计算流体力学(CFD)概论

合集下载

CFD-基-础(流体力学)

CFD-基-础(流体力学)

第1章 CFD 基 础计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。

本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。

1.1 流体力学的基本概念1.1.1 流体的连续介质模型流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。

连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。

连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。

1.1.2 流体的性质1. 惯性惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。

惯性与质量有关,质量越大,惯性就越大。

单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。

对于均质流体,设其体积为V ,质量为m ,则其密度为mVρ= (1-1)对于非均质流体,密度随点而异。

若取包含某点在内的体积V ∆,其中质量m ∆,则该点密度需要用极限方式表示,即0limV mVρ∆→∆=∆ (1-2) 2. 压缩性作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。

压缩性(compressibility)可用体积压缩率k 来量度d /d /d d V V k p p ρρ=-=(1-3) 式中:p 为外部压强。

计算流体力学CFD课件

计算流体力学CFD课件

V
dV
0
空间位置固定的无穷小微团模型 V 0 t
随流体运动的无穷小微团模型
方程不同形式之间的转换
空间位置固定的有限控制体模型 tV dVSVdS0
空间位置固定的无穷小微团模型 V 0 t
方程不同形式之间的转换
空间位置固定的无穷小微团模型 V 0 t
随流体运动的无穷小微团模型
流动控制方程经常用物质导数来表达。
物质导数(运动流体微团的时间变化率)
采用流体微团模型来理解物质导数的概念:
沿流线运动的无穷小 流体微团,其速度等 于流线上每一点的当
物质导数(运动流体微团的时间变化率)
流体微团在流场中的运动-物质导数的示意图
物质导数(运动流体微团的时间变化率)
考虑非定常流动:
随流体运动的无穷小微团模型
动量方程
作用在流体微团上的体 积力的X方向分量=
fxdxdydz
随流体运动的无穷小微团模型
动量方程
作用在流体微 团上的X方向的 压力=
动量方程
作用在流体微 团上的X方向的 正应力=
动量方程
作用在流体微 团上的X方向的 切应力=
动量方程
作用在流体微 团上的X方向总 的表面力=
t

txuyv zw0
空间位置固定的无穷 小微团模型
空间位置固定的无穷小微团模型
连续性方程:
txuyv zw0

V0
t
空间位置固定的无穷 小微团模型
随流体运动的无穷小微团模型
随流体运动的无穷小微团模型
连续性方程 流体微团的质量:
质量守恒定律
随流体运动的无穷小 微团模型
随流体运动的无穷小微团模型
流体微团在流场中的 运动-物质导数的示 意图

机电一体化系统设计第三章计算流体力学(CFD)简介

机电一体化系统设计第三章计算流体力学(CFD)简介

4
数值求解
基于离散和数值方法求解Navier-Stokes方程组。
5
后处理
分析和可视化模拟结果,评估流体行为和性能。
CFD工具的选择和使用
商业软件
流行的商业CFD软件包,如ANSYS Fluent和OpenFOAM。
开源软件
开放源代码的CFD软件,如SU2和OpenFOAM。
使用技巧
合理选择工具,灵活使用模拟参数和求解方法,优化模型和网格。
机电一体化系统设计第三 章计算流体力学(CFD)简 介
本章介绍机电一体化系统设计第三章,包括计算流体力学的定义、应用范围、 模拟步骤、工具选择和使用、分析的意义和价值,以及CFD的未来发展趋势。
计算流体力学的定义
计算流体力学(CFD)是一种利用数值方法进行流体动力学问题求解的数值 模拟技术。它可以模拟流体的流动行为和相应的物理现象。
CFD的应用范围
CFD广泛应用于工程领域,如航空航天、汽车、能源、建筑等。它可以用于 流体流动分析、热传递和传质分析、气动性能仿真等方面。
CFD模拟的步骤
1
几何建模
使用CAD软件创建物体的几何模型。
2
网格划分
将几何模型划分为小的有限体积或有限元网。
3
物理建模
定义边界条件和流体参数,如速度、压力和温度。
CFD分析的意义和价值
1 性能评估
通过模拟和分析,可以评估设计的性能并提出改进意见。
2 节省成本
CFD分析可以在实际制造前模拟和优化设计,以降低产品开发和测试的成本。
3 提高效率
通过CFD优化流体系统,可以提高流体传输效率和能源利用效率。
CFD的未来发展趋势
CFD在大数据、人工智能和高性能计算的支持下,将在精度、效率和应用范 围上都取得更大突破。同时,深度学习和自动化技术将进一步改进CFD模拟 和预测的准确性。

CFD

CFD

2014-7-27
9
•第二,工业应用阶段(1975~1984年)
随着数值预测、原理、方法的不断完善,关键的问题是如何得到工业界的 认可,如何在工业设计中得到应用,因此,该阶段的主要研究内容是探讨 CFD在解决实际工程问题中的可行性、可靠性及工业化推广应用。 同时,CFD技术开始向各种以流动为基础的工程问题方向发展,如气固、 液固多相流、非牛顿流、化学反应流、煤粉燃烧等。但是,这些研究都需要 建立在具有非常专业的研究队伍的基础上,软件没有互换性,自己开发,自 己使用,新使用的人通常需要花相当大的精力去阅读前人开发的程序,理解 程序设计意图,改进和使用。1977年,Spalding等开发的用于预测二维边界 层内的迁移现象的GENMIX程序公开,其后,他们首先意识到公开计算源程序 很难保护自己的知识产权,因此,在1981年,组建的CHAM公司将包装后的 计算软件(PHONNICS-凤凰)正式投放市场,开创了 CFD商业软件的先河, 但是,在当时,该软件使用起来比较困难,软件的推广并没有达到预期的效 果。我国80年代初期,随着与国外交流的发展,科学院、部分高校开始兴起 CFD的研究热潮。
2014-7-27
11
四、CFD的基本原理
任何流体运动的规律都是以质量守恒定律、动量守恒定律和能量守恒定 律为基础的。这些基本定律可由数学方程组来描述,计算流体力学可以看 做是在流动基本方程,控制对流体的数值仿真模拟。
通过这些数值模拟,我们可以得到极其复杂问题的流场内各个位置上的 基本物理量(如速度、压力、温度、浓度等)的分布,以及这些量随时间 变化的情况,确定是否产生涡流,涡流分布特性及脱流区域等。 计算流体力学以理论流体力学和计算数学为基础,是这两门学科的交叉 学科。主要研究把描述流体运动的连续介质数学模型离散成大型代数方程, 建立可在计算机上求解的算法。 CFD 包括对各种类型的流体(气体、液体及特殊情况下的固体),在 各种速度范围内的复杂流动在计算机上进行数值模拟的计算。它涉及用计 算机寻求流动问题的解和流体动力学研究中计算机的应用两方面问题。计 算机科学及超级计算机的发展为CFD技术的发展提供了舞台。

机电一体化系统设计第三章 计算流体力学(CFD)简介

机电一体化系统设计第三章 计算流体力学(CFD)简介


求解器设置


动量 能量
状态方程 所支持的计算模型
紊流 燃烧 辐射 多相流 相转换 动区域 动网格

后处理

选择材料 边界条件 初始条件
FLUENT-通用CFD软件
Fluent基本步骤
问题的鉴定及预处理
定义你所需要的模型 确定即将模拟的区域 设计并创建网格
求解
建立数学模型 计算并监控
t(s)
Ma=0.8的均匀场内静止点声源的声辐射,观察 者位置(100m,0m,0m)
FLUENT-通用CFD软件
矢量图:直接给出二维或三维空间里矢量(如 速度)的方向及大小,一般用不同颜色和长度 的箭头表示速度矢量。矢量图能形象地显示流 动特征
某离心叶轮近轮盖处的速度分布
FLUENT-通用CFD软件
CFD算例
开度100%
压力分布
开度50%
开度10%
CFD算例
Frame 001 13 Dec 2004
压力分布
开度100%
Frame 001 10 Dec 2004
130
120
Volume Flow Rate(m3/h)
110
100
90 85
controlvalve 100%open
Frame 001 22 Feb 2005 title
Y
CFD算例
10.418 9.72344 9.02891 8.33438 7.63984 6.94531 6.25078 5.55625 4.86172 4.16719 3.47266 2.77813 2.08359 1.38906 0.694531
dxdydz v ndA 0 t V A

第13章 计算流体力学CFD(3)PPT课件

第13章 计算流体力学CFD(3)PPT课件
96
误差与稳定性分析
根据von Neumann(冯诺伊曼)稳定性分析方法,设 误差随空间和时间符合如下Fourier级数分布: 则
97
误差与稳定性分析
稳定性要求
故放大因子
G eat 1
98
误差与稳定性分析
下面采用von Neumann(冯诺伊曼)稳定性分析方法 分析如下差分方程的稳定性:
由于误差也满足差分方程,故有
90
误差与稳定性分析
A=偏微分方程的精确解(解析解)
D=差分方程的精确解 离散误差=A-D
91
误差与稳定性分析
D=差分方程的精确解 N=在某个有限精度的计算机上实际计算出来的解
(数值解) 舍入误差==N-D
N=D+
92
误差与稳定性分析
数值解N=精确解D+误差 数值解N满足差分方程,于是有
93
误差与稳定性分析
在网格点3: 在网格点4: 在网格点5:
A,B,Ki 均为已知量
78
隐式方法
在网格点6:
A,B,Ki 均为已知量
T7 为边界条件,已知量
79
隐式方法
于是有关于T2,T3,T4,T5, T6这五个未知数的五个方程
A,B,Ki 均为已知量
80
隐式方法
写成矩阵形式:
81
隐式方法
系数矩阵是一个三对角矩阵,仅在三条对角线上有非 零元素。 求解线性代数方程组的标准方法是高斯消去法。应用 于三对角方程组,通常采用托马斯算法(国内称为追 赶法)求解。
113
22
有限差分基础
对Y方向的二阶导数有:
二阶中心差分(关于Y方向二阶导数)
23
有限差分基础

计算流体动力学概述

计算流体动力学概述

计算流体动力学概述1 什么是计算流体动力学计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。

CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。

通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。

还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。

此外,与CAD联合,还可进行结构优化设计等。

CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的“三维”流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。

但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。

对于非线性情况,只有少数流动才能给出解析结果。

实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。

然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。

此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。

而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。

就好像在计算机上做一次物理实验。

例如,机翼的绕流,通过计算并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。

工程流体力学的计算方法CFD基础课件

工程流体力学的计算方法CFD基础课件
详细描述
云计算技术使得大规模CFD模拟成为 可能,同时提供了灵活的计算资源和 数据管理方式。未来,云计算技术将 进一步优化,以降低计算成本和提高 计算效率。
THANKS
CFX
工业标准的CFD软件
CFX是全球公认的工业标准的CFD软件之一,广泛应用于能源、化工、航空航天、汽车等领域。它具 有强大的求解器和先进的物理模型,能够模拟复杂的流体流动和传热问题,并提供丰富的后处理功能 。
OpenFOAM
开源CFD软件
OpenFOAM是一款开源的CFD软件,由C编写,具有高度的灵活性和可定制性。它提供了丰富的工具包和案例库,适用于各 种流体动力学模拟,包括复杂流动、传热、化学反应等问题。
粘性。
热传导
流体在温度梯度作用下会产生 热传导现象。
流体动力学基本方程
质量守恒方程
表示流体质量随时间的变化规律 。
动量守恒方程
表示流体动量随时间的变化规律。
能量守恒方程
表示流体能量随时间的变化规律。
流体流动的分类
层流流动
均匀流动和非均匀流动
流体质点仅沿流线方向作有规则的线 运动,互不混杂。
根据流动是否具有空间均匀性进行分 类。
06
CFD未来发展与挑战
高精度算法与求解器
总结词
随着计算能力的不断提升,高精度算法和求解器在 CFD领域的应用将更加广泛。
详细描述
高精度算法和求解器能够提供更精确的流场模拟结果 ,有助于更深入地理解流体动力学现象。未来,高精 度算法和求解器将进一步优化,以适应更复杂、更高 要求的CFD模拟。
多物理场耦合模拟
有限体积法的优点在于能够很好地处 理流体流动中的非线性特性和复杂边 界条件,因此在工程流体力学中得到 了广泛应用。

流体力学的数值模拟计算流体力学(CFD)的基础和局限性

流体力学的数值模拟计算流体力学(CFD)的基础和局限性

流体力学的数值模拟计算流体力学(CFD)的基础和局限性流体力学(Fluid Mechanics)是研究流体(包括气体和液体)运动和力学性质的学科。

数值模拟计算流体力学(Computational Fluid Dynamics,简称CFD)是利用计算机和数值计算方法对流体力学问题进行模拟和求解的一种方法。

CFD已经成为研究流体力学问题、设计和优化工程流体系统的重要工具。

本文将探讨CFD的基础原理和其在实践中的局限性。

一、CFD的基础原理1. 连续性方程和Navier-Stokes方程CFD的基础原理建立在连续性方程和Navier-Stokes方程的基础上。

连续性方程描述了流体的质量守恒,即流入和流出某一区域的质量流量必须相等。

Navier-Stokes方程则描述了流体的运动和力学性质。

它包含了质量守恒、动量守恒和能量守恒三个方程。

2. 网格划分在进行CFD计算之前,需要将流体区域划分为离散的小单元,即网格。

网格的形状和大小对数值模拟的精度和计算量有着重要的影响。

常见的网格划分方法包括结构化网格和非结构化网格。

3. 控制方程的离散化将连续性方程和Navier-Stokes方程进行离散化处理,将其转化为代数方程组,是CFD模拟的关键步骤。

常用的离散化方法包括有限差分法、有限元法和有限体积法等。

4. 数值求解方法求解离散化后的方程组是CFD计算的核心内容。

数值求解方法可以分为显式方法和隐式方法。

显式方法将未知变量推导到当前时间级,然后通过已知的变量进行计算,计算速度快但对时间步长有限制;隐式方法则将未知变量推导到下一个时间级,需要迭代求解,计算速度较慢但更稳定。

二、CFD的局限性1. 网格依赖性CFD模拟的结果在很大程度上受到网格划分的影响。

过大或过小的网格单元都会导致计算结果的不准确性。

此外,网格的形状对流场的模拟结果也有很大的影响。

如果网格不够细致,细小的涡旋等流动细节可能无法被捕捉到。

2. 数值扩散和耗散数值模拟中的离散化和近似计算会引入数值扩散和耗散。

cfd计算流体力学

cfd计算流体力学

cfd计算流体力学CFD计算流体力学————————计算流体力学(Computational Fluid Dynamics,CFD)是一门研究和分析流体运动特性的计算方法。

它利用数学模型和计算机技术来模拟流体运动的物理过程,以获取流体运动的温度、压力、流速和其他变量的解决方案。

CFD技术在航空、航天、电力、水处理、食品加工、冶金、石油化工、医学、化学和机械制造等领域有广泛应用。

## 什么是CFDCFD是一个复杂的计算技术,它可以帮助我们理解流体运动的物理原理,以及它们在一定环境中的行为。

它是通过建立数学模型,利用计算机技术,根据流体的物理运动原理,对其运动过程进行模拟,以获得其运动特性及其影响的变量。

## CFD的工作原理CFD的工作原理是利用数学方法和计算机技术,对流体在某一特定时间内的行为进行数学模拟。

CFD根据流体的物理运动原理,建立数学模型,通过计算机程序对其运动过程进行模拟,以获得其运动特性及其影响的变量。

CFD的工作方式一般分为三个步骤:1. 首先,需要对流体流动的物理场进行划分,将其分成一些小部分,即将流体场分割成一些小的方格子,称为“单元格”。

2. 然后,根据流体物理学原理,建立数学模型,对各个单元格的变量进行计算,得出不同时间步骤的变量数值。

3. 最后,将各个单元格的变量数值合成一个整体,并通过图形可视化来显示出来,从而得出整个流体场的行为特征。

## CFD的应用CFD在航空、航天、电力、水处理、食品加工、冶金、石油化工、医学、化学和机械制造等领域有广泛应用。

例如:- 航空航天领域:可以用CFD来预测飞行器的性能,如飞行速度、飞行高度、飞行载荷等;- 电力领域:可以用CFD来优化发电厂的效率;- 水处理领域:可以用CFD来优化水处理厂的设计布局;- 食品加工领域:可以用CFD来优化食品加工厂的流程设计和布局;- 冶金领域:可以用CFD来优化冶金厂的冶炼工艺;- 其他工业领域也有广泛应用。

计算流体力学课件-part1

计算流体力学课件-part1
➢模型方程:具有原控制方程的基本特征,但是往往可以 得到精确解,依次来揭示原控制方程的一些数学特征
2024/2/28
19
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的概念
➢完整方程
连续方程
动量方程
能量方程
2024/2/28
20
❖Computational Fluid Dynamics
沿特征线,扰动波的幅值不变,传播速度为c
则在t>0时,传播过程如下图:
2024/2/28
27
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征
➢单波方程
➢c>0时,传播沿x正向 ➢C<0时,传播沿x负向 ❖扰动波以有限速度传播是双曲型方程的重要 特征(波形和波幅可能会变化,此处为什么不 变?)
如何表达初始形状三角形
如何存储数据 如何积分
数值积分,HOW?
如何显示结果
TECPLOT
尝试改变几个常数,看看结果有何变化,常数反映了什么?
2024/2/28
22Biblioteka ❖Computational Fluid Dynamics
回顾
控制方程
模型方程
➢NS ➢EULER ➢Impressible NS ➢RANS
➢单波方程可以模拟EULER方程的一些特征
2024/2/28
28
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征

计算流体力学课件概述

计算流体力学课件概述

2018/12/24
13
能源工业:图a是CFD模拟的500 [Mwe]电站煤粉锅炉炉内
燃烧。结果显示了在燃烧器喷流交叉形成的高温、高氧区, NOX生成速率大。
图b显示的是管壳换热器的流线及温度分布。同时考虑管外 流体、管内流体、以及管壁部分的耦合传热。
图c是模拟燃料电池中氧浓度的分布。用户开发了专门的电 化学反应模型,通过催化层的电化学反应速率模拟当地的电 流密度。
2018/12/24 8
CFD拥有包括流体流动、传热、辐射、多相流 、化学反应、燃烧等问题丰富的通用物理模 型;还拥有诸如气蚀、凝固、沸腾、多孔介 质、相间传质、非牛顿流、喷雾干燥、动静 干涉、真实气体等大批复杂
现象的实用模型。
2018/12/24
9
航空航天:图a为模拟美国F22战斗机的结果,图中 显示的是对称面上的马赫数分布。计算共采用了 260万个网格单元。模拟的升力、阻力及力矩系数 都与实验值吻合的很好。 图b是某飞机多段翼周围的压力分布 图c是美国J-31型涡轮喷气发动机的整机模拟。包 括进气道、压缩机、燃烧室、尾喷管四个部分。
图c 模拟出添加剂的浓度分布。改变添加剂的投放位置,用 CFD模拟来优化添加剂浓度分布,以达到最好的防腐效果
2018/12/24
15
冶金工业:图a 模拟的钢水铸造过程,图中显示的是铸造
模具内的流线及表面温度分布 图b是模拟连续加热炉,该炉采用直接加热方式,从图中温度 分布可以看出,钢带有一角的温度过高,这会影响钢产品的 质量。 图c是模拟优化铸造炉内烧嘴的类型和位置。很好地模拟出了 融池内因浮力驱动产生的二次流现象,及诸如回流区、涡、 表面波的发展、温度分布的不均匀性等设计缺陷。
2018/12/24
10

第13章_计算流体力学CFD(5)总结

第13章_计算流体力学CFD(5)总结

空间推进
定常守恒型二维欧拉方程:
对于亚声速流动,上述 方程是椭圆型的,所有 空间推进方法都不适用, MacCormack方法也不 适用。
空间推进
定常守恒型二维欧拉方程:
对于超声速流动,上述方 程是双曲型的,空间推进 方法适用,MacCormack 方法也适用。
空间推进
定常守恒型二维欧拉方程:
MacCormack方法:
偏微分方程(修正方程):
修正方程等号右端的项是截断误差,如果截断误差的主项 是偶数阶导数,数值解将主要表现出耗散行为;如果主项 是奇数阶导数,数值解将主要表现出色散行为。
数值耗散、色散及人工粘性
偏微分方程(修正方程):
等号右端的偶数阶导数项起数值耗散的作用,奇数阶导数 项起数值色散的作用。
数值耗散、色散及人工粘性
速度修正量
可以从
得到。
压力修正法的基本原理
压力修正法本质上是一种迭代法,思路如下:
4) 用步骤3)中修正后的压力做为新的p*,回到步 骤2)。重复这个过程,直到速度场满足连续性方程 为止。
这样就得到修正好了的流场。

6.7.4 压力修正公式
压力修正公式
压力修正公式为:
压力修正公式
压力修正公式为:
SIMPLE算法的步 骤如下: 1)在右图所示的交 错网格上分别给出
p
* n
,
u
* n
,
v
* n
数值方法:SIMPLE方法
SIMPLE算法的步 骤如下: 2)求出 u
* n 1

,
v
* n 1
采用动量方程求解。
数值方法:SIMPLE方法
2)
u

计算流体力学简介

计算流体力学简介

计算流体力学简介计算流体力学(Computational Fluid Dynamics,简称CFD)是现代科技中的一个重要领域,它利用计算机仿真和计算等技术,对流体力学问题进行数值求解,以达到预测和优化流体现象的目的。

本文将简要介绍CFD的发展过程、应用范围、数值模拟方法等方面。

一、CFD的发展CFD的发展源于20世纪50年代,当时的计算机技术还非常有限,CFD的应用范围很窄。

到了20世纪70年代,随着计算机的高速发展和应用,CFD得以迅速发展,越来越多地应用于航空航天、能源、环境等领域。

随着CFD标准化和工具的发展,越来越多的人开始使用CFD来预测流体现象,优化产品设计。

二、CFD的应用范围CFD的应用涉及到许多领域。

在航空航天领域中,CFD 可以用来预测飞机的空气动力学特性、燃烧炉的热力学特性、火箭发动机的燃烧过程等。

在汽车工业中,CFD可以用来模拟车辆的气动特性,优化车身结构和排放系统的设计,提高燃油经济性。

在能源领域中,CFD可以用来模拟煤热电联产的燃烧过程,预测钻井液在油井中的流动和携带油气的能力等。

在环境领域中,CFD可以用来预测气象和大气污染的传播,优化建筑物的设计和施工等。

三、CFD的基本数值模拟方法CFD的数值模拟方法可以分为欧拉法和纳维-斯托克斯NS (Navier-Stokes)方程法两种。

欧拉法是通过施加边界条件和初始条件来解决流体力学问题的,简单、快速,但只适用于高速简单流动。

NS方程法是采用角动量守恒定律、质量守恒定律和动量守恒定律来分析复杂流体流动问题,更准确地预测流体动力学特性,但需要更高的计算能力和更长的计算时间。

四、CFD的软件CFD的数值求解需要大量的计算能力和高度优化的计算机软件。

目前市场上较为常用的CFD软件有Fluent、OpenFOAM、StaMINA等,这些软件通过预测流体动力学特性,优化流体现象,提高产品质量和效率。

五、CFD的应用前景CFD的应用前景十分广阔,尤其随着计算机技术的不断发展,CFD预测和优化流体现象的能力将逐渐提高。

CFDcourse计算流体力学概述

CFDcourse计算流体力学概述

1 计算流体力学概述计算流体力学(Computational Fluid Dynamics,简称CFD)是以数值离散方法为数学基础,借助于计算机求解描述流体运动的基本方程,研究流体运动规律的学科。

CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。

CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。

通过这种数值模拟,可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。

还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。

此外,与CAD联合,还可进行结构优化设计等。

CFD可用来进行流体动力学的基础研究,复杂流动结构的工程设计,分析实验结果等。

CFD的特点:给出流体运动区域内的离散解,而不是解析解。

它的发展与计算机技术的发展直接相关。

若物理问题的数学提法(包括数学方程及其相应的边界条件)是正确的,则可在较广法的流动参数(如马赫数、雷诺数、飞行高度、气体性质、模型尺度等)范围内研究流体力学问题,且能给出流场参数的定量结果。

计算流体力学的技术原理任何流体运动的规律都是由以下3个定律为基础的:质量守恒定律,动量守恒定律和能量守恒定律。

这些基本定律可由数学方程组来描述。

如欧拉(Euler)方程,N-S方程。

首先确定了这些能够描述对象流动参量连续变化的微分方程组后,然后采用数值计算方法,通过离散化方法(如有限差分法或有限元法)对连续变化的参量用离散空间和时间的值来表示,使微分方程组转变成代数方程组形式,空间的离散位置可用计算网格上的节点描述,最后这些离散数学方程组通过计算机求解,来研究流体运动特性,给出流体运动空间定常或非定常流动规律,这样的学科就是计算流体力学。

计算流体动力学(CFD)简介

计算流体动力学(CFD)简介

图3-2 各软件之间的关系图
2.3.1 Fluent软件包的安装
Fluent的安装顺序如下: (1) 安装Exceed。推荐安装Exceed6.2版本。 (2) 安装Gambit。单击Gambit的安装,按照提示就可以完成安装,推 荐安装Gambit2.2.30。 (3) 安装Fluent。单击Fluent安装文件,按照提示就可以完成安装, 推 荐安装Fluent6.2..016。 一般来说,Fluent和Gambit的安装推荐使用默认安装设置。当按照以 上的安装步骤安装完毕以后,还要对Fluent和Gambit的环境变量进行设置 。
图3-6 矩形截面管道示意图
图3-7 流体计算区域示意图
2.4.2 实例分析
当利用Fluent解决某一工程问题时,要详细考虑以下几个问题: (1) 确定计算目标; (2) 选择计算模型; (3) 确定物理模型; (4) 确定解的程序。
2.4.3 实例操作步骤
1. 利用Gambit建立计算区域和指定边界条件类型 步骤1:文件的创建及其求解器的选择 (1) 启动Gambit软件 Gambit设置好环境变量以后,可以选择“开始”→“运行”打开如 图3-8所示的对话框,单击“确定”按钮。接着又会弹出如图3-9所示的 对话框,单击Run按钮可以启动Gambit软件,它的窗口布局如图3-10所 示。
根据控制方程离散方式,分为 有限差分法(FDM) 有限元法(FEM) 有限分析法(FAM) 有限体积法或者控制体积法(FVM或CVM)。 有限体积法导出的离散方程可以保证守恒特性, 而且离散方程的系数物理意义明确,是目前计算 流体力学中应用最广的一种方法。
优势 1.可得流动问题满足工程需要的数值解 2.可利用计算机进行各种数值试验 局限性 1.是一种离散近似算法 2.需充分了解所求解问题 3.程序编制、正确使用等要求较高

计算流体力学

计算流体力学

第一部分 计算流体力学(CFD)的基本思想一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。

事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。

但遗憾的是,常见的流动控制方程如纳维-斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。

实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。

因此,采用CFD 方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维-斯托克斯方程或欧拉方程)的数值求解,而CFD 软件本质上就是一些求解流动控制方程的计算机程序。

二、计算流体力学的控制方程计算流体力学的控制方程就是流体流动的质量、动量和能量守恒方程。

守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。

通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。

式(1)-(3)是未经任何简化的流动守恒微分方程,即纳维-斯托克斯方程(N-S 方程)。

0)(=⋅∇+∂∂V tv ρρ (1) x zx xy xx f zy x x p V u t u ρτττρρ+∂∂+∂∂+∂∂+∂∂−=⋅∇+∂∂)()(v (2a) y yz yy xy f zy x y p V v t v ρτττρρ+∂∂+∂∂+∂∂+∂∂−=⋅∇+∂∂)()(v (2b) z zz yz xz f zy x z p V w t w ρτττρρ+∂∂+∂∂+∂∂+∂∂−=⋅∇+∂∂)()(v (2c) V f w zw yw x v z v y v x u z u y u x z wp y vp x up zT k z y T k y x T k x q V E t E zz yz xz zy yy xy zx yx xx v v &v ⋅+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂−∂∂−∂∂−∂∂∂∂+∂∂∂∂+∂∂∂∂+=⋅∇+∂∂ρτττττττττρρρ)()()()()()()()()()()()()()()()()( (3) N-S 方程可以表示成许多不同形式,上面的N-S 方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S 方程求解的变量ρ、u ρ、v ρ、w ρ、E ρ是守恒型的,是质量、动量和能量的守恒变量。

CFD计算流体力学

CFD计算流体力学

CFD计算流体力学或计算流体动力学,英文Computational Fluid Dynamics,简称CFD,是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。

计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域,板翅式换热器设计是CFD 技术应用的重要领域之一。

商业软件自从1981 年英国CHAM 公司首先推出求解流动与传热问题的商业软件PHOENICS以来,迅速在国际软件产业中形成了通称为CFD 软件的产业市场。

到今天,全世界至少已有50余种这样的流动与传热问题的商业软件,在促进CFD技术应用于工业实际中起了很大的作用。

下面介绍当今世界上应用较广的CFD商业软件。

(1) CFX该软件采用有限容积法、拼片式块结构化网络,在非正交曲线坐标(适体坐标) 系上进行离散,变量的布置采用同位网格方式。

对流项的离散格式包括一阶迎风、混合格式、QUICK、CONDIF、MUSCI及高阶迎风格式。

压力与速度的耦合关系采用SIMPLE系列算法(SIMPLEC),代数方程求解的方法中包括线迭代、代数多重网络、ICCG、STONE 强隐方法及块隐式(BIM)。

软件可计算不可压缩及可压缩流动、耦合传热问题、多相流、化学反应、气体燃烧等问题。

(2) FIDAP这是英语Fluid Dynamics Analysis Package 的缩写,系于1983年由美国Fluid Dynamics International Inc. 推出,是世界上第一个使用有限元法(FEM) 的CFD软件。

可以接受如I-DEAS、PATRAN、ANSYS和ICEMCFD 等著名生成网格的软件所产生的网格。

该软件可以计算可压缩及不可压缩流、层流与湍流、单相与两相流、牛顿流体及非牛顿流体的流动问题。

计算流体力学CFD(非常好)

计算流体力学CFD(非常好)

气体动力学1.理想气体运动的基本方程组理想气体:无粘性、无导热性雷诺数:度量粘性效应的相对大小的量纲一的数R e=ρVLμ=惯性力粘性力●要确定理想气体的流场,一般需要知道六个参数:速度V的三个分量,压力p,密度ρ和温度T。

因此理想气体动力学要建立六个独立的基本方程,连同初边值条件,以构成定解问题。

●基本方程所依据的是三个方面的物理定律,即运动学方面的质量守恒定律,动力学方面的牛顿定律和热力学方面的第一、第二定律以及气体热状态方程。

●建立基本方程时首先面临着这么一个问题:怎样选取流体物质形态的模型作为研究对象。

有两种流体模型可供选择。

一种是随体观点的模型,它认定某个有确定质量的流体团,称为封闭系统,其特点是:(1) 系统的体积τ(t)和界面积σ(t)随流体运动而随时变化;(2) 在系统的界面上,只有能量交换,没有质量交换。

一种是当地观点的模型,它在流体空间认定一个固定的控制面所包围的区域,称为开口系统,其特点是:(1) 系统的体积τ和界面积σ是固定不变的;(2) 在系统的界面上,既有能量交换,也有质量交换。

对于上述两种流体模型,即封闭系统和开口系统,还有两种数学表达形式。

一种是选取有限质量(体积)的系统,写成积分形式的基本方程。

另一种是选取微元质量(体积)的系统,写成微分形式的基本方程。

微分形式的方程适用于连续流程,便于探讨流场各处的参数分布规律。

积分形式的方程便于从总体上研究问题,而且可以用来求解系统中有间断面存在的情况。

综上所述,理想气体运动的基本方程组的要点可归为:六个方程、三个方面、两种观点、两种形式。

1.1 连续性方程质量守恒方程(当地观点、微分形式)微元体的质量平衡式:微元体内质量的增加率=进入微元体的质量净流率微元体内质量的增加率:ððt (ρδxδyδz)=ðρðtδxδyδz进入微元体的质量流率的净变化率:通过微元体每一个表面的质量流率等于密度、速度分量和面积的乘积。

CFD 基 础(流体力学)分析

CFD 基 础(流体力学)分析

第1章 CFD 基 础计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。

本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。

1.1 流体力学的基本概念1.1.1 流体的连续介质模型流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。

连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。

1.1.2 流体的性质1. 惯性惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。

惯性与质量有关,质量越大,惯性就越大。

单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。

对于均质流体,设其体积为V ,质量为m ,则其密度为m Vρ= (1-1) 对于非均质流体,密度随点而异。

若取包含某点在内的体积V ∆,其中质量m ∆,则该点密度需要用极限方式表示,即0lim V m Vρ∆→∆=∆ (1-2) 2. 压缩性作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。

压缩性(compressibility)可用体积压缩率k 来量度d /d /d d V V k p pρρ=-= (1-3) 式中:p 为外部压强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. INTRODUCTION
What is CFD?
Computational fluid dynamics (CFD):
CFD is the analysis, by means of computer-based simulations, of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions.
Smooth wall
20D
An example (cont.)
Development of the mathematical model (cont.)
Turbulence model
Initially, a standard 2-eq k-ε turbulence model is chosen for use. Later, to improve simulation of the transition, separation & stagnation region,
Development of the physical model
After a few meetings with the company, we have finally agreed on a specification of the problem (It defines the physical model of the problem to be solved):
• Tidal current: 10 to 20m/s • Waves (unsteady): -5m/s to +5m/s
Depth of sea: 500m ~ 1000m
• Diameters: 150~200mm • Gap above sea bed: 10mm
An example (cont.)
Mesh generation Discretization of the governing equations Solution of discretized equations Post processing Interpretation of the results
An example
Development of the mathematical model
Governing equations
Equations: momentum, thermal (x), multiphase (x), … Phase 1: 2D, steady; Phase 2: unsteady, …, The flow is turbulent!
we would like to consider using a RNG or a low-Re model
Mesh generation
Finer mesh near the wall but not too close to wall Finer mesh behind the pipe
Numerical methods Finite difference discretization Finite volume discretization Solution of linear equation systems Solution of the N-S equations
Initiation of the problem
DP Offshore Ltd is keen to know what (forces ) caused the damage they recently experienced with their offshore pipelines.
Why CFD?
Continuity and Navier-Stokes equations for
incompressible fluids:
∂u + ∂v + ∂w = 0 ∂x ∂y ∂z
ρ⎛⎜

∂u ∂t
+
u
∂u ∂x
+
v
∂u ∂y
+
w
∂u ∂z
⎞ ⎟ ⎠
=

∂P ∂x
+
ρgx
+

μ⎜
Objectives
The course aims to convey the following information/ message to the students:
What is CFD
The main issues involved in CFD, including those of
=
U
0
⎜⎛ ⎝
y R
⎟⎞1 / n ⎠
Or u + = 2.5 ln y + + 5.5
Important conclusion: There is no analytical solution even for a very simple application, such as, a turbulent flow in a pipe.
An example (cont.)
Discretization of the equations
Start with 1st order upwind, for easy convergence Consider to use QUICK for velocities, later. There is no reason for not using the default SIMPLER for pressure.
Properties of numerical solution methods (consistency, stability, convergence, etc)
4. Finite difference methods 5. Finite volume methods 6. Solution of linear equation systems 7. Methods for unsteady problems 8. Solution of the N-S equations
Outline of the course
1. Introduction
What is CFD What can & cannot CFD do What does CFD involve … CFD applications
2. Governing equations and classification of fluid flows
Boundary conditions
Decide the computational domain Specify bounБайду номын сангаасary conditions
Inlet: Flat inlet profiles V=25m/s Turbulence=5%
10D
Symmetry Flow
10D Outlet: fully developed zero gradient
=

∂P ∂z
+
ρgz
+

μ⎜

∂ 2w ∂x 2
+
∂ 2w ∂y 2
+

2
w
⎞ ⎟
∂z2 ⎠
Why CFD? (cont.)
Flow in a pipe
• For laminar flow:
U
=
U
0
⎡ ⎢1 ⎢⎣

⎜⎛ ⎝
r R
⎟⎞2
⎤ ⎥
⎠ ⎥⎦
• For turbulent flow:
? U

∂ 2u ∂x2
+
∂ 2u ∂y2
+

2u
⎞ ⎟
∂z2 ⎠

ρ⎝⎜
∂v ∂t
+u
∂v ∂x
+v
∂v ∂y
+
w
∂v ∂z
⎞ ⎟ ⎠
=

∂P ∂y
+
ρg y
+
μ
⎛ ⎝⎜⎜
∂ 2v ∂x 2
+
∂ 2v ∂y 2
+
∂ 2v ∂z 2
⎞ ⎠⎟⎟
ρ⎛⎜

∂w ∂t
+
u
∂w ∂x
+
v
∂w ∂y
+
w
∂w ⎞
∂z
⎟ ⎠
difference. Iteration Start iteration Failed Plot velocity or other variable to assist identifying the reason(s) Potential changes in: relaxation factors, mesh, initial guess, numerical schemes, etc. Converged solution Eventually, solution converged.
COMPUTATIONAL FLUID DYNAMICS
Han Chen (陈 瀚) Department of Mechanics School of Civil Engineering & Mechanics Huazhong University of Science and Technology
相关文档
最新文档