7半导体材料测试技术

合集下载

半导体器件综合参数测试

半导体器件综合参数测试

研究生《电子技术综合实验》课程报告题目:半导体器件综合参数测试学号姓名专业指导教师院(系、所)年月日一、实验目的:(1)了解、熟悉半导体器件测试仪器,半导体器件的特性,并测得器件的特性参数。

掌握半导体管特性图示仪的使用方法,掌握测量晶体管输入输出特性的测量方法。

(2)测量不同材料的霍尔元件在常温下的不同条件下(磁场、霍尔电流)下的霍尔电压,并根据实验结果全面分析、讨论。

二、实验内容:(1)测试3AX31B、3DG6D的放大、饱和、击穿等特性曲线,根据图示曲线计算晶体管的放大倍数;(2)测量霍尔元件不等位电势,测霍尔电压,在电磁铁励磁电流下测霍尔电压。

三、实验仪器:XJ4810图示仪、示波器、三极管、霍尔效应实验装置四、实验原理:1.三极管的主要参数:(1)直流放大系数h FE:h FE=(I C-I CEO)/I B≈I C/I B。

其中I C为集电极电流,I B为基极电流。

基极开路时I C值,此值反映了三极管热稳定性。

(2)穿透电流I CEO:(3)交流放大系数β:β=ΔI C/ΔI B(4)反向击穿电压BV CEO:基极开路时,C、E之间击穿电压。

2.图示仪的工作原理:晶体管特性图示仪主要由阶梯波信号源、集电极扫描电压发生器、工作于X-Y方式的示波器、测试转换开关及一些附属电路组成。

晶体管特性图示仪根据器件特性测量的工作原理,将上述单元组合,实现各种测试电路。

阶梯波信号源产生阶梯电压或阶梯电流,为被测晶体管提供偏置;集电极扫描电压发生器用以供给所需的集电极扫描电压,可根据不同的测试要求,改变扫描电压的极性和大小;示波器工作在X-Y状态,用于显示晶体管特性曲线;测试开关可根据不同晶体管不同特性曲线的测试要求改变测试电路。

(原理如图1)上图中,R B、E B构成基极偏置电路。

当E B》V BE时,I B=(E B-V BE)/R B基本恒定。

晶体管C-E之间加入锯齿波扫描电压,并引入小取样电阻RC,加到示波器上X轴Y轴电压分别为:V X=V CE=V CA+V AC=V CA-I C R C≈V CAV Y=-I C·R C∝-I CI B恒定时,示波器屏幕上可以看到一根。

半导体材料检测种类、项目与方法总结

半导体材料检测种类、项目与方法总结

半导体材料检测种类、项目与方法总结半导体材料检测是对半导体材料的特性参数进行分析测试的技术,具体涉及到哪些材料的检测,目前常见的检测技术有哪些?我们不妨一起来看看。

半导体材料检测是对半导体材料的特性参数进行分析测试的技术,由于半导体材料种类繁多,加工工艺复杂,形态各异,技术难度高,这就需要我们通过对半导体材料的特性参数进行测定,真实的反映半导体材料质量情况,掌握其关键参数的生成工艺,从而指导研发技术的更新迭代。

常见半导体材料检测种类
1、湿电子化学品检测种类
(1)酸碱类:高纯盐酸、高纯硫酸、高纯硝酸、高纯氢氟酸、高纯冰Z酸、高纯草酸、电子级复水、电子级过氧化氢、氢氧化钾溶液、氢氧化钠溶液、电子级磷酸;
(2)蚀刻类:铝腐蚀液、铬鹰蚀液、镍银腐蚀液、硅腐蚀液、金蚀刻液、铜蚀刻液、显影液、剥离液、清洗液、ITO蚀刻液、缓释剂、BOE;
(3)溶剂类:甲醇、乙醇、异丙醇、丙酮、四甲基氢氧化铵、甲苯、二甲苯、三氯乙烯、环已烷、N-甲基吡略烷酮、丙二醇单甲醚、丙二醇单甲醚醋酸酯等。

2、光刻胶及配套试剂检测种类
光刻胶、负胶显影液、负胶漂洗液、负胶显影漂洗液、正胶显影液正胶稀释剂、边胶清洗剂、负胶剥离液、正胶剥离液等。

3、电池材料检测种类
(1)负极材料:碳材料、非碳负极材料、石里负极材料、锂电池负极材料、硅负极材料、锂离子负极材料、硅碳负极材料、碳素负极材料、沥青负极材料等;
(2)正极材料:钻酸锂、锰酸锂、磷酸铁锂、三元材料、镍,钻,锰酸锂、镍锰酸锂、正极材料镍钻锰酸锂等;
(3)电解液:锂离子电池用电解液、锂原电池用电解液、六氟磷酸锂、六氟磷酸锂电解液等;
(4)电池/电解液添加剂:成膜添加剂、导电添加剂、阻燃添加剂、过充保护添加剂、改善低温性能的添加剂、多功能添加剂等;。

半导体材料的测试技术

半导体材料的测试技术

半导体材料的测试技术1.电学测试技术电学测试技术是半导体材料测试的基础。

它主要包括电阻测试、电容测试、电势分布测试等。

电阻测试用于测量材料的电阻值,以判断导电性能。

电容测试则用于测量材料的电容值,以评估绝缘性能。

电势分布测试则用于测量电势在材料内的分布情况,以评估电路设计的准确性和稳定性。

2.光学测试技术光学测试技术主要用于测量材料的光学性能,例如透射率、反射率、折射率等。

这些参数对于半导体材料的功能和性能至关重要。

光学测试技术通常使用光谱仪、激光干涉仪等设备进行测量,可以精确地确定材料的光学特性。

3.结构测试技术结构测试技术主要用于测量材料的结构参数。

例如,常见的X射线衍射技术可以用来分析材料的晶体结构和晶体缺陷。

扫描电子显微镜(SEM)可以用来观察材料的微观形貌和表面形貌。

透射电子显微镜(TEM)则能够提供更高分辨率的图像,用于研究材料的纳米级结构。

4.热物性测试技术热物性测试技术主要用于测量材料的导热性能和热稳定性。

热导率测试可以测量材料导热的速度和效率,以评估材料的散热性能。

热膨胀测试可以测量材料在温度变化下的线膨胀系数,以评估材料的热稳定性。

5.电子能谱测试技术电子能谱测试技术通过测量材料中电子的能量分布,可以得到材料的成分和化学状态。

常见的电子能谱测试技术包括X射线光电子能谱(XPS)、透射电子能谱(AES)等。

这些技术可以用来分析材料的表面组成和化学键的状态,以评估材料的纯度和接触性能。

总之,半导体材料测试技术在半导体工业生产中起着至关重要的作用。

通过不同的测试技术,可以对材料的电学、光学、结构、热物性以及化学性质进行全面而详细的检测和分析。

这些测试结果有助于提高半导体材料的质量和性能,从而推动整个半导体工业的发展。

四探针法测量半导体电阻率及薄层电阻

四探针法测量半导体电阻率及薄层电阻

在半无穷大样品上的点电流源, 若样品的电阻率ρ均匀, 引入点电流源的探针其电流
强度为 I,则所产生的电力线具有球面的对称性, 即等位面为一系列以点电流为中心的半
球面,如图 2-1 所示。在以r为半径的半球面上,电流密度j的分布是均匀的:
j= I 2πr 2
(2-1)
若 E 为r处的电场强度, 则
E = jρ = Iρ 2πr2
2
r12
1 r13
3
r34
4
r24
ss s
12
3
4
图 2-2 任意位置的四探针
图 2-3 直线型四探针
ρ = V23 2πS I
(2-9)
2-9 式就是常见的直流四探针 (等间距) 测量电阻率的公式, 也是本实验要用的测量公式之 一。需要指出的是: 这一公式是在半无限大样品的基础上导出的,实用中必需满足样品厚度 及边缘与探针之间的最近距离大于四倍探针间距, 这样才能使该式具有足够的精确度。
包围。同样需要注意的是当片状样品不满足极薄样品的条件时,仍需按式(2.10)计算电阻
率P。其修正系数Bo列在表 2.3 中。
2. 扩散层的薄层电阻
半导体工艺中普遍采用四探针法测量扩散层的薄层电阻,由于反向 pn 结的隔离作
用,扩散层下的衬底可视为绝缘层,对于扩散层厚度(即结深 Xj)远小于探针间距 S,而横
向尺寸无限大的样品,则薄层电阻率为:
s d
d 2d
ρ = 2π s × V
B0
I
s d
B0
s d
0.1
1.0009
0.6
B0
s d
1.1512
1.2
B0 1.7329
0.2

半导体测试与表征技术基础[详细讲解]

半导体测试与表征技术基础[详细讲解]

半导体测试与表征技术基础第一章概述(编写人陆晓东)第一节半导体测试与表征技术概述主要包括:发展历史、现状和在半导体产业中的作用第二节半导体测试与表征技术分类及特点主要包括:按测试与表征技术的物理效应分类、按芯片生产流程分类及测试对象分类(性能、材料、制备、成分)等。

第三节半导体测试与表征技术的发展趋势主要包括:结合自动化和计算机技术的发展,重点论述在线测试、结果输出和数据处理功能的变化;简要介绍最新出现的各类新型测试技术。

第二章半导体工艺质量测试技术第一节杂质浓度分布测试技术(编写人:吕航)主要介绍探针法,具体包括:PN结结深测量;探针法测量半导体扩散层的薄层电阻(探针法测试电阻率的基本原理、四探针法的测试设备、样品制备及测试过程注意事项、四探针测试的应用和实例);要介绍扩展电阻测试系统,具体包括:扩展电阻测试的基本原理、扩展电阻的测试原理、扩展电阻测试系统、扩展电阻测试的样品、扩展电阻法样品的磨角、扩展电阻法样品的制备、扩展电阻测试的影响因素、扩展电阻法测量过程中应注意的问题、扩展电阻法测量浅结器件结深和杂质分布时应注意的问题、扩展电阻测试的应用和实例。

第二节少数载流子寿命测试技术(编写人:钟敏)主要介绍直流光电导衰退法、高频光电导衰退法,具体包括:非平衡载流子的产生、非平衡载流子寿命、少数载流子寿命测试的基本原理和技术、少数载流子寿命的测试。

以及其它少子寿命测试方法,如表面光电压法、少子脉冲漂移法。

第三节表面电场和空间电荷区测量(编写人:吕航)主要包括:表面电场和空间电荷区的测量,金属探针法测量PN结表面电场的分布、激光探针法测试空间电荷区的宽度;容压法测量体内空间电荷区展宽。

第四节杂质补偿度的测量(编写人:钟敏)包括:霍尔效应的基本理论、范德堡测试技术、霍尔效应的测试系统、霍尔效应测试仪的结构、霍尔效应仪的灵敏度、霍尔效应的样品和测试、霍尔效应测试的样品结构、霍尔效应测试的测准条件、霍尔效应测试步骤、霍尔效应测试的应用和实例、硅的杂质补偿度测量、znO的载流子浓度、迁移率和补偿度测量、硅超浅结中载流子浓度的深度分布测量第五节氧化物、界面陷阱电荷及氧化物完整性测量(编写人:钟敏)包括:固定氧化物陷阱和可动电荷、界面陷阱电荷、氧化物完整性测试技术等。

半导体材料测试技术

半导体材料测试技术

半导体材料测试技术半导体材料测试技术是现代半导体工业中的关键环节,对半导体芯片的质量和性能进行准确的测量和评估,是保证半导体产品质量的重要手段。

本文将从半导体测试的背景与意义、半导体材料测试的基本原理、常用测试方法以及未来发展方向等四个方面进行详细阐述。

一、半导体测试的背景与意义半导体行业是现代高科技产业的基础,其产品广泛应用于电子设备、通信设备、计算机等各个领域。

而半导体芯片作为半导体产品的核心,其性能和质量在很大程度上决定了整个产品的性能和可靠性。

为了保证半导体产品的质量和竞争力,需要对半导体芯片进行全面的测试,以确保其性能指标符合设计要求,且能在各种应用场景下正常工作。

半导体材料测试技术的研究和应用,对于提高半导体产品的质量、降低缺陷率、提高生产效率等方面具有重要意义。

二、半导体材料测试的基本原理1.电学测试电学测试是半导体材料测试的基础,通过测量材料的电阻、电容、电压等参数,来评估材料的性能和特性。

常用的电学测试方法包括四引线测量法、电学参数测试、电流-电压特性测试等。

2.光学测试光学测试是半导体材料测试中的重要手段,通过测量材料对光的吸收、透射、反射等特性,来评估材料的光学性能。

常用的光学测试方法包括透射光谱分析、反射光谱分析、激发发光等。

3.结构测试结构测试是对半导体材料的外形、形态、组成等进行测量和评估的一种方法。

常用的结构测试方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等。

三、常用测试方法1.失效分析失效分析是对半导体芯片进行故障检测和分析的方法,通过对芯片的电学、光学、结构等多个方面进行全面测试,查找故障点和原因,并提供改进和优化建议。

常用的失效分析方法包括故障模式与效应分析(FMEA)、故障定位、芯片切片分析等。

2.可靠性测试可靠性测试主要是对半导体芯片在不同环境条件下的工作稳定性和寿命进行测试和评估。

常用的可靠性测试方法包括高温老化、湿度测试、可靠性模型分析等。

半导体基础实验报告

半导体基础实验报告

竭诚为您提供优质文档/双击可除半导体基础实验报告篇一:半导体物理实验报告电子科技大学半导体物理实验报告姓名:艾合麦提江学号:20XX033040008班级:固电四班实验一半导体电学特性测试测量半导体霍尔系数具有十分重要的意义。

根据霍尔系数的符号可以判断材料的导电类型;根据霍尔系数及其与温度的关系,可以计算载流子的浓度,以及载流子浓度同温度的关系,由此可确定材料的禁带宽度和杂质电离能;通过霍尔系数和电阻率的联合测量.能够确定我流子的迁移约用微分霍尔效应法可测纵向载流子浓度分布;测量低温霍尔效应可以确定杂质补偿度。

霍尔效应是半导体磁敏器件的物理基础。

1980年发现的量子霍尔效应对科技进步具有重大意义。

早期测量霍尔系数采用矩形薄片样品.以及“桥式”样品。

1958年范德堡提出对任意形状样品电阻率和霍尔系数的测量方法,这是一种有实际意义的重要方法,目前已被广泛采用。

本实验的目的使学生更深入地理解霍尔效应的原理,掌握霍尔系数、电导率和迁移率的测试方法,确定样品的导电类型。

一、实验原理如图,一矩形半导体薄片,当沿其x方向通有均匀电流I,沿Z方向加有均匀磁感应强度的磁场时,则在y方向上产生电势差。

这种想象叫霍尔效应。

所生电势差用Vh表示,成为霍尔电压,其相应的电场称为霍尔电场ey。

实验表明,在弱磁场下,ey同J(电流密度)和b成正比ey=RhJb(1)式中Rh为比例系数,称为霍尔系数。

在不同的温度范围,Rh有不同的表达式。

在本征电离完全可以忽略的杂质电离区,且主要只有一种载流子的情况,当不考虑载流子速度的统计分布时,对空穴浓度为p的p型样品Rh?1?0(2)pq式中q为电子电量。

对电子浓度为n的n型样品Rh??1?0nq(3)当考虑载流子速度的统计分布时,式(2)、(3)应分别修改为??h?1??h?1Rh??Rh???pqnq??p??n(4)式中μh为霍尔迁移率。

μ为电导迁移率。

对于简单能带结构??h?(5)h??h?p??nγh称为霍尔因子,其值与半导体内的散射机制有关,对晶格散射γh=3π/8=1.18;对电离杂质散射γh=315π/512=1.93,在一般粗略计算中,γh可近似取为1.在半导体中主要由一种载流子导电的情况下,电导率为?n?nq?n和?p?pq?p(6)由(4)式得到Rh?ph?p和Rh?nh?n(7)测得Rh和σ后,μh为已知,再由μ(n,T)实验曲线用逐步逼近法查得μ,即可由式(4)算得n或p。

半导体器件物理

半导体器件物理
• 半导体器件的测试和评估
器件仿真的基本原理
• 基于数学模型和计算机算法
• 仿真结果与实际器件性能关系
器件仿真的方法
• 有限元法
• 有限差分法
• 分子动力学法
器件性能的优化策略
器件性能优化策略
器件性能优化的应用
• 材料选择和结构设计优化
• 提高半导体器件的性能
• 制程工艺优化
• 降低半导体器件的成本
D O C S S M A RT C R E AT E
半导体器件物理
CREATE TOGETHER
DOCS
01
半导体器件物理的基本概念
半导体材料的性质和特点
半导体材料的特点
• 介于导体和绝缘体之间
• 能带结构中的能隙较小
• 温度和掺杂浓度影响导电性
半导体材料的分类
• 元素半导体(如硅、锗)
• 化合物半导体(如镓砷化物)
能带结构的基本概念
• 电子的能量状态分布
• 能带之间的能量间隙
载流子的类型和输运
• 电子和空穴作为主要载流子
• 载流子的输运特性与能带结构关系
能带结构和载流子的应用
• 半导体器件性能分析
• 半导体器件设计
p-n结和势垒
p-n结的基本概念
• 半导体中两种载流子浓度的交界处
• 内建电场和空间电荷分布
p-n结的特性
• 光通信和光计算
• 显示和照明技术
• 生物检测和医疗应用
05
半导体器件的数学模型
泊松方程和电流连续性方程
01
泊松方程的基本概念
• 电场分布的描述
• 电荷分布与电场关系
02
电流连续性方程的基本概念
• 电流密度分布的描述

电子工艺全部知识点总结

电子工艺全部知识点总结

电子工艺全部知识点总结一、电子工艺材料与工艺工程1. 半导体材料:包括硅、砷化镓、碳化硅等。

半导体材料的选择对于半导体器件的性能有着重要的影响,工艺工程师需要根据具体的应用选择合适的半导体材料。

2. 半导体材料制备:包括晶体生长、材料加工等技术。

晶体生长技术有单晶生长、多晶生长等方法,工艺工程师需要了解各种方法的优缺点,以及应用范围。

3. 薄膜技术:包括化学气相沉积、物理气相沉积、溅射等技术。

薄膜技术在半导体器件的制备中具有重要作用,工艺工程师需要了解各种薄膜技术的原理和应用。

4. 化学成膜技术:包括电化学沉积、化学气相沉积等技术。

化学成膜技术在电子器件的制备中有着广泛的应用,工艺工程师需要了解各种化学成膜技术的工艺参数和控制方法。

5. 包装材料:包括封装树脂、封装胶粘剂等。

包装材料的选择对于电子元器件的性能和可靠性有着重要的影响,工艺工程师需要了解各种包装材料的特性和应用。

6. 其他工艺材料:包括金属材料、陶瓷材料、高分子材料等。

这些材料在电子工艺中都有着重要的应用,工艺工程师需要了解各种材料的特性和工艺应用。

7. 工艺工程流程:包括工艺设计、工艺实施、工艺改进等。

工艺工程流程是电子工艺的核心内容,工艺工程师需要了解各种工艺流程的设计原则和实施方法,以及如何通过工艺改进来提高产品的性能和可靠性。

8. 质量控制技术:包括过程控制、质量检验、可靠性测试等。

质量控制技术是电子工艺中至关重要的一环,工艺工程师需要了解如何通过过程控制和质量检验来确保产品的质量,以及如何通过可靠性测试来评估产品的寿命和可靠性。

二、半导体器件工艺1. 半导体器件概述:包括二极管、晶体管、场效应管等。

半导体器件是电子工艺中的重要组成部分,工艺工程师需要了解各种器件的结构、原理和性能。

2. 半导体器件制造流程:包括晶圆加工、器件制备、器件封装等。

半导体器件制造流程是电子工艺中的关键环节,工艺工程师需要了解各种制造工艺的原理和步骤,以及如何通过工艺优化来提高产品的性能和可靠性。

半导体材料的测试技术

半导体材料的测试技术

半导体材料的测试技术半导体材料的测试技术是研究和应用半导体材料的重要手段之一、随着半导体技术的飞速发展,半导体材料的测试技术也得到了广泛的应用和发展,为半导体设备的研发和生产提供了可靠的保障。

下面我们将介绍一些常用的半导体材料测试技术。

1.电学测试技术电学测试技术是研究半导体材料电学性质的重要手段。

通过电学测试,可以对半导体材料的电导率、电阻率、电子迁移率等关键参数进行准确测量,从而评估半导体材料的质量和性能。

常用的电学测试技术包括四探针测试、霍尔效应测试、电导率测量等。

2.光学测试技术光学测试技术是研究半导体材料光学性质的重要手段。

通过光学测试,可以对半导体材料的光吸收、发光、光衰减等关键参数进行准确测量,从而评估半导体材料的光学性能。

常用的光学测试技术包括透射率测量、反射率测量、荧光光谱测量等。

3.结构测试技术结构测试技术是研究半导体材料结构特性的重要手段。

通过结构测试,可以对半导体材料的晶体结构、晶格常数、晶体质量等关键参数进行准确测量,从而评估半导体材料的结构性能。

常用的结构测试技术包括X射线衍射、扫描电子显微镜、透射电子显微镜等。

4.热学测试技术热学测试技术是研究半导体材料热学性质的重要手段。

通过热学测试,可以对半导体材料的热导率、热膨胀系数、热稳定性等关键参数进行准确测量,从而评估半导体材料的热学性能。

常用的热学测试技术包括热电偶测量、热导率测量、热膨胀测量等。

除了上述常用的测试技术外,还有一些先进的测试技术在半导体材料的研究中得到了广泛应用,例如电子自旋共振、拉曼光谱等。

这些先进的测试技术在研究半导体材料的微观结构、电子态结构等方面具有独特的优势,可以提供更加详细和准确的信息。

总之,半导体材料的测试技术对于研究和应用半导体材料起着至关重要的作用。

各种测试技术的综合应用,可以全面了解半导体材料的性质和特征,为半导体器件的设计、制造和应用提供有力支持。

重庆大学 半导体测试技术-实验一

重庆大学 半导体测试技术-实验一

实验一高频光电导法测量硅中少子寿命一、实验目的与意义非平衡少数载流子(少子)寿命是半导体材料与器件的一个重要参数。

其测量方法主要有稳态法和瞬态法。

高频光电导衰退法是瞬态测量方法,它可以通过直接观测少子的复合衰减过程,测得其寿命。

本实验通过采用高频光电导衰退法测量高阻硅的少子寿命,加深学生对半导体非平衡载流子理论的理解,使学生学会用高频光电导测试仪和示波器测量半导体少子寿命。

二、实验原理半导体在一定温度下,处于热平衡状态。

半导体内部载流子的产生和复合速度相等。

电子和空穴的浓度一定,如果对半导体施加外界作用,如光、电等,平衡态受到破坏。

这时载流子的产生超过了复合,即产生了非平衡载流子。

当外界作用停止后,载流子的复合超过产生,非平衡少数载流子因复合而逐渐消失。

半导体又恢复平衡态。

载流子的寿命就是非平衡载流子从产生到复合经历的平均生存时间,以τ来表示。

下面我们讨论外界作用停止后载流子复合的一般规律。

当以恒定光源来照射一块均匀掺杂的n型半导体时,将在半导体内部均匀地产生非平衡载流子Δn和Δp。

设在t=0时刻停止光照,则非平衡载流子的减少-dΔp/dt应等于非平衡载流子的复合率Δp(t)/τ(1/τ为非平衡载流子的复合几率。

)即-dΔp/dt=Δp(t)/τ(1-1)在小注入条件下,τ为常量与Δp(t)无关,这样由初始条件:Δp(0)=(Δp)0可解得:Δp(t)=(Δp)0e-t/τ(1-2)由上式可以看出:1、非平衡载流子浓度在光照停止后以指数形式衰减,Δp(∝)=0,即非平衡载流子浓度随着时间的推移而逐渐消失。

2、当t=τ时,Δp(τ)=(Δp)0/e。

即寿命τ是非平衡载流子浓度减少到初始值的1/e倍所经过的时间。

因此,可通过实验的方法测出非平衡载流子对时间的指数衰减曲线,由此测得寿命值τ。

高频光电导衰减法测量原理如图1所示,样品两端以电容耦合的方式与高频振荡源的输出和检波器的输入端相连接。

其等效电路如图2所示。

半导体CV测量基础

半导体CV测量基础

半导体C—v测量基础LeeStauffer(吉时利仪器公司)通用测试电容一电压(C—V)测试广泛用于测量半导体参数,尤其是MOSCAP和MOSFET结构。

此外,利用C—V测量还可以对其他类型的半导体器件和工艺进行特征分析,包括双极结型品体管(BJT)、JFET、III—V族化合物器件、光伏电池、MEMS器件、有机T盯显示器、光电二极管、碳纳米管(CNT)和多种其他半导体器件。

这类测量的基本特征非常适用于各种应用和培训。

大学的研究实验事和半导体厂商利用这类测量评测新材料、新工艺、新器件和新电路。

C—V测虽埘于产品和良率增强。

T:程师也是极其重要的,他们负责提高工艺和器件的性能。

可靠性T程师利用这类测量评估材料供货,监测工艺参数,分析失效机制。

采用一定的方法、仪器和软件,hT以得到多种半导体器件和材料的参数。

从评测外延生长的多晶开始,这些信息在整个生产链中都会用到,包括诸如平均掺杂浓度、掺杂分布和载流子寿命等参数。

在圆片T艺中,C—V测量nT用于分析栅氧厚度、栅氧电荷、游离子(杂质)和界面阱密度。

在后续的工艺步骤中也会用到这类测量,例如光刻、刻蚀、清洗、电介质和多晶硅沉积、金属化等。

当在圆片上完全制造出器件之后,在nr靠性和基本器件测试过程中可以利用C—V测量对阂值电压和其他一些参数进行特征分析,对器件性能进行建模。

半导体电容的物理特性MOSCAP结构足在半导体制造过程中形成的一种基本器件结构(如图l所示)。

尽管这类器件町以用于真实电路中,但是人们通常将其作为一种测试结构集成在制造工艺中。

由于这种结构比较简单而且制造过程容易控制,因此它们足评测底层工艺的一种方便的方法。

图1P型衬底上形成的MOSCAP结构的C—V测量电路图1中的金属/多晶层是电容的一极,二氧化硅是绝缘囵鼋哥詹{层。

由于绝缘层下面的衬底是一种半导体材料,因此它本身并不是电容的另一极。

实际上,其中的多数载流子是电容的另一极。

物理I:而言,电容c町以通过下列公式中的变量计算出来:C=A(K,d),其中A是电容的面积;K是绝缘体的介电常数;d是两极的I’日J距。

单元七 半导体器件及应用

单元七 半导体器件及应用

补充,因此,自由电子和空穴总是成对产生,同时又不断复合,二者数量始终相
等。 在一定温度条件下,电子空穴对的产生和复合达到动态平衡,半导体中维
持一定数目的载流子。当温度升高时,电子空穴对的数目增多,导电性能增强。
所以温度对半导体器件性能影响极大。
PN结
1 . 1半导体基础知识
在正常情况下,原子是电中性的。 当价电子成为自由电子后,原子
或反向饱和电流。
晶体二极管
2. 2 二极管的伏安特性
二极管具有反向击穿特性:
当加在二极管两端的反向电压大于某一数值(击穿电压)后,反向电流突然
急剧增大,此时称二极管反向击穿。
二极管的反向击穿分为齐纳击穿和雪崩击穿两种。
齐纳击穿:在高掺杂浓度的情况下,反向电压较大时,使价电子脱离共价
键束缚,产生电 子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。 如
2023/5/21
“ 十 二 五” 职业教育国家规划教材
经 全 国 职 业 教育教 材审定 委员会 审定
汽车电工与电子基础
(第4版)
三相交流电路
磁路与变压器
交流电动机及控制
直流电动机
半导体器件及应用
三极管及放大电路
数字电路基础
电子电力技术
汽车微机控制系统介绍
2023/5/21
单元七 半导体器件及应用
光敏二极管
光敏二极管,又称光电二极管。光敏二极管与半导体二极管在结构上是
类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作
时需加上反向电压。无光照时, 有很小的饱和反向漏电流,即暗电流,此时
光敏二极管截止。当受到光照时,饱和反向漏电流大大增加,形成光电流,
它随入射光强度的变化而变化。 当光线照射PN结时,可以使PN结中产生

半导体材料测试技术

半导体材料测试技术

半导体材料测试技术半导体材料测试技术是指对半导体材料进行表征和性能测试的一系列技术方法和工具。

半导体材料是电子器件制造与应用的基础,而半导体材料的质量和性能对电子器件的性能和可靠性有着直接的影响。

因此,了解和掌握半导体材料的性能及其测试方法是十分重要的。

1.结构表征技术:通过采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)等仪器,对半导体材料的晶体结构、晶格缺陷等进行分析和表征。

同时可以通过X射线衍射(XRD)技术对材料的晶格常数、晶体结构和材料的纯度进行分析。

2.光学特性测试技术:光学特性测试主要包括折射率、透明度、吸收谱、发射谱等光学性质的测试。

通过光学显微镜、紫外可见分光光度计、激光扫描显微镜等设备来进行测试。

3.电学特性测试技术:电学特性测试是对半导体材料的电导率、电介质常数、击穿电压等电学性质进行测试。

常见的测试设备包括电阻测试仪、电容测试仪、电压源/电流源等。

4.磁学特性测试技术:磁学特性测试主要是对半导体材料的磁化强度、磁畴结构等进行测试。

通过霍尔效应测试仪、磁学测试仪等设备来进行测试。

5.热学特性测试技术:热学特性测试主要是对半导体材料的热导率、热膨胀系数等进行测试。

热电测试仪、热膨胀仪等设备可以用来进行这方面的测试。

此外,还有一些特殊的测试技术,如电子能谱、质谱等,可以用来对半导体材料的表面组分和杂质掺杂进行分析。

综上所述,半导体材料测试技术是对半导体材料进行各种性能指标测试的一系列方法和工具的集合。

掌握这些测试技术,可以对半导体材料的质量和性能进行准确分析,为电子器件的研发和生产提供有力的支撑。

1.半导体材料导电类型的测定

1.半导体材料导电类型的测定

实验1 半导体材料导电类型的测定1.实验目的通过本实验学习判定半导体单晶材料导电类型的几种方法。

2.实验内容用冷热探针法和三探针法测量单晶硅片的导电类型。

3.实验原理3.1半导体的导电类型是半导体材料重要的基本参数之一。

在半导体器件的生产过程中经常要根据需要采用各种方法来测定单晶材料的导电类型。

测定材料导电类型的方法有很多种,这里介绍常用的几种测定导电类型的方法,即冷热探针法、单探针点接触整流法和三探针法。

3.1.1 冷热探针法冷热探针法是利用半导体的温差电效应来测定半导体的导电类型的。

在图1a中,P型半导体主要是靠多数载流子——空穴导电。

在P型半导体未加探针之前,空穴均匀分布,半导体中处处都显示出电中性。

当半导体两端加上冷热探针后,热端激发的载流子浓度高于冷端的载流子浓度,从而形成了一定的浓度梯度。

于是,在浓度梯度的驱使下,热端的空穴就向冷端做扩散运动。

随着空穴不断地扩散,在冷端就有空穴的积累,因而带上了正电荷,同时在热端因为空穴的欠缺(即电离受主的出现)而带上了负电荷。

上述正负电荷的出现便在半导体内部形成了由冷端指向热端的电场。

于是,冷端的电势便高于热端的电势,冷热两端就形成了一定的电势差,这一效应又称为温差电效应,这个电势差又称为温差电势。

如果此时在冷热探针之间接入检流计,那么,在外电路上就会形成由冷端指向热端的电流,检流计的指针就会向一个方向偏转。

从能带的角度来看,在没有接入探针前,半导体处于热平衡状态,体内温度处处相等,主能带是水平的,费米能级也是水平的。

在接入探针以后,由于冷端电势高于热端电势,所以冷端主能带相对于热端主能带向下倾斜,同时由于冷端温度低于热端,故热端的费米能级相对于冷端的费米能级来说,距离价带更远,如图1b所示。

如果我们将上述的P型半导体换成N型半导体,则电子做扩散运动,在冷端形成积累。

由于电子带有负电荷,所以,冷端电势低于热端电势,在外电路形成的电流从热端指向冷端,检流计向另一方向偏转。

半导体材料测试技术

半导体材料测试技术

半导体材料测试技术引言:随着半导体制造技术的快速发展,半导体材料在各种电子设备中起着重要的作用。

对于半导体材料的质量和性能进行准确的测试和评估对于提高产品的可靠性和性能至关重要。

本文将介绍半导体材料测试技术,并重点讨论其在质量控制和性能评估中的应用。

一、半导体材料测试的目的1.测试材料的纯度和杂质含量:半导体材料的纯度对于其电学性能的影响非常大。

通过测试材料的纯度和杂质含量,可以评估材料的质量,并且对材料进行进一步的处理,以提高其纯度。

2.测试材料的结构和晶体质量:半导体材料的结构和晶体质量对于其电学性能也有很大的影响。

通过测试材料的结构和晶体质量,可以评估材料的结晶状态和晶体缺陷情况,并对材料进行后续加工和处理。

3.测试材料的电学性能:半导体材料的电学性能是评估其适用性和应用领域的重要指标。

通过测试材料的电学性能,可以评估材料的导电性、载流子迁移率、禁带宽度等参数,并且对材料进行性能优化和选择。

二、半导体材料测试的常用技术1.光学测试技术:光学测试技术可以用来评估材料的光学性能和结构。

常用的光学测试技术包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、拉曼光谱等。

2.电学测试技术:电学测试技术可以用来测量材料的电学性能,包括导电性、载流子迁移率、禁带宽度等。

常用的电学测试技术包括电阻测试、电子迁移率测试、霍尔效应测试等。

3.结构测试技术:结构测试技术可以用来评估材料的结构和晶体质量。

常用的结构测试技术包括X射线衍射(XRD)、原子力显微镜(AFM)、扫描电镜(SEM)等。

4.化学测试技术:化学测试技术可以用来评估材料的纯度和杂质含量。

常用的化学测试技术包括质谱分析、能谱分析、电感耦合等离子体发射光谱(ICP-OES)等。

三、半导体材料测试的应用1.半导体材料的制备和加工:在半导体材料的制备和加工过程中,需要对材料进行质量控制和性能评估。

通过测试材料的纯度和结晶状态,可以选择合适的制备和加工工艺,并对材料进行后续的处理和改良。

半导体材料检测考核试卷

半导体材料检测考核试卷
A.霍尔效应测试
B.四点探针测试
C. CV测试
D.光谱分析
5.半导体材料的光电特性包括以下哪些?()
A.光生伏特效应
B.光电导效应
C.量子效率
D.介电常数
6.以下哪些材料可以作为半导体器件的绝缘层?()
A.硅氧化物
B.硅氮化物
C.聚酰亚胺
D.金
7.下列哪些因素会影响PN结的正向电流?()
A.温度
B.掺杂浓度
C.热电子发射
D.磁阻效应
17.以下哪种技术常用于半导体材料的薄膜制备?()
A.磁控溅射
B.化学气相沉积
C.热蒸发
D.以上都是
18.下列哪种材料不适合用于高频、高速半导体器件?()
A.硅
B.砷化镓
C.硅锗合金
D.碳纳米管
19.以下哪种现象是半导体材料的光电导效应?()
A.光照条件下,电阻率降低
B.光照条件下,电阻率增大
4.讨论半导体材料在光电子器件中的应用,并举例说明半导体材料在光电子技术中的重要作用。
标准答案
一、单项选择题
1. C
2. C
3. C
4. D
5. B
6. D
7. A
8. A
9. D
10. A
11. D
12. B
13. A
14. D
15. C
16. D
17. A
18. C
19. A
20. A
二、多选题
B.电流减小,电压增大
C.电流减小,电压降低
D.电流增大,电压增大
11.下列哪种材料具有最高的热导率?()
A.硅
B.锗
C.碳纳米管
D.金

1.半导体材料导电类型的测定

1.半导体材料导电类型的测定

实验1 半导体材料导电类型的测定1.实验目的通过本实验学习判定半导体单晶材料导电类型的几种方法。

2.实验内容用冷热探针法和三探针法测量单晶硅片的导电类型。

3.实验原理3.1半导体的导电类型是半导体材料重要的基本参数之一。

在半导体器件的生产过程中经常要根据需要采用各种方法来测定单晶材料的导电类型。

测定材料导电类型的方法有很多种,这里介绍常用的几种测定导电类型的方法,即冷热探针法、单探针点接触整流法和三探针法。

3.1.1 冷热探针法冷热探针法是利用半导体的温差电效应来测定半导体的导电类型的。

在图1a中,P型半导体主要是靠多数载流子——空穴导电。

在P型半导体未加探针之前,空穴均匀分布,半导体中处处都显示出电中性。

当半导体两端加上冷热探针后,热端激发的载流子浓度高于冷端的载流子浓度,从而形成了一定的浓度梯度。

于是,在浓度梯度的驱使下,热端的空穴就向冷端做扩散运动。

随着空穴不断地扩散,在冷端就有空穴的积累,因而带上了正电荷,同时在热端因为空穴的欠缺(即电离受主的出现)而带上了负电荷。

上述正负电荷的出现便在半导体内部形成了由冷端指向热端的电场。

于是,冷端的电势便高于热端的电势,冷热两端就形成了一定的电势差,这一效应又称为温差电效应,这个电势差又称为温差电势。

如果此时在冷热探针之间接入检流计,那么,在外电路上就会形成由冷端指向热端的电流,检流计的指针就会向一个方向偏转。

从能带的角度来看,在没有接入探针前,半导体处于热平衡状态,体内温度处处相等,主能带是水平的,费米能级也是水平的。

在接入探针以后,由于冷端电势高于热端电势,所以冷端主能带相对于热端主能带向下倾斜,同时由于冷端温度低于热端,故热端的费米能级相对于冷端的费米能级来说,距离价带更远,如图1b所示。

如果我们将上述的P型半导体换成N型半导体,则电子做扩散运动,在冷端形成积累。

由于电子带有负电荷,所以,冷端电势低于热端电势,在外电路形成的电流从热端指向冷端,检流计向另一方向偏转。

7_四探针测试半导体薄膜的电阻率

7_四探针测试半导体薄膜的电阻率

实验七四探针测试半导体薄膜的电阻率SZT—1型数字式四探针测试仪是运用四探针测量原理的多用途综合测量装置,可以测量棒状、块状半导体材料的径向和轴向电阻率,片状半导体材料的电阻率和扩散层方块电阻,换上特制的四端子测试夹还可以对低、中值电阻进行测量。

仪器由集成电路和晶体管电路混合组成,具有测量精度高、灵敏度高、稳定性好,测量范围广,结构紧凑,使用方便的特点,测量结果由数字直接显示。

仪器探头采用宝石导向轴套,与高耐磨合金探针组成具有定位准确,游移率小,寿命长的特点。

本仪器适合于对半导体、金属、绝缘体材料的电阻性能测试。

一、实验目的(1)了解四探针电阻率测试仪的基本原理;(2)了解的四探针电阻率测试仪组成、原理和使用方法;(3)能对给定的物质进行实验,并对实验结果进行分析、处理。

二、实验原理测试原理:直流四探针法测试原理简介如下:1.体电阻率测量:当1、2、3、4根金属探针排成直线时,并以一定的压力压在半导体材料上在1、4两处探针间通过电流I,则2、3探针间产生电位差V。

材料的电阻率如下(6.1)式:(.cm)(6.1)式中C为探针系数,由探针几何位置决定。

图6.1 四探针测量原理图当试样电阻率分布均匀,试样尺寸满足半无限大条件时,(cm)(6.2)式中:、、分别为探针1与2,2与3,3与4之间的间距,当===1 mm时,C=2π。

若电流取I = C时,则ρ= V 可由数字电压表直接读出。

(1)块状和棒状样品体电阻率测量由于块状和棒状样品外形尺寸也探针间距比较,合乎与半无限大的边界条件,电阻率值可以直接由(1),(2)式求出。

(2)薄片电阻率测量薄片样品因为其厚度与探针间距比较,不能忽略,测量时要提供样品的厚度形状和测量位的修正系数。

电阻率可由下面公式得出:(6.3)式中:——为块形体电阻率测量值——为样品厚度与探针间距的修正函数,可由相关表格查得——为样品形状和测量位置的修正函数。

当圆形硅片的厚度满足W/S<0.5时,电阻率为:(6.4)2.扩散层的方块电阻测量:当半导体薄层尺寸满足于半无限大平面条件时:(6.5)若取I =4.53,则R值可由V表中直接读出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Electrical Properties
* Sheet Resistance * Free Carrier Mobility * Conductivity
Material Properties
* Dopant Concentration * Material Composition * Crystalline
半导体材料测试技术
华南农业大学工程学院
§3.2.2 涡流非接触测量
1510C Standalone
半导体材料测试技术
华南农业大学工程学院
§3.3 霍尔系数及载流子测量
VH K H IB sin
半导体材料测试技术
华南农业大学工程学院
§3.3.1 Van der pauw 范得堡法
半导体材料测试技术
•Specs: • Dynamic Repeatability • Static Repeatability • Accuracy (estimated)
半导体材料测试技术
华南农业大学工程学院
§3.4 薄膜测量
对于膜层: .厚度t .折射率n .吸光率k 对于衬底 .折射率n和吸光率k
半导体材料测试技术
半导体材料测试技术
华南农业大学工程学院
§3.2 方阻测量
薄层电阻又称方块电阻,其定义为正方形的半导体薄 层,在电流方向所呈现的电阻,常用欧姆每方表示
1 Rs qQ
半导体材料测试技术
华南农业大学工程学院
§3.2.1 四探针
4 Point Probe(FPP)

2V23 1 1 1 1 1 ) ( r12 r24 r13 r34 I
华南农业大学工程学院
§3.4.1 光谱反射测量法
半导体材料测试技术
华南农业大学工程学院
§3.4.1 光谱反射测量法
光谱直接提供晶片反射比 光谱还包含如下信息: .膜层厚度(t) .层和衬底的折射率(n) .层和衬底的吸光率(k)
半导体材料测试技术
华南农业大学工程学院
§3.4.1 光谱反射测量法
半导体材料测试技术
华南农业大学工程学院
§3.1 导电类型测量
冷热探针法——温差电效应
半导体材料测试技术
华南农业大学工程学院
§3.2 方阻测量
-1 = [qn µ ] + [qp µ ] , (ohm-cm) n p
= 1 / = -1 , (ohm-cm)
where: q = charge of an electron = 1.6 x 10 -19 coulombs n = number of electrons, carriers / cm3 p = number of holes, carriers / cm3 2 µ n = electron mobility, cm / V-sec 2 µ p = hole mobility, cm / V-sec
Translate into Conductivity tensor Coefficients
Single Field Analysis Software Module
Mobility Analysis Software Module MultiMode Module
Mobility Spectrum Analysis
半导体材料测试技术
华南农业大学工程学院
§3.3.2 变温范得堡法
MMR Joule-Thomson Miniature Refrigerator
Sample Mounting Surface
Silicon Diode
Resistor Heater
Electrical Lead Connections
Conductivity
Mobility
Mob Con Den
1 - ##
MagF Mob Den Rs. ## ## ## ## ## ## ## ## ## ## ## ##
##
## ## ## ## ##
##
## ## ## ## ##
MultiCarri试技术
华南农业大学工程学院
半导体材料测试技术
华南农业大学工程学院
§3.3.3 非接触迁移率测量
LEI 1610 Non-contact Mobility Testing
Back electrode (adjustable) Sample Reflected RF Power (TE10) Mode Circular WG.
华南农业大学工程学院
§3.3.1 van der pauw 范得堡法
半导体材料测试技术
华南农业大学工程学院
§3.3.2 变温范得堡法
Hall System
• • • •
C-frame magnet available. B-field up to 7000 Gauss Resistivity: 10-4 ~ 1013 ohm-cm Mobility: 1 ~ 107 cm2/volt-sec Concentration: 103 ~ 1019 cm-3
华南农业大学工程学院
§3.2.1 四探针
CMT-SR2000N
Compact Mapping System to measure Sheet Resistance and Resistivity of Wafer up to 200 mm.

Compact and simple design X-Y-Z axis full automatic system Exclusive operation software Powerful data analysis and mapping functions User selection measurement mode Competitive price
Lower
Head Satisfactory penetration assured
Vo
1
s Oxide

1
s Metal

1
s Si
半导体材料测试技术
华南农业大学工程学院
§3.2.2 涡流非接触测量
Four Point Probe
DC-Voltage DC-Current Coil
§3.0 引言
Wafer Probe
Metal Oxide Semiconductor
半导体材料测试技术
华南农业大学工程学院
§3.0 引言
Solar Cells
Refractive Index & Extinction Coefficients
* Absorption * Transmission * Reflectivity
Plot
AC Power
: Contour, 3D, Diameter Scan
: 110V ~ 220V ± 10%
半导体材料测试技术
华南农业大学工程学院
§3.2.2 涡流非接触测量
Four Point Probe Degradation Contamination
Probe Tip
Non Contact Heads
半导体材料测试技术
华南农业大学工程学院
The Measurement Technique for Semiconductor Materials
半导体材料测试技术
华南农业大学工程学院
§3.0 引言
半导体器件基本特性测量
半导体材料测试技术
华南农业大学工程学院
§3.0 引言
半导体材料测试技术
华南农业大学工程学院
半导体材料测试技术
华南农业大学工程学院
§3.2.1 四探针
Specifications
Wafer Size Measurement Range Measurement Time Probe : Max. 200mm : 1mΩ/sq ~ 2MΩ/sq : 3±1sec/point : Jandel Eng., UK
半导体材料测试技术
华南农业大学工程学院
§3.2.1 四探针
Measurement Principle
Current forced through two outer probes(1&4) & Voltage measured across two inner probes(2&3). - Probes equally spaced / Probe spacing is twice thickness of layer
E
p-plane
s-plane p-plane E
plane of incidence s-plane
半导体材料测试技术
华南农业大学工程学院
§3.4.2 椭圆偏振光 Ellipsometry
半导体材料测试技术
华南农业大学工程学院
§3.4.2 椭圆偏振光 Ellipsometry
Ellipsometry Measures: Properties of Interest:
2-
## ## ## ## ##
3-
半导体材料测试技术
华南农业大学工程学院
§3.3.3 非接触迁移率测量
Measurement Specifications
•Sample Size: •Ranges: • Mobility • Carrier Density • Sheet Resistance </=150mm wafers >40mm2 pieces up to 20,000 cm2/V-s 1e10 - 1e14 /cm2 >100 Ω/square +/- 5% at 1 sigma +/- 1% at 1 sigma +/- 10%
相关文档
最新文档