艺考生文化课新高考数学百日冲刺复习课时分组冲关:第5章 数列 第4节
(完整word版)北京艺术生高考数学复习资料—五数列
数列等差数列知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。
2、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
3、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a b A += a ,A ,b 成等差数列⇔2a b A +=。
4、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+。
5、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是AP ,如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠; (4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 说明:设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①S 奇-S 偶nd =; ②1n n S aS a +=奇偶; (Ⅱ)若项数为奇数,设共有21n -项,则①S 偶-S 奇n a a ==中;②1S nS n =-奇偶。
6、数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值; (2)n S 最值的求法:①若已知n S ,可用二次函数最值的求法(n N +∈);②若已知n a ,则nS 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或100n n a a +≤⎧⎨≥⎩。
艺考生文化课百日冲关答案
艺考生文化课百日冲关答案随着文化课在艺术类录取中所占的比重越来越高,很多艺术生在集训时也没有落下文化课。
但是由于艺术生的文化课底子薄,如何快速提分成为了摆在艺术生面前的一大难题。
并且,在集训时,很多专业课培训机构没有配备文化课老师,学生只能靠自学,学习效率和效果得不到保障。
针对该问题,长期从事艺术生文化课教学的刘老师给大家提出三点建议。
一、合理分配集训时间专业课、文化课同步学习以往的艺术生在集训时往往只学习专业课,完全放弃文化课的复习。
把文化课放在艺考后集中复习。
这样的考生,在艺考后复习文化课时才发现早已跟不上复习进度,知识点出现严重断层。
太多的经验和教训告诉我们,集训时一定要同步复习文化课。
整天抱怨说专业课太多,时间不够用的同学,只是给自己找的“为赋新词强说愁”的理由。
如果一个培训机构不给学生留出文化课的复习时间,这样的培训机构只能说还不懂艺考,或者说是以牺牲学生文化课的代价来提高机构的专业课过关率。
告诫各位考生,无论多忙,每天一定要挤出2-3个小时的文化课复习时间,平时的点滴积累往往比临时抱佛脚效果要好的多。
二、各科复习规划安排集训时,建议各科按以下原则复习:每天必看科目:政治、历史、地理、英语,政史地这三科大多以记忆性知识为主,所以,利用集训时的零散时间完全可以随时复习。
英语主要是背单词,把背单词养成一种习惯,可以使用口袋单词本,随时随地记单词。
数学由于解题时间较长,考生最好在安静的环境中复习,所以建议一周复习一次数学科目。
语文可以每天读读文言文,不需要做题,能把文言文的大概意思理解透就可以,毕竟在高考试卷中,文言文所占分值较大。
三、艺考后文化课复习安排艺考后的三个月是艺术生提分的黄金时期,这三个月的复习效果直接决定高考的成功与否。
建议考生们考完试以后,迅速调整状态,以最快的适应程度投入到文化课复习中来。
由于复习时间较短,大而全的复习模式已经不适应该阶段复习模式,考生们可以使用艺考生文化课百日学案,直抓重点复习,以达到快速提分的目的。
2020高考数学艺考生冲刺点睛优质课件-高考复习冲刺点金---客观题数列(共34张PPT)
精编优质课PPT2020高考数学艺考生冲 刺点睛 课件: 第一章 高考复习冲刺点金---客观题 专题九 数列(共34张PPT)(获奖课件推荐下载 )
精编优质课PPT2020高考数学艺考生冲 刺点睛 课件: 第一章 高考复习冲刺点金---客观题 专题九 数列(共34张PPT)(获奖课件推荐下载 )
1.已知数列{an}的前n项和Sn=n2-9n,则其通项an=
;
若它的第k项满足5<ak<8,则k= .
2n 10;8 【解析】 由Sn n2 9n得当n 1时, a1 S1 8, 当n 2时, Sn1 (n 1)2 9(n 1) 所以an Sn Sn1 2n 10, 于是ak 2k 10, 所以有5 2k 10 8, 解得k 8.
.
8 【解析】 a1 a3 2a2 ,2a2 22,a2 11 因为a6 a2 4d , 所以d 1, 所以a5 a6 d 8.
精编优质课PPT2020高考数学艺考生冲 刺点睛 课件: 第一章 高考复习冲刺点金---客观题 专题九 数列(共34张PPT)(获奖课件推荐下载 )
精编优质课PPT2020高考数学艺考生冲 刺点睛 课件: 第一章 高考复习冲刺点金---客观题 专题九 数列(共34张PPT)(获奖课件推荐下载 )
精编优质课PPT2020高考数学艺考生冲 刺点睛 课件: 第一章 高考复习冲刺点金---客观题 专题九 数列(共34张PPT)(获奖课件推荐下载 )
5.等差数列的性质: (1)在等差数列{an}中,从第2项起,每一项是它相邻两项的等差 中项;
(2)在等差数列{an}中,相隔等距离的项组成的数列是等差数列, 如:a1,a3,a5,a7,…;a3,a8,a13,a18,…;
2020届新高考艺术生数学复习冲关训练:第五章 第4节数列求和
第五章 第4节1.数列{a n }中,a n =,若{a n }的前n 项和为,则项数n 为( )1n (n +1) 2 0192 020A .2 019 B .2 016C .2 017D .2 018解析:A [a n ==-,1n (n +1)1n 1n +1S n =1-+-+…+-=1-==,所以n =2 019.]1212131n 1n +11n +1nn +1 2 0192 0202.+++…+等于( )121238n2n A. B.2n -n -12n 2n +1-n -22n C.D.2n -n +12n 2n +1-n +22n解析:B [法一:令S n =+++…+,①12222323n2n 则S n =++…++,②12122223n -12n n2n +1①-②,得S n =+++…+-=-.∴S n =.故选121212212312n n2n +1n2n +12n +1-n -22nB.法二:取n =1时,=,代入各选项验证可知选B.]n 2n 123.已知数列{a n }:,+,++,+++,…,那么数列{b n }=的12132314243415253545{1anan +1}前n 项和为( )A .4B .4(1-1n +1)(12-1n +1)C .1-D.-1n +1121n +1解析:A [由题意知a n =+++…+==,b n =1n +12n +13n +1n n +11+2+3+…+n n +1n 2=4,所以b 1+b 2+…+b n =4+4+…+4=41anan +1(1n-1n +1)(1-12)(12-13)(1n-1n +1)=4.](1-12+12-13+…+1n -1n +1)(1-1n +1)4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200 B .-200 C .400 D .-400解析:B [S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.]5.数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则的前100项{1an }和为( )A.B.C.D.10010199100101100200101解析:D [数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,∴a n +1-a n =1+n ,∴a n -a n -1=n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=,n (n +1)2∴==2,1an 2n (n +1)(1n-1n +1)∴的前100项和{1an }2=2=,故选D.](1-12+12-13+…+1100-1101)(1-1101)2001016.(2019·聊城市一模)已知数列{a n }的前n 项和公式为S n =n 2,若b n =2a n ,则数列{b n }的前n 项和T n =_________________________________________________________________.解析:∵S n =n 2,①当n =1时,S 1=a 1=1,当n ≥2时,S n -1=(n -1)2,②由①-②可得a n =2n -1,当n =1时也成立,∴a n =2n -1,∴b n =2a n =2×4n -1,∴T n ==(4n -1).2(1-4n )1-423答案:(4n -1)237.数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=________.解析:当n =1时,a 1=S 1=-1.当n ≥2时,a n =S n -S n -1=2n -5.∴a n =Error!令2n -5≤0,得n ≤,∴当n ≤2时,a n <0,当n ≥3时,52a n >0,∴|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+(a 3+a 4+…+a 10)=S 10-2S 2=66.答案:668.数列{a n }的前n 项和S n =2n -1,则a +a +…+a =________.2122n 解析:当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a =4n -1.2n ∴数列{a }是以a =1为首项,以4为公比的等比数列.2n 21∴a +a +…+a ==(4n -1).2122n 1·(1-4n )1-413答案:(4n -1)139. (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解:(1)设{a n }的公比为q ,由题设可得Error!,解得Error!故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n ==-+(-1)n ·.a 1(1-qn )1-q 232n +13由于S n +2+S n +1=-+(-1)n ·432n +3-2n +23=2=2S n ,[-23+(-1)n2n +13]故S n +1,S n ,S n +2成等差数列.10.(2018·天津卷)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.解:(1)设等比数列{b n }的公比为q ,由b 1=1,b 3=b 2+2,可得q 2-q -2=0,因为q >0,可得q =2,故b n =2n -1.所以,T n ==2n -1.1-2n 1-2设等差数列{a n }的公差为d ,由b 4=a 3+a 5,可得a 1+3d =4,由b 5=a 4+2a 6,可得3a 1+13d =16,从而a 1=1,d =1,故a n =n .所以S n =.n (n +1)2(2)由(1),有T 1+T 2+…+T n =(21+22+…+2n )-n =-n =2n +1-n -2.2×(1-2n )1-2由S n +(T 1+T 2+…+T n )=a n +4b n 可得+2n +1-n -2=n +2n +1,整理得n (n +1)2n 2-3n -4=0,解得n =-1(舍),或n =4.所以n 的值为4.。
专题12 数列-三年教师版 高考数学(文科)艺术生百日冲刺复习
专题12 数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得a =,10≤时,即90b -…时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意; 因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A BC .D .【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为()*12,n n a n n -=≥∈N,又1a f =,则7781a a q f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1nn a q a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.8.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.9.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 10.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a ⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a ⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.11.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10.所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.13.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=L .【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.14.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.15.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N L .【答案】(1)3n a n =,3nn b =;(2)22(21)369()2n n n n +*-++∈N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n n n n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =.(2)112222n n a c a c a c +++L()()135212142632n n n a a a a a b a b a b a b -=+++++++++L L123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦L()2123613233n n n =+⨯+⨯++⨯L .记1213233nn T n =⨯+⨯++⨯L ,① 则231313233n n T n +=⨯+⨯++⨯L ,②②−①得,()12311313(21)332333331332n n n n n n n T n n +++--+=---⨯=-+⨯=--+-L . 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯L()22(21)3692n n n n +*-++=∈N . 【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.16.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.17.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L 【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N 时不等式成立,即12k c c c +++<L 那么,当1n k =+时,121k k c c c c +++++<<L<==.即当1n k =+时不等式也成立.根据(i )和(ii ),不等式12n c c c +++<L *n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.18.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=, 所以a n =n ·2n -1.【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{b n }的通项公式,借助于{b n }的通项公式求得数列{a n }的通项公式,从而求得最后的结果.19.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).20.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.21.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n aa a +++L .【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-L L L . ∴12e e e n a a a +++L 1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.22.【2018年高考天津卷文数】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(1)(1)2n n n S +=,21nn T =-;(2)4. 【解析】(1)设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=.因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--.设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =, 所以,(1)2n n n S +=. (2)由(1),有131122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---L L 由12()4n n n n S T T T a b ++++=+L 可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =. 所以n 的值为4.【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.23.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-L23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+L .设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥L ,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅L 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅L ,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.24.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立. 因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). 75[,]32112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111|1|2,3,,(1())n b n d b q b n m -+--≤=+L 2,3,,1n m =+L 1111211n n q q b d b n n ---≤≤--q ∈112n m qq -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+L 2,3,,1n m =+L 12{}1n q n ---1{}1n q n --2,3,,1n m =+L①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.25.【2017年高考全国I 卷文数】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)122(1)33n n n S +=-+-⋅,证明见解析. 【解析】(1)设{}n a 的公比为q .由题设可得121(1)2,(1) 6.a q a q q +=⎧⎨++=-⎩解得2q =-,12a =-. 故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21xf x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. (1)由等比数列通项公式解得2q =-,12a =-即可求解; (2)利用等差中项证明S n +1,S n ,S n +2成等差数列.26.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)b n =2n−1;(2)当q =−5时, S 3=21.当q =4时, S 3=−6. 【解析】设{a n }的公差为d ,{b n }的公比为q ,则a n =−1+(n −1)d , b n =q n−1. 由a 2+b 2=2得d +q =3.①(1)由a 3+b 3=5得2d +q 2=6.② 联立①和②解得{d =3,q =0(舍去),{d =1,q =2.因此{b n }的通项公式为b n =2n−1.(2)由b 1=1,T 3=21得q 2+q −20=0. 解得q =−5,q =4.当q =−5时,由①得d =8,则S 3=21. 当q =4时,由①得d =−1,则S 3=−6.【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和. 27.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=L .(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 【答案】(1)122-=n a n ;(2)122+n n.【解析】(1)因为a 1+3a 2+…+(2n −1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n −3)a n−1 =2(n −1). 两式相减得(2n −1)a n =2, 所以a n =22n−1 (n ≥2). 又由题设可得a 1=2, 从而{a n }的通项公式为a n =22n−1.(2)记{an2n+1}的前n 项和为S n ,由(1)知a n2n+1 =2(2n+1)(2n−1) =12n−1−12n+1.则 S n = 11 − 13 + 13 − 15 +…+ 12n−1 − 12n+1 = 2n2n+1 .【思路点拨】(1)先由题意得2≥n 时,)1(2)32(3121-=-+++-n a n a a n Λ,再作差得122-=n a n ,验证1=n 时也满足; (2)由于121121)12)(12(212+--=+-=+n n n n n a n ,所以利用裂项相消法求和. 【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类是隔一项的裂项求和,如1(1)(3)n a n n =++或1(2)n a n n =+.28.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式;(2)求和:13521n b b b b -++++L .【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==. 从而21135********2n n n b b b b ---++++=++++=L L . 【名师点睛】本题考查了数列求和,一般数列求和的方法:①分组转化法,一般适用于等差数列+等比数列的形式;②裂项相消法求和,一般适用于,等的形式;③错位相减法求和,一般适用于等差数列⨯等比数列的形式;④倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.29.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T . 【答案】(1)2nn a =;(2)2552n nn T +=-【解析】(1)设{}n a 的公比为q ,由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==,所以2nn a =.(2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,1+=n n n a a cc nn c c n ++=1令n n n b c a =,则212n nn c +=, 因此122313572121,22222n n n nn n T c c c --+=+++=+++++L L又234113572121222222n n n n n T +-+=+++++L , 两式相减得2111311121()222222n n n n T -++=++++-L , 所以2552n nn T +=-. 【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-,2n n b =;(2)2(34)216n n +-+.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①; 由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(2)设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有2342102162(62)2n n T n =⨯+⨯+⨯++-⨯L ,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得23112(12)42626262(62)24(612n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----L122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 31.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++L L 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d , 则1(1)n a a n d =+-,从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.32.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,因此10()n n x x n *+<<∈N .(2)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,22()ln(1)0(0)1x xf'x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,故112()2n n n n x x x x n *++-≤∈N . (3)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=,所以112n n x -≥,由1122n n n n x x x x ++≥-,得 111112()022n n x x +-≥->, 所以12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅≥-=, 故212n n x -≤.综上,1211()22n n n x n *--≤≤∈N . 【名师点睛】本题主要应用:(1)数学归纳法证明不等式;(2)构造函数,利用函数的单调性证明不等式;(3)利用递推关系证明.。
最新高考数学艺术生百日冲刺专题数列的综合应用测试题
专题7数列的综合应用测试题命题报告:1.高频考点:等差数列、等比数列的综合,数列与函数的、不等式、方程等的综合考情分析:数列的综合问题在近几年的高考试题中一直比较稳定,难度中等,主要命题点是等差数列和等比数列的综合,数列和函数、方程、不等式的综合,与数列有关的探索性问题以及应用性问题等,对于数学文化为背景的数列问题需要特别关注。
3.重点推荐:基础卷第2、7等,涉及新定义和数学文化题,注意灵活利用所给新定义以及读懂题意进行求解。
一.选择题(共12小题,每一题5分)1. (2018春•广安期末)在等差数列{a n}中,a2=3,若从第7项起开始为负,则数列{a n}的公差d的取值范围是()A.[﹣,﹣)B.[﹣,+∞)C.(﹣∞,﹣)D.(,]【答案】:A【解析】,解得﹣≤d<﹣.故选:A.2. (2018•永定区校级月考)定义在(0,+∞)上的函数f(x),如果对于任意给定的等比数列a n,{f (a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(0,+∞)上的如下函数:①f(x)=x3;②f(x)=3x;③;④f(x)=lgx,则其中是“保等比数列函数”的f(x)的序号为()A.①②B.①③C.②④D.③④【答案】B【解析】由任意给定的等比数列a n,公比设为q,定义在(0,+∞)上的如下函数:①f(x)=x3;=q,即有==q3为常数,则f(x)为“保等比数列函数”;②f(x)=3x;=q,即有==3不为常数,则f(x)不为“保等比数列函数”;3. (2018 •黄冈期末)数列{a n}满足a n+1=,若a1=,则a2018=()A.B.C.D.【答案】A【解析】:∵a n+1=,a1=∈[,1),∴a2=2a1﹣1=∈[0,),∴a3=2a2=2×=∈[0,),∴a4=2a3=∈[,1),∴a5=2a4﹣1==a1,∴数列{a n}是以4为周期的数列,又2018=504×4+2,∴a2018=a2=.故选:A.4. (2019华南师范大学附属中学月考) 设数列为等差数列,其前项和为,已知,,若对任意,都有成立,则的值为( )A. B. C. D.【答案】C【解析】设等差数列的公差为,由可得,即由可得,解得,,,,解得,的最大值为,则故选5. 在数列{a n}中,,又,则数列{b n}的前n项和S n为()A.B.C.D.【答案】:A6. 已知数列{a n}的前n项和为S n,对任意的n∈N*有,且1<S k<12则k的值为()A.2或4 B.2 C.3或4 D.6【答案】:A【解析】对任意的n∈N*有,可得a1=S1=a1﹣,解得a1=﹣2,n≥2时,a n=S n﹣S n﹣1,S n﹣1=a n﹣1﹣,又,相减可得a n=a n﹣﹣a n﹣1+,化为a n=﹣2a n﹣1,则a n=﹣2•(﹣2)n﹣1=(﹣2)n,S n==﹣[1﹣(﹣2)n],1<S k<12,化为<(﹣2)k<19,可得k=2或4,故选:A.7. 公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为10﹣2米时,乌龟爬行的总距离为()A.B.C.D.【答案】:B【解析】由题意知,乌龟每次爬行的距离构成等比数列{a n},且a1=100,q=,a n=10﹣2;∴乌龟爬行的总距离为S n===.故选:B.8. 已知函数f(x)=sin(x﹣3)+x﹣1,数列{a n}的公差不为0的等差数列,若f(a1)+f(a2)+f(a3)+…+f(a7)=14,则a1+a2+a3+…+a7=()A.0 B.7 C.14 D.21【答案】:D【解析】∵f(x)=sin(x﹣3)+x﹣1,∴f(x)﹣2=sin(x﹣3)+x﹣3,令g(x)=f(x)﹣2,则g(x)关于(3,0)对称,∵f(a1)+f(a2)+…+f(a7)=14,∴f(a1)﹣2+f(a2)﹣2+…+f(a7)﹣2=0,即 g(a1)+g(a2)+…+g(a7)=0,∴g(a4)为g(x)与x轴的交点,由g(x)关于(3,0)对称,可得a4=3,∴a1+a2+…+a7=7a4=21.故选:D.9. 巳知数列{a n}的前n项和为S n,首项a1=﹣,且满足S n+(n≥2),则S2018等于()A.B.C.D.【答案】:D【解析】数列{a n}的前n项和为S n,满足S n+(n≥2),则:,所以:,,当n=2时,=﹣,当n=3时,,…猜想:,所以选择D。
新一线高考数学二轮专题复习艺术专用课件第五章数列第3节_2
3.(2019·全国Ⅲ卷)已知各项均为正数的等比数列{an}的前 4 项
和为 15,且 a5=3a3+4a1,则 a3=( )
A.16
B.8
C.4
D.2
解析:C [应用等比数列前 n 项和公式解题时,要注意公比是否
等 于 1 , 防 止 出 错 . 设 正 数 的 等 比 数 列 {an} 的 公 比 为 q , 则
误的打“×”.
(1)若一个数列从第 2 项起每一项与它的前一项的比都是常数,
则这个数列是等比数列.( )
(2)三个数 a,b,c 成等比数列的充要条件是 b2=ac.(
)
(3) 满 足 an + 1 = qan(n ∈ N* , q 为 常 数 ) 的 数 列 {an} 为 等 比 数
列.(
)
(4)如果{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数 列.( )
(2)由(1)得 Sn=1-λ-λ 1n. 由 S5=3321得 1-λ-λ 15=3312,即λ-λ 15=312. 解得 λ=-1.
考点三 等比数列的性质及应用(师生共研)
[典例]
1.已知各项不为 0 的等差数列{an}满足 2a2-a27+2a12=0,数列
{bn}是等比数列,且 b7=a7,则 b3b11 等于(
解析:设等比数列{an}公比为 q,由已知 a1=1,a3=4, 得 q2=aa31=4,又{an}的各项均为正数,∴q=2. 而 Sk=11--22k=63,∴2k-1=63,解得 k=6.
答案:6
考点一 等比数列的基本运算(自主练数列{an}满足 a1=3,a1+a3+a5=21,则 a3+a5+
(4)前 n 项和公式法:若数列{an}的前 n 项和 Sn=k·qn-k(k 为常数 且 k≠0,q≠0,1),则{an}是等比数列.
艺考生文化课新高考数学百日冲刺复习课时分组冲关:第6章 立体几何 第7节 第1课时
第六章 第7节 第1课时1.若直线l 的一个方向向量为a =(2,5,7),平面α的一个法向量为u =(1,1,-1),则( ) A .l ∥α或l ⊂α B .l ⊥α C .l ⊂αD .l 与α斜交解析:A [由条件知a ·u =2×1+5×1+7×(-1)=0,所以a ⊥u ,故l ∥α或l ⊂α.故选A.]2.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α⊥β,则k 等于( )A .2B .-4C .-5D .-2解析:C [因为α⊥β,所以1×(-2)+2×(-4)+(-2)×k =0,所以k =-5.] 3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎫33,33,-33 B.⎝⎛⎭⎫33,-33,33 C.⎝⎛⎭⎫-33,33,33 D.⎝⎛⎭⎫-33,-33,-33 解析:D [因为A (1,0,0),B (0,1,0),C (0,0,1),所以AB →=(-1,1,0),AC →=(-1,0,1). 经验证,当n =⎝⎛⎭⎫-33,-33,-33时, n ·AB →=33-33+0=0,n ·AC →=33+0-33=0,故选D.]4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( )A .平行B .异面C .垂直D .以上都不对解析:C [以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0).∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .故选C 项.]5.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则( )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面解析:B [以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫13,0,13,F ⎝⎛⎭⎫23,13,0,B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →=(-1,1,0), EF →=⎝⎛⎭⎫13,13,-13,BD 1→=(-1,-1,1),EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC .故选B.]6.在空间直角坐标系中,点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.解析:由题意知,点Q 即为点P 在平面yOz 内的射影, 所以垂足Q 的坐标为(0,2,3). 答案:(0,2,3)7.(2019·武汉市调研)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________________________________________________________.解析:设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β. 答案:α∥β8.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是________.解析:∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →,∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA →=23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的法向量, ∴MN →·CD →=⎝⎛⎭⎫23B 1B →+13B 1C 1→·CD →=0,∴MN →⊥CD →.又∵MN ⊄平面B 1BCC 1,∴MN ∥平面B 1BCC 1. 答案:平行9.如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1瘙 綊12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:∵二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形,∴AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB , ∴∠CAB =90°,即CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系Axyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2). (1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0.取y =1,则n =(0,1,0).∴A 1B 1→=2n ,即A 1B 1→∥n .∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2),设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0,∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C .10.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明:(1)以C 为坐标原点,CB 为x 轴,CD 为y 轴,CP 为z 轴建立如图所示的空间直角坐标系C -xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°,∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M ⎝⎛⎭⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0), CM →=⎝⎛⎭⎫32,0,32.(1)设n =(x ,y ,z )为平面P AD 的一个法向量, 由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1).∴n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD , ∴CM ∥平面P AD .(2)如(1)中图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA .又P A ∩DA =A ,∴BE ⊥平面P AD . 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .。
高考数学一轮复习 第五章 数列课件 湘教版
【解析】 方法一 由 a1=1,a2=5,an+2=an+1-an(n ∈N*)可得该数列为 1,5,4, 1,﹣1,﹣5,﹣4,1,5,4,…. 由此可得 a100=﹣1. 方法二 an+2=an+1-an,an+3=an+2-an+1, 两式相加可得 an+3=-an,an+6=an, ∴a100=a16×6+4=a4=﹣1. 【答案】﹣1
2n 1 an= 2n .
(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值的
按项与项 间的大小 关系分类
递增数列 递减数列 常数列 摆动数列
an+1 > an ( n∈N*) an+1 < an ( n∈N*) an+1 = an ( n∈N*) 从第二项起,有些项大于它的前一项,有些项小于它的前一项
3.数列与函数的关系 (1)从函数观点看,数列可以看成是以 正整数集N*(或N*的有限子集{1,2,3,…,n}) 为定义域的函数 an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一 列 函数值 . (2)数列同函数一样有 解析法 、 图象法 、 列表法 三种表示方法. 4.数列的通项公式
如果数列{an}的第 n 项 an 与 序号n 之间的关系可以用一个公式 an f n 来表
示,那么这个公式叫做这个数列的通项公式. 【思考探究】 一个数列的通项公式唯一吗?是否每个数列都有通项公式?
提示:不唯一,如数列-1,1, -1,1,…的通项公式可以是 an=(-1)n 或 1(1n(为n为正正偶奇数数).),有
A.3 B.4 C.5 D.6
【解析】 由 an+1<an,得 an+1-an=9-42n-11-4 2n=(9-2n)(8 11-2n)
高考数学艺体生百日突围专题数列的通项与求和(综合篇
【2016年高考备考艺体生文化课精选好题突围系列】专题三 数列的通项与求和数列的通项【背一背基础知识】1.数列的通项公式:若数列{}n a 的第n 项n a 与项数n 之间的关系可以用一个式子表示出来,记作()n a f n =,称作该数列的通项公式.2.等差数列的通项公式:1(1)n a a n d =+-()m a n m d =+-.3.等比数列的通项公式:11n n m n m a a q a q --==4.等差数列性质:若n S 是公差为d 的等差数列{n a }的前n 项和,则 ①()n m a a n m d =+-;②若*,,,m n p q N m n p q ∈+=+且,则m n p q a a a a +=+;③232,,,n n n n n S S S S S --仍是等差数列;5.等比数列性质:若n S 是公差为d 的等比数列{n a }的前n 项和,则①n mn m a a q -=;②若*,,,m n p q N m n p q ∈+=+且,则m n p q a a a a =③232,,,n n n n n S S S S S --仍是等差数列(其中1q ≠-或n 不是偶数);【讲一讲基本技能】 1. 必备技能:(1)等差数列的判定:①定义法;②等差中项法;③通项公式法;④前n 项和公式法;作解答题时只能用前两种方法(2)等比数列的判定:①定义法;②等比中项法;③通项公式法;④前n 项和公式法;作解答题时只能用前两种方法(3)数列通项公式求法:①观察法:对已知数列前几项或求出数列前几项求通项公式问题,常用观察法,通过观察数列前几项特征,找出各项共同构成的规律,横向看各项的关系结构,纵向看各项与项数n 的关系时,分解所给数列的前几项,观察这几项的分解式中,哪些部分是变化的,哪些部分是不变化的,变化部分与序号的关系,,归纳出n a 的通项公式,再用数学归纳法证明.②累加法:对于可转化为)(1n f a a n n +=+形式数列的通项公式问题,化为1()n n a a f n +-=,通过累加得n a =112211()()()n n n n a a a a a a a ----+-++-+=1(1)(2)(1)f n f n f a -+-+++,求出数列的通项公式,注意相加等式的个数③累积法:对于可转化为1()n n a a f n +=形式数列的通项公式问题,化为1()n na f n a +=,通过累积得n a =121121n n n n a a a a a a a ---⨯⨯⨯⨯ =1(1)(2)(1)f n f n f a -⨯-⨯⨯⨯,求出数列的通项公式,注意相乘等式的个数④构造法:对于化为1()n n a pa f n +=+(其中p 是常数)型,常用待定系数法将其化为1(1)[()]n n a Af n p a Af n +++=+,由等比数列定义知{()n a Af n +}是公比为p 的等比数列,由等比数列的通项公式先求出()n a Af n +通项公式,再求出n a 的通项公式.⑤利用前n 项和n S 与第n 项n a 关系求通项对递推公式为n S 与n a 的关系式(或()n n S f a =),利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 进行求解.注意n a =1n n S S --成立的条件是n ≥2,求n a 时不要漏掉n =1即n a =1S 的情况,当1a =1S 适合n a =1n n S S --时,n a =1n n S S --;当1a =1S 不适合n a =1n n S S --时,用分段函数表示.2. 典型例题例1 在数列{}n a 中,11,a =()11,2.1n n n a a n a --=≥+(1)求数列{n a }的通项公式; (2)求数列{2n n a a +}的前n 项和n S .【分析】(1)已知递推式,要求通项公式,我们应该把已知进行变形,看能否构成等差(比)数列,由111n n n a a a --=+得1111111n n n n a a a a ---+==+,从而新数列1{}na 是等差数列,通项可求;(2)根据(1)求出2n n a a +=1(2)n n +=111()22n n -+,利用拆项消去法即可求出该数列的前n 项和. 【解析】(1)由于()11,21n n n a a n a --=≥+,则11111111111n n n n n n a a a a a a ----+==+⇔-=,所以1n a ⎧⎫⎨⎬⎩⎭是首项为1公差1的等差数列,则1n n a =,所以na =()1,n N n *∈. 例2例3 已知在数列{}n a 中,n n a n na 21+=+,且21=a . (1)求数列{n a }的通项公式; (2)求数列{2n n a a +}的前n 项和n S 【分析】(1)由n n a n na 21+=+得+12n n a n a n =+,即111n n a n a n --=+,故2113a a =,3224a a =, , 111n n a n a n --=+,用累乘法得12(1)n a a n n =+,故4(1)n a n n =+;(2)根据(1)求出n a =4(1)n n +=114()1n n -+,利用拆项消去法即可求出该数列的前n 项和.【解析】(1)∵n n a n na 21+=+,∴+12n n a n a n =+, ∴121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅122142143(1)n n n nn n --=⋅⋅⋅⋅⋅=++. (2)因为n a =4(1)n n +=114()1n n -+,所以n S =11111114(1)4()4()4()223341n n -+-+-++-+=41nn +. 例3 已知数列{}n a 的前n 项和为n S ,且)(22*N n a S n n ∈-=,数列{}n b 中,11b ,121n n n b b b +=+.(*n N ∈)(1)求数列{}n a ,{}n b 的通项n a 和n b (2)设nn na cb =,求数列{}n c 的前n 项和n T .【分析】(1)由22n n S a =-,可得当n ≥2时,1122n n S a --=-,两式相减可得12n n a a -=,从而可知数列{}n a 是以2为首项,2为公比的等比数列,故可得2n a n =;根据121nn n b b b +=+,两边取倒数,可得数列1n b ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而可求{}n b 的通项;(2)()212n nn na c nb ==-⋅,所以数列{}n c 的前n 项和n T 利用错位相减法可求数列{}n c 的前n 项和.【解析】【练一练趁热打铁】1.在数列{}n a 中,其前n 项和n S 满足:11=S ,1221--=n n S n n S (n ≥2).求数列{a n }的通项公式.【答案】2(1)n a n n =+.【解析】2.设数列{}n a 满足211233333n n n a a a a -++++=…,n ∈*N . (1) 求数列{}n a 的通项公式;(2)已知数列{}3log n n a a +的前n 项和n T . 【答案】(1)13n n a =;(2)n T =11(1)(1)232nn n +--.【解析】(1)由题意,2n ≥时,22123113333n n n a a a a ---++++=,∴1113333n n n n a --=-=,13n n a =,又113a =适合上式,∴13n n a =,*n N ∈. (2)由(1)3log n n a a +=13nn -,所以n T =211112333n n -+-++-=211112333n n +++----=11(1)(1)331213n n n -+--=11(1)(1)232n n n +--. 数列的求和【背一背基础知识】1. 数列{}n a 的前n 项和为12n n S a a a =+++.2.等差数列{}n a 的前n 和公式:11()(1)22n n n a a n n S na d +-=+=. 3.等比差数列{}n a 的前n 和公式:1111,1,1(1),1,111n n n na q na q S a a q a q q q qq ==⎧⎧⎪⎪==--⎨⎨≠≠⎪⎪--⎩⎩,【讲一讲基本技能】 1.必备技能:(1)分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. (2)错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列. (3)倒序相加法这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (4)裂项相消法利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1.常见的拆项公式: ①1n n +1=1n -1n +1; ②1nn +k=1k (1n -1n +k ); ③12n -12n +1=12(12n -1-12n +1); ④1n +n +k =1k(n +k -n ).2.典型例题例1数列{}n a 满足11a =,1()(1)1n n na n a n n +=+++,*n ∈N . (1)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列; (2)设3n n n b a =,求数列{}n b 的前n 项和n S .【分析】(1)将已知等式两边同时除以(1)n n +即可使问题得证;(2)先由(1)得出n b 的表达式,再用错位相减法即可求解.【解析】例2已知正项数列{n a },{n b }满足:,{n b }是等差数列,且对任意正整数n ,都有成等比数列.(1)求数列{n b }的通项公式; (2)求n S =12111na a a +++. 【分析】(1)因为成等比数列,所以,由得,解得:,所以公差 ,数列的通项公式为;(2)由知,,所以,采用裂项相消的方法,即可求出.【解析】(1)∵对任意正整数n ,都有成等比数列,且数列{n a },{n b }均为正项数列, ∴n a =(n∈N *).由a 1=3,a 2=6得又{b n }为等差数列,即有b 1+b 3=2b 2,解得b 1=,b 2=,∴数列{b n }是首项为,公差为的等差数列.∴数列{b n }的通项公式为n b =(n∈N *).(2)由(1)得,对任意n∈N *,=(1)(2)2n n ++,从而有,∴例3已知数列{}n a 中,11a =,121n n a a n +=+-. (1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n T ,求n T .【分析】(1)由题知112()n n a n a n +++=+,所以{n a n +}是首项为2公比为2,利用等比数列的通项公式即可求得数列{n a n +}的通项公式,从而即可求得数列{}n a 的通项公式.(2) 采用分组求和法求和. 【解析】【练一练趁热打铁】1. 设数列{}n a 满足211233333n n n a a a a -++++=…,n ∈*N . (1)求数列{}n a 的通项;(2)设n nnb a =,求数列{}n b 的前n 项和n S . 【答案】(1)13n n a =;(2)1213344n n n S +-=⋅+. 【解析】2. 设数列{}n a 的前n 项和n S 满足:()12--=n n na S n n ,等比数列{}n b 的前n 项和为n T ,公比为1a ,且3352b T T +=. (1)求数列{}n a 的通项公式; (2)设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n M ,求证:4151<≤n M .【答案】(1)4-3n a n =;(2)见解析. 【解析】3. 已知{}na是各项均为正数的等比数列,31a+是2a与4a的等差中项且212n n na a a++=+.(Ⅰ)求{}na的通项公式;(Ⅱ)设2(1)nnnaba+=,求数列{}nb的前n项和nT.【答案】(Ⅰ)12nna-=;(Ⅱ)1122+12nnn--+.【解析】(20*5=100分)1.设等差数列{}n a 的前n 项和为n S ,n *∈N ,公差30,15,d S ≠=已知1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n b a =,求数列{}n b 的前n 项和n T . 【答案】(Ⅰ)21n a n =+;(Ⅱ) 22 4.n n T n +=+-【解析】(Ⅰ)依题意,1211132315,2(3)(12).a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩ ,解得13,2.a d =⎧⎨=⎩因此1(1)32(1)21n a a n d n n =+-=+-=+,即21n a n =+. (Ⅱ)依题意,1212212+=+⨯==+n n n n a b .12n n T b b b =+++231(21)(21)(21)n +=++++++=23122...2n n +++++4(12)12n n-=+-22 4.n n +=+-2. 设数列{}n a 的前项n 和为n S ,若对于任意的正整数n 都有22n n S a n =-.(1)设2n n b a =+,求证:数列{}n b 是等比数列, (2)求数列{}n na 的前n 项和n T .【答案】(1)详见解析(2)2(1)24+(1)n n T n n n +=-++【解析】由①—②得:2341212+12+12++122n n n T n ++'-=⨯⨯⨯⨯-⨯22242n n n T n ++'-=--⨯ 2(1)24n n T n +'=-+由123n T n ''=++++可得(1)2n n nT +⋅''=+n n T T '=2n T ''=2(1)24+(1)n n n n +-++3. 已知数列{}n a 的各项均为正数,前n 项和为n S ,且),(2)1(*N n a a S n n n ∈+= (1)求证:数列{}n a 是等差数列;(2)设,,121n n nn b b b T S b +⋅⋅⋅++==求.n T 【答案】(1)详见解析;(2)21nn + 【解析】4. 已知数列{}n a 满足11=a ,*++∈=-N n n a a na n n n ,11.(1)求数列{}n a 的通项公式;(2)设nnn a b 2=,数列{}n b 的前n 项和n T ,求n T .【答案】(1))(1*∈=N n na n ;(2)22)1(1+⋅-=+n n n T . 【解析】5. 已知数列{}n a 的前n 项和为n S ,且()21n n S a n N *=-∈. (1)求数列{}n a 的通项公式;(2)设+1131,log 1n n n n nb b bc a n n==++,求数列{}n c 的前n 项和n T .【答案】(1)()1=3n n a n N *∈;(2)11n -+【解析】(1)当1n =时,由21n n S a =-,得:11=.3a 由21n n S a =- ①()-1-1212n n S a n =-≥ ②上面两式相减,得:()11=23n n a a n -≥ 所以数列{}n a 是以首项为13,公比为13的等比数列,得:()1=3n n a n N *∈。
2021-2022年高考数学大一轮复习精品讲义 第五章 数列(含解析)
2021-2022年高考数学大一轮复习精品讲义第五章数列(含解析)对应学生用书P71基础盘查一数列的有关概念(一)循纲忆知了解数列的概念(定义、数列的项、通项公式、前n项和)(二)小题查验1.判断正误(1)1,2,3,4和1,2,4,3是相同的数列( )(2)同一个数在数列中可以重复出现( )(3)a n与{a n}是不同的概念( )(4)所有的数列都有通项公式,且通项公式在形式上一定是唯一的( )答案:(1)×(2)√(3)√(4)×2.(人教A版教材例题改编)写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,-12,13,-14;(2)2,0,2,0.答案:(1)a n=-1n+1n(2)a n=(-1)n+1+1基础盘查二数列的表示方法(一)循纲忆知1.了解数列三种简单的表示方法(列表法、图象法、通项公式法);2.了解数列是自变量为正整数的一类特殊函数.(二)小题查验1.判断正误(1)数列是一种特殊的函数( )(2)毎一个数列都可用三种表示法表示( )(3)如果数列{a n}的前n项和为S n,则对∀n∈N*,都有a n+1=S n+1-S n( )答案:(1)√(2)×(3)√2.已知数列{a n}中,a1=1,a n+1=an2a n+3,则a5等于________.答案:1 161基础盘查三数列的分类(一)循纲忆知了解数列的分类(按项数分、按项间的大小等).(二)小题查验1.(人教B版教材例题改编)已知函数f(x)=x-1x,设a n=f(n)(n∈N*),则{a n}是________数列(填“递增”或“递减”)答案:递增2.对于数列{a n},“a n+1>|a n|(n=1,2…)”是“{a n}为递增数列”的________条件.答案:充分不必要对应学生用书P71[必备知识]数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[提醒] 不是所有的数列都有通项公式,若有,也不一定唯一.[题组练透]1.已知n ∈N *,给出4个表达式:①a n =⎩⎨⎧0,n 为奇数,1,n 为偶数,②a n =1+-1n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n×1nn +1,n ∈N *.(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎨⎧a ,n 为奇数,b ,n 为偶数.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[类题通法]用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n +1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[必备知识]数列的前n 项和通常用S n 表示,记作S n =a 1+a 2+…+a n ,则通项a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.[提醒] 若当n ≥2时求出的a n 也适合n =1时的情形,则用一个式子表示a n ,否则分段表示.[典题例析]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n+b . 解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.[类题通法]已知S n 求a n 的三个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[演练冲关]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n+2n +1,求a n .解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)] =(-1)n +1·(2n -1),又a 1也适合于此式, 所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.考点三 由递推关系式求数列的通项公式(常考常新型考点——多角探明)[必备知识]递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.[多角探明]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.n +1n n 1.在数列{a n }中,a 1=1,前n 项和S n =n +23a n .求数列{a n }的通项公式.解:由题设知,a 1=1. 当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1.∴a n a n -1=n +1n -1. ∴a n a n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3. 以上n -1个式子的等号两端分别相乘,得到a n a 1=n n +12.又∵a 1=1,∴a n =n n +12.角度二:形如a n +1=a n +f (n ),求a n 2.(1)在数列{a n }中,a 1=2,a n +1=a n +1nn +1,求数列{a n }的通项公式. (2)若数列{a n }满足:a 1=1,a n +1=a n +2n,求数列{a n }的通项公式. 解:(1)由题意,得a n +1-a n =1nn +1=1n -1n +1, a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=⎝⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -2-1n -1+…+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1-12+2=3-1n .(2)由题意知a n +1-a n =2n,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=1-2n1-2=2n -1.角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.角度四:形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n 4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式. 解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1, ∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *). [类题通法]由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,(如角度二),注意:有的问题也可利用构造法,即通过对递推式的等价变形,(如角度三、四)转化为特殊数列求通项.对应A 本课时跟踪检测二十九一、选择题1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n2n +1 B.n 2n -1 C.n2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( ) A .2n -1B .n 2C.n +12n 2D.n 2n -12解析:选D 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2n -12.3.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝ ⎛⎭⎪⎫-32+10×2=72.故选B.4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8,a 9=512.故选C.5.已知数列{a n }的前n 项和为S n =kn 2,若对所有的n ∈N *,都有a n +1>a n ,则实数k 的取值范围是( )A .(0,+∞)B .(-∞,1)C .(1,+∞)D .(-∞,0)解析:选A 由S n =kn 2得a n =k (2n -1).因为a n +1>a n ,所以数列{a n }是递增的,因此k >0,故选A.6.(xx·北京海淀区期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大, 则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3k +1≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7. 二、填空题7.在数列-1,0,19,18,…,n -2n2,…中,0.08是它的第____________项.解析:令n -2n2=0.08,得2n 2-25n +50=0, 即(2n -5)(n -10)=0. 解得n =10或n =52(舍去).答案:108.已知数列{a n }的前n 项和S n =3-3×2n ,n ∈N *,则a n =________. 解析:分情况讨论:①当n =1时,a 1=S 1=3-3×21=-3;②当n ≥2时,a n =S n -S n -1=(3-3×2n)-(3-3×2n -1)=-3×2n -1.综合①②,得a n =-3×2n -1.答案:-3×2n -19.(xx·大连双基测试)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式a n =________.解析:a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,把n 换成n-1得,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n+3,两式相减得a n =3n.答案:3n10.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:28 三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }中,a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2n -1=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,知5<2-a 2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).第二节等差数列及其前n 项和对应学生用书P73基础盘查一 等差数列的有关概念 (一)循纲忆知理解等差数列的概念(定义、公差、等差中项). (二)小题查验 1.判断正误(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列的公差是相邻两项的差( )(3)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2( ) 答案:(1)× (2)× (3)√2.(人教A 版教材例题改编)判断下面数列是否为等差数列.(只写结果) (1)a n =2n -1; (2)a n =pn +q (p 、q 为常数). 答案:(1)是 (2)是基础盘查二 等差数列的有关公式 (一)循纲忆知1.掌握等差数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题; 3.了解等差数列与一次函数的关系. (二)小题查验 1.判断正误(1)等差数列{a n }的单调性是由公差d 决定的( )(2)等差数列的前n 项和公式是常数项为0的二次函数( )(3)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列( )答案:(1)√ (2)√ (3)√2.(人教A 版教材例题改编)已知等差数列5,427,347,…,则前n 项和S n =________.答案:114(75n -5n 2)基础盘查三 等差数列的性质 (一)循纲忆知掌握等差数列的性质及其应用. (二)小题查验1.判断正误(1)在等差数列{a n }中,若a m +a n =a p +a q ,则一定有m +n =p +q ( ) (2)数列{a n },{b n }都是等差数列,则数列{a n +b n }也一定是等差数列( )(3)等差数列{a n }的首项为a 1,公差为d ,取出数列中的所有奇数项,组成一个新的数列,一定还是等差数列( )(4)数列{a n }的通项公式为a n =3n +5,则数列{a n }的公差与函数y =3x +5的图象的斜率相等( )答案:(1)× (2)√ (3)√ (4)√2.(北师大版教材例题改编)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________ 答案:-15-n3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于________. 答案:88对应学生用书P74考点一 等差数列的基本运算(基础送分型考点——自主练透)[必备知识]等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -12d =a 1+a n n2.[题组练透]1.(xx·福建高考)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12D .14解析:选C 设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.2.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.答案:-723.在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+3-2n ]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0, 解得k =7或k =-5.又k ∈N *,故k =7.[类题通法]等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判断与证明(题点多变型考点——全面发掘)[必备知识](1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.[提醒] 要注意定义中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.[一题多变][典型母题]已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求a n 的表达式.[解] (1)证明:∵a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n.由于当n ≥2时,有a n =-2S n ·S n -1=-12nn -1, 又∵a 1=12,不适合上式.∴a n=⎩⎪⎨⎪⎧12,n =1,-12n n -1,n ≥2.[题点发散1] 试说明本例中数列{a n }是不是等差数列. 解:当n ≥2时,a n +1=-12n n +1, 而a n +1-a n =-12n n +1--12nn -1=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n n -1n +1.∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列. [题点发散2] 若将本例条件改为“a 1=2,S n =S n -12S n -1+1(n ≥2)”,问题不变,试求解.解:(1)∵S n =S n -12S n -1+1,∴1S n =2S n -1+1S n -1=1S n -1+2.∴1S n -1S n -1=2.∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,以2为公差的等差数列.(2)由(1)知1S n =12+(n -1)×2=2n -32,即S n =12n -32. 当n ≥2时,a n =S n -S n -1=12n -32-12n -72 =-2⎝ ⎛⎭⎪⎫2n -32⎝ ⎛⎭⎪⎫2n -72;当n =1时,a 1=2不适合上式, 故a n=⎩⎪⎨⎪⎧2n =1,-2⎝⎛⎭⎪⎫2n -32⎝ ⎛⎭⎪⎫2n -72n ≥2.[题点发散3] 若本例变为:已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n=1a n -1(n ∈N *).求证:数列{b n }是等差数列. 证明:∵a n =2-1a n -1,∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列. [类题通法]等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .[提醒] 在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.考点三 等差数列的性质及最值(重点保分型考点——师生共研)[必备知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.[典题例析]1.等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24D .-8解析:选C ∵a 1+3a 8+a 15=5a 8=120,∴a 8=24, ∴2a 9-a 10=a 10+a 8-a 10=a 8=24.2.(xx·北京高考)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解析:∵数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0.∴当n =8时,其前n 项和最大.答案:83.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60. 答案:604.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18.∵a 1+a n =36,n =18,∴a 1+a 18=36, 从而a 9+a 10=a 1+a 18=36.[类题通法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [演练冲关]1.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100D .-37解析:选C 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100,∴{a n +b n }为常数列,∴a 37+b 37=100.2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40解析:选A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.3.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n取得最大值,并求出它的最大值.解:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.法一:由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. 得a 13=0.即当n ≤12时,a n >0,n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.法二:∴S n =20n +n n -12·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 法三: 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.对应B 本课时跟踪检测三十[A 卷——夯基保分]一、选择题1.设S n 为等差数列的前n 项和,公差d =-2,若S 10=S 11,则a 1=( ) A .18 B .20 C .22D .24解析:选B 由S 10=S 11,得a 11=0.又已知d =-2,则a 11=a 1+10d =a 1+10×(-2)=0,解得a 1=20.2.(xx·兰州、张掖联考)等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .13B .26C .52D .156解析:选B ∵3(a 3+a 5)+2(a 7+a 10+a 13)=24, ∴6a 4+6a 10=24,∴a 4+a 10=4, ∴S 13=13a 1+a 132=13a 4+a 102=13×42=26,故选B.3.已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( ) A .8 B .9 C .10D .11解析:选C 由S n -S n -3=51得,a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n a 2+a n -12=100,解得n =10.4.(xx·辽宁鞍山检测)已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2 014=( )A .1 006×2 013B .1 006×2 014C .1 007×2 013D .1 007×2 014解析:选C 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2 014=2 014×2 0132=1 007×2 013.5.(xx·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.6.(xx·河北唐山一模)各项均为正数的数列{a n }的前n 项和为S n ,且3S n =a n a n +1,则a 2+a 4+a 6+…+a 2n =( )A.n n +52 B.n 5n +12C.3nn +12D.n +3n +52解析:选C 当n =1时,3S 1=a 1a 2,3a 1=a 1a 2,∴a 2=3.当n ≥2时,由3S n =a n a n +1,可得3S n -1=a n -1a n ,两式相减得3a n =a n (a n +1-a n -1),又∵a n ≠0,∴a n +1-a n -1=3,∴{a 2n }为一个以3为首项,3为公差的等差数列,∴a 2+a 4+a 6+…+a 2n =3n +n n -12×3=3n n +12,选C.二、填空题7.(xx·江西高考)在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n=8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-78 8.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________. 解析:∵2a n =a n -1+a n +1, 又a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0. ∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38,解得n =10. 答案:109.(xx·无锡一模)已知数列{a n }中,a 1=1,a 2=2,当整数n ≥2时,S n +1+S n -1=2(S n+S 1)都成立,则S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),所以数列{a n }从第二项起构成等差数列,则S 15=1+2+4+6+8+…+28=211.答案:21110.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n=1,2,3,5,11时,a nb n 为整数,故使得a n b n为整数的正整数n 的个数是5.答案:5 三、解答题11.(xx·长春调研)设等差数列{a n }的前n 项和为S n ,其中a 1=3,S 5-S 2=27. (1)求数列{a n }的通项公式;(2)若S n,22(a n +1+1),S n +2成等比数列,求正整数n 的值. 解:(1)设等差数列{a n }的公差为d , 则S 5-S 2=3a 1+9d =27, 又a 1=3,则d =2,故a n =2n +1.(2)由(1)可得S n =n 2+2n ,又S n ·S n +2=8(a n +1+1)2,即n (n +2)2(n +4)=8(2n +4)2,化简得n 2+4n -32=0, 解得n =4或n =-8(舍),所以n 的值为4.12.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求a n 和S n ;(2)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .解:(1)∵数列{a n }为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13, ∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4.∴通项公式a n =4n -3. ∴S n =na 1+n n -12×d =2n 2-n .(2)由(1)知S n =2n 2-n ,∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵数列{b n }是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.[B 卷——增分提能]1.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.∴a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2n +1-31≥0,解得292≤n ≤312,∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小. ∵数列{b n }的首项是-29,公差为2, ∴T 15=15-29+2×15-312=-225,∴数列{b n }的前n 项和T n 的最小值为-225.2.(xx·安徽宿州调研)已知函数f (x )=x 2-2(n +1)x +n 2+5n -7.(1)设函数y =f (x )的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列; (2)设函数y =f (x )的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n . 解:(1)证明:∵f (x )=x 2-2(n +1)x +n 2+5n -7 =[x -(n +1)]2+3n -8, ∴a n =3n -8,∵a n +1-a n =3(n +1)-8-(3n -8)=3, ∴数列{a n }为等差数列.(2)由题意知,b n =|a n |=|3n -8|, ∴当1≤n ≤2时,b n =8-3n ,S n =b 1+…+b n =n b 1+b n 2=n [5+8-3n ]2=13n -3n 22;当n ≥3时,b n =3n -8,S n =b 1+b 2+b 3+…+b n =5+2+1+…+(3n -8)=7+n -2[1+3n -8]2=3n 2-13n +282.∴S n=⎩⎪⎨⎪⎧13n -3n22,1≤n ≤2,3n 2-13n +282,n ≥3.3.设同时满足条件:①b n +b n +22≤b n +1(n ∈N *);②b n ≤M (n ∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界”数列.(1)若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2)判断(1)中的数列{S n }是否为“特界”数列,并说明理由. 解:(1)设等差数列{a n }的公差为d ,则a 1+2d =4,S 3=a 1+a 2+a 3=3a 1+3d =18, 解得a 1=8,d =-2, ∴S n =na 1+n n -12d =-n 2+9n .(2){S n }是“特界”数列,理由如下: 由S n +S n +22-S n +1=S n +2-S n +1-S n +1-S n2=a n +2-a n +12=d 2=-1<0, 得S n +S n +22<S n +1,故数列{S n }适合条件①.而S n =-n 2+9n =-⎝ ⎛⎭⎪⎫n -922+814(n ∈N *),则当n =4或5时,S n 有最大值20, 即S n ≤20,故数列{S n }适合条件②. 综上,数列{S n }是“特界”数列.第三节等比数列及其前n 项和对应学生用书P76基础盘查一 等比数列的有关概念 (一)循纲忆知理解等比数列的概念(定义、公比、等比中项). (二)小题查验 1.判断正误(1)常数列一定是等比数列( ) (2)等比数列中不存在数值为0的项( )(3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列( ) (4)G 为a ,b 的等比中项⇔G 2=ab ( ) 答案:(1)× (2)√ (3)× (4)×2.已知数列a ,a (1-a ),a (1-a )2,…是等比数列,则实数a 的取值范围是( ) A .a ≠1 B .a ≠0或a ≠1 C .a ≠0 D .a ≠0且a ≠1答案:D基础盘查二 等比数列的有关公式(一)循纲忆知1.掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题; 3.了解等比数列与指数函数的关系. (二)小题查验 1.判断正误(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n( )(2)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a( )答案:(1)× (2)×2.(人教A 版教材习题改编)在等比数列{a n }中,已知a 1=-1,a 4=64,则q =________,S 4=________.答案:-4 51基础盘查三 等比数列的性质 (一)循纲忆知掌握等比数列的性质及应用. (二)小题查验 1.判断正误(1)q >1时,等比数列{a n }是递增数列( )(2)在等比数列{a n }中,若a m ·a n =a p ·a q ,则m +n =p +q ( )(3)在等比数列{a n }中,如果m +n =2k (m ,n ,k ∈N *),那么a m ·a n =a 2k ( )(4)若数列{a n }是等比数列,则数列⎩⎨⎧⎭⎬⎫1a n 是等比数列( )(5)如果数列{a n }为等比数列,则数列{ln a n }是等差数列( ) 答案:(1)× (2)× (3)√ (4)√ (5)×2.(北师大版教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列 C .公比为q 3的等比数列 D .不一定是等比数列答案:B对应学生用书P76考点一 等比数列的基本运算(基础送分型考点——自主练透)[必备知识]等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.[提醒] 运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论.[题组练透]1.(xx·东北三校联考)已知数列{a n }满足2a n +1+a n =0,a 2=1,则数列{a n }的前10项和S 10为( )A.43(210-1) B.43(210+1) C.43(2-10-1) D.43(2-10+1) 解析:选C ∵2a n +1+a n =0,∴a n +1a n =-12.又a 2=1,∴a 1=-2,∴数列{a n }是首项为-2,公比为q =-12的等比数列,∴S 10=a 11-q101-q=-21-2-101+12=43(2-10-1),故选C. 2.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或12解析:选C 根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21,∴1+q +q2q 2=3.整理得2q 2-q -1=0, 解得q =1或q =-12.3.(xx·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( )A .4n -1B .4n-1 C .2n -1D .2n-1解析:选D 设{a n}的公比为q ,∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52 ①,a 1q +a 1q 3=54②,由①②可得1+q 2q +q 3=2,∴q =12,代入①得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n=2n -1,选D.4.设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }前n 项和T n .解:(1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),∴a n =3a n -1.∴数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)∵b n =1a n =⎝ ⎛⎭⎪⎫13n -2,∴{b n }是首项为3,公比为13的等比数列,∴T n =b 1+b 2+…+b n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .[类题通法]解决等比数列有关问题的常用思想方法(1)方程的思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q1-q.考点二 等比数列的判定与证明(题点多变型考点——全面发掘)[必备知识]1.定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.定义的表达式为a n +1a n=q . 2.等比中项G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .[提醒] 在等比数列中每项与公比都不为0.[一题多变][典型母题]已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式. [解] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1, ∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1,∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)知c n =-12×⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n∴a n =1-⎝ ⎛⎭⎪⎫12n.[题点发散1] 在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2), 证明:{b n }是等比数列.证明:∵由(2)知a n =1-⎝ ⎛⎭⎪⎫12n,∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 =⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n . 又b 1=a 1=12也符合上式,∴b n =⎝ ⎛⎭⎪⎫12n .∴b n +1b n =12,数列{b n }是等比数列. [题点发散2] 本例条件变为:已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *).试判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列. 解:由a n +2=p ·a 2n +1a n ,得a n +2a n +1=p ·a n +1a n.令c n =a n +1a n,则c 1=a ,c n +1=pc n . ∵a ≠0,∴c 1≠0,c n +1c n=p (非零常数), ∴数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列. [类题通法]等比数列的判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n -1(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明,而后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.考点三 等比数列的性质(重点保分型考点——师生共研)[必备知识](1)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k,…为等比数列,公比为q k;(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n,当公比为-1时,S n ,S 2n -S n ,S 3n -S 4n 不一定构成等比数列.[典题例析]1.(xx·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q , 由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q3n -6=81=34=q 36,所以n =14, 答案:142.(xx·广东高考)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+lna 2+…+ln a 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20) =ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50. 答案:50[类题通法]等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[演练冲关]1.(xx·江苏高考)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析:设等比数列{a n }的公比为q ,q >0,则a 8=a 6+2a 4即为a 4q 4=a 4q 2+2a 4,解得q 2=2(负值舍去),又a 2=1,所以a 6=a 2q 4=4.答案:4。
高考数学一轮复习 第5章 数列4精品训练 理(含解析)新人教B版
高考数学一轮复习 第5章 数列4精品训练 理(含解析)新人教B 版[命题报告·教师用书独具]一、选择题 1.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n-1D .n +2+2n解析:S n =n +1-2n1-2=n +2n-1.答案:C2.(2013年杭州期末)数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400解析:S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案:B3.(2013年锦州模拟)设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n解析:∵f ′(x )=mx m -1+a =2x +1,∴m =2,a =1.∴f (x )=x 2+x ,f (n )=n 2+n . ∴1f n=1n 2+n =1nn +1=1n -1n +1. ∴S n =1f 1+1f 2+1f 3+ (1)n -1+1f n=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 答案:A4.(2012年高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -1解析:利用等比数列知识求解.∵S n =2a n +1,∴当n ≥2时,S n -1=2a n .∴a n =S n -S n -1=2a n +1-2a n .∴3a n =2a n +1.∴a n +1a n=32. 又∵S 1=2a 2,∴a 2=12.∴a 2a 1=12.∴{a n }从第二项起是以32为公比的等比数列.∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=⎝ ⎛⎭⎪⎫32n -1. ⎝⎛也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,⎭⎪⎫求得S n =⎝ ⎛⎭⎪⎫32n -1答案:B5.(2013年焦作模拟)已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 012项的和等于( )A.3 0152B .3 015C .1 509D .2 010解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12, a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N *,1,n =2k k ∈N *,故数列的前 2 012项的和等于S 2 012=1006×⎝ ⎛⎭⎪⎫1+12=1 509.答案:C 二、填空题6.设等比数列{a n }的前n 项和为S n ,已知a 1=2,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 010=________.解析:设等比数列{a n }的公比为q ,则a n +2a n +1+a n +2=a n (1+2q +q 2)=0,∵a n ≠0,∴q 2+2q +1=0.解得q =-1, ∴S 2 010=0. 答案:07.(2013年石家庄模拟)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析:由题意知所求数列的通项为1-2n1-2=2n-1,故由分组求和法及等比数列的求和公式可得和为21-2n1-2-n =2n +1-2-n .答案:2n +1-2-n8.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和S n 为________.解析:由已知条件可得数列{a n }的通项为a n =1+2+3+…+n n +1=n2.∴b n =1a n a n +1=4nn +1=4⎝ ⎛⎭⎪⎫1n -1n +1. S n =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=4⎝⎛⎭⎪⎫1-1n +1=4nn +1. 答案:4n n +19.(2013年武汉模拟)等比数列{a n }的前n 项和S n =2n-1,则a 21+a 22+…+a 2n =________. 解析:当n =1时,a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式,∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列. ∴a 21+a 22+…+a 2n =1·1-4n1-4=13(4n-1). 答案:13(4n-1)三、解答题10.(2013年合肥模拟)在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N *恒成立.若存在,求出正整数k 的最小值;不存在,请说明理由. 解析:(1)设数列{a n }的公比为q ,由题意可得a 3=16,又a 3-a 2=8,则a 2=8,∴q =2.∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n n +34.∵1S n =4nn +3=43⎝ ⎛⎭⎪⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝ ⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<229.∴正整数k 的最小值为3.11.(2013年郑州模拟)已知数列{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16.(1)求数列{a n }的通项公式;(2)若数列{a n }和数列{b n }满足等式:a n =b 12+b 222+b 323+…+b n2n (n 为正整数),求数列{b n }的前n 项和S n .解析:(1)设等差数列{a n }的公差为d ,则依题意知d >0,由a 2+a 7=16,得2a 1+7d =16,①由a 3a 6=55,得(a 1+2d )(a 1+5d )=55,② 由①得2a 1=16-7d ,将其代入②得 (16-3d )(16+3d )=220,即256-9d 2=220.∴d 2=4,又d >0, ∴d =2,代入①得a 1=1, ∴a n =1+(n -1)·2=2n -1. (2)当n =1时,a 1=b 12,∴b 1=2.当n ≥2时,a n =b 12+b 222+b 323+…+b n -12n -1+b n2n ,a n -1=b 12+b 222+b 323+…+b n -12n -1,两式相减得a n -a n -1=b n2n ,∴b n =2n +1,∴b n =⎩⎪⎨⎪⎧2, n =1,2n +1, n ≥2.当n =1时,S 1=b 1=2;当n ≥2时,S n =b 1+b 2+b 3+…+b n =2+b 21-2n -11-2=2n +2-6,当n =1时上式也成立. 综上,当n 为正整数时,S n =2n +2-6.12.(能力提升)(2013年三明模拟)已知数列{a n }的前n 项和S n 满足:a (S n -a n )=S n -a (a 为常数,a ∈R).(1)求{a n }的通项公式;(2)设c n =ma n +1,求数列{c n }的前n 项和T n . 解析:(1)当n =1时,由a (S n -a n )=S n -a , 得a 1=a ,当n ≥2时,由a (S n -a n )=S n -a , 得a (S n -1-a n -1)=S n -1-a ,两式相减得a n =aa n -1.若a =0时,a n =0; 若a ≠0时,a na n -1=a ⇒{a n }是等比数列. ∴a n =a ·an -1=a n.综上:所求{a n }的通项为a n =a n,(a ∈R). (2)当a =0时c n =1,∴T n =n ;当a ≠0时,T n =1·a +2·a 2+3·a 3+…+n ·a n+n , 设P n =1·a +2·a 2+3·a 3+…+n ·a n, 则aP n =1·a 2+2·a 3+3·a 4+…+n ·an +1,两式相减得(1-a )P n =a +a 2+a 3+…+a n-nan +1,若a ≠1时,(1-a )P n =a 1-a n 1-a -na n +1⇒P n =a 1-a n 1-a 2-na n +11-a; 若a =1时,P n =1+2+3+…+n =n n +12.综上:T n=⎩⎪⎨⎪⎧a 1-a n 1-a 2-na n +11-a +n a ≠1,nn +32a =1.[因材施教·学生备选练习]1.(2013年济南模拟)设数列{b n }的前n 项和为S n ,且b n =2-2S n ;数列{a n }为等差数列,且a 5=14,a 7=20(n ∈N *).(1)求数列{b n }的通项公式;(2)若c n =a n ·b n (n =1,2,3…),T n 为数列{c n }的前n 项和.求T n . 解析:(1)由b n =2-2S n , 令n =1,则b 1=2-2S 1, 又S 1=b 1, 所以b 1=23,当n ≥2时,由b n =2-2S n ,可得b n -b n -1=-2(S n -S n -1)=-2b n , 即b n b n -1=13, 所以{b n }是以b 1=23为首项,13为公比的等比数列,于是b n =2·13n .(2)数列{a n }为等差数列,公差d =12(a 7-a 5)=3,∵a 5=a 1+4d ,∴a 1=2. ∴a n =3n -1.从而c n =a n ·b n =2(3n -1)·13n ,∴T n =2⎣⎢⎡⎦⎥⎤2·13+5·132+8·133+…+3n -1·13n ,13T n =2⎣⎢⎡ 2·132+5·133+…+3n -4·13n +3n -1·⎦⎥⎤13n +1,∴23T n =2⎣⎢⎡ 2·13+3·132+3·133+…+3·13n -3n -⎦⎥⎤113n +1,T n =72-12·3n -2-3n -13n. 2.(2013年合肥模拟)已知数列{a n }的前n 项和为S n ,且满足S n =1-a n (n ∈N *).数列{b n }的各项均为正数,对于一切n ∈N *,有∑nk =11b k +b k +1=nb 1+b n +1,且b 1=1,b 2=2,b 3=3.(1)求数列{a n }和{b n }的通项公式;(2)设数列{a n b n }的前n 项和为T n ,求证:T n <2.解析:(1)∵S n =1-a n ,∴当n =1时,a 1=S 1=1-a 1,解得a 1=12;当n ≥2时,a n =S n-S n -1=(1-a n )-(1-a n -1),∴2a n =a n -1,即a n a n -1=12. ∴数列{a n }是首项为12,公比为12的等比数列.∴a n =12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n.∵对于一切n ∈N *,有∑nk =11b k +b k +1=n b 1+b n +1①当n ≥2时,有∑n -1k =1 1b k +b k +1=n -1b 1+b n,②①-②得,1b n +b n +1=nb 1+b n +1-n -1b 1+b n,化简得:(n -1)·b n +1-nb n +b 1=0,③ 用n +1替换③式中的n 得,nb n +2-(n +1)b n +1+b 1=0,④由③-④,整理得b n +2-b n +1=b n +1-b n (n ≥2). ∵b 3-b 2=b 2-b 1=1,∴数列{b n }为等差数列. ∵b 1=1,b 2=2,∴数列{b n }的公差d =1, ∴b n =1+(n -1)=n .(2)∵数列{a n b n }的前n 项和为T n , ∴T n =12+222+323+…+n2n ,⑤∴12T n =122+223+…+n2n +1,⑥ 由⑤-⑥得,12T n =12+122+…+12n -n 2n +1=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n 2n +1=1-n +22n +1.∴T n =2-n +22n<2.。
2019年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理201805194269
5.4 数列求和[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(2017届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6,所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式, 所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n .(1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1. 因为a n >0, 所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n =n n +12>n 22=n2,所以S 1+S 2+…+S n >12+22+…+n2=1+2+…+n 2=S n2. 又S n =n n +12< n +122=n +12,所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12,所以S n2<S 1+S 2+…+S n <S n +1-12.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 第4节
1.数列{a n }中,a n =
1n (n +1)
,若{a n }的前n 项和为2 019
2 020,则项数n 为( )
A .2 019
B .2 016
C .2 017
D .2 018
解析:A [a n =
1n (n +1)=1n -1
n +1
,
S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 019
2 020,所以n =2 019.]
2.12+12+38+…+n
2n 等于( ) A.2n -n -12n
B.2n +
1-n -22n
C.2n -n +12n
D.2n +1-n +22n
解析:B [法一:令S n =12+222+323+…+n
2n ,①
则12S n =122+223+…+n -12n +n
2
n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=12⎣⎡⎦⎤
1-⎝⎛⎭⎫12n 1-12-n
2
n +1.∴S n =2n +1-n -22n .故选B.
法二:取n =1时,n 2n =1
2
,代入各选项验证可知选B.]
3.已知数列{a n }:12,13+23,14+24+34,15+25+35+4
5,…,那么数列{b n }=⎩⎨⎧⎭
⎬⎫1a n a n +1的前
n 项和为( )
A .4⎝⎛⎭
⎫1-1
n +1
B .4⎝⎛⎭
⎫12-1n +1
C .1-1
n +1
D.12-1n +1
解析:A [由题意知a n =
1n +1+2n +1+3n +1+…+n
n +1=1+2+3+…+n n +1
=n 2,b n =
1
a n a n +1
=4⎝⎛⎭⎫1n -1n +1,所以b 1+b 2+…+b n =4⎝⎛⎭⎫1-12+4⎝⎛⎭⎫12-13+…+4⎝⎛⎭⎫1n -1n +1=4⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=4⎝⎛⎭
⎫1-1
n +1.]
4.数列{a n }的通项公式为a n =(-1)n -
1·(4n -3),则它的前100项之和S 100等于( )
A .200
B .-200
C .400
D .-400
解析:B [S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.]
5.数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则⎩⎨⎧⎭
⎬⎫
1a n 的前100项和
为( )
A.100101
B.99100
C.101100
D.200
101
解析:D [数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n , ∴a n +1-a n =1+n ,∴a n -a n -1=n ,
∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)
2,
∴1a n =2
n (n +1)=2⎝⎛⎭
⎫1n -1n +1, ∴⎩⎨⎧⎭
⎬⎫
1a n 的前100项和 2⎝⎛⎭⎫1-12+12-13
+…+1100-1101=2⎝⎛⎭⎫1-1101=200
101,故选D.] 6.(2019·聊城市一模)已知数列{a n }的前n 项和公式为S n =n 2,若b n =2a n ,则数列{b n }的前n 项和T n =_________________________________________________________________.
解析:∵S n =n 2,① 当n =1时,S 1=a 1=1, 当n ≥2时,S n -1=(n -1)2,② 由①-②可得a n =2n -1, 当n =1时也成立,∴a n =2n -1, ∴b n =2a n =2×4n -1
,∴T n =2(1-4n )1-4
=23(4n
-1).
答案:2
3
(4n -1)
7.数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=________. 解析:当n =1时,a 1=S 1=-1. 当n ≥2时,a n =S n -S n -1=2n -5.
∴a n =⎩
⎪⎨⎪⎧
-1,n =1,2n -5,n ≥2.
令2n -5≤0,得n ≤5
2
,∴当n ≤2时,a n <0,当n ≥3时,
a n >0,∴|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+(a 3+a 4+…+a 10)=S 10-2S 2=66. 答案:66
8.数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.
解析:当n =1时,a 1=S 1=1,
当n ≥2时,a n =S n -S n -1=2n -1-(2n -
1-1)=2n -
1,
又∵a 1=1适合上式.∴a n =2n -
1,∴a 2n =4
n -
1
. ∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列. ∴a 21+a 22+…+a 2n =
1·(1-4n )1-4
=13(4n
-1). 答案:1
3
(4n -1)
9. (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;
(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q ,由题设可得
⎩⎪⎨⎪⎧ a 1(1+q )=2a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧
q =-2,a 1=-2,
故{a n }的通项公式为a n =(-2)n .
(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n ·2n +
13.
由于S n +2+S n +1=-43+(-1)n
·2n +
3-2n +
23
=2⎣⎡⎦⎤-23+(-1)n
2n +
13=2S n ,
故S n +1,S n ,S n +2成等差数列.
10.(2018·天津卷)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.
(1)求S n 和T n ;
(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 解:(1)设等比数列{b n }的公比为q ,由b 1=1, b 3=b 2+2,可得q 2-q -2=0,因为
q >0,可得q =2,故b n =2
n -1
.所以,T n =1-2n
1-2
=
2n -1.
设等差数列{a n }的公差为d ,由b 4=a 3+a 5,可得a 1+3d =4,由b 5=a 4+2a 6,可得3a 1
+13d =16,从而a 1=1,d =1,故a n =n .所以S n =n (n +1)
2
.
(2)由(1),有T 1+T 2+…+T n
=(21+22+…+2n )-n =
2×(1-2n )1-2
-n =2n +
1-n -2.
由S n +(T 1+T 2+…+T n )=a n +4b n 可得n (n +1)2+2n +1-n -2=n +2n +
1,整理得n 2-3n
-4=0,解得n =-1(舍),或n =4.所以n 的值为4.。