山东省青岛市莱西市2019-2020年上学期人教版九年级(五四学制)期中质量检测数学试题 含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年上学期九年级期中质量检测数学试题
一、选择题(共8小题,每小题3分,满分24分)
1.已知∠α为锐角,且sinα=,则∠α=()
A.30°B.45°C.60°D.90°
2.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()
A.B.4 C.36 D.
3.抛物线y=﹣3x2+6x+2的对称轴是()
A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1 4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()
A.主视图的面积为4 B.左视图的面积为4
C.俯视图的面积为3 D.三种视图的面积都是4
5.如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()
A.100米B.50米C.米D.50米
6.已知二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表:
那么关于它的图象,下列判断正确的是()
A.开口向上
B.x=3是方程ax2+bx+c=0的一个解
C.与y轴交于负半轴
D.在直线x=1左侧y随x的增大而减小
7.已知二次函数的图象y=ax2+bx+c(0≤x≤3)如图.关于该函数在所给自变量取值范围内,下列说法正确的是()
A.有最小值0,有最大值3 B.有最小值﹣1,有最大值0
C.有最小值﹣1,有最大值3 D.有最小值﹣1,无最大值
8.已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()
A.B.
C.D.
二、填空题(本题满分18分,共有6道小题,每小题3分)
9.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是.10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果BC=3,AC=4,那么cos∠BCD=.
11.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是.
12.关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,其中∠A是锐角△ABC的一个内角,则sin A=.
13.点P1(﹣1,y1),P2(2,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.
14.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.
三、解答题(本题满分78分,共有10道小题)
15.计算:
(1)|1﹣|+()﹣2﹣4cos30°
(2)tan60°+cos45°﹣tan260°+sin30°
16.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段PG所示,路灯灯泡在线段DE上.
(1)请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.
(2)如果灯杆高12m,小亮的身高1.6m,小亮与灯杆的距离13m,请求出小亮影子的长度.
17.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)
18.已知抛物线y=﹣x2﹣4x+5
(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,写出顶点坐标.
(2)抛物线的开口,对称轴.当x时,y随x增大而增大.19.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)
20.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了46米木栏.(1)若a=26,所围成的矩形菜园的面积为280平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
21.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)
22.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.
(3)设直线BC为y=mx+n(k≠0),若mx+n≥ax2+bx﹣4a,结合函数图象,写出x的取值范围.
23.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图所示二次函数y1=x2+2x+2与y2=x2﹣2x+2是“关于y轴对称二次函数”.
(1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点.
(2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”解析式为;二次函