实验四-验证戴维南定理和诺顿定理
戴维南定理和诺顿定理的验证实验报告
戴维南定理和诺顿定理的验证实验报告一、实验目的1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。
2. 掌握测量有源二端网络等效参数的一般方法。
二、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
戴维南定理和诺顿定理的验证─有源二端网络等效参数的测定1电路基本实验(二)——戴维南定理及诺顿定理研究一.实验目的1)学习测量有源线性一端口网络的戴维南等效电路参数。
2)用实验证实负载上获得最大功率的条件。
3)探讨戴维南定理及诺顿定理的等效变换。
4)掌握间接测量的误差分析方法。
二.实验原理及方法 1. 实验原理在有源线性一端口网络中,电路分析时,可以等效为一个简单的电压源和电阻串联(戴维南等效电路)或电流源与电阻并联(诺顿等效电路)的简单电路。
戴维南定理:任何一个线性有源一端口网络,对外电路而言,它可以用一个电压源和一个电阻的串联组合电路等效,该电压源的电压等于该有源一端口网络在端口处的开路电压,而与电压源串联的等效电阻等于该有源一端口网络中全部独立源置零后的输入电阻。
诺顿定理:任何一个线性有源一端口网络,对外电路而言,它可以用一个电流源和一个电导的并联组合电路等效,该电流源的电流等于该有源一端口网络在端口处的短路电流,而与电流源并联的电导等于该有源一端口网络中全部独立源置零后的输入电导。
2. 实验方法(1)、测定有源线性一端口网络的等效参数:自行设计一个至少含有两个独立电源、两个网孔的有源线性一端口网络的实验电路,列出相应测量数据的表格。
在端口出至少用两种不同的方法测量、计算其戴维南等效电路参数。
戴维南定理和顿定理的验证实验+数据
戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
3、进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压U OC的测量方法(1)可直接用电压表测量。
(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
图3-1 图3-2 (二)等效电阻R0的测量方法(1)开路电压、短路电流法测R0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R = (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。
戴维南定理和诺顿定理的验证实验+数据
戴维南定理和诺顿定理的验证实验+数据戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
3、进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压U OC的测量方法(1)可直接用电压表测量。
(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
图3-1图3-2(二)等效电阻R 0的测量方法(1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R = (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。
戴维南定理和诺顿定理实验报告
戴维南定理和诺顿定理实验报告戴维南定理和诺顿定理是电路理论中非常重要的两个定理,它们为我们理解和分析电路提供了重要的理论支持。
本次实验旨在通过实际操作验证戴维南定理和诺顿定理,并对实验结果进行分析和讨论。
实验一,验证戴维南定理。
首先,我们搭建了一个包含多个电阻的电路,并通过测量电路中各个电阻的电压和电流,得到了电路的电压-电流特性曲线。
然后,我们通过改变电路中的电阻值,重新测量电路的电压-电流特性曲线。
最后,我们根据戴维南定理,将电路简化为一个等效的电压源和电阻,通过比较原始电路和简化电路的特性曲线,验证了戴维南定理的有效性。
实验二,验证诺顿定理。
在这个实验中,我们利用相同的电路,通过测量电路中的电压和电流,得到了电路的电压-电流特性曲线。
然后,我们将电路简化为一个等效的电流源和电阻,重新测量电路的电压-电流特性曲线。
通过比较原始电路和简化电路的特性曲线,验证了诺顿定理的有效性。
实验结果分析。
通过实验验证,我们发现戴维南定理和诺顿定理在实际电路中具有很高的适用性。
戴维南定理告诉我们,任何线性电路都可以用一个等效的电压源和电阻来表示,而诺顿定理则告诉我们,任何线性电路都可以用一个等效的电流源和电阻来表示。
这些定理为我们分析复杂电路提供了便利,使得我们可以通过简化电路结构来更好地理解电路的特性和行为。
结论。
通过本次实验,我们验证了戴维南定理和诺顿定理在实际电路中的有效性,这些定理为我们理解和分析电路提供了重要的理论基础。
在今后的电路设计和分析中,我们可以充分利用这些定理,简化复杂电路的分析过程,提高工作效率,更好地理解电路的行为。
总结。
戴维南定理和诺顿定理是电路理论中的重要定理,通过本次实验,我们验证了它们在实际电路中的有效性。
这些定理为我们提供了简化电路分析的方法,为电路设计和分析提供了重要的理论支持。
希望通过本次实验,能够加深对这些定理的理解,提高电路分析能力,为今后的学习和工作打下良好的基础。
戴维南定理和诺顿定理的验证实验+数据
戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
3、进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 I SC,其等效内阻R0定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压U OC的测量方法(1)可直接用电压表测量。
(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
图3-1 图3-2 (二)等效电阻R0的测量方法(1)开路电压、短路电流法测R0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R = (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。
戴维宁定理和诺顿定理实验报告
戴维宁定理和诺顿定理实验报告戴维宁定理和诺顿定理实验报告引言:在物理学领域,有两个重要的定理被广泛应用于电路分析和设计中,它们分别是戴维宁定理和诺顿定理。
本文将通过实验报告的形式,对这两个定理进行探讨和验证。
实验一:戴维宁定理的验证戴维宁定理是电路分析中的重要定理之一,它指出在直流电路中,电流分支与电压分支之间的关系可以通过电流和电压的比值来表示。
为了验证戴维宁定理,我们设计了以下实验。
实验装置:1. 直流电源2. 电阻器3. 电流表4. 电压表5. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。
2. 将电阻器连接到电路中,形成一个简单的直流电路。
3. 将电流表和电压表分别连接到电路的不同位置,测量电流和电压数值。
4. 记录电流和电压的数值。
实验结果:根据戴维宁定理,我们可以通过电流和电压的比值来计算电阻的阻值。
通过实验测量得到的电流和电压数值,我们可以得出电阻的阻值,并与理论值进行比较。
实验结果表明,实测值与理论值相符,验证了戴维宁定理的准确性。
实验二:诺顿定理的验证诺顿定理是电路分析中另一个重要的定理,它指出在直流电路中,任意两个电路元件之间的电流可以通过等效电流源来表示。
为了验证诺顿定理,我们进行了以下实验。
实验装置:1. 直流电源2. 电阻器3. 电流表4. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。
2. 将电阻器连接到电路中,形成一个简单的直流电路。
3. 将电流表连接到电路中,测量电流数值。
4. 移除电流表,用一个等效电流源连接到电路中,调整其电流大小与实测值相同。
5. 记录等效电流源的电流数值。
实验结果:根据诺顿定理,我们可以通过等效电流源来表示电路中的电流。
通过实验测量得到的等效电流源的电流数值与实测值相同,验证了诺顿定理的准确性。
讨论:戴维宁定理和诺顿定理在电路分析和设计中起到了重要的作用。
它们使得我们能够通过简化电路的结构和参数,更方便地进行电路分析和计算。
戴维南定理和诺顿定理的验证实验+数据
戴维南定理和诺顿定理的验证、实验目的1、 掌握有源二端网络代维南等效电路参数的测定方法。
2、 验证戴维南定理、诺顿定理和置换定理的正确性。
3、 进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其 余部分看作是一个有源二端网络(或称为含源二端网络)。
2、 戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压 U oc ,其等效内阻 R o 等于该网络中所有独立源均置零(理想电压源视为短路, 理想电流源视为开路) 时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、 诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 I sc ,其等效内阻 R o 定义与戴维南定理的相同。
4、 有源二端网络等效参数的测量方法U oc 、I sc 和R o 称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压U OC 的测量方法 (1) 可直接用电压表测量。
(2) 零示法测 U oc在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较, 输出电压与有源二端网络的开路电压相等时,电压表的读数将为“(二)等效电阻R o 的测量方法(1)开路电压、短路电流法测R o测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。
稳压电源当稳压电源的0”。
然后将电路断开,图3-1被测有源网络该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏 其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U oc ,然后将其输出端短路,用电流表测其短路电流I sc ,则等效内阻为R 。
戴维南定理和诺顿定理实验报告
戴维南定理和诺顿定理实验报告戴维南定理实验总结戴维南定理和诺顿定理实验报告篇一:戴维南定理和诺顿定理实验报告实验一、戴维南定理一、实验目的:1、深刻理解和掌握戴维南定理。
2、初步掌握用Multisim软件绘制电路原理图。
3、初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter 等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。
4、掌握电路板的焊接技术以及直流电源、万用表等仪表的使用。
二、实验内容:1、计算等效电压和等效电阻;2、用Multisim软件测量等效电压和等效电阻;3、用Multisim软件仿真验证戴维南定理;4、在实验板上测试等效电压和等效电阻;5、在实验板上验证戴维南定理;三、实验步骤1、计算等效电压V=US(R3//R33)/((R1//R11)+(R3//R33))=2.613 V ;等效电阻R=((R1//R3)+R2)//((R11//R33)+R22)=250 .355Ω2、软件仿真(1)实验电路在Multisim软件上绘制实验电路,如图11图1 实验电路参数测试负载RL短路时的短路电流Isc 10.42mA 负载RL开路时的开路电压Uoc 2.609V调节负载RL时的数据如表1所示。
(2)等效电路在Multisim软件上绘制等效电路,如图2图2 等效电路参数测试负载RL短路时的短路电流Isc 10.41mA 负载RL开路时的开路电压Uoc 2.60V调节负载RL时的数据如表1所示。
23、电路实测(1)实验电路负载RL短路时的短路电流Isc 10.01mA 负载RL开路时的开路电压Uoc 2.58V调节负载RL时的数据如表1所示。
(2)等效电路负载RL短路时的短路电流Isc 10.1mA 负载RL开路时的开路电压Uoc 2.58V调节负载RL时的数据如表1所示。
表1负载电阻0~5KΩ变化时的仿真及实测数据四、实验数据处理1、分别画出仿真(2组)与实测(2组)的V-I特性曲线(负载电流为横坐标,负载电压为纵坐标分别画原电路和等效电路的V-I特性曲线),如图3以及图4:3图3 原电路仿真与实测数据的V-I 特性曲线图4 原电路仿真与实测数据的V-I 特性曲线2、数据分析(1)分析导致仿真数据与实测数据有差别的原因第一、等效电路中等效电阻是用电位器替代的,而电位器调解时是手动调节,存在较大误差;第二、仪器测量存在误差。
实验4 戴维宁(南)定理和诺顿定理的验证的理论计算
实验4 戴维宁(南)定理和诺顿定理的验证的理论计算实验4戴维宁(南)定理和诺顿定理的验证的理论计算实验三戴维南(South)定理和诺顿定理验证的理论计算1、开路电压的计算可以用叠加定理当us单独作用时,电路图如下:Us=I(R3+R1+R4)获得I=12/850auoc1=Us+ur4=Us+(-I)R4=11.86v。
当is单独动作时,电路图如下:由于ab开路可得i3=0,通过r3和r4的电流为i2,对于节点c,is+(i2-i1)=i2可得i1=is=10ma,对于网孔2,i2r4+(i2-i1)r1+i2r3=0可得i2=3.882ma,进而求得uoc2=i2r4+i1r2=5.139v,uoc=uoc1+uoc2=17v2.R0的计算可以将电压源视为短路,将电流源视为开路。
电路图如下:r0=r4//(r3+r1)+r2=519.88ω3、isc的计算电路图如下:将电流源两端的电压设置为u,然后对于右下网孔:u=-(-i-isc)r3=ir3+iscr3对于左下方的网格:u=-[I-(is ISC)]R1+(is ISC)R2=-IR1 ISC(R1+R2)+8.4来自上述两个公式:I(R1+R3)+ISC(R1+R2+R3)=8.4对于上网孔:us+ir4+[i-(is-isc)]r1+(-i-isc)r3=0得i(r1+r3+r4)+isc(r1+r3)=-8.7isc=32.695ma4、r0的计算与“2”相同未连接RL,开路电压UOC,短路电流iscuoc(V)ISC(MA)R0=UOC/ISC(ω)1732.8518.62k14。
035.452k13。
476.702k13。
36.675k14。
84.145k14。
464.815k14。
264.8420k16。
091.56320k16。
151.1720k15。
941.65测量负载电压U和负载电流I,并将其记录在下表RL(ω)1005101ku(v)4.698.2816.335108.3416.425108.2516.2512.698.001k11中。
实验四 戴维南定理和诺顿定理的验证
实验四戴维南定理定理的研究与应用一、实验目的(1)验证戴维南定理、诺顿定理的正确性,加深对该定理的理解;(2)掌握测量有源二端网络等效参数的一般方法。
二、实验设备(1)直流数字电压表、直流数字电流表(2)恒压源(双路0~30V可调。
)(3)恒源流(0~200mA可调)(4)试验箱三、预习与思考题(1)如何测量有源二端网络的开路电压和短路电流,在什么情况下不能直接测量开路电压和短路电流?四、实验原理(1)戴维南定理和诺顿定理戴维南定理指出:任何一个有源二端网络,总可以用一个电压源U S和一个电阻R S串联组成的实际电压源来代替,其中:电压源U S等于这个有源二端网络的开路电压U OC, 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R O。
诺顿定理指出:任何一个有源二端网络,总可以用一个电流源I S和一个电阻R S并联组成的实际电流源来代替,其中:电流源I S等于这个有源二端网络的短路电源I SC, 内阻R S等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R O。
U S、R S和I S、R S称为有源二端网络的等效参数。
(2)有源二端网络等效参数的测量方法1)开路电压、短路电流法在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC, 然后再将其输出端短路,测其短路电流I SC,且内阻为:UU NU图6-1SCOCS I U R =。
若有源二端网络的内阻值很低时,则不宜测其短路电流。
图4-1 2) 伏安法一种方法是用电压表、电流表测出有源二端网络的外特性曲线,如图4-1所示。
开路电压为U OC ,根据外特性曲线求出斜率tg φ,则内阻为:IUR ∆∆==φtg S 。
另一种方法是测量有源二端网络的开路电压U OC ,以及额定电流I N 和对应的输出端额定电压 U N ,如图4-1所示,则内阻为:NNOC S I U U R -=。
验证戴维南定理和诺顿定理实验报告
验证戴维南定理和诺顿定理实验报告戴维南定理(Kirchhoff's theorem)和诺顿定理(Norton's theorem)是电路理论中重要的基本定理。
为了验证这两个定理,可以进行以下实验。
实验步骤:1. 准备一个简单的直流电路,包括电源、电阻等元件。
2. 使用万用表测量电路中的各个元件的参数,如电流、电压等。
验证戴维南定理:1. 在电路中选择一个节点,将其它节点与该节点相连。
2. 测量该节点处的电流,记为I。
3. 将电流源连接到该节点,同时将电阻连接到电流源的另一头。
4. 测量电流源的电压,记为U。
5. 在电路中测量其它节点处的电压和电流,确保测量连接正确。
6. 计算I-U,即节点处进出的电流差异。
如果差异接近于零,说明实验结果符合戴维南定理。
验证诺顿定理:1. 在电路中选择一个支路,断开该支路的导线。
2. 测量该支路两个断开导线处的电压,记为U1和U2。
3. 计算U1-U2,即支路两端电压差。
确保测量连接正确。
4. 在电路中测量该支路断开导线处的电流,记为I。
5. 计算(U1-U2)/I,即支路两端电压差除以电流。
如果结果接近于零,说明实验结果符合诺顿定理。
实验注意事项:1. 实验过程中要注意安全,避免触电等危险。
2. 对于测量仪器的使用,要按照操作说明正确使用,避免误差产生。
3. 在连接电路时,要保证连接牢固,避免导线接触不良导致的测量错误。
4. 实验数据的精确性和准确性对于验证定理的结果有着重要影响,需要仔细测量和计算。
总结:通过以上实验步骤的操作和数据测量,可以验证戴维南定理和诺顿定理是否成立。
如果实验结果符合定理的要求,说明定理的基本原理得到了验证。
戴维南定理和诺顿定理的验证实验+数据
戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
3、进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 I SC,其等效内阻R0定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压U OC的测量方法(1)可直接用电压表测量。
(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
图3-1 图3-2 (二)等效电阻R0的测量方法(1)开路电压、短路电流法测R0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R = (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。
实验四戴维南定理和诺顿定理的验证
实验四戴维南定理定理的验证一、实验目的1. 验证戴维南定理的正确性,加深对该定理的理解。
2.学习线性有源单口网络等效电路参数的测量方法。
二、原理说明任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势U s等于这个有源二端网络的开路电压U oc,其等效内阻R eq等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
三、实验设备四、实验内容被测有源二端网络如图4-1所示。
图4-1 实验电路图和等效图1.将负载电阻R L(=1kΩ)开路,用万用表或示波器测量开路电压U OC,将测量结果填入表4-1;2. 将负载电阻R L (=1k Ω)短路,测量电阻R 2两端的电压U R2,用这个电压除以R 2的测量电阻值,计算短路电流,I SC =U R2/R 2,将测量结果填入表4-1;3. 计算此端口等效电阻R eq =U R2/I SC ,将计算结果填入表4-1表4-14. 等效电阻的测量:接上R L =1k Ω的负载电阻,测试此时负载两端的电压U RL ,利用OC eq L RL 1U R R U ⎛⎫=- ⎪⎝⎭,将测量结果填入表4-1;5. 在原始电路中,接入负载电阻R L ,同时调节负载电阻的值,将测量结果填入表4-2,利用测量值,绘制电路的U -R 曲线;表4-26. 在等效电路中调节电源电压到开路电压U OC 的值,同时接入和R eq 相等的电阻,即图4-1中的R o ,接入负载电阻R L ,同时调节负载电阻的值,将测 量结果填入表4-3,利用测量值,绘制电路的U -R 曲线; 表4-37、比较得到的两条曲线,验证两个电路的等效性。
五、实验注意事项1. 注意电压的极性和电流的方向2. 注意检查电路连接的正确性。
戴维南定理和诺顿定理的验证实验数据完整版
戴维南定理和诺顿定理的验证实验数据HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
3、进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C ,其等效内阻R等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 ISC ,其等效内阻R定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U0C 、ISC和R称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压UOC的测量方法(1)可直接用电压表测量。
(2)零示法测UOC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。
图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
戴维南定理和诺顿定理验证实验报告
戴维南定理和诺顿定理验证实验报告一、实验介绍戴维南定理和诺顿定理是电路基础中经常用到的定理,它们可以方便地推算出电路中的电压、电流和电阻等参数,因此在电路分析和设计中具有重要的作用。
本次实验旨在验证戴维南定理和诺顿定理的正确性,并让学生更深刻地理解它们的原理和应用。
实验器材和材料:变压器、直流电源、电阻、万用表、电路板等。
二、实验步骤1. 对所给的电路进行连线,并将其接入变压器或直流电源。
2. 记录电路中电流、电压和电阻等参数的数值。
3. 分别应用戴维南定理和诺顿定理对电路进行分析计算。
4. 比较实验结果和计算结果,检验戴维南定理和诺顿定理的正确性。
三、实验结果实验数据如下:电流:1.5A 电压:5V 电阻:3Ω应用戴维南定理计算得到电流为1.5A,电压为5V,电阻为3Ω。
应用诺顿定理计算得到电流为1.5A,电压为5V,电阻为3Ω。
通过比较实验数据和计算结果,我们可以很明显地发现,两种方法得到的数值完全一致,证明了戴维南定理和诺顿定理的正确性。
四、实验分析戴维南定理和诺顿定理的基本原理是在复杂电路中简化电路模型,从而方便计算和分析电路参数。
戴维南定理是通过等效电源的方式将多个电阻器简化为一个等效电阻器,用于正向分析电路;而诺顿定理则是通过等效电流的方式将多个电阻器简化为一个等效电流源,用于反向分析电路。
在本次实验中,我们成功地应用了戴维南定理和诺顿定理计算电路参数,并验证了定理的正确性。
实验结果表明,这两种方法可以简化计算过程,提高计算的精度和效率。
因此,掌握这两种定理对于学习和应用电路知识都有着重要的意义。
五、实验总结本次实验通过实际操作和计算得出了戴维南定理和诺顿定理的正确性,并对其应用和意义进行了更深入的理解和分析。
同时,这也是一次探究电路基础的良好机会,让学生能更好地理解电路中的各种参数,帮助学生建立起良好的电路分析的基础。
在今后的学习和应用中,我们应该进一步加深对戴维南定理和诺顿定理的理解,掌握基本的电路分析和设计方法,从而更好地应用它们进行工程实践和应用创新。
戴维南定理和诺顿定理的验证实验+数据
戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是非常重要的两个定理,它们为复杂电路的分析和简化提供了有力的工具。
为了更深入地理解这两个定理,我们进行了一系列的验证实验,并对实验数据进行了详细的分析。
一、实验目的本次实验的主要目的是验证戴维南定理和诺顿定理的正确性,并通过实际测量和计算,加深对这两个定理的理解和应用。
二、实验原理1、戴维南定理任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。
其中电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络中所有独立源置零后的等效电阻 Ro。
2、诺顿定理任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。
其中电流源的电流等于该一端口网络的短路电流 Isc,电阻等于该一端口网络中所有独立源置零后的等效电阻 Ro。
三、实验设备1、直流稳压电源2、直流电流表3、直流电压表4、电阻箱5、导线若干四、实验步骤1、按图 1 连接电路,测量含源一端口网络的开路电压 Uoc。
图 1将电阻 RL 开路,用电压表测量 AB 两端的电压,即为开路电压Uoc。
记录测量数据。
2、按图 2 连接电路,测量含源一端口网络的短路电流 Isc。
图 2将电阻 RL 短路,用电流表测量短路电流 Isc。
记录测量数据。
3、按图 3 连接电路,测量含源一端口网络中所有独立源置零后的等效电阻 Ro。
图 3将电压源短路,电流源开路,用电阻箱测量 AB 两端的电阻,即为等效电阻 Ro。
记录测量数据。
4、按图 4 连接电路,验证戴维南定理。
图 4将一个电压源(电压等于 Uoc)和一个电阻(电阻等于 Ro)串联,作为含源一端口网络的等效电路,接入电阻 RL,测量电阻 RL 两端的电压和电流。
记录测量数据。
5、按图 5 连接电路,验证诺顿定理。
图 5将一个电流源(电流等于 Isc)和一个电阻(电阻等于 Ro)并联,作为含源一端口网络的等效电路,接入电阻 RL,测量电阻 RL 两端的电压和电流。
戴维南定理与诺顿定理实验报告
戴维南定理与诺顿定理实验报告戴维南定理和诺顿定理验证实验报告(参考)戴维南定理和诺顿定理验证实验报告(参考)篇二:戴维南定理和诺顿定理实验报告实验一、戴维南定理一、实验目的:1、深刻理解和掌握戴维南定理。
2、初步掌握用Multisim软件绘制电路原理图。
3、初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。
4、掌握电路板的焊接技术以及直流电源、万用表等仪表的使用。
二、实验内容:1、计算等效电压和等效电阻;2、用Multisim软件测量等效电压和等效电阻;3、用Multisim软件仿真验证戴维南定理;4、在实验板上测试等效电压和等效电阻;5、在实验板上验证戴维南定理; 三、实验步骤1、计算等效电压V=US(R3//R33)/((R1//R11)+(R3//R33))=2.613 V ; 等效电阻R=((R1//R3)+R2)//((R11//R33)+R22)=250.355Ω2、软件仿真 (1)实验电路在Multisim软件上绘制实验电路,如图11图1 实验电路参数测试负载RL短路时的短路电流Isc?10.42mA 负载RL开路时的开路电压Uoc?2.609V调节负载RL时的数据如表1所示。
(2)等效电路在Multisim软件上绘制等效电路,如图2图2 等效电路参数测试负载RL短路时的短路电流Isc?10.41mA 负载RL开路时的开路电压Uoc?2.60V 调节负载RL时的数据如表1所示。
23、电路实测 (1)实验电路负载RL短路时的短路电流Isc?10.01mA 负载RL开路时的开路电压Uoc?2.58V 调节负载RL时的数据如表1所示。
(2)等效电路负载RL短路时的短路电流Isc?10.1mA 负载RL开路时的开路电压Uoc?2.58V 调节负载RL时的数据如表1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四-验证戴维南定理和诺顿定理
实验四验证戴维南定理和诺顿定理
一、实验目的
(1)进一步熟悉PSPICE 仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。
(2)学习Probe窗口的简单设置。
(3)加深对戴维宁定理与诺顿定理的理解。
二、原理与说明
戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻串联的支路来代替,该电压源的电压U S等于原网络的开路电压
U OC,电阻R O等于原网络的全部独立电源置零后的输入电阻Req。
原网络如图4-1(a),其等效变换如图4-1(b)。
诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导并联的支路来代替,该电流源的电流I S等于原网络的短路电流I SC,其电导G O等于原网络的全部独立电源置零后的输入电导Geq ( Geq=1/Req )。
其等效变换如图4-1(c)。
等效内阻的测量图如图4-2所示。
图4-1 实验原理与说明图4-2 等效内阻的测量
三、实验设备
个人计算机、OrCAD/PSpice9.2软件。
四、实验内容
(1)测量有源一端口网络(如图4-3)等效入端电阻Req和对外电路的伏安
特性。
其中U1= 5V,R1= 100Ω,U2= 4V,R2= 50Ω,R3=150Ω。
(2)根据(1)中测出的开路电压U OC、输入电阻Req,组成图4-1(b) 的等效有源一端口网络,测量其对外电路的伏安特性。
(3)根据(1)中测出的短路电流I SC、输入电阻Req,组成图4-1(c) 的等效有源一端口网络,测量其对外电路的伏安特性。
图4-3 原理图
五、实验步骤
R1 100R2
50
R3
150
RL
{v ar}
V1
5v
V2
4v
PARAMETERS:
R0
1k
RLd
1k
V3
Is
G0
1k
RLn
1k
图4-4 绘制的电路图
(1)在Capture环境下绘制图4-4电路原理图,包括取元件、连线、输入参数和设置节点等。
分别编辑原电路、戴维宁等效电路和诺顿等效电路(等效参数待定,电压源和电流源默认值为0),检查无误后存盘。
(2)为测量原网络的伏安特性,图4-4 中的R L是电阻值需改变。
为此,R L 的阻值要在“PARAM”中定义一个全局变量var(参数值可任意选择如10Ω、1kΩ,同时把R L的阻值也设为该变量{var}。
注:PARAM设置方法是从special库中选取PARAM放置在电路图上,双击该器件在属性栏左上角的New Column,输入名称var,值1k。
如要显示该名称和值在电路图上,在数据栏上右键单击,修改display属性。
(3)为测电路的开路电压U OC及短路电流I SC,设定分析类型为“DC
Sweep”,扫描变量为全局变量var,并具体设置线性扫描的起点、终点和步长。
因需要测短路电流,故扫描的起点电阻要尽量小,但不能是0。
而欲测开路电压,扫描的终点电阻要尽量大。
所以线性扫描的起点可设为1P,终点设为1G,步长设为1MEG,如图4-5。
此时不需要中间数据,为了缩短分析时间,步长还可以设置大一些。
图4-5 DC Sweep设置
(4)启动分析后,系统自动进入Probe 窗口。
启动分析后,系统自动进入Probe窗口。
选择Plot=>Add Plot to Window增加一坐标轴,选择Trace=>Add Trace分别在两轴上加I(R L) 和V(R L:2) 变量,显示如图4-6。
然后执行Trace=>Cursor=>Display 启动光标测量功能,从而读取电流的最大值和电压的最大值。
通过读取波形测得I(R L)最大值即短路电流
I SC=130mA,V(R L:2)最大值即U OC为3.5455V,则输入端电阻
Req=3.5455/0.13=27.273Ω。
图4-6 开路电压和短路电流波形图回到绘图界面,按测得的等效参数修改电路参数值,如图4-7所示。
R1 100R2
50
R3
150
RL
{v ar}
V1
5v
V2
4v
PARAMETERS:
R0
27.273RLd
{v ar}
V3
3.5455
Is
130mA
G0
27.273
RLn
{v ar}
0图4-7 修改参数后的电路图
重新设定扫描参数,扫描变量仍为全局变量var,线性扫描的起点为1P,终点为10K,步长为10K。
重新启动分析,进入Probe窗口。
选择Plot=>Add Plot to window增加两个波形显示区,选择Plot=> Axis Settings (X坐标)=>Axis Variable ,设置横轴为V(R L:2) ,选择Trace=>Add Trace分别在三个轴上加I(R L)、I(RLd)和I(RLn)变量。
显示结果如图4-8。
图4-8 原电路及等效电路外特性的显示结果
选择Trace=>Cursor=>Display显示坐标值列表,点击I(RL)、I(RLd)和I(RLn)前面的小方块,数值列表中将显示相应坐标中的坐标值。
用鼠标拖动十字交叉线,可显示不同电压时的相应电流值。
六、思考与讨论
1、比较三条伏安特性曲线,验证戴维南定理和诺顿定理。
七、预习要求
1、复习有关维南定理和诺顿定理等有关内容。
2、熟悉Pspice有关直流扫描的设置和分析方法以及Probe波形的查看。
八、实验心得。