概率第一章习题课

合集下载

1概率ACH1-习题课

1概率ACH1-习题课
3 分析:样本空间: 10
C
(1)最小号码为5,即从6、7、8、9、10里选两个, 所求概率为:
C C
2 5 3 10
1 12
(2)最大号码为5,即从1,2,3,4里选两个,
2 所求概率为: 4 3 10
1 C = 20 C
8、从一批由1100件正品,400件次品组成的产品中
任取200件.求: (1)恰有90件次品的概率;(2)至少有2件次品的概率。
解: P( AB) P( A) P( AB ) =0.7-0.5=0.2
P ( AB) P( AB) P( B A B ) P ( A B ) P( A) P ( B ) P( AB )
0.2 0.25. 0.7 0.6 0.5
16、根据以往资料表明,某一3口之家,患某种传染病的概率
贝叶斯公式
P ( Bi A) P ( Bi | A) P ( A) P ( A | Bi ) P ( Bi )
P( A | B )P( B )
j 1 j j
n
i 1,2,, n
事件的独立性
P ( A1 An ) P ( A1 ) P ( An ) P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 ) P ( An )
配成一双”(事件A)的概率是多少?
4 解: 样本空间总数:C10 210
1
3
5
7
9
事件A:4只恰成1双或恰成2双.
2 4只恰成2双的取法: C5 10
2 4 2 61 8 10 1 1 2 1 1 ) 4只恰成1双的取法:C5 C4 C2C2 120 或C(C8 - C4 120 5

概率统计第一章每一节习题

概率统计第一章每一节习题

概率统计第一章每一节习题第一章 随机事件与概率习题一 随机事件一、填空题1. E :将一枚均匀的硬币抛三次,观察结果,则正面出现次数的样本空间=Ω .2.某商场出售电器设备,以事件A 表示“出售74 Cm 海信电视机”,以事件B 表示“出售74 Cm 长虹电视机”,则只出售一种品牌的电视机可以表示为 ;至少出售一种品牌的电视机可以表示为 ;两种品牌的电视机都出售可以表示为 .3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示下列随机事件:A 发生而B ,C 都不发生为 ;A ,B ,C 不多于一个发生 .4.设事件n A A A A ,,,,321 若 ; ,则称n A A A A ,,,,321 为完备事件组.5.对立事件A 与A 在每一次试验中 发生.二、设{1,2,,10}Ω= ,{2,3,4}A =,{3,4,5}B =,{5,6,7}.C =写出下列算式表示的集合: 1. AB 2.A B C ++3._____________A B C ++三、写出下式的另外一种形式表达式 1.=++n A A 1 2.=++n A A 1习题二随机事件的概率一、填空题1.概率是事件的自然属性,有事件就一定有 .2.古典概型的两个条件是,.3.今有10张电影票,其中只有2张座号在第一排,现采取抽签方式发放给10名同学,则.A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约二、8件产品中有5件是一级品,3件是二级品,现从中任取2件,求下列情况下取得的2件产品中只有一件是一级品的概率:( 1 ) 2件产品是无放回的逐次抽取;( 2 ) 2件产品是有放回的逐次抽取.三、有n位同学(n 365),求他们至少有两个人的生日在同一天的概率(一年按365天计算).四、从1,2,…,10这十个数中等可能地任取一个,然后还原,先后取出7个数,试求下列各事件的概率:(1)7个数全不相同;(2)不含9和2;(3)8出现三次.习题三 概率的运算法则一、填空1.设事件,,B A =+)(B A P ,当A ,B 互斥时=+)(B A P .2.设事件,,B A =-)(B A P , )(A P )(AB P .3.设事件C B A ,, =++)(C B A P .4.设事件组n A A A A ,,,,321 ,)(21n A A A P = .5.=)|(A B P .6.=+)|(21B A A P . (条件概率的加法公式)二、袋中装有红、黄、白色球各一个,每次任取一个,有放回地抽取三次,求取到的三个球中没有红球或没有黄球的概率.三、某工厂生产的产品中,36%为一等品,54%为二等品,10%为三等品,任取一件产品,已知它不是三等品,求它是一等品的概率.四、10个签中有4个是难签,3人参加抽签(无放回),甲先、乙次、丙最后.求甲抽到难签、甲乙都抽到难签、甲没有抽到难签而乙抽到难签及甲乙丙都抽到难签的概率。

概率论第一章习题课

概率论第一章习题课

概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。

概率统计课后习题解答第1章

概率统计课后习题解答第1章

21.某车间有 5 台车床,每台车床由于种种原因,时常需要停车,设各台车 床停车或开车是相互独立的, 若每台车床在任一时刻处于停车状态的概率为 1/3, 试分别求在任一时刻车间里有 0,3,5 台车床处于停车状态的概率. 解:此题为 5 重伯努利概型。 22.设甲、乙两个篮球运动员投篮命中率分别为 0.7 和 0.6,现每人投篮三次, 试求: (1)两人进球数相等的概率。 (2)甲比乙进球数多的概率。 解:设甲、乙两人的进球数分别为 x 和 y,则 ( 1) 1 1 P( X Y ) 0.330.43 C3 0.7 0.32 C3 0.6 0.42 C32 0.7 2 0.3 C32 0.62 0.4 0.730.63 0.321 ( 2) 1 1 P( X Y ) C3 0.7 0.32 0.43 C32 0.7 2 0.3(0.43 C3 0.6 0.42 ) 3 3 1 2 2 2 0.7 (0.4 C3 0.6 0.4 C3 0.6 0.4) 0.436 23.一商店出售的某种型号的晶体管是甲、乙、丙三家工厂生产的,其中乙 厂产品占总数的 50%,另两家工厂的产品各占 25%,已知甲、乙、丙各厂产品 合格率分别为 0.90、0.80、0.70,试求随意取出一只晶体管是合格品的概率。 解:设 A 表示随意取出一只晶体管是合格品,Bi(i=1,2,3)分别表示取出的 产品由甲、乙、丙厂家生产,则由全概率公式有
P ( A B ) 1 P ( A B ) 1 P ( A B ) 1 r.
12.已知 P(A)=0.7; P( A B )=0.3,试求 P( AB )。 解:由 P( AB ) P( A AB) P( A) P( AB) 0.7 P( AB) 得 P( AB) 0.7 0.3 0.4 ,从而 P( AB )=10.4 = 0.6。 注意:教材上题目印刷错误 13.盒中有 10 小球,其中有 4 个是红色,从中任取两球,已知取出的两球至 少有一个是红色,求另一球也是红色的概率。 解:设取出的两球至少有一个是红色用 A 表示,则 P( A) P( A1 ) P( A2 )

概率论课后习题答案第一章

概率论课后习题答案第一章

2008年4月第一章1.1 解⑴记9件合格品分别为正1正2�6�7正9记不合格品为次则Ω正1正2正1正3正1正4�6�7正1正9正1次正2正3正2正4�6�7正2正9正2次正3正4�6�7正3正9正3次�6�7 正8正9正8次正9次A正1次正2次正3次�6�7正9次⑵记2个白球分别为w1w23个黑球分别为b1b2b34个红球分别为r1r2r3r4。

则Ωw1w2b1b2b3r1r2r3r4 ⅰA w1w2。

ⅱB r1r2r3r4。

1.2 解⑴事件ABC表示该生是三年级男生但不是运动员。

⑵ABCC等价于CAB表示全系运动员都是三年级的男生。

⑶当全系运动员都是三年级学生时。

⑷当全系女生都在三年级并且三年级学生都是女生时。

1.3 解⑴1niiA⑵22221222211nCDniCDiCDCDnCDACDCD ⑶11nnijijjiAA⑷原事件即“至少有两个零件是合格品”可表为1nijijijAA。

1.4 解1—4显然5和6的证法分别类似于课文第10—12页1.5式和1.6式的证法。

1.5 解样本点总数为28A8×7。

所得分数为既约分数必须分子分母或为71113中的两个或246812中的一个和71113中的一个组合所以事件A“所得分数为既约分数”包含28A218A×15A3×22×3×52×3×6个样本点。

于是PA23698714。

1.6 解样本点总数为5310。

所取三条线段能构成一个三角形这三条线段必须是3、5、7或5、7、9。

所以事件A“所取三条线段能构成一个三角形”包含3个样本点于是PA310。

17解显然样本点总数为13事件A“恰好组成MATHEMATICIAN”包含3222个样本点。

所以3222481313PA 18解任意固定红“车”的位置黑“车”可处在9×10-189个不同位置当它处于和红“车”同行或同列的9817个位置之一时正好互相“吃掉”。

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。

A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。

P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。

答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。

答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。

答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。

答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。

答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。

答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。

则分配方法有______种。

答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。

答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。

概率论与数理统计习题课1

概率论与数理统计习题课1
(1)有机床需要工人照管的概率;
(2)机床因无人照管而停工的概率.
解:设 A 机床甲不需要工人照顾, B 机床乙不需要工人照顾, C 机床丙不需要工人照顾,
依题意,A、B、C 相互独立。
2019/7/17
16
第1章 习 题 课
(1) P( A B C ) P( ABC )
)

1

29 90

61 90
.
3
P(B1B2 ) P( Ai )P(B1B2 | Ai )
i 1
1 ( 3 7 7 8 5 20) 2 . 3 10 9 15 14 25 24 9
2019/7/17
21
第1章 习 题 课
从而
P ( B1
|
B2 )

P(B1B2 ) P(B2 )
于是 P( A) p 0.25(1 p) p [0.25(1 p)]2 p .
这是一个几何级数求和问题。由于公比
0 0.25(1 p) 1,该级数收敛。
P( A)
p
.
1 0.25(1 p)
若甲乙胜率相同,则
p
0.5 p 3 .
1 0.25(1 p)
i 1,2,3,.
A 甲获胜,
B 乙获胜,
2019/7/17
18
第1章 习 题 课
则 A A1 A1B2B3 A4 A1B2B3 A4B5B6 A7 ;
P( A1 ) p ; P( A1B2B3 A4 ) 0.25(1 p) p ; P( A1B2B3 A4B5B6 A7 ) [0.25(1 p)]2 p ;

概率习题第一章(学生用)

概率习题第一章(学生用)

第一次习题课一、填空题1.设A 、B 、C 是3个随机事件,则“3个事件中恰有一个事件发生”用A 、B 、C 表示为。

2.设31)(=A P ,21)(=B P ,分别在下列条件下求)(A B P : (1)若A B ⊂时,则=)(A B P ,(2)若A B 、互斥,则=)(A B P ,(3)若81)(=AB P ,则=)(A B P , 又()P AB =,=)(B A P 。

3.设A 、B 为随机事件,已知P (A )=0.5,P (B )=0.6,P (B |A )=0.5,则P (A ⋃B )=。

4.有两批零件,其合格率分别为0.9和0.8,在每批零件中随机取一件,则至少有一个是合格品的概率为;而恰好有一件是合格品的概率为。

5.从一副扑克牌的13张黑桃中,一张接一张有放回地抽取3张,没有同号的概率为;有同号的概率为。

二、选择题1.A 、B 为两个概率不为零的不相容事件,则下列结论肯定正确的是。

A .A 和B 不相容; B .A 和B 相容;C .P (AB )=P (A )P (B );D .P (A -B )=P (A )。

2.设当A 、B 同时发生时,事件C 必发生,则下列式子中正确的是。

A .P (C )≤P (A )+P (B )-1; B .P (C )≥P (A )+P (B )-1;C .P (C )=P (AB );D .P (C )=P (A ⋃B )。

3.设A 、B 、C 三个事件两两独立,则A 、B 、C 相互独立的充要条件是。

A .A 与BC 独立;B .AB 与A ⋃C 独立;C .AB 与AC 独立;D .A ⋃B 与A ⋃C 独立。

4.设甲、乙两人进行象棋比赛,考虑事件A =“乙胜甲负”,则A 为。

A .“乙负甲胜”; B .“甲乙平局”;C .“乙负”;D .“乙负或平局”。

5.设8.0)(=A P ,7.0)(=B P ,8.0)(=B A P ,则下列结论正确的是。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案1.写出下列随机试验的样本空间.(1)记录一个小班一次数学考试的平均分数(以百分制记分);(2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取出3个球;(3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;(4)在单位圆内任意取一点,记录它的坐标.解:(1)}100,,2,1{ =Ω;(2)}345,235,234,145,135,134,125,124,123{=Ω;(3)},2,1{ =Ω;(4)}|),{(22y x y x +=Ω.2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A .解:(1),9,10}{1,5,6,7,8=A ,}5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ;(3)法1:}10,9,8,7,6,2,1{=B ,}10,9,8,7,6,1{=B A ,}5,4,3,2{=B A ;法2:}5,4,3,2{===B A B A B A ;(4)}5{=BC ,}10,9,8,7,6,4,3,2,1{=BC ,}4,3,2{=BC A ,}10,9,8,7,6,5,1{=BC A ;(5)}7,6,5,4,3,2{=C B A ,{1,8,9,10}=C B A .3.设}20|{≤≤=Ωx x ,}121|{≤<=x x A ,}2341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A .解:(1)B B A = ,}223,410|{≤<<≤==x x x B B A ;(2)=B A ∅;(3)A AB =,}21,210|{≤<≤≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ;(2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB .解:(1)A ,B ,C 恰有一个发生;(2)A ,B ,C 中至少有一个发生;(3)A 发生且B 与C 至少有一个不发生;(4)A ,B ,C 中不多于一个发生.6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.证:A B B A A B A AB A B A AB )()(==-Ω==Ω=A A A A .7.把事件C B A 表示为互不相容事件的和事件.解:)()[(C A B A A A C B A C B A =-=)(B A A A A C A B A A ==CB A BC A B A A )(=C B A B A A =.8.设0)(>A P ,0)(>B P ,将下列5个数)(A P ,)()(B P A P -,)(B A P -,)()(B P A P +,)(B A P 按有小到大的顺序排列,用符号“≤”联结它们,并指出在什么情况下可能有等式成立.解:因为0)(>A P ,0)(>B P ,)()(B P AB P ≤,故)()()()()()()()()(B P A P B A P A P B A P AB P A P B P A P +≤≤≤-=-≤- ,所以)()()()()()()(B P A P B A P A P B A P B P A P +≤≤≤-≤- .(1)若A B ⊂,则有)()()(B A P B P A P -=-,)()(B A P A P =;(2)若=AB ∅,则有)()(A P B A P =-,)()()(B P A P B A P += .9.已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求)(A P ,)(AB P ,)(B A P 和)(B A P .解:(1)7.0)(1(=-=A P A P ;(2)B A ⊂ ,A AB =∴,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .10.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率.(1)只有1件次品;(2)最多1件次品;(3)至少一件次品.解:从10件产品中任取3件,共有310C 种取法,(1)记=A {从10件产品中任取3件,只有1件次品},只有1件次品,可从4件次品中任取1件次品,共14C 中取法,另外的两件为正品,从6件正品中取得,共26C 种取法.则事件A 共包含2614C C 个样本点,21)(3102614==C C C A P .(2)记=B {从10件产品中任取3件,最多有1件次品},=C {从10件产品中任取3件,没有次品},则C A B =,且A 与C 互不相容.没有次品,即取出的3件产品全是正品,共有36C 种取法,则61)(31036==C C C P ,32)()()()(=+==C P A P C A P B P .(3)易知=C {从10件产品中任取3件,至少有1件次品},则65)(1(=-=C P C P .11.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.解:从10个球中任选3球,共有310C 种选法,(1)记=A {从10个球中任选3球,最小标号为5},事件A 发生,则选出球的最小标号为5,另外两个球的标号只可从6,7,8,9,10这5个数中任选,共有25C 种选法,则121)(31025==C C A P .(2)记=B {从10个球中任选3球,最大标号为5},事件B 发生,则选出球的最大标号为5,另外两个球的标号只可从1,2,3,4这4个数中任选,共有24C 种选法,则201)(31024==C C B P .12.设在口袋中有a 个白球,b 个黑球,从中一个一个不放回地摸球,直至留在在口袋中的球都是同一种颜色为止.求最后是白球留在口袋中的概率.解:设=A {最后是白球留在口袋中},事件A 即把b a +个球不放回地一个一个摸出来,最后摸到的是白球,此概率显然为ba a A P +=)(.13.一间学生寝室中住有6位同学,假定每个人的生日在各个月份的可能性相同,求下列事件的概率:(1)6个人中至少有1人的生日在10月份;(2)6个人中有4人的生日在10月份;(3)6个人中有4人的生日在同一月份.解:设=i B {生日在i 月份},则=i B {生日不在i 月份},12,,2,1 =i ,易知121)(=i B P ,1211)(=i B P ,12,,2,1 =i .(1)设=A {6个人中至少有1人的生日在10月份},则=A {6个人中没有一个人的生日在10月份},66101211(1)]([1)(1)(-=-=-=B P A P A P ;(2)设=C {6个人中有4人的生日在10月份},则62244621041046121115)1211()121()]([)]([)(⋅===C B P B P C C P ;(3)设=D {6个人中有4人的生日在同一月份},则52112121115)()(⋅==C P C D P .14.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在这一直径上一个区间内的可能性与此区间的长度成正比,求任意画的弦的长度大于R 的概率.解:设弦与该直径的交点到圆心的距离为x ,已知,当R x 23<,弦长大于半径R ,从而所求的概率为232232=⋅=R R P .15.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在同一昼夜内到达的时刻是等可能的,如果甲船的停泊时间是1h ,乙船的停泊时间是2h ,求它们中的任何一艘都不需要等候码头空出的概率.解:设=A {两艘中的任何一艘都不需要等候码头空出},则=A {一艘船到达泊位时必须等待},分别用x 和y 表示第一、第二艘船到达泊位的时间,则}10,20|),{(≤-≤≤-≤=x y y x y x A ,从而1207.0242221232124)()()(2222≈⋅-⋅-=Ω=μμA A P ;8993.0)(1)(≈-=A P A P .16.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,问由甲射中的概率为多少?解:设=A {甲击中目标},=B {乙击中目标},=C {目标被击中},则B A C =,由题设知A 与B 相互独立,且6.0)(=A P ,5.0)(=B P ,所以)()()()()(AB P B P A P B A P C P -+== 8.0)()()()(=-+=B P A P B P A P ,从而43)()()()()|(===C P A P C P AC P C A P .17.某地区位于河流甲与河流乙的汇合点,当任一河流泛滥时,该地区即被淹没,设在某时期内河流甲泛滥的概率是0.1,河流乙泛滥的概率是0.2,又当河流甲泛滥时引起河流乙泛滥的概率为0.3,求在该时期内这个地区被淹没的概率,又当河流乙泛滥时,引起河流甲泛滥的概率是多少?解:=A {甲河流泛滥},=B {乙河流泛滥},=C {该地区被淹没},则B A C =,由题设知1.0)(=A P ,2.0)(=B P ,3.0)|(=A B P ,从而)()()()()(AB P B P A P B A P C P -+== 27.0)|()()()(=-+=A B P A P B P A P ,15.0)()|()()()()|(===B P A B P A P B P AB P B A P .18.设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件不合格品,求另一件也是不合格品的概率.解:设=A {有一件产品是不合格品},=B {另一件产品也是不合格品},=i D {取出的两件产品中有i 件不合格品},2,1,0=i ,显然,21D D A =,=21D D ∅,2D B AB ==.=Ω{从n 件产品种任取两件},共有2nC 种取法;若1D 发生,即取出的两件产品中有1件不合格品,则该不合格品只能从m 件不合格品中取得,共有1m C 种取法;另一件为合格品,只能从m n -件合格品中取得,共有1m n C -种取法,则事件1D 中共有11m n m C C -个样本点,)1()(2)(2111--==-n n m n m C C C D P n m n m ,类似地,)1()1()(222--==n n m m C C D P n m ,所以)1()1()(2)()()()(2121--+-=+==n n m m m n m D P D P D D P A P ,)1()1()()(2--==n n m m D P AB P ,于是所求概率为121)()()|(---==m n m A P AB P A B P .19.10件产品中有3件次品,每次从其中任取一件,取出的产品不再放回去,求第三次才取得合格品的概率.解:设=i A {第i 次取得合格品},3,2,1=i ,则所求概率为12878792103)|()|()()(213121321=⋅⋅==A A A P A A P A P A A A P .20.设事件A 与B 互不相容,且1)(0<<B P ,证明:)(1)(|(B P A P B A P -=.证: 事件A 与B 互不相容,则0)(=AB P ,)(1)()(1)()()(1)()(()|(B P A P B P AB P A P B P B A P B P B A P B A P -=--=--==.21.设事件A 与B 相互独立,3.0)(=A P ,45.0)(=B P ,求下列各式的值:(1))|(A B P ;(2))(B A P ;(3)(B A P ;(4)|(B A P .解: 事件A 与相互独立,∴事件A 与B 也相互独立,(1)45.0)()|(==B P A B P ;(2))()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=615.0=;(3)385.0)](1)][(1[)(()(=--==B P A P B P A P B A P ;(4)7.0()|(==A P B A P .22.某种动物活到10岁的概率为0.92,活到15岁的概率为0.67,现有一只10岁的该种动物,求其能活到15岁的概率.解:设=A {该种动物能活到10岁},=B {该种动物能活到15岁},显然A B ⊂,由题设可知92.0)(=A P ,67.0)(=B P ,所以9267)()()()()|(===A P B P A P AB P A B P .23.某商店出售的电灯泡由甲、乙两厂生产,其中甲厂的产品占60%,乙厂的产品占40%,已知甲厂产品的次品率为4%,乙厂的次品率为5%.一位顾客随机地取出一个电灯泡,求它是合格品的概率.解:设=A {电灯泡是次品},=1B {电灯泡由甲厂生产},=2B {电灯泡由乙厂生产},则=A {电灯泡是合格品}.由题设可知6.0)(1=B P ,4.0)(2=B P ,04.0)|(1=B A P ,05.0)|(2=B A P ,044.0)|()()|()()(2211=+=B A P B P B A P B P A P ,所以956.0)(1)(=-=A P A P .24.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解:设=A {选出的人是色盲患者},=B {选出的人是男性},=B {选出的人是女性},由题设可知21()(==B P B P ,05.0)|(=B A P ,0025.0)|(=B A P ,则2120)|()()|()()|()()|(=+=B A P B P B A P B P B A P B P A B P .25.甲、乙、丙三人独立地向一敌机射击,设甲、乙、丙命中率分别为0.4,0.5和0.7,又设敌机被击中1次、2次、3次而坠毁的概率分别为0.2,0.6和1.现三人向敌机各射击一次,求敌机坠毁的概率.解:设1A ,2A ,3A 分别表示甲、乙、丙射击击中敌机,=i B {敌机被击中i 次},3,2,1=i ,=C {敌机坠毁},则3213213211A A A A A A A A A B =,3213213212A A A A A A A A A B =,3213A A A B =,由题设可知4.0)(1=A P ,5.0)(2=A P ,7.0)(3=A P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P ,则)()()()(3213213211A A A P A A A P A A A P B P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.0=,类似地,51.0)(2=B P ,14.0)(3=B P ,由全概率公式得458.0)|()()(31==∑=i i i B C P B P C P .26.三人独立地破译一份密码,已知各人能译出的概率分别为51,31和41.问三人中至少有一人能将此密码译出的概率是多少?解:分别设事件A ,B ,C 为甲、乙、丙破译密码,则三人中至少有一人能将此密码译出可表示为C B A ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=53=.27.甲袋中装有n 只白球、m 只红球,乙袋中装有N 只白球、M 只红球.今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,问取到白球的概率是多少?解:设=A {从甲袋中取出白球},=B {从乙袋中取出白球},则由题设可知m n n A P +=)(,m n m A P +=(,11)|(+++=M N N A B P ,1|(++=M N N A B P ,由全概率公式,得)|(()|()()(A B P A P A B P A P B P +=)1)(()1(+++++=N M n m mN N n .28.从区间)1,0(内任取两个数,求这两个数的和小于1.2的概率.解:设x 和y 分别为所取的两个数,显然10≤≤x ,10≤≤y ,即试验的样本空间为边长为1的单位正方形,记}2.1|),{(<+=y x y x A ,由几何概型,有68.0118.08.02111)(=⨯⨯⨯-⨯=A P .29.一个系统由4个元件联结而成(如图),每个元件的可靠性(即元件能正常工作的概率)为r (10<<r ),假设各个元件独立地工作,求系统的可靠性.解:设=i A {第i 个元件能正常工作},4,3,2,1=i ,=B {系统能正常工作},则4314214321)(A A A A A A A A A A B ==,由题知r A P i =)(,i A 相互独立,4,3,2,1=i ,所以)()(431421A A A A A A P B P =)()()(4321431421A A A A P A A A P A A A P -+=)(()()()()()()()()(4321431421A P A P A P A P A P A P A P A P A P A P -+=3)2(r r -=.30.某篮球运动员投篮命中的概率为0.8,求他在5次独立投篮中至少命中2次的概率.解:设=A {该篮球运动员5次独立投篮中至少命中2次},=i B {该篮球运动员5次独立投篮中命中的次数},5,,1,0 =i ,则由题可知5432B B B B A =,10B B A =,i B 互不相容,5,,1,0 =i ,所以)()(1)(1)(10B P B P A P A P --=-=9933.02.08.02.08.0141155005=⋅⋅-⋅⋅-=C C .31.设概率统计课的重修率为5%,若某个班至少一人重修的概率不小于0.95,1324问这个班至少有多少名同学?解:设该班有n 名同学,=A {该班每名同学概率统计课重修},=i B {该班n 名同学中有i 名同学概率统计课重修},=C {该班n 名同学中至少有1名同学概率统计课重修},则 ni i n B B B B C 121===,0B C =,由题可知05.0)(=A P ,n n n C B P C P C P 95.0195.005.01)(1)(1)(000-=⋅⋅-=-=-=,由题意,应有95.095.01=-n ,解得59=n .32.某种灯泡使用时数在1000h 以上的概率为0.6,求3个灯泡在使用1000h 以后最多有1个损坏的概率.解:设=A {该种灯泡使用时数在h 1000以上},=i B {3个灯泡在使用h 1000以后有i 个损坏},3,2,1,0=i ,=C {3个灯泡在使用h 1000以后最多有1个损坏},则10B B C =,由题知6.0)(=A P ,i B 互不相容,3,2,1,0=i ,所以648.06.04.06.04.0)()()(2113300310=⋅⋅+⋅⋅=+=C C B P B P C P .33.甲、乙两名篮球运动员投篮的命中率分别为0.7和0.6,每人投篮3次,求:(1)二人进球数相等的概率;(2)甲比乙进球数多的概率.解:设=A {甲篮球运动员投篮命中},=B {乙篮球运动员投篮命中},=i A {甲篮球运动员投篮命中i 次},3,2,1,0=i ,=i B {乙篮球运动员投篮命中i 次},3,2,1,0=i ,=C {甲、乙进球数相等},=D {甲比乙进球数多},由题可知A 与B 相互独立,i A 相互独立,i B 相互独立,i A 与i B 相互独立,7.0)(=A P ,6.0)(=B P ,i i i i C A P -⋅⋅=333.07.0)(,i i i i C B P -⋅⋅=334.06.0)(,3,2,1,0=i ,(1) 30==i i i B A C ∑∑======303030)()()()()(i i i i i i i i i B P A P B A P B A P C P 3208.0=;(2)3310201)(B A B B A B A D =,从而有))(()(3310201B A B B A B A P D P =)(]([)(3310201B A P B B A P B A P ++= )()()()(33120201B A P B A P B A P B A P +++=)()()()()()()()(33120201B P A P B P A P B P A P B P A P +++=4362.0=.34.若三事件A ,B ,C 相互独立,证明:B A 及B A -都与C 相互独立.证:(1))())((BC AC P C B A P =)()()(ACBC P BC P AC P -+=)()()(ABC P BC P AC P -+=)()()()()()()(C P B P A P C P B P C P A P -+=)()]()()()([C P B P A P B P A P -+=)()]()()([C P AB P B P A P -+=)()(C P B A P =所以B A 与C 相互独立.(2))())((BC AC P C B A P -=-)()(ABC P AC P -=)()()()()(C P B P A P C P A P -=)()]()()([C P B P A P A P -=)()]()([C P AB P A P -=)()(C P B A P -=,所以B A -与C 相互独立.35.设袋中有1个黑球和1-n 个白球,每次从袋中随机摸出一球,并放入一个白球,连续进行,问第k 次摸到白球的概率是多少?解:设=A {第k 次摸到白球},=A {第k 次摸到黑球},A 发生表示前1-k 次摸球摸到的都是白球,第k 次摸到的是黑球.前1-k 次摸球,每次摸到白球的概率均为n n 1-,第k 次摸到黑球的概率为n1,每次摸球相互独立,可知n n n A P k 1)1()(1⋅-=-,则n n n A P A P k 11(1)(1)(1⋅--=-=-.。

概率论 王松桂 第一章 课后习题解答

概率论 王松桂  第一章 课后习题解答

第一章 随机事件1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{22,3,4,,12Ω= ;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{4,15, ,1,2,3,4,5.;i j i j i j Ω=≤<≤=(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T 1, 最高气温不高于T 2); 解:用x 表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故: y ()}{61,x y T x y T Ω=≤<≤2; (7) 在单位圆内任取两点, 观察这两点的距离;解:}{702x x Ω=<<;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{8,0,0,x y x y x y l Ω=>>+=。

1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B ;A ⋃(3) A,B,C 中至少有一个发生; CB ;A ⋃⋃(4) A,B,C 中恰有一个发生;CB AC B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC ;AC AB ⋃⋃(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃或AB AC BC ⋃⋃;(7) A,B,C 中至多有两个发生;ABC ; (8)A,B,C 中恰有两个发生.C AB C B A A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计(经管类)课后习题_第一章

概率论与数理统计(经管类)课后习题_第一章

P (A3|B) =
PB
%% .
通过计算得出第二产成产的概率最大.
0.2319
习题 1.4
1. 设 P(A)=0.4, P A B (1) A 与 B 互不相容; (2) A 与 B 相互独立;
(3) A B. 解: (1) P(B)= P A B
0.7,求在下列条件下分别求 P(B): P A 0.7 0.4 0.3;
(2)P A B (3) P A B
1 P A P B ,P B 1
PA B PA
P A P B P AB P A P B
1 0.5 0.5; P A =0.7.
2. 甲乙两人独立地各向同一目标射击一次,其中命中率分别为 0.6 和 0.7,求目标被命中的概率.若已知
目标被命中,求它是甲射中的概率.
P =
AB
=P
A
P AB = .
.
0.4
PA
PA
.
3.设 P(A)= ,P(B|A)= , P(A|B)= ,求 P A B
解:P(AB)= P(A)* (B|A)=
,
P AB
P(B)=
P A|B
PA B
PA
PB
P AB
11 1 4 6 12
1 3
4.设P A 0.3, P B
解: P B|A B
0.4, P AB 0.5, 求 P B|A B .
11.设 P(A)=0.7,P(B)=0.6,P(A‐B)=0.3,求P AB , P A B , P AB . 解: P AB 1 P AB 1 P A P A B 1 0.4 0.6 P A B P A P B P AB P A P B P A P A B P AB 1 P A B 1 0.9 0.1

第一章-随机事件及其概率习题

第一章-随机事件及其概率习题

第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A 13{|0}{|2}42x x x x =≤<≤≤ , B A 113{|}{|1}422x x x x =≤≤<< . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -;;;;.3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 0.6 .6.在区间〔0, 1〕中随机地取两个数,则事件“两数之和小于56 ”的概率为 0.68 . 7.已知P (A )=0.4, P(B )=0.3,(1) 当A ,B 互不相容时, P (A ∪B )= 0.7; P(AB )= 0 .(2) 当B ⊂A 时, P(A+B )= 0.4 ; P (AB )= 0.3 ;8. 假设γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则=0.25?? . 10.已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P 0.7 .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 .13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,则它是甲中的概率为 0.75 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为〔D 〕.〔A 〕“甲种产品畅销,乙种产品滞销”; 〔B 〕“甲、乙两种产品均畅销”;〔C 〕“甲种产品滞销”; 〔D 〕“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A = ,〔D 〕.() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B ⊂A ,则下述结论正确的选项是〔C 〕.(A ) A 与B 同时发生; 〔B 〕A 发生,B 必发生;〔C 〕 A 不发生B 必不发生; 〔D 〕B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的选项是〔B 〕.() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 假设二事件A 和B 同时出现的概率P(AB )=0则〔C 〕.〔A 〕A 和B 不相容; 〔B 〕AB 是不可能事件;〔C 〕AB 未必是不可能事件; 〔D 〕P(A )=0或P(B )=0.6. 对于任意二事件A 和B 有=-)(B A P (C ).(A) )()(B P A P -; 〔B 〕)()()(AB P B P A P +-;〔C 〕)()(AB P A P -; 〔D 〕)()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则以下事件肯定正确的〔D 〕. (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则〔B 〕.(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则以下式子正确的选项是 (A ).〔A 〕)()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B ).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+== 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则以下选项必然成立的是〔B 〕.()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有〔 C 〕.(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为〔D 〕.1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 〔D 〕.(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为〔C 〕.222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出以下随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只〔取出后不放回〕,直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

第一、二章习题课(概率论)

第一、二章习题课(概率论)

第二章 随机变量及其分布
♦1. 基本概念:随机变量,离散型随机变量,连续型随 基本概念:随机变量,离散型随机变量,
机变量 ♦2.离散型随机变量及其分布律 离散型随机变量及其分布律 (1)如何求解 ) 设离散型随机变量X的可能取值为 的可能取值为x 设离散型随机变量 的可能取值为 k (k=1,2,…),事 事 件 发生的概率为 pk ,
P ( A) = 0.3, P ( B ) = 0.8, P (C ) = 0.6, P ( A U B ) = 0.9,
n−1
P ( AC ) = 0.1, P ( BC ) = 0.6, P ( ABC ) = 0.1.
试求: 试求:(1) P ( AB ) ) (2) P ( A U B U C )
1.若事件 若事件A,B是互不相容的 且 P ( A) > 0, P ( B ) > 0 是互不相容的,且 若事件 是互不相容的 则事件A,B一定不相互独立 一定不相互独立. 则事件 一定不相互独立 2. 若事件 若事件A,B相互独立 且 P ( A) > 0, P ( B ) > 0 相互独立,且 相互独立 则事件A,B一定相容 一定相容. 则事件 一定相容
事件A发生但事件 不发生 称为事件A与事件 与事件B的 事件 发生但事件B不发生 称为事件 与事件 的 发生但事件 不发生, 差事件。 差事件。 A B
S
显然有: 显然有:
A− B −
对于任意两事件A, 总有如下分解 总有如下分解: 对于任意两事件 ,B总有如下分解:
5 AI B =∅
0
则称A和 是互不相容的或互斥的 指事件A与 不 是互不相容的或互斥的,指事件 则称 和B是互不相容的或互斥的 指事件 与B不 可能同时发生。 可能同时发生。

概率习题集

概率习题集

福州大学至诚学院《概率论与数理统计》课外习题_______系 _______专业______班 姓名______学号_______第一章 随机事件及其概率 §1.1样本空间与随机事件一 选择题0001. 若A ,B ,C 为三事件,则A ,B ,C 中不多于一个发生可表为( )A .CB A ⋃⋃ B .B AC B C A ⋃⋃ C .C B A ⋃⋃D .BC AC AB ⋃⋃2. 设AB C ⊂,则( ).A .ABC ⊃ B .A C ⊂⊂且B C C .A B C ⊃D .A C ⊂⊂或B C3.设Ω={1,2,…,10},A={2,3,4},B={3,4,5},则B A ⋂=( )A .{2,3,4,5} B.{1,2,3} C. Ω D. φ4.从一大批产品中任抽5件产品,事件A 表示:“这5件中至少有1件废品”,事件B 表示 “这5件产品都是合格品”,则AB 表示( )A .所抽5件均为合格品 B.所抽5件均为废品C.不可能事件D.必然事件二. 填空题1. 设A ,B 为任意两个随机事件,则B B A )(⋃=2 设有事件算式()()()()AB AB AB AB ,则化简式为3.设}10,,2,1{ =S ,}4,3,2{=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式.(1)B A = (2)B A ⋃= _(3)AB = __(4)ABC = _(5))(C B A ⋃=4.从标有1,2,3的卡片中无放回抽取两次,每次一张,用),(ηξ表示第一次取到的数字x ,第二次取到y 的事件,则样本空间Ω= ,)3(=+ηξP = 。

三. 试写出下列随机试验的样本空间:(1)记录一个班级一次数学考试的平均分数(以百分制记分);(2)一射手对某目标进行射击,直到击中目标为止,观察其射击次数;(3)在单位圆内任意取一点,记录它的坐标;(4)观察甲、乙两人乒乓球9局5胜制的比赛,记录他们的比分.四. 设A,B,C为3个事件,用A,B,C的运算关系表示下列各事件:(1)A发生;(2)A不发生,但B,C至少有1个发生;(3)3个事件恰好有1个发生;(4)3个事件至少有2个发生;(5)3个事件都不发生;(6)3个事件最多有1个发生;(7)3个事件不都发生.福州大学至诚学院《概率论与数理统计》课外习题_______系 _______专业______班 姓名______学号_______第一章 随机事件及其概率 §1.2概率的直观定义一 选择题1.袋中有8只红球,2只白球, 从中任取2只,颜色相同的概率为( )A .4516 B. 101 C. 4529 D. 102 2.从一副除去两张王牌的52张牌中,任取5张,其中没有A 牌的概率为( )A .5248 B. 548552C C C. 5)1312( D. 554852C二.填空题1. 两封信随机地投入4个邮筒,则第一个邮筒只有一封信的概率为___________2.设箱中有50件一等品,20件二等品及10件三等品,现从中任取3件,试求:(1) 3件都是一等品的概率__________(2) 2件是一等品,1件是二等品的概率__________(3) 一等品,二等品,三等品各有1件的概率__________3. 掷两颗骰子,它们出现的点数之和等于7的概率是__________4. 设箱中装着标有1~36的36个号码球,今从箱中任取7个,求“恰有4个球的号码能被5整除”的概率__________三.计算题1. 设号码锁有6个拨盘,每个拨盘上有从0到9的10个数字,当6个拨盘上的数字组成某一个6位数号码(开锁号码)时,锁才能打开,如果不知道开锁号码,试开一次就能把锁打开的概率是多少?如果要求这6个数字全不相同,这个概率又是多少?2. 从数字1,2,3,4,5,中任取3个,组成没有重复的3位数,试求:(1)这个3位数是5的倍数的概率;(2)这个3位数是偶数的概率;(3)这个3位数大于400的概率.3. 在房间里有10个人,分别佩戴着从1号到10号的纪念章,任意选3人记录其纪念章的号码.(1)求最小的号码为5的概率.(2)求最大的号码为5的概率.4.(会面问题)两人相约于8时至9时之间在某地会面,先到者等候另一个人15分钟后即可离开,求两人能够会面的概率.福州大学至诚学院《概率论与数理统计》课外习题_______系 _______专业______班 姓名______学号_______第一章 随机事件及其概率 §1.3概率的公理化定义一. 选择题1. 设A ,B 为随机事件,φ=AB ,P (A )=0.4,)(B A P ⋃=0.7,则P (B )=( )A .0.3 B. 0.4 C. 0.2 D. 0.12.已知2)(a A P =,2)(b B P =,ab AB P =)(,则)(B A B A P ⋃=( )A .22b a - B. 2)(b a - C. ab 2 D. ab a -23.下列正确的是:( )A .)(A P =1,则A 为必然事件B .)(B P =0,则φ=BC .)(A P ≤)(B P ,则B A ⊂D .B A ⊂则)(A P ≤)(B P二. 填空题1. 当A 与B 互不相容时,P (B A ⋃)= __________2. 若21)(=A P ,31)(=B P 且A B ⊂,则)(B A P ⋃= __________ 3.设C B A ,,是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求C B A ,,至少有一个发生的概率__________三 计算题1.已知P(A)=a,P(B)=b,P(AB)=c,求以下概率:(1)P (AB ); (2) P (A B ); (3)P (A B ); (4)P (A B).2.一学生宿舍有6名学生,问:(1)6个人生日都在星期天的概率是多少?(2)6个人生日都不在星期天的概率是多少?(3)6个人生日不都在星期天的概率是多少?3.设某厂产品的次品率为0.05,每100件产品为一批,在进行产品验收时,在每批中任取一半检验,若发现其中次品数不多于1个,则认为该批产品全部合格,求一批产品被认为合格的概率.4.将3个球随机地放入4个杯子中去,问杯子中球的最大个数分别为1,2,3的概率各为多少福州大学至诚学院《概率论与数理统计》课外习题_______系 _______专业______班 姓名______学号_______第一章 随机事件及其概率 §1.4条件概率与乘法公式一.选择题1. 设随机事件A ,B 互不相容,且4.0)(=A P ,5.0)(=B P ,则)|(B A P =( )A .0 B. 0.4 C. 0.5 D. 0.62.设A ,B 均为非零概率事件,且B A ⊂,则成立( )A .)()()(B P A P B A P +=⋃ B .)()()(B P A P AB P ⋅=C .)()()|(B P A P B A P = D .)()()(B P A P B A P -=- 3.已知0()1,P A <<1212且P[(B +B )|A]=P(B |A)+P(B |A),则下列选项成立的是( )1212121212121122A.P[(B +B )|A]=P(B |A)+P(B |A);B.P(B A+B A)=P(B A)+P(B A);C.P(B +B )=P(B |A)+P(B |A);D.P(A )=P(B )P(A|B )+P(B )P(A|B );4.设P(A)>0,则下列结论正确的是( )A.P (B|A)P(A) ≥P(A)-P(B) ; B .P (B|A)P(A) ≥P(A) +P(B );C .P (B|A)P(A) ≥P(A) -P(B )D ..P (B|A)P(A) ≥P(A)-P(B)二.填空题1.已知)(A P =a ,)(B P =b (1≠b ),)(B A P ⋃=c ,则)(B A P = __________________, )|(B A P = 。

概率统计习题课一

概率统计习题课一

生产的概率? 解:(2)设Ai表示取到第i 个工厂产品,i=1,2,3,B表示取到次品,
由题意得: P(A1)=0.5,P(A2)=P(A3)=0.25
P(B|A1)=0.02,P(B|A2)=0.02,P(B|A3)=0.04 由Bayes公式得:
P( A1 | B)
P( A1 )P(B | A1 )
5
• P(A)=0.4,P(B)=0.3,P(A+B)=0.6, 求P(A-B).
• P(A)=0.7,P(A-B)=0.3,求P(s -AB)
• P(A) =P(B) = P(C) =1/4, P(AB)=0, P(AC)=P(BC)=1/6,求A、B、C都不出现的概率。
• A、B都出现的概率与 A、B 都不出现的概率相等, P(A)=p,求P(B).
(3)有利于事件C的基本事件数为62-2×2=32,P(C)=32/36=8/9
注意①若改为无放回地抽取两次呢? ②若改为一次抽取两个呢?
3
• AB=φ,P(A)=0.6,P(A+B)=0.8,求 B的逆事件 的概率。
解:由P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B) 得:P(B)=P(A+B)-P(A)=0.8-0.6=0.2,
P(B) P( A)P(B | A) P( A)P(B | A)
=(4/10)×(3/9)+(6/10)×(4/9)
= 6/15
12 市场上某种商品由三个厂家同时供获,其供应量为:甲
厂家是乙厂家的2倍,乙.丙两个厂家相等,且各厂产品的次品 率为2%,2%,4%, (1)求市场上该种商品的次品率.
=0.8×0.7×0.4=0.224

概率统计 第一章习题课

概率统计 第一章习题课

14
1.39、某人有两盒火柴,吸烟时 从任一盒中取一根火柴,经过 若干时间以后,发现一盒火柴 已经用完。如果最初两盒中各 有n根火柴,求这时另一盒中还 有r根火柴的概率.
15
第七讲 第一章习题课
1
1.4、电话号码由7个数字组成,每个数字可 以是0,1,2,…,9中的任一个数字(但 第一个数字不能为0),求电话号码是由完 0 全不相同的数字组成的概率。 1.5、把10本书任意地放在书架上,求其中指 定的3本书放在一起的概率。
2
1.6、为了减少比赛场次,把20个球队任意分成两组 (每组10队)进行比赛,求最强的两队被分在不 同组内的概率。 1.8、将3个球随机地投入4个盒子中,求下列事件的 概率: ⑴A——任意3个盒子中各有1个球; ⑵B——任意1个盒子中有3个球; ⑶C——任意1个盒子中有2个球,其它任意1个盒子 中有1个球。
11
1.38、射击运动中,一次射击最 多能得10环。设某运动员在一 次射击中得10环的概率为0.4, 得9环的概率为0.3,得8环的概 率为0.2,求该运动员在五次独 立射击中得到不少于48的概率。
12
1.20、在习题1.7中,求北家分到 的13张牌中: ⑴至少缺一种花色的概率; ⑵四种花色都有的概率。
5
பைடு நூலகம்
1.17、设P(A)>0,P(B)>0,将下列四 个数:P(A),P(AB),P(A∪B),P (A)+P(B),按由小到大的顺序排列, 用符号≤联系它们,并指出在什么情况下可 能有等式成立。 1.21、袋中有a个白球与b个黑球。每次从袋 中任取一个球,取出的球不放回,求第二次 取出的球与第一次取出的球颜色相同的概率。
1.34 1.34、甲乙丙三人向同一飞机射击,设击中 的概率分别是0.4,0.5,0.7。如果只有一 人击中,则飞机击落的概率是0.2;如果有 二人击中,则飞机击落的概率是0.6;如果 有三人都击中,则飞机一定被击落。求飞 机被击落的概率。

概率论与数理统计第一章总习题答案

概率论与数理统计第一章总习题答案

概率论与数理统计课后习题答案第一章总习题1.填空题(1)假设B A ,是两个随机事件,且B A AB ⋅=,则()A B =U ,()=AB ;解:AB A B AB A B =⋅⇔= 即AB 与A B U 互为对立事件,又AB A B ⊂U 所以()(),.AB A B A B AB A B AB Ω==∅==(2)假设B A ,是任意两个事件,则()()()()()P A B A B A B A B ⎡⎤=⎣⎦ .解:()()()()()()P A⎡=⎣()()0P B==.(3).已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。

则事件A 、B 、C 全不发生的概率为解:所求事件的概率即为()P ABC ,又,ABC AB ⊂从而()()00,P ABC P AB ≤≤=则()0P ABC =,所以()()()1P ABC P A B C P A B C ==-()()()()()()()31311.488P A P B P C P AB P AC P BC P ABC =---+++-=-+=2.选择题(1)设8.0)(=A P ,7.0)(=B P ,()8.0=B A P ,则下列结论正确的是().(A )事件A 与事件B 相互独立;(B )事件A 与事件B 互逆; (C )A B ⊃;(D )()()()P A B P A P B =+ .解:因为()56.0)()(==B A P B P AB P ,而56.0)()(=B P A P ,即)()()(B P A P AB P =,所以事件A 与事件B 相互独立,选(A ).(2)设B A ,为两个互逆的事件,且0)(>A P ,0)(>B P ,则下列结论正确的是().(A )()0>A B P ;(B )())(A P B A P =;(C )()0=B A P ;(D ))()()(B P A P AB P =. 解:因为B A ,为两个互逆的事件,所以当事件B 发生时,事件A 是不会发生的,故()0=B A P .选(C ).(3)设1)(0<<A P ,1)(0<<B P ,()()1=+B A P B A P ,则下列结论正确的是().(A )事件A 与事件B 互不相容;(B )事件A 与事件B 互逆; (C )事件A 与事件B 不互相独立;(D )事件A 与事件B 互相独立.解:因为()()()()()()()()()()1111P A B P A B P AB P AB P A B P A B P B P B P B P B⋅+=⇔+=⇔+=-()()()()()()()()()()111111P AB P A B P AB P A P B P AB P B P B P B P B ---+⇔+=⇔+=⇔-- ()()[]()()()()[]()()[]⇔-=+--+-B P B P AB P B P A P B P B P AB P 111)()()(B P A P AB P =,所以事件A 与事件B 互相独立.选(D ).3.从五双不同的鞋子中任取四只,求取得的四只鞋子中至少有两只配成一双的概率. 解:此题考虑逆事件求解比较方便,即取得的四只鞋子中不能配成一双.设A 表示“取得的四只鞋子中至少有两只配成一双”,则()4101212124511)(C C C C C A P A P -=-=2113=.4.(找次品问题)盒中有4只次品晶体管,6只正品晶体管,随机地抽取一只进行测试,直到4只次品晶体管都找到为止,求第4次品晶体管在第五次测试中被发现的概率.解:设i A 表示“第i 次找到次品晶体管”()5,4,3,2,1=i ,则所求概率为:()54321543215432154321A A A A A A A A A A A A A A A A A A A A P ⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅=()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A AP A A A AP A A A P A A P A P ⋅⋅⋅⋅⋅⋅+61768293104617286931046172839610461728394106⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=1052617283941064=⎪⎭⎫⎝⎛⨯⨯⨯⨯=.5.(讨论奖金分配的公平性问题)在一次羽毛球比赛中,设立奖金1000元.比赛规定:谁先胜三盘,谁获得全部奖金.设甲、乙两人的球技相当,现已打了三盘,甲2胜1负.由于特殊原因必须中止比赛.问这1000元应如何分配才算公平?解:应以预期获胜的概率为权重来分配这笔奖金,于是求出甲、乙两人获胜的预期概率即可.比赛采取的应是五局三胜制,比赛已打三盘,甲胜两盘,甲若再胜一盘即可获胜.甲获胜的预期概率为:()()()()43212121544544=⨯+=+=+A P A P A P A A A P .于是,甲应分得1000元奖金中的750100043=⨯元,乙分得250元.6.(彩票问题) 一种福利彩票称为幸福35选7,即从01,02,…,35中不重复地开出7个基本号码和一个特殊号码.中奖规则如下表所示.(1)试求各等奖的中奖概率(1,2,,7);i p i = (2) 试求中奖的概率.解:(1) 因为不重复地选号码是一种不放回抽样,所以样本空间Ω含有735C 个样本点.要中奖应把抽样看成是在三种类型中抽取:第一类号码:7个基本号码; 第二类号码:1个特殊号码; 第三类号码:27个无用号码。

随机事件与概率习题

随机事件与概率习题

(2)恰好有m个空盒的概率;
C C m ( N m N n1 Cn N 1n
)1
(3)某指定的m个盒子中恰好有j 个球的概率.
C C j
n j
m1 j ( N m)1(n 练习: (P49第23题)
甲乙两人轮流掷一颗骰子,甲先掷. 每当某人 掷出1点时,则交给对方掷,否则此人继续掷. 试求第n次由甲掷的概率.
Cn2r 22r C2r
2n
(3)C
={
2r只鞋中至少有两只配对}
1
Cn2r 22r C2r
2n
练习3:(球不可辨的放球问题)(P29第22题)
将n个完全相同的球随机地放入N 个盒子中(每盒
容球数量不限), 试求:
C nk ( N 1)1(nk )
(1)某个指定的盒子中恰好有k 个球的概率C;Nn 1n
练习:一质点从直线上原点开始等可能
地向左、向右两个方向游动,每次游动的 距离为1,求经过n次游动质点位于k的概 率.(k>0)
第一章 习题课
练习1:
从1,2,…,n中有放回地抽取k 个数,求
其中最大数为m的概率.(m≤n) mk (m 1)k
练习2:
nk
从n双不同的鞋子中任取2r只(0<2r<n),
求下列事件的概率:
C C 2 k 2r2k 2r2k n nk
(1)A={ 2r只鞋中恰有k 双配对}
C2r 2n
(2)B ={ 2r只鞋中没有一 双配对}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且 P( A1 A2 An1 ) 0, 则有 P( A1 A2 An ) P( An A1 A2 An1 )
P( An1 A1 A2 An2 ) P( A2 A1 )P( A1 ).
六、 全概率公式和Bayes公式
B3
每一原因Bi发生的概率
B1
B5
P(Bi)已知,其对结果A的
我们介绍了概率定义的几种学派:概率统计
定义、古典定义、几何概率、主观概率,最终 给出了举世公认的概率的公理化定义。
1 P A 0 ; 非负性
三条 公理
2 PS 1; 规范性
3 对 于 两 两 互 斥 事 件 A1 , A2 , , 有
P A1 A2 P A1 P A2

7 15

5 25

29 . 90
(2)
q

P( A1
A2 )

P( A1A2 ) , P( A2 )
由全概率公式得
P( A1A2 )
3 i 1
P(Hi )P( A1 A2
Hi )
1 3
3 i 1
P( A1 A2
Hi ),
又因为
P( A1 A2
H1)

3 10

7 9
第一章 概率论的基本概念 习题课
概率论的基本概念
事件
概率
一、事件
事件间的关系与事件的运算 四种关系
三种运算
包 相互 对 含 等斥 立 关 关关 关 系 系系 系
和积 差 事事 事 件件 件
A B
A
BAB
S
S
S
熟练掌握事件的关系和运算,用简单事件表示复杂事件
AB S
A
B S
A
B S
二、概率
1. 概率的定义:
0.16
P ( B1
A)

P(B1)P( A P( A)
B1 )

3, 4
P ( B2
A)

P(B2 )P( A P( A)
B2 )

1 4
可见, 当收到信号“不清”时, 原发信号为 “ • ”的可能性大
练习6 设有来自三个地区的各10名、15名和25名考 生的报名表,其中女生的报名表分别为3份、7份和
(3)三事件相互独立
设 A, B,C 是三个事件,如果满足等式
P( AB) P( A)P(B),
P(BC ) P(B)P(C ),

P(
AC
)

P(
A)P(C ),
P( ABC ) P( A)P(B)P(C ),
则称事件 A, B,C 相互独立 .
注意
三个事件相互独立
三个事件两两相互独立
共有
C
m n
1
m
!
PA n!Cnm1m!.
(n m)!
(2)排成一圈时,若仍按排成一 列,当首尾都是女孩时就相邻了。
由对称性,可固定一
个起始位置,为便于
计算事件 A,以男孩作
为起始位置,剩下的
n+m-1个人归结为直线

排列的情况
PA

(n

1)!C
m n
m!
.
(m n 1)!
则有
P Bi A P(Bi A).
i1
i1
乘法定理
设 P( A) 0, 则有 P( AB) P(B A)P( A). 设 A, B,C 为事件,且 P( AB) 0, 则有
P( ABC ) P(C AB)P(B A)P( A). 推广 设 A1, A2 , , An 为 n 个事件,n 2,
Hi
)

1 3

7 10

8 15

20 25


61 90
,
所以 q P( A1 A2 ) 2 61 20 . P( A2 ) 9 90 61
七、事件的相互独立性
(1)两事件相互独立 设 A, B 是两事件 , 如果满足等式
P( AB) P( A) P(B). 则称事件 A, B 相互独立,简称 A, B 独立.
13579
2 4 6 8 10
3、许多表面上提法不同的问题实质上属于同一类型:
有n个人,每个人都以相同的概率 1/N (N≥n) 被分在 N 间房的每一间中,求指定的n间房中各有 一人的概率.


3、许多表面上提法不同的问题实质上属于同一类型:
有n个人,设每个人的生日是任一天的概率为 1/365. 求这n (n ≤365)个人的生日互不相同的概率.
10非负性 : P(B A) 0;
20 规范性 : P(S B) 1, P( B) 0;
30 P( A1 A2 B) P( A1 B) P( A2 B) P( A1 A2 B); 40 P( A B) 1 P( A B);
50 可加可列性: 设 B1 , B2 , 是两两不相容的事件,
A、B独立时 P( A B) P( A) P(B) P( A)P(B)
利用概率性质计算概率
1. A、B独立,A、B都不发生的概率为1 9
P( AB ) P(BA ), 则
PA
2
3
2. 若P A B 0.9, P B 0.51, P B A 0.35,
解 设A:从一箱中任取4只检查,结果都是好的. B0, B1, B2分别表示事件每箱含0,1,2
只次品
已知:P(B0)=0.8, P(B1)=0.1, P(B2)=0.1 由Bayes 公式:
练习5:由于随机干扰, 在无线电通讯中发出信号 “ • ”, 收到信号“• ”,“不清”,“ — ” 的 概率分别为0.7, 0.2, 0.1; 发出信号“ — ”, 收到“• ”,“不清”,“— ”的概率分别为0.0, 0.1, 0.9.已知在发出的信号中, “ • ”和“ — ” 出现的概率分别为0.6 和 0.4 , 试分析, 当收到信 号“不清”时, 原发信号为“ • ”还是“ — ”的 概率 哪个大?

7, 30
P( A1 A2
H2
)

7 15

8 14

8, 30
P(
A1 A2
H3
)

5 25

20 24

5 30
.
所以 而
P(
A1
A2
)

1 3
7 30

8 30

5 30

2 9
,
3
P( A2 ) P(Hi )P( A2 Hi ) i 1

1 3
3 i 1
P( A2
四、条件概率
(1) 条件概率的定义
设 A, B 是两个事件,且 P( A) 0,称 P(B A) P( AB) P( A)
为在事件 A 发生的条件下事件B发生的条件概率. 同理可得 P( A B) P( AB) ,
P(B) 为在事件 B 发生的条件下事件 A 发生的条件概率.
(2) 条件概率的性质
n 个事件相互独立
n个事件两两相互独立
重要定理及结论
定理一 设 A, B 是两事件,且 P( A) 0.若 A, B相互独 立,则 P(B A) P(B). 反之亦然.
定理二 若 A, B 是相互独立的两个事件, 则下列各对 事件, A 与 B, A 与 B , A 与 B 也相互独立.
两个结论
性质 4 设 A、B 为两事件 ,且 A B ,则
PA B PA PB 并且 PA PB.
性质 5 对于任一事件 A ,都有 PA 1 .
性质 6 设 A, B 为任意两个事件 ,则
PA B PA PB PAB
PA B C PA PB PC PAB PAC PBC PABC
人 任一天
箱中摸球 随机取数 是常见的几种模型 .
分球入箱 分组分配
练习2 n个男孩,m个女孩(m≤n+1) (1)随机排成一列 (2)围成一圈,
设事件A表示任意两个女孩都不相邻,求P(A)
解:(1) 将n+m个人排列,共有N=(n+m)!种不同排法.
对于事件A,先排男孩,共有n!种方法,插空排女孩,
练习3 n双相异的鞋共2n只,随机地分成n堆,每 堆2只 . 问:“各堆都自成一双鞋”(事件A)的概率是 多少?
解 把2n只鞋分成n堆,每堆2只的分法 总数为
( 2 n )! 2!2! 2!

( 2 n )! 2n

而出现事件A的分法数为n!,故
P( A)

n! (2n)! / 2n

n!2n (2n)!
往年考研题
推广 设 A1 , A2 , , An 是 n 个事件,如果对于任 意 k (1 k n),任意1 i1 i2 ik n , 具 有等式
P( Ai1 Ai2 Aik ) P( Ai1 )P( Ai2 ) P( Aik ),
则称 A1 , A2 , , An 为相互独立的事件.
解: 设原发信号为“ • ” 为事件 B1 原发信号为“ — ”为事件 B2
收到信号“不清” 为事件 A
已知:
P ( B1 ) 0.6, P ( B2 ) 0.4
P ( A B1 ) 0.2, P ( A B2 ) 0.1
P( A) P(B1 )P( A B1 ) P(B2 )P( A B2 )
可列可加性
相关文档
最新文档