),∴EG=CG,∴OG⊥CG;②解:∵OB=3,∴OA=OB=3,∴OP=2OA=6,∴AP==3,∴PB===3,连接AF,∵AB是⊙O的直径,∴AF⊥PB,∵S△APB=AP•AB=PB•AF,∴AF===,∴BF===.16.解:(1)直线m与⊙O相切,理由:连接PO,∵AP=AF,∴∠APF=∠AFP,∵∠AFP=∠EFO,∴∠APF=∠EFO,∵OP=OE,∴∠OPF=∠OEF,∵∠FOE=90°,∴∠OFE+∠OEF=∠OPF+∠APF=90°,∴∠APO=90°,∴PO⊥直线AB,∵OP是⊙O的半径,∴直线m与⊙O相切;(2)∵y=x+与x轴交于点A,与y轴交于点B,∴令y=0,得x=﹣2,令x=0,得y=,∴A(﹣2,0),B(0,),∴OA=2,OB=,∴tan∠BAO==,∴∠BAO=30°,∴∠AOP=60°,∵∠AOB=90°,∴∠BOP=30°,∵OP=OE,∴∠OPE=∠EOP,∵∠BOP=∠OPE+∠OEP=2∠PEB=30°,∴;(3)连接CE、CH,∵CD⊥BE,∴∠COE=∠DOE=90°,∴∠CHE=∠ECG=90°=45°,∵∠CEG=∠HEC,∴△CEG∽△HEC,∴.∴EG•EG=CE•EC=2.17.解:(1)①∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠POB=2∠EPF,∵BC⊥AB,∴∠OBP=90°,∴∠POB+∠EPF=90°,∴2∠EPF+∠EPF=90°,∴∠EPF=30°,∴∠POB=60°,∴n=60,∵r=OB=3,∴的长为;②延长FO交⊙O于点G,连接BF,BG,∵FG是⊙O的直径,∴∠FBG=90°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFB+∠GBF=180°,∴AF∥BG,∴,∵OP==5,∴PF=OP﹣OF=2,∵PB=4,∴,∴PE=1;(2)∵t﹣r的值为定值,∴t﹣r=0,∴t=r,∴OB=BP,∴∠POB==45°,∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠EAB=∠OAF==22.5°,由②同理得AF∥BG,∴,∵OP===r,∴PF=OP﹣OF=(﹣1)r,PG=OP+OG=(+1)r,∴,∴n,∵0<n<1,∴n=﹣1,∴∠EAB=22.5°.18.(1)证明:连结OE,∵BC与⊙O相切于点E,∴OE⊥BC,∴∠BED+∠OED=90°,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,∵OE=OD,∴∠OED=∠ADE,∴∠BED=∠EAD;(2)证明:∵AC⊥BC,OE⊥BC,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,又∵EP⊥AB,EC⊥AC,∴CE=EP;(3)解:连结PF,∵∠ACB=90°,CG⊥AB,∴∠CAE+∠AEC=∠AFG+∠EAP=90°,∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=EP,∴平行四边形CFPE是菱形,∴CF=PF,设CF=x,则PF=x,FG=8﹣x,在Rt△PFG中,由勾股定理可得:x2=(8﹣x)2+62,解得:x=,∴四边形CFPE的面积=CF•PG=.19.(1)证明:如图1,连接OD,∵DE为⊙O的切线,∴∠ODE=90°,∵AB=AC,∴∠B=∠C,又∵OB=OD,∴∠B=∠ODB,∴∠C=∠ODB,∴OD∥AC,∴∠DEC=∠ODE=90°,∴DE⊥AC;(2)①证明:如图2,连接BF,AG,∵AB为⊙O的直径,∴∠AFB=∠BGA=90°,∵.∴∠ABD=∠DBG,∵∠ABC=∠C,∴∠C=∠DBG,∴CF∥BG,∴∠FNG+∠BF A=180°,∴∠FBG=90°,∵∠FBG=∠AFB=∠BGA=90°,∴四边形AFBG为矩形,∴AF=BG;②解:如图3,连接AD,∵AB为⊙O的直径,∴∠BDA=90°,∵AB=AC,∴BD=DC,∵CF∥BG,∴∠NCD=∠MBD,在△BDM和△CDN中,,∴△BDM≌△CDN(ASA),∴BM=CN,过点C作CP∥DH交BA的延长线于点P,∴=,∴BH=HP,∵AH:BH=3:8,∴AH:AP=3:5,∵FH∥CP,∴==,∵AB=AC,∴=,设AB=5k,则AC=5k,F A=BG=3k,连接FB,∵∠BF A=90°,∴BF==4k,∵M为BG中点,∴BM=BG=k,∴CN=k,∴AN=AC﹣CN=5k﹣k=k=7,则k=2,∵∠DEC=∠BFC=90°,∴DE∥BF,∴=,∴EF=EC,∴DE=BF=2k,∴DE=4.20.(1)证明:∵AE为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵AE平分∠BAD,∴∠BAE=∠AFD,∴∠AEB=∠AFD;(2)解:如图1,过点B作BM⊥AE于点M.∵∠AFD=∠BFE,∠AFD=∠AEB,∴∠BFE=∠AEB,∴BF=BE=5,∵AB=10,∠ABE=90°,∴AE===5,∵,∴BM==2,∴EM=FM===,∴AF=AE﹣EF=5﹣2=3,∵∠BMF=∠ADF=90°,∠AFD=∠BFM,∴△BFM∽△AFD,∴,∴,∴AD=6;(3)解:∵∠ADB=90°,G为AB的中点,∴AG=DG=BG,∵O为AE的中点,G为AB的中点,∴OG∥BE,∵∠ABE=90°,∴∠AGD=90°,∴△ADG为等腰直角三角形,∴∠GAD=45°,∴∠ABD=45°,过点F作FH⊥AB于点H,如图2,∵AF平分∠BAD,∴FD=FH,∵∠ABD=45°,∴BF=FH=FD,∵∠AFD=∠AEB,∠AEB=∠C,∴∠AFD=∠C,∴AF=AC,又∵AD⊥BC,∴FD=DC,设FD=DC=x,则BF=x,∴.。
六年级上册数学 《圆》解答题专项训练
【六年级上册数学】《圆》专项训练——解答题1.妈妈编织了一个直径为6分米的圆形垫子,为了美观,在垫子的一周加一圈宽10厘米的彩边,彩边的面积是多少?6÷2=3(分米)10厘米=1分米3+1=4(分米)3.14×4²-3.14×3²=3.14×16-3.14×9=3.14×(16-9)=3.14×7=21.98(平方分米)答:彩边的面积是21.98平方分米。
2.有一个周长是56.52米的圆形池塘,现在要在池塘外用花砖铺一圈1米宽的小路,所铺花砖的面积是多少?56.52÷3.14÷2=9(米)9+1=10(米)3.14×(10²﹣9²)=3.14×(100﹣81)=3.14×19=59.66(平方米)答:铺花砖的面积是59.66平方米。
3.一块长方形空地,长8米,宽6米,要在这块长方形空地里面修一个最大的圆形花坛。
这个花坛的占地面积是多少平方米?3.14×(6÷2)²=3.14×9=28.26(平方米)答:这个花坛的占地面积是28.26平方米。
4.某小学校园建“开心农场”,用31.4米的篱笆靠墙围出了两个完全相同的半圆形菜园,这两个半圆形菜园的占地面积是多少平方米?31.4÷3.14÷2=5(米)3.14×5²=3.14×25=78.5(平方米)答:这两个半圆形菜园的占地面积是78.5平方米。
5.共享单车有低碳环保、经济节能等优势,为人们的出行提供了诸多方便。
一辆共享单车的轮胎直径是0.7米,如果每分钟转100圈,这辆共享单车的速度是多少千米/时?(得数保留整数)0.7×3.14×100×60=219.8×60=13188(米/时)13188米/时=13.188千米/时≈13千米/时答:这辆共享单车的速度是13千米/时6.有一个圆形花坛,半径是10米,王叔叔每天早晨绕着花坛的边缘跑15圈,他每天早晨跑多少米?3.14×(10×2)×15=3.14×20×15=62.8×15=942(米)答:他每天早晨跑942米。
圆综合测试题(含详细解析及答案)
《圆》的综合测试题学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A .2cmB .1.5cmC .cmD .1cm2.已知⊙1O 的半径为5cm ,⊙2O 的半径为3cm ,两圆的圆心距为7cm ,则两圆的位置关系是( ),A 外离 ,B 外切 ,C 内切 ,D 相交3.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是【 】A .91032π⎛⎫- ⎪⎝⎭米2B .932π⎛⎫- ⎪⎝⎭米2 C .9632π⎛⎫- ⎪⎝⎭米2 D .()693π-米24.如右图,圆心角∠AOB=100°,则∠ACB 的度数为( )OA BCA 、100°B 、50°C 、80°D 、45°5.如图,⊙O 是△ABC 的外接圆,已知∠ABO=30º,则∠ACB 的大小为( )A .30ºB .45ºC .50ºD .60º6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3cm,则圆心O 到弦CD 的距离为( )A .错误!cmB .3 cmC .3错误!cmD .6cm7.圆心角为120°,弧长为12π的扇形半径为( )A .6B .9C .18D .368.⊙O 的直径AB =10cm ,弦CD ⊥AB ,垂足为P .若OP :OB =3:5,则CD 的长为( )A .6cmB .4cmC .8cmD .91cm 9.如图,在△ABC 中,∠A =90º,AB =AC =2.以BC 的中点O 为圆心的圆弧分别与AB 、AC 相切于点D 、E ,则图中阴影部分的面积是【 】A .1-4πB .4πC .1-2πD .2-2π 10.如图,PA 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA,PB 于C 、D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )A 51312.125 C 3135 D 2133二、填空题(题型注释)11.母线长为4,底面圆的半径为1的圆锥的侧面积为___________。
中考数学圆的综合(大题培优 易错 难题)含详细答案
中考数学圆的综合(大题培优易错难题)含详细答案一、圆的综合1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。
圆的解答题(题目及答案)
《圆》解答题荟萃1、已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)求证:AC 与⊙O 相切; (2)当BD=6,sinC=53时,求⊙O 的半径.(1)证明:连接OE ,∵AB=BC 且D 是AC 中点,∴BD ⊥AC ,∵BE 平分∠ABD ,∴∠ABE=∠DBE , ∵OB=OE ∴∠OBE=∠OEB ,∴∠OEB=∠DBE ,∴OE ∥BD ,∵BD ⊥AC ,∴OE ⊥AC ,∵OE 为⊙O 半径,∴AC 与⊙O 相切.(2)解:∵BD=6,sinC=53,BD ⊥AC ,∴BC=10,∴AB=BC=10, 设⊙O 的半径为r ,则AO=10﹣r ,∵AB=BC ,∴∠C=∠A ,∴sinA=sinC=53, ∵AC 与⊙O 相切于点E ,∴OE ⊥AC ,∴sinA=r r OA OE -=10=53,∴r =415,答:⊙O 的半径是415.2、如图,点C 是以AB 为直径的⊙O 上的一点,AD 与过点C 的切线互相垂直,垂足为点D .(1)求证:AC 平分∠BAD ;(2)若CD=1,AC=10,求⊙O 的半径长.(1)证明:连接OC .∵OA=OC ,∴∠ACO=∠CAO .∵CD 切⊙O 于C ,∴OC ⊥CD ,又∵AD ⊥CD ,∴AD ∥CO ,∴∠DAC=∠ACO ,∴∠DAC=∠CAO ,即AC 平分∠BAD ;(2)解法一:如图2①,过点O 作OE ⊥AC 于E .在Rt △ADC 中,AD=31-)10(2222==-DC AC ,∵OE ⊥AC ,∴AE=21,AC=210. ∵∠CAO=∠DAC ,∠AEO=∠ADC=90°,∴△AEO ∽△ADC ,∴,即,∴AO=35,即⊙O 的半径为35. 解法二:如图2②,连接BC .在Rt △ADC 中,AD===3. ∵AB 是⊙O 直径,∴∠ACB=90°,∵∠CAB=∠DAC ,∠ACB=∠ADC=90°,∴△ABC ∽△ACD ,∴,即,∴AB=,∴=,即⊙O 的半径为35.3、如图,AB是⊙O的直径,AC是弦,∠ACD=∠AOC,AD⊥CD于点D.(1)求证:CD是⊙O的切线;(2)若AB=10,AD=2,求AC的长.【解】(1)∵OA=OC,∴∠OCA=∠OAC,∵∠AOC+∠OCA+∠OAC=180°,∴∠AOC+2∠OCA=180°,∴∠AOC+∠OCA=90°,∵∠ACD=∠AOC,∴∠ACD+∠OCA=90°,即∠DCO=90°,又∵OC是半径,∴CD是⊙O的切线;(2)过点A作AE⊥OC,垂足为E,可得∠AEC=90°,由(1)得∠DCO=90°,∵AD⊥CD,∴∠D=90°,∴四边形DCEA是矩形,又AD=2,∴CE=AD=2∵AB是直径,且AB=10,∴OA=OC=5,∴OE=OC﹣CE=5﹣2=3,∴在Rt△AEO中,OA=5,OE=3,根据勾股定理得:AE==4,∴在Rt△ACE中,CE=2,AE=4,根据勾股定理得:AC==2.4、如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 的延长线与BC 的延长线交于点E 。
圆经典综合解答题之一(圆的基本性质)
(不与点A,D重合)
A
AD2=AE· AF
AC2=AE· AF
●
O G
F D E
C (3)
B
例3:如图,△ABC内接于⊙O,连接AO并延长交⊙O与 点E,过A点作AD⊥BC于点D.(1)求证∠EAB=∠CAD (2)若AB+AC=12,AD=3,设AE=y,AB=x 直径y最大 ①求y与x的函数关系式 ②当AB的长等于多少时,⊙O的面积最大,最大面积 是多少? A △ABE∽△ADC 12-x AE( y ) AB( x) x y 3
例1 如图,已知⊿ABC的三个顶点都在⊙O上,AD是
⊿ABC的高,AE是⊙O的直径.
求证:AD ·AB=AE ·AC 分析:三点定型找相似: △ADE
B
●
A
O D C
AD ·AB=AE ·AC
△ABD △ABC
E
AD ·AB=AE ·AC
需证明: △ABD∽△AEC
△AEC
例2:如图(1),AB是⊙O的直径,CD是⊙O的一条弦, 且AB⊥CD于点G . (1)若F是弧CB上的一点,连接AF交弦CD所在直线于点E. 求证:AD2=AE· AF; A
△BCD∽△BAC 3
●
C 4 O B Q
A
D
BB的两侧有定点C和 动点P.已知BC=4,CA=3,点P在弧AB上运动,过 点C作CP的垂线,与PB的延长线交于点Q. (2)当点P运动到什么位置时,CQ得到最大值, 并求此时CQ的长.
需证明: △ADE∽△ADF
●
O
C
E
F
G B
(1)
D
例2:如图,AB是⊙O的直径,CD是⊙O的一条弦,且 AB⊥CD于点G。 (2)当点F在弧AC上运动时(不与点A,C重合),以上结论 成立吗? AD2=AE· AF A F E C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一:圆的综合解答题
【知识储备】
1、同圆或等圆中,半径处处相等;
2、射影定理;
3、有一条公共边的两个三角形相似,公共边的平方等于它在两个三角形中的对应边的乘积。
(公共边的平方等于共线边之积)。
4、垂径定理基本模型:
(:半径、:圆心距、:弦长)
5、∥+角平分线→等腰三角形(知二推一)
6、相等的角的三角函数值相等。
【例题讲解】
基本题型:条件发散
例1、(2016.内江)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC、BC 及AB的延长线相交于点D、E、F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD、FH。
(1)试判断BD与⊙O的位置关系,并说明理由;
(2)当AB=BE=1时,求⊙O的面积;
(3)在(2)的条件下,求的值。
练习:(2016.资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD。
(1)求证:∠A=∠BDC;
(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长。
例2、(2016.绵阳)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC 于点E,DF⊥AB于点F。
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若OF=4,求AC的长度。
练习:
1、(2016.南充)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC =1,以点O为圆心、OC为半径作半圆。
(1)求证:AB为⊙O的切线;
(2)如果tan∠CAO=,求cosB的值。
2、(2016.甘孜)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DH⊥AC于点H。
(1)判断DH与⊙O的位置关系,并说明理由;
(2)求证:H为CE的中点;
(3)若BC=10,cosC=,求AE的长。
例3、(2016.成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD、BE。
(1)求证:△ABD∽△AEB;
(2)当时,求tanE;
(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F。
若AF=2,求⊙C的半径。
练习:(2016.凉山)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC 于A,与⊙O及CB的延长线分别交于点F、E,且。
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值。
【当堂检测】
1、(2016.泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线交于点E,且∠A=∠EBC。
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若,FG=,DF=2BF,求AH的值。
2、(2016.乐山)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC边于点D,过点D 作DE⊥AB于点E,ED、AC的延长线交于点F。
(1)求证:EF是⊙O的切线;
(2)若EB=,且,求⊙O的半径与线段AE的长。
3、(2014.宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.
(1)求证:直线EF是⊙O的切线;
(2) CF=5,cos∠A = 2
5,求BE的长.。