第五章 频率特性分析法
第五章 频率特性法 (2)
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-7
系统是稳定的 系统是临界稳定的 系统是不稳定的
5.7用开环频率特性分析系统的动态性能
3. 增益裕量G.M. (幅值裕量) 相角为-180o这一频率值ωg所对应的幅值倒数的分贝数。
1 G.M . 20lg 20lg Gk ( jg ) 20lg A(g ) Gk ( jg )
5.7用开环频率特性分析系统的动态性能
1.低频段 表征了系统的稳态性能即控制精度。从稳态而 言,总希望K大些,系统类型高些,这样稳态误差 就小些。 2.高频段 反映系统的抗干扰能力,斜率越负,抗干扰能 力越强。
5.7用开环频率特性分析系统的动态性能
三、频域性能与时域性能的关系 对于二阶系统 1. γ(ωc)与σ%的关系(平稳性)
自动控制原理
第五章 控制系统的频率特性分析法
5.7 用开环频率特性分析系统的动态性能
5.7用开环频率特性分析系统的动态性能
一、开环频域性能指标
1.截止频率ωc 对数幅频特性等于0分贝时的ω值,即截止频率ωc表 征响应的快速性能, ωc越大,系统的快速性能越好。
L(c ) 20lg A(c ) 0 A(c ) 1
2.相位裕量γ(ωc)
相频特性曲线在ω= ωc时的相角值φ(ωc)与-180°之差。
(c ) (c ) 180
5.7用开环频率特性分析系统的动态性能
相位裕量的物理意义是,为了保持系统稳定, 系统开环频率特性在ω= ωc时所允许增加的最大相 位滞后量。 如果将矢量顺时针旋过γ角度,系统就处于临 界稳定状态。 对于最小相位系统,相位裕量与系统的稳定性 有如下关系:
②中频段的斜率为-40dB/dec,系统相当于阻尼系数 ζ=0的二阶系统,所以h不宜过宽; h越宽,平稳性越差。 ③中频段的斜率为-60dB/dec,系统不稳定。 重要结论:控制系统要具有良好的性能,中频段的 斜率必须为-20dB/dec,而且要有一定的宽度(通常 为5~10); 应提高截止频率来提高系统的快速性。
第五章 频率特性法 (4)
ω=0 Re
根的实部为负,系统稳 根的实部为负, 相角增量为90 定,相角增量为 0 。
第四节 用频率特性法分析系统稳定性
TS-1 因子的相角变化量为: 因子的相角变化量为:
ω=0→∞
∆ ∠(jωT-1)
TS-1幅相频率特性曲线 幅相频率特性曲线
Im ∞
=90o-180o=-90o 根的实部为正, 根的实部为正, 系统不稳定, 系统不稳定,相角 增量为-90 增量为 0 。
第四节 用频率特性法分析系统稳定性
例 已知系统开环传递函数试判断 闭环系统的稳定性。 闭环系统的稳定性。 K G(s)H(s)= S(TS-1) 奈氏曲线: 奈氏曲线: 系统开环频率特性为: 解: 系统开环频率特性为: ω=0+ 特殊点: 特殊点: Im K G(jω)H(jω)= jω(jωT-1) 曲线顺时针方向 ω=0+ υ =1 点的, 绕过 (-1, j0)φ(ω)=90o K A(ω)=∞ 点的, A(ω)= ω 1+(ωT)2 所以系统不稳定。 ω=∞ 所以系统不稳定。 ω= ∞ 0 Re ω=0 -1 o-tg-1 ωT φ(ω)=-90 A(ω)= 0 φ(ω)=180o -1
ω=0+ + ω=0
-1
Im Im ω=∞ ω=0 ω=∞ ω=0 Re -1 0 0 Re
曲线包围了(-1,j0)点, 曲线包围了 点 曲线没有包围(-1,j0)点, 点 曲线没有包围 系统不稳定。 系统不稳定。 系统是稳定的。 系统是稳定的。
第四节 用频率特性法分析系统稳定性
五、对数频率稳定判据
第四节 用频率特性法分析系统稳定性
已知系统的奈氏曲线,试判断系统的 例 已知系统的奈氏曲线 试判断系统的 稳定性。 稳定性。 解: 系统的 系统的G(jω)H (jω)曲线如图 曲线如图
第五章频率特性法
教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性
频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2
1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。
第五章 频率特性分析法
由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
自动控制原理--第五章-频率特性法
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出
频率特性分析方法
(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3
比例环节可以完全、真实地复现任何频率的输入 信号,幅值上有放大或衰减作用;υ (ω)=0º ,表示输 出与输入同相位,既不超前也不滞后。
5.3 典型环节的频率特性
二、积分环节 1.代数表达式 传递函数
G (s) 1 s 1
频率特性 相频特性
幅频特性
A( )
1 1 1 j 90 G( j ) j e j () 90
对数频率特性曲线是一条斜线, 斜率为-20dB/dec, 称为高频渐 近线,与低频渐近线的交点为ωn=1/T,ωn称为交接频率或转 折频率,是绘制惯性环节的对数频率特性时的一个重要参数。
5.3 典型环节的频率特性
3.伯德图 对数幅频图
L( ) 20lg A( ) 20lg 1 1 2T 2 20lg 1 2T 2
G ( j ) 1 j 2 2 2 (1 2 2 ) j 2 (1 2 2 ) 2 (2 ) 2 e
2 T j arctan 1 2 2
5.3 典型环节的频率特性
2.极坐标图 理想微分环节的极坐标图在0 <<的范围内,与正虚轴重合。 可见,理想微分环节是高通滤 波器,输入频率越高,对信号的 放大作用越强;并且有相位超前 作用,输出超前输入的相位恒为 90º ,说明输出对输入有提前性、 预见性作用。 (纯微分)
在控制工程中,采用分段直线表示对数幅频特征 曲线,作法为: a.当Tω<<1(ω<<1/T)时,系统处于低频段 L( ) 20lg1 0 b.当Tω>>1(ω>>1/T)时,系统处于高频段
L( ) 20lg T
此直线方程过(1/T,0)点, 且斜率为-20dB/dec。
自动控制原理第5章_线性控制系统的频率特性分析法
5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
第五章 频率特性法
幅频特性 A(ω) =
r(t )
[ ]
E(s) 输出幅值与输入幅值之比 相频特性 φ (ω) = 幅频? Φ (s) = , 当系统稳定时 ② er R(s)
rt () t ) j (j ) 若 r ( 称为频率特性 Φ(jω) = ( j) e 若系统稳定 , 则c ss (t ) [ 则e ss (t ) [ r(t )
si t lim e 0 系统稳定 t A1 A2 Cs ( s) s j s j
A A ( j) A1 ( s ) ( s j) j2 ( s j)( s j) s j
A A A2 ( s ) ( s j) ( j) ( s j)( s j) j2 s j
倒置的坐标系
( 补充 )
该坐标纸拿反啦!!
频率特性物理意义
C (s) 1 闭环 (s) R ( s ) Ts 1 传函
s j
T RC
频率特性 幅频特性 A() ( j)
1
1 ( j) jT 1
1 T 2 2
相频特性 () ( j) arctan T
改变输入信号的频率, A ( ) 1 , ( ) 0 0 得到一组幅频特性和相 1 1 A() , () 45 T 频特性的数据,绘出曲 2 A() 0, () 90 线——频率特性曲线
频率特性
1 ( j) jT 1
设系统传递函数为
s1 , s2 sn U (s) (s) 特征方程的根 ( s s1 )( s s2 ) ( s sn ) U (s) A C (s) 2 ( s s1 )( s s2 ) ( s sn ) s 2 U (s) A ( s s1 )( s s2 ) ( s sn ) ( s j)( s j)
自动控制理论第五章频率分析法1.详解
5.从低频段第一个转折频率开始做斜直线,该直线
的斜率等于过A点直线的斜率加这个环节的斜率(惯
性环节加-20,振荡环节加-40,一阶微分环节加+20 的斜率),这样过每一个转折频率都要进行斜率的 加减。 6.高频段最后的斜线的斜率应等于-20(n-m) dB/ 十倍频程。 7.若系统中有振荡环节,当<0.4时,需对L()进 行修正。
④
G(j)曲线与负实轴交点坐标,是一个关键点,
高频段,即ωT>>1时
L( ) 20lg( 2T 2 ) 40lg(T )
当ω增加10倍
L( ) 40lg10Tω 40 40lgTω
即高频渐近线是一条斜率为-40dB/dec的直线。当 1 ω ωn T
L( ) 40lg T 40lg1 0(dB)
1 2
振荡环节再分析
L(ω)dB
20lg
1 2 1 2
2 k n G (s ) 2 S 2 S 2 n n (0< <0.707) 0< <0.5
20 lg 1 2
= 0.5
0.5< <1 ω
20lgk
0dB
ωr ωn
[-40]
2 1 2 ωr= n
1. 将开环传递函数化为各典型环节传递函数相乘的形 式,并将分子分母中各因式常数项系数化为1。转化为 开环对数幅频特性;
2.确定出系统开环增益K,并计算 20lg K 。
3.确定各有关环节的转折频率,并把有关的转折频率 标注在半对数坐标的横轴上。 4.在半对数坐标上确定=1(1/s)且纵坐标等于20lgK dB的 点A。过A点做一直线,使其斜率等于-20νdB/dec。当ν=0, ν=1, ν=2时,斜率分别是(0,-20,-40)dB/dec。
自动控制原理 第五章(第一次课)
autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )
自动控制原理第5章
8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。
第五章线性系统的频率分析法
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解
频率特性法
斜率
1 10
lg ω ω
-20dB/dec
10
ω
对数频率特性曲线又称伯德图.
第一节 频率特性的基本概念
作业习题:
5-1 (1)
返回
第五章 频率数学模型是频率特性 。通过对系统频率特性的分析来分析和 设计控制系统的性能。
一、频率特性的定义 二、频率特性的几何表示法
第一节 频率特性的基本概念
-j t j ω ωt r(t)=Asin+A e ω t c [t→∞ 系统的稳态响应为)|sin ω t+ G(j 1 e 系统结构图如图:s(t)=limc(t)=A 2 cs(t)=A|G(j ω R(s)ω)] C(s) G(S) ω A 设系统传递函数为 求待定系数: A1=G(s)s2+ 2 (s+j ω) s=-j ω 系统正弦信号作用下的稳态输出是与 U(s) ω A ω G(s)= (s-s )(s-s )·(s-s ) 特征方程的根 -j G(jω R(s)=s2)+ 2 · n 1 2 · ω 输入同频率的正弦信号,输出与输入的幅 ω)| A = A|G(j e =G(-j -2j ω) ω U(s) A -2j 值之比为|G(jω)|,稳态输出与输入间的相位 C(s)=G(s)R(s)= (s-s )(s-s )·(s-s ) · + 2 · j n ωs2 ω 1 2 · G(j ) 差为∠G(jAG(j AA =nA|G(j )|e ω)。 Bi ω ω) 2 A 同理: = 2= 1 + 2j +∑ 2j s+j s-jω i=1 s–siG(jω) ω -j ωt ω j[ω t+ωG(jω)] j-j[ n 根据 G(-j )=|G(j-j )|e ω tω t+ G(jω)] t 拉氏反 e e +A -ee +∑ B esi cs(t)=A|G(j c(t)=A1 ω)| i 2 2j 变换得: i=1
第五章 频率法
幅频特性为
相频特性为
可得极值点 r n 1 2 2
当0.707<ζ<1时,A(ω)从1单调增至∞;
当0<ζ<0.707时,A(ω)在ωr处有最小值 Ar 2 1,然2 后 单调增至∞。
Im
2
Ar
Re
O
1
5.2.8 延迟环节
(s
sn
)
R s2
2
A1
A2
n
Bi
s j s j i1 s si
用留数法计算系数
A1
lim (s s j
j)G(s) R s2 2
R G(j) R
2j
2j
G( j)
e jG( j)
A2
lim (s
s j
惯性环节的传递函数为 频率特性为 幅频特性为
相频特性为
Im
ω→∞
ω=0 O
Re
1
L / dB
0 0.1/T
20
0° 0.1/T
-90°
精确曲线
3.01dB
1/T
10/T
20dB/dec
1/T
10/T
一阶惯性环节的对数幅频特性曲线通常用两端直 线渐近线来近似,在转折频率以前与0dB线重合,在 转折频率以后是斜率为-20dB/dec的直线。
sC
3
ur (t) Rsint
当初始条件为0时,输出电压的拉氏变换为
Uc
(s)
1 Ts
1Ur
(s)
1 Ts
第5章 频率特性分析法
( ) : 0 900
3. 积分环节
1 G( s) s 1 G ( j ) j
A( )
1
( ) 90o
Im
Re
0
4. 振荡环节 n2 G( s) 2 2 s 2n s n
2 n G ( j ) 2 2 ( j ) 2n ( j ) n 1 ( ) 2 j 2 n n = 22 2 2 [1 ( ) ] 4 ( ) n n
Im
G ( s ) 1
A( ) 1 2 2 P( ) 1 ( ) arctan ,Q ( )
1 0
0
Re
6. 延迟环节
G ( s) e
s
G ( j ) e
j
1* e
j
A( ) 1 常数, 单位圆 ( ) 0, 0 Im
二、对数频率特性曲线
对数幅频特性曲线 20 lg A( )
伯德(Bode)曲线,Bode图
对数相频特性曲线
( )
半对数坐标:横坐标是对数刻度,纵坐标是均匀 刻度。
1
10
100
1000
横坐标采用对数分度,但标出的是 的实际值。
L( ) 20 lg A( ) 对数幅值,单位为分贝(dB)
因此,
G j频率特性 Gs s j 传函
K 例5-1 已知系统的传递函数为, 求频 G( s) Ts 1 率特性
解:令s=jω得系统的频率特性
K K G ( j ) e jarctg T 1 jT 1 (T ) 2
或
K K KT G( j ) j 2 2 1 jT 1 T 1 2T 2
第五章频率特性分析法
146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。
如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。
然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。
而且,按照给定的时域指标设计高阶系统也不是容易实现事。
本章介绍的频域分析法,可以弥补时域分析法的不足。
频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。
频率法的优点较多。
首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。
其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。
因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。
此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。
这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。
因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。
5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。
设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。
若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-4
渐近线
5.4 系统开环频率特性绘制
相频特性表达式为
ω
φ(ω)/° -40
-80 -120 -160 -200 -240
arctan 0.25 arctan
5.4 系统开环频率特性绘制
对渐近线进行误差修正 在振荡环节转折处,ζ=0.4/(2*0.5)=0.4, 修正值+6dB; 在惯性环节转折处,修正值-3dB。
40
L(ω)/dB
精确曲线
20dB 1
+6dB
20
0 -20 -40
-40dB/dec ω1=2 ω2=4
振荡
-3dB
10
惯性
ω /s-1
-60dB/dec
1 2 3
5.4 系统开环频率特性绘制
一、极坐标图 方法一: 根据不同的ω值,计算出相应的P(ω)和Q(ω)或A(ω) 和φ (ω) ,并在直角坐标平面上描出相应的点,然 后用光滑线段连接各点。 方法二:利用典型环节的频率特性,步骤为 (1)分别计算出各典型环节的幅频特性和相频特性; (2)各典型环节的幅频特性相乘得到系统的幅频特性, 各典型环节的相频特性相加得到系统的相频特性。 (3)给出不同的ω值,计算出相应的A(ω)和φ (ω),描点 连线。
5.4 系统开环频率特性绘制
起点 G(0) 15 j 零虚频特性为0,解得 1 / 2 将此代入实频特性,求 得与实轴交点为-3.33。
终点
G() 0 j 0
根据幅相频率特性曲线的起 点、与实轴交点及终点,幅 相频率特性曲线如图所示。
5.4 系统开环频率特性绘制
10 例 设系统的频率特性为 Gk ( j ) j ( j 0.2 1)( j 0.05 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五 频域分析法2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c tt ,求系统的频率特性表达式。
【解】: 98.048.11)]([L )(1+++-==-s s s t c s C 闭环传递函数)9)(4(36198.048.11)()()(++=+++-==s s ss s s s R s C s G)9tg 4(tg 2211811636)9)(4(36)(ωωωωωωω--+-+⨯+=++=j ej j j G2-5-2环系统时,系统的稳态输出(1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ;(3))452cos(2)30sin()(00--+=t t t r 。
【解】:求系统闭环传递函数5tg 21254)5(4)(54)(1)()()()(14)(ωωωω--+=+=+=+==+=j B K K B K ej j G s s G s G s R s C s G s s G根据频率特性的定义,以及线性系统的迭加性求解如下:(1)︒===30,1,11θωr A︒--====-3.1151tg )1(178.0264)1()(1j j j B e ee A j G θωω[])7.18sin(78.0)1(sin )1()sin()(12︒+=++=+=t t A A t A t c r c s θθθ(2)︒===45,2,21θωr A︒--==+=-8.2152tg 274.02544)(1j j B e ej G ωω)2.232cos(48.1)(︒+=t t c s(3))8.662cos(48.1)7.18sin(78.0)(︒--︒+=t t t c s2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。
【解】:(1)网络的频率特性1)(111)(212212+++=+++=ωωωωωC R R j C jR C j R R C j R j G(2)绘制频率特性曲线)tg (tg22212121111)(1)(11)(ωωωωωωωT T j e T T jT jT j G ---++=++=其中1221221,)(,T T C R R T C R T >+==。
起始段,︒===0)(,1)(,0ωθωωA 。
中间段,由于12T T >,)(ωA 减小,)(ωθ先减小后增加,即曲线先顺时针变化,再逆时针变化。
终止段,︒→<=∞→∞→0)(,1)(lim ,21ωθωωωT T A 。
网络幅相频率特性曲线如题2-5-3解图所示。
【解】:系统闭环传递函数为Ks Ts Ks G s G s R s C s G K K B ++=+==2)(1)()()()( 10=ω时系统频率特性为())(10010tg 210210)(100)100(10100)()(1ωθωωωωωωj TK j e A eT K Kj T K Kj T K K j G =+-=+-=+-=--==-题2-5-3图 1R ++--题2-5-3解图由已知条件得2)(,1)(12πθθωθω-=-===r c A A A ,则有 ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-=+-1.0101001100)100(2T K T K T K K【解】:对于开环增益为K 的系统,其幅相频率特性曲线有两种情况:0>K 和0<K 。
下面只讨论0>K 的情况。
0<K 时,比例环节的相角恒为︒-180,故相应的幅相频率特性曲线可由其0>K 的曲线绕原点顺时针旋转︒180得到。
(1))tg tg (222121211-1]1)][(1)[()1)(1()(T T j e T T KT j T j K j G ωωωωωωω=+-++=++=)1)(1()()1(22221221212+++--=T T T T jK T T K ωωωω0→ω时,︒∠=→0)(lim 0K j G ωω ;∞→ω时,︒∠=∞→1800)(lim ωωj G 。
特性曲线与虚轴的交点:令 0)](Re[=ωj G ,即21212101T T T T =⇒=-ωω代入)](Im[ωj G 中,2121)](Im[T T T T Kj G +-=ω该系统幅相频率特性曲线如题2-5-5(1)解图所示。
题2-5-5(1)解图-(2))1()()1()(2++-=+=ωωωωωωj K j j Kj G 0→ω时,︒-∞∠=→90)(lim 0ωωj G ;求渐近线K K j G -=+-=→→)1(lim )](Re[lim 200ωωωωωω ∞→ω时,︒-∠=∞→1800)(lim ωωj G 。
该系统幅相频率特性曲线如题2-5-5(2)解图所示。
(3))1()()1()1()1()(222221212221+--+-=+-+=T T T Kj T T K T j T j K j G ωωωωωωωω0→ω时,︒-∞∠=→90)(lim 0ωωj G ; 求渐近线0)()1()(lim )](Re[lim 212222100<-=+-=→→T T K T T T K j G ωωωωωω ∞→ω时,︒-∠=∞→900)(lim ωωj G 。
该系统幅相频率特性曲线如题2-5-5(3)解图所示。
(4)1-tg 222221222111)1()1()(j eT T K T j T j K j G ++=+-+=ωωωωωωω 0→ω时,︒-∞∠=→180)(lim 0ωωj G ;(21T T >时,曲线始于负实轴之上;21T T <时,曲线始于负实轴之下。
)∞→ω时,︒-∠=∞→1800)(lim ωωj G 。
该系统幅相频率特性曲线如题2-5-5(4)解图所示。
(5)题2-5-5(3)解图题2-5-5(4)解图题2-5-5(2)解图)15)(5()75(2505000)15)(5(250)(22222++---=++=ωωωωωωωωωj j j j j G 0→ω时,︒-∞∠=→90)(lim 0ωωj G 。
求渐近线 89.0)15)(5(5000lim )](Re[lim 222200-=++-=→→ωωωωωωωj G ∞→ω时,︒-∠=∞→2700)(lim ωωj G ,曲线顺时针穿过负实轴。
求曲线与负实轴的交点 令0)](Im[=ωj G ,得75=ω。
17.0)](Re[75-===ωωj G V x该系统幅相频率特性曲线如题2-5-5(5)解图所示。
(6)])1([)]1([50)1(50)(22222ωωωωωωωωω-+-+-=++-=j j j j G 0→ω时,︒-∞∠=→90)(lim 0ωωj G ;求渐近线50])1[(50lim)](Re[lim 22200-=+--=→→ωωωωωωωj G该系统传递函数分母上有一个振荡环节,其1=T ,5.0=ξ。
所以当r ωω=时有最大值。
71.02112=-=ξωTr 频率特性的最大值 ︒∠==3.2157.66)(71.0ωωj G∞→ω时,︒-∠=∞→2700)(lim ωωj G ,曲线顺时针穿过负实轴。
求曲线与负实轴的交点 令0)](Im[=ωj G ,得1=ω。
50)](Re[1-===ωωj G V x题2-5-5(6)解图题2-5-5(5)解图该系统幅相频率特性曲线如题2-5-5(6)解图所示。
(7))1()1()(2++-=-=ωωωωωωjK K j j Kj G 0→ω时,︒∞∠=→90)(lim 0ωωj G ;求渐近线K K j G -=+-=→→)1(lim)](Re[lim 200ωωωωωω∞→ω时,︒∠=∞→1800)(lim ωωj G ,传递函数分母上有一个不稳定环节,曲线逆时针变化,不穿越负实轴。
该系统幅相频率特性曲线如题2-5-5(7)解图所示。
(8)1)()1(1111)(22221212)tg tg 180(222212212111+++-=++=+-=----︒T T T j T T e T T T j T j j G T T j ωωωωωωωωωω 0→ω时,︒∠=→1801)(lim 0ωωj G ;随着ω的增加,分子上的不稳定环节先起作用,幅值增大,相角减小。
之后,分母上的稳定环节再起作用,幅值增加速度减慢,相角继续减小。
∞→ω时,︒∠=∞→0)(lim 21T T j G ωω。
特性曲线与虚轴的交点:令 0)](Re[=ωj G ,即21212101T T T T =⇒=-ωω代入)](Im[ωj G 中题2-5-5(8)解图21)](Im[T T j G =ω 该系统幅相频率特性曲线如题2-5-5(8)解图所示。
题2-5-5(7)解图【解】:(1)① 2=K ,02.6lg 20=K 。
②转折频率125.0811==ω,一阶惯性环节;5.0212==ω,一阶惯性环节。
③ 0=ν,低频渐近线斜率为0。
④ 系统相频特性按下式计算ωωωθ2arctg 8arctg )(--= 得系统的对数幅频特性的渐近线和对数相频特性曲线如题2-5-6解图(1)所示。
(2)① 10=K ,20lg 20=K 。
② 转折频率11=ω,一阶微分环节。
③ 2=ν,低频渐近线斜率为dB 40-,且过(1,20dB )点。
④ 系统相频特性按下式计算︒-=180arctg )(ωωθ(1) (2)题2-5-6(1)(2)解图(3)① 典型环节的标准形式)110()15(20)(2++=s s s s G② 20=K ,0.26lg 20=K 。
③ 转折频率1.01=ω,一阶惯性环节;2.02=ω,一阶微分环节。
④ 2=ν,低频渐近线斜率为dB 40-,且其延长线过(1,26dB )点。
⑤ 系统相频特性按下式计算ωωωθ5arctg 10arctg 180)(+-︒-= 得系统的对数幅频特性的渐近线和对数相频特性曲线如题2-5-6解图(3)所示。
(4)① 典型环节的标准形式)11.0()102.0(50)(+-=s s s s G② 50=K ,0.34lg 20=K 。
③ 转折频率101=ω,一阶惯性环节;502=ω,不稳定的一阶微分环节。
④ 1=ν,低频渐近线斜率为dec dB 20-,且过(1,34dB )点。
⑤ 系统相频特性按下式计算ωωωθ02.0arctg 1801.0arctg 90)(-︒+-︒-=(3) (4)题2-5-6(3)(4)解图得系统的对数幅频特性的渐近线和对数相频特性曲线如题2-5-6解图(4)所示。