xx高中自主招生必做试卷(数学)含答案
2023年漳州一中高中自主招生考试数学试卷参考答案
漳州一中高中自主招生考试 数学参照答案及评分意见11. 且 12. (或 )13.4016 14. 15. 16. 三、解答题(本大题共有7小题, 共86分)17. (8分)原式 …………………………………………6分1-=………………………………………………………………8分 18. (10分)原式 ………………………………2分x x --=4162)4()4)(4(---+=x x x 4--=x ………………………7分∴当 时, 原式 ……………………10分19. (10分)(1)(4分) ………………………………………4分 (2)①(4分)树状图为:或列表法为:(画出树状图或列出表格得4分) ……………………………………………4分 ②(2分)因此411234==的倍数p …………………………………………2分 20. (12分)解法一:设参与 处公共场所旳义务劳动, 则学校派出 名学生^…………………………………………………………………………………2分依题意得: ………………………6分 由(1)得: , 由(2)得: ∴434433≤<x ………………………………………………………………8分 又 为整数, ∴ ……………………………………………………10分∴当 时, ………………………………………………11分答: 这所学校派出55名学生, 参与4处公共场所旳义务劳动 …………12分解法二:设这所学校派出 名学生, 参与 处公共场所旳义务劳动……1分 依题意得: ……………………………6分解得: …………………………………………………………8分 为整数, ∴ ………………………………………………………10分∴当 时, ………………………………………11分答: 这所学校派出55名学生, 参与4处公共场所旳义务劳动 …………12分 21. (14分)证法一:如图, 分别延长 、 相交于点 ………………1分 设 , ∵ ,∴ ,得 ………3分∴322=-=AM BM AB …………4分∵ , ∴ , 且 ,在 中, ………………………………6分 又∵ 、 ,∴)(ASA ECN MDN ∆≅∆……………………………………………………9分 ∴ 、 , ………………………………………11分 ∴ 、 , ∴ …………13分∴MBC NMB ∠=∠…………………………………………………………14分 证法二: 设 , 同证法一 ………………6分如图, 将 绕点 顺时针旋转 得到 , 连结 , ∵ , ∴ 是平角, 即点 三点共线,………………………………………………………………………………… 7分 ∴BEC BMA ∠=∠……………………………8分1==AM CE 、BM BE = …………………9分∴BEM BME ∠=∠…………………………10分 ∵MN CE CN NE ==+=+=25123 ……11分 ∴NEM NME ∠=∠…………………………12分 ∴NEM BEM NME BME ∠+∠=∠+∠ ∴AMB BEC BMN ∠=∠=∠………………13分 又∵MBC AMB ∠=∠∴MBC BMN ∠=∠…………………………14分 22. (16分)(1)(4分)设抛物线旳解析式为89252-⎪⎭⎫ ⎝⎛-=x a y ………………………1分∵抛物线通过 , ∴ , 解得: …………3分∴8925212-⎪⎭⎫ ⎝⎛-=x y (或225212+-=x x y ) …………………………4分(2)(4分)令 得 , ∴ ……………………………………1分 令 得 , 解得 、 ………………………3分∴)0 , 1(C 、) 0, 4(D …………………………………………………………4分(3)(8分)结论: …………………………………1分理由是: ①当点重叠时, 有………………………………2分②当 , ∵直线 通过点 、 , ∴直线 旳解析式为………3分设直线 与 轴相交于点 , 令 , 得 , ∴ ,则)2,0()2,0(B E 与点-有关x 轴对称………………4分 ∴ , 连结 , 则 ,∴ , …………………5分∵在 中, 有 …………………………………………6分∴BC AC AE PE PA PB PA +=>+=+…………………………………7分 综上所得BC AC BP AP +≥+………………………………………………8分 23. (16分)(1)(6分)解法一: 当点 在⊙ 上时, 设 与⊙交于点 ,∵ , ∴ ………………………1分 ∵ ∥ , ∴ ………………2分∴PD AP =…………………………………………3分又 , …………………4分………………………………………5分∴︒︒=⨯⨯=∠⨯=∠3018031213121AOB APE …6分 解法二: 设点 在⊙ 上时, 由已知有 , ……………………1分 ∴△ △ , ……………………………………………2分 ∴ , …………………………………………3分 在 △ 中, ……5分∴︒=∠30APC ……………………………………………………6分(2)(10分)k 值不随点P 旳移动而变化.理由是:∵ 是⊙ 右半圆上旳任意一点, 且 ∥ ,∴ ……………………………1分∵ 是⊙ 旳切线, ∴ ,⌒ ⌒又∵ , ∴ ,∴ABQ ACP ∠=∠ ……………………………2分 ∴ACP ∆∽OBQ ∆ ……………………………3分 ∴QBPCOB AC =……………………………………4分 又∵ 、 ,∴ACF ∆∽ABQ ∆……………………………………………………………6分 ∴BQCFAB AC = …………………………………………………………………7分 又∵ , ∴ 即 …………………………8分∴CF PC 2= 即CF PF = …………………………………………………9分 ∴ ,即 值不随点 旳移动而变化. ………………………10分。
2024初升高自主招生数学试卷(四)及参考答案
2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。
2024年广东省深圳中学自主招生数学试题及答案
2024年广东省深圳中学自主招生数学试卷一、填空题:本题共15小题,每小题3分,共45分。
1.______.2.方程在的正解为______.3.等腰的底边AC长为30,腰上的高为24,则的腰长为______.4.已知实数m,n满足,且,则______.5.若x为全体实数,则函数与的交点有______个.6.若,,则______.7.K为内一点,过点K作三边的垂线KM,KN,KP,若,,,,,则______.8.已知a,b,c,令a,b,c的最小值为,已知,若的最大值为M,则______.9.已知正方形OBAC,以OB为半径作圆,过A的直线交于M,Q,交BC与P,R为PQ中点,若,,则______.10.若a,b,c,d,e为两两不同的整数,则的最小值为______.11.PA,PB分别为和的切线,连接AB交于C交于D,且,已知和的半径分别为20和24,则______.12.已知a,b,c正整数,且只要则,设m的最小值为为最简分数,则______.13.对于任意实数x,y,定义运算符号*,且有唯一解,满足,,则______.14.已知正整数A,B,C且,满足,则______.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为______.答案和解析1.【答案】54【解析】解:,故答案为:利用同底数幂的乘法法则,有理数的混合运算法则进行计算,即可解答.本题考查了有理数的混合运算,同底数幂的乘法,准确熟练地进行计算是解题的关键.2.【答案】【解析】解:首先,考虑方程的两边统一分母.给定的方程是:,通过通分,我们可以将左边的两个分数合并为一个分数:,展开并化简分母和分子:分母:,分子:,于是原方程简化为:,进一步简化得到:,移项并除以假设,得:,解这个二次方程得到x的值:,,方程的正解为故答案为:根据解无理方程的步骤求解即可.本题考查无理方程,解题的关键是掌握无理方程的解题方法.3.【答案】【解析】解:等腰的底边AC长为30,腰上的高为24,的腰长为,故答案为:根据等腰三角形的性质和勾股定理即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4.【答案】50【解析】解:由题意可知,m,是方程的两个根,,即,,故答案为:由两个方程的形式可知,m,是方程的两个根,根据根与系数的关系得到与n的数量关系并代入计算即可.本题考查考查根与系数的关系、绝对值,确定m,是方程的两个根、掌握根与系数的关系是解题的关键.5.【答案】2【解析】解:方法①:,当时,,联立方程组,,整理,得,解得:,;当时,,联立方程组,,整理,得,解得:,,交点有2个.故答案为:方法②:图象法,在同一坐标系中画两个函数的图象.如图,两函数的交点有2个.根据二次函数的性质,分和两种情况把两函数解析式整理成一般形式,求x的值,确定交点个数即可.本题考查了二次函数的性质,利用分类讨论的思想,解题关键是根据x的取值范围去掉绝对值符号,整理成一般形式求解.6.【答案】0【解析】解:,,,所以故答案为:利用“代1”法将进行变形处理即可求得答案.本题主要考查了分式的化简求值,解题的技巧性在于“1”的巧妙应用.7.【答案】12【解析】解:连接AK、BK、CK,于点M,于点N,于点P,,,,,,,,,,,,,,,,,故答案为:连接AK、BK、CK,由,得,,,求得,,,可推导出,则,于是得到问题的答案.此题重点考查勾股定理的应用,正确地作出辅助线并且求得,,是解题的关键.8.【答案】14【解析】解:由题意,令,,,由,解得:,由,解得:,由,解得:,直线与直线的交点为,直线与的交点为,直线与的交点为,当时,,当时,,当时,,当时,,即,当时,;当时,;当时,;当时,综上所述,,即的最小值为,,故答案为:根据题意,令,,,联立方程组可求得直线与直线的交点为,直线与的交点为,直线与的交点为,再分情况进行分析:当时,;当时,;当时,;当时,进而求出M的值,即可得出答案.本题考查了一次函数与二元一次方程组,解二元一次方程组,熟练掌握一次函数与二元一次方程组,解二元一次方程组的方法是解题的关键.9.【答案】【解析】解:过P作直径FN,延长CO交于E,连MC、ME、MN、正方形ABOC,,为直径,,,又,,,,,正方形ABOC,,,又,≌,由得由得,即,,,,,,,故答案为:过P作直径FN,延长CO交于E,先证明,故再证明,故最后证明≌,故再换算即可.本题考查了正方形综合题,运用正方形性质,结合相似是解题关键.10.【答案】5【解析】解:,b,c,d为两两不同的整数,,,,,,的最小值为:故答案为:根据题意,a,b,c,d为两两不同的整数,可得,,,,,即可得的最小值为:本题考查了整式的混合运算,完全平方公式,熟练掌握整式混合运算法则,完全平方公式是解题的关键.11.【答案】125【解析】解:作,,,,,,,,,,,PB分别为和的切线,,,,,,,∽,∽,,,,故答案为:作,,,证,证,,证∽,∽,得出,即可解答.本题考查切线的性质,垂径定理,相似三角形的判定和性质,作辅助线,构造相似三角形是解题的关键.12.【答案】3【解析】解:,,,,,,,又,,即的最大值为2,,,为最简分数,故答案为:根据题意,,,,可得,,,进而得出,结合已知可得出,即的最大值为2,即可得出m的值,即的值,根据最简分数定义,即可得出答案.本题考查了分式的加减,最简分数定义,代数式求值,掌握分式的加减运算法则,最简分数定义是解题的关键.13.【答案】0【解析】解:令,则,即,令,,故答案为:根据新定义把变成据此解答即可.本题考查了实数的运算、数与式中的新定义问题,理解“*”的规定是关键.14.【答案】832【解析】解:,,,,,,,,,若尾数为7,则在1、4、9、6、5、6、9、4、1中,,此时A、B、C三个数为9、5、1,,此时A、B、C三个数为6、5、4,,此时A、B、C三个数为8、3、2,或8、7、2,下面开始验证,,不符合题意,,不符合题意,,符合题意,,不符合题意,综上,故答案为:根据平方的尾数和特征,从而得出ABC三个数的可能,再代入验证即可.本题主要考查尾数平方的特征,利用尾数和得出A、B、C三个数的可能性是解题的关键.15.【答案】560【解析】解:如图,作于点D,设腰长,底边,则,在中,,,,,故,,,,b为整数,,或,或,或,或,,可能的腰长之和为:故答案为:根据题意将腰长和底边设出来,通过面积和周长的关系建立关于a和b的等式,再利用分式取整的计算方法求解即可.本题主要考查了等腰三角形的性质等内容,熟练掌握相关知识是解题的关键.。
安徽省合肥XX中学自主招生数学试卷(含答案解析)
安徽省合肥XX中学自主招生数学试卷一、选择题(本大提共8小题,每小题5分,共40分)1.(5分)已知a=,b=,则二次根式的值是()A.6B.7C.8D.92.(5分)已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.3.(5分)已知一次函数y=kx+b(k≠0)的图象经过点A(1,3),且与坐标轴围成面积为6的三角形,则满足条件的函数有()A.2个B.3个C.4个D.5个4.(5分)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20B.2C.2或﹣20D.2或205.(5分)对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|AB|的值是()A.B.C.D.6.(5分)已知a,b,c是△ABC的三边,则下列式子一定正确的是()A.a2+b2+c2≥ab+bc+ac B.<C.D.a3+b3<c37.(5分)如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3B.C.D.28.(5分)半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.二、填空题(本大提共7题,每小题5分,共35)9.(5分)若分式方程=a无解,则a的值为.10.(5分)已知一列数a1,a2,a3,…满足a1=,a2=,a3=,a4=,…,依此类推,则a1,a2,…,a,这个数的积为.11.(5分)某公司加工252个零件,计划若干天完成,加工了2天后,由于改进新技术,每天可多加工9个零件,因此提前1天完成任务,则原计划完成任务的天数为.12.(5分)已知函数y=x2﹣2mx+4(m是实数)与x轴两交点的横坐标为x1,x2,当1<x1<2,1<x2<3时,则m的范围是.13.(5分)如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于.14.(5分)如图,在等腰直角三角形ABC中,∠C=90°,内取一点P,且AP=AC=a,BP=CP=b(b<a),则=.15.(5分)足球运动员在足球场上,常需要带球跑到一定位置后,再进行射门,这个位置为射门点,射门点与球门边框两端的夹角是射门角.如果点A,B表示球门边框(不考虑球门的高度)的两端点,点C表示射门点,连接AC,BC,则∠ABC就是射门角,在不考虑其他因素的情况下,一般地,射门角越大,射门进球的可能性越大,如图(1)(2)(3)是运动员带球跑动的三种常见路线(用直线L表示),则下列说法:①如图(1),AB∥L,当运动员在线段AB的垂直平分线与L的交点C处射门时,进球的可能性最大;②如图(2)AB⊥L垂足为D,设AB=2a,BD=b,当运动员在离底线AB的距离为的点C处(即CD=)射门时,进球可能性最大.③如图(3),AB与L交于点Q,设AB中点为O,当点C满足OQ=CQ时,运动员在点C处射门时,进球的可能性最大.④如图(3),过点C作直线L的垂线与线段AB的垂直平分线交于点M,当M恰好是△ABC的外心时,运动员在点C处射门时,进球可能性最大.其中正确的序号是(写出所有正确的序号)三、解答题(本大题共5小题,共75分)16.(12分)若,求的值.17.(13分)某学校在大课间举行跳绳活动,为此学校准备购置长、中、短三种跳绳若干,要求中跳绳的条数是长跳绳的2倍,且短跳绳的条数不超过长跳绳的6倍.已知长跳绳单价是20元,中跳绳的单价是15元,短跳绳的单价是8元.(1)若学校准备用不超过2300元的现金购买200条长、中、短跳绳,问学校有几种购买方案可供选择?(2)若学校准备恰好用3000元的现金购买n条长、中、短跳绳.求n的最大值.18.(13分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.19.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,﹣),点M 是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.20.(14分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).安徽省合肥168中自主招生数学试卷参考答案与试题解析一、选择题(本大提共8小题,每小题5分,共40分)1.(5分)已知a=,b=,则二次根式的值是()A.6B.7C.8D.9【解答】解:∵a==(﹣)2=4﹣,b===4+,∴ab=(4+)(4﹣)=1,∴======9.故选:D.2.(5分)已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为,故选:C.3.(5分)已知一次函数y=kx+b(k≠0)的图象经过点A(1,3),且与坐标轴围成面积为6的三角形,则满足条件的函数有()A.2个B.3个C.4个D.5个【解答】解:把A(1,3)代入y=kx+b中,得3=k+b,∴b=3﹣k,∴一次函数的解析式为:y=kx+3﹣k,∴一次函数图象与坐标轴的交点为(0,3﹣k),(,0),∵一次函数y=kx+b(k≠0)的图象与坐标轴围成三角形的面积为6,∴,解得,k=﹣3,或k=9,∴k的值有3个,∴满足条件的函数有3个.故选:B.4.(5分)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20B.2C.2或﹣20D.2或20【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选:A.5.(5分)对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|AB|的值是()A.B.C.D.【解答】解:y=x2﹣x+=(x﹣)(x﹣),∴A n(,0),B n(,0),∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|AB|=+++…+=1﹣=,故选:C.6.(5分)已知a,b,c是△ABC的三边,则下列式子一定正确的是()A.a2+b2+c2≥ab+bc+ac B.<C.D.a3+b3<c3【解答】解:A、由三角形三边关系可得:(a﹣b)2+(b﹣c)2+(a﹣c)2≥0,可得:2(a2+b2+c2)≥2(ab+bc+ac),可得:(a﹣b)2+(b﹣c)2+(a﹣c)2≥0,故选项正确;B、由三角形三边关系不一定得出a+b>c,<,可得<,>,选项错误;C、由三角形三边关系不一定得出a>b>c,由,可得:a>b>c,选项错误;D、由三角形三边关系不一定得出a3+b3<c3,选项错误;故选:A.7.(5分)如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3B.C.D.2【解答】证明:∵AD∥BE,AD∥FC,FC∥BE,∴△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.即S△DEF=2S△ABC.∵S△ABC=1,∴S△DEF=2,故选:D.8.(5分)半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.【解答】解:∵AB是直径,∴AB=5,∠ACB=90°,∴AB2=AC2+BC2,且BC:CA=4:3,∴BC=4,AC=3,∵∠A=∠P,∠ACB=∠PCQ=90°,∴△ACB∽△PCQ,∴,∴CQ=,∴当PC最大时,CQ有最大值,∴PC是直径时,CQ的最大值=×5=,故选:B.二、填空题(本大提共7题,每小题5分,共35)9.(5分)若分式方程=a无解,则a的值为1或﹣1.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣110.(5分)已知一列数a1,a2,a3,…满足a1=,a2=,a3=,a4=,…,依此类推,则a1,a2,…,a,这个数的积为.【解答】解:a1=,a2=,=2,a3==﹣1,a4==,…,依此类推,发现每3个数为一组一个循环,前3个数的乘积为:2×(﹣1)=﹣1,所以÷3=672…1,则a1,a2,…,a,这个数的积为(﹣1)672×=.故答案为:.11.(5分)某公司加工252个零件,计划若干天完成,加工了2天后,由于改进新技术,每天可多加工9个零件,因此提前1天完成任务,则原计划完成任务的天数为7.【解答】解:设原计划每天加工x个零件.由题意得:+2+1=,整理得:x2+27x﹣2268=0.解得:x1=36,x2=﹣63(不合题意舍去).经检验:x=36是原方程的解.当x=36时,=7,即原计划7天完成,故答案为:7.12.(5分)已知函数y=x2﹣2mx+4(m是实数)与x轴两交点的横坐标为x1,x2,当1<x1<2,1<x2<3时,则m的范围是2<m<.【解答】解:由题意得:△=b2﹣4ac=(﹣2m)2﹣4×4>0,解得:m>2或m<﹣2①,函数的对称轴为x=﹣=﹣=m,当1<x1<2,1<x2<3时,1<(x1+x2)<,而x=﹣=﹣=m=(x1+x2),即1<m<②,联立①②并解得:2<m<,故答案为:2<m<.13.(5分)如图,已知四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于﹣6.【解答】解:过点C作CE⊥y轴,垂足为E,∵A,B两点的坐标分别是(﹣1,0),(0,1),∴OA=OB=1,∠OAB=∠OBA=45°,∵ABCD是矩形,∴∠ABC=90°,∴∠CBE=180°﹣90°﹣45°=45°=∠BCE,∴△AOB∽△BEC,∴==,又∵BC=2AB,∴BE=CE=2,OE=OB+BE=1+2=3,∴点C(﹣2,3),代入反比例函数关系式得,k=﹣2×3=﹣6,故答案为:﹣6.14.(5分)如图,在等腰直角三角形ABC中,∠C=90°,内取一点P,且AP=AC=a,BP=CP=b(b<a),则=.【解答】解:如图:过点P作PD⊥BC与点D,作PE⊥AC于点E,可得矩形PDCE,有PD=EC,PE=CD,∵PC=PB,PD⊥BC,∴DC=DB=BC=AC=a,∴PE=CD=a,Rt△AEP中,AP=AC=a,PE=a,∴AE=a,∴EC=AC﹣AE=a﹣a=a.∴PD=EC=a,Rt△CDP中,PD2+CD2=CP2,∴(a)2+()2=b2,∴a2+a2=b2,∴a2=b2,∴(2﹣)a2=b2.∴=2﹣,∴===.故答案是:.15.(5分)足球运动员在足球场上,常需要带球跑到一定位置后,再进行射门,这个位置为射门点,射门点与球门边框两端的夹角是射门角.如果点A,B表示球门边框(不考虑球门的高度)的两端点,点C表示射门点,连接AC,BC,则∠ABC就是射门角,在不考虑其他因素的情况下,一般地,射门角越大,射门进球的可能性越大,如图(1)(2)(3)是运动员带球跑动的三种常见路线(用直线L表示),则下列说法:①如图(1),AB∥L,当运动员在线段AB的垂直平分线与L的交点C处射门时,进球的可能性最大;②如图(2)AB⊥L垂足为D,设AB=2a,BD=b,当运动员在离底线AB的距离为的点C处(即CD=)射门时,进球可能性最大.③如图(3),AB与L交于点Q,设AB中点为O,当点C满足OQ=CQ时,运动员在点C处射门时,进球的可能性最大.④如图(3),过点C作直线L的垂线与线段AB的垂直平分线交于点M,当M恰好是△ABC的外心时,运动员在点C处射门时,进球可能性最大.其中正确的序号是①②④(写出所有正确的序号)【解答】解:①作△ABC的外接圆圆O,过C作圆O的切线,由圆的切线性质可得,当△ABC等腰三角形的时候,∠ACB最大,所以正确;②当△DBC∽△DAC时,∠ACB最大,此时,CD2=BD•AD=b(2a+b)=2ab+b2,CD=,所以正确;③④过点C作l的垂线,交AB垂直平分线于M,当M恰好是△ABC的外心时,∠ACB最大,所以③错误,④正确.故答案为:①②④.三、解答题(本大题共5小题,共75分)16.(12分)若,求的值.【解答】解:∵=﹣,∴x=a+﹣2,∵x≥0,∴≥,∴a≥1,≤1,原式=,=,=,=,当a≥时,原式==a2;当a<时与a≥1,≤1相矛盾.综上所述,原二次根式的值为:a2.故答案为:a2.17.(13分)某学校在大课间举行跳绳活动,为此学校准备购置长、中、短三种跳绳若干,要求中跳绳的条数是长跳绳的2倍,且短跳绳的条数不超过长跳绳的6倍.已知长跳绳单价是20元,中跳绳的单价是15元,短跳绳的单价是8元.(1)若学校准备用不超过2300元的现金购买200条长、中、短跳绳,问学校有几种购买方案可供选择?(2)若学校准备恰好用3000元的现金购买n条长、中、短跳绳.求n的最大值.【解答】解:(1)设购进x条长跳绳,则购进2x条中跳绳,(200﹣x﹣2x)条短跳绳,依题意,得:,解得:22≤x≤26.∵x为正整数,∴x=23,24,25,26,∴学校共有4种购买方案可供选择.(2)设可以购买a条长跳绳,则购进2a条中跳绳,(n﹣a﹣2a)条短跳绳,依题意,得:,化简,得:,∴13a=4(375﹣n),∴a为4的倍数,设a=4k,则n=375﹣13k,∴375﹣13k≤36k,∴k≥7,∴k的最小值为8,n的最大值为271.18.(13分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【解答】(1)证明:∵DC2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连接OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠P AD,∠CPB=∠APD,∴△PCB∽△P AD,∴,即,∴r=4,即⊙O的半径为4.19.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,﹣),点M 是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.【解答】解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×(﹣x2+x)×3=﹣(x﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).综上,m=﹣1或﹣时,△BDM为直角三角形.20.(14分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).【解答】解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).。
2024年浙江省温州市重点高中自主招生数学试卷+答案解析
2024年浙江省温州市重点高中自主招生数学试卷一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.对正整数n,记n!…,则1!!!…!的末尾数为()A.0B.1C.3D.52.在分别标有号码2、3、4、…10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是()A. B. C. D.3.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A.1B.2C.3D.44.函数与的图象可能是()A. B.C. D.5.十进制数278,记作,其实,二进制数有一个为整数进制数,把它的三个数字顺序颠倒得到的k进制数是原数的3倍,则()A.10B.9C.8D.76.正方形ABCD,正方形BEFG和正方形PKRF的位置如图所示,点G在线段DK上,正方形BEFG的边长为2,则的面积为()A.4B.2C.3D.7.两个等腰直角、如图放置,,,,DE与AC交于点H,连接BH,若,下列结论错误的是()A.≌B.为等边三角形C.D.8.如图,在圆内接四边形ABCD中,,,为圆心,,,,,则此四边形的面积为用含a、b、c、d表示四边形ABCD的面积A.B.C.D.二、填空题:本题共8小题,每小题4分,共32分。
9.已知a是64的立方根,是a的平方根,则的算术平方根为______.10.关于x的函数符合以下条件:函数在处无意义;当x取非零实数时都有如当时,有,可以求得则的函数表达式是______.11.如图,在“镖形”ABCD中,,,,则点D到AB的距离为______.12.已知正整数a,b,c满足,,则abc的最大值为______.13.AB为半圆O的直径,C为半圆弧的一个三等分点,过B,C两点的半圆O的切线交于点P,则______.14.矩形ABCD的边长,,E为AB的中点,F在线段BC上,F在线段BC上,且BF::2,AF分别与DE,DB交于点M,N,则______.15.实数a,b,c,d满足:一元二次方程的两根为a,b,一元二次方程的两根为c,d,则所有满足条件的数组为______.16.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了______支圆珠笔.三、解答题:本题共4小题,共56分。
自主招生数学试题及答案
自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。
A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。
A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。
6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。
7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。
8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。
三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。
10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。
求工厂的盈亏平衡点。
答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。
高中自主招生数学试题及答案
高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。
A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。
A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。
7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。
8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。
9. 一个正方体的体积为27,它的边长是_________。
10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。
三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。
(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。
(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。
(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。
(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。
(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。
希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。
2023年四川省成都市三校高中联考自主招生数学试卷(解析版)
2023年四川省成都市三校高中联考自主招生数学试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1.某几何体从三个方向看到的平面图形都相同,这个几何体可以是()A. B. C. D.【答案】C【解析】【分析】根据题意,结合几何体的三视图的规则,逐项判定,即可求解.【详解】对于A 中,由圆锥的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,所以A 不合题意;对于B 中,由三棱柱的主视图和左视图都是矩形,俯视图是三角形,所以B 不合题意;对于C 中,由正方体的三视图都是正方形,所以C 符合题意;对于D 中,由圆柱的主视图和左视图都是矩形,俯视图是圆,所以D 不合题意.故选:C.2.把抛物线23(1)2y x =+-先向右平移1个单位,再向上平移n 个单位后,得到抛物线23y x =,则n 的值是()A.1B.2C.3D.4【答案】B【解析】【分析】由函数的平移变化可得20n -+=,即可得出答案.【详解】解:把抛物线23(1)2y x =+-先向右平移1个单位,再向上平移n 个单位后,得到:23(11)2,y x n =+--+即:232,y x n =-+由题意可知:20n -+=,2n ∴=,故选:B.3.已知点()()()1232,1,,,3,y y y --都在反比例函数21k y x+=的图象上,那么123y y y 、、的大小关系正确的是()A .123y y y << B.321y y y <<C.213y y y << D.312y y y <<【答案】C【解析】【分析】根据反比例函数的,x y 的变化情况,即可比较大小.【详解】20k ≥Q ,211k ∴+≥,是正数,∴反比例函数21k y x+=的图象位于第一三象限,且在每一个象限内y 随x 的增大而减小,()()()1232,,1,,3,y y y -- 都在反比例函数图象上,2130,0y y y ∴<<>,213y y y ∴<<.故选:C.4.在直角ABC 中,90,3,2C AB AC ∠=== ,则sin A 的值为()A.53B.C.23 D.【答案】A【解析】【分析】根据直角三角形正弦值的表示,即可求解.【详解】如图.在Rt ABC 中,90C = ∠,BC ∴===.5sin 3BC A AB ∴==.故选:A 5.如图,半径为R 的O 的弦AC BD =,且AC BD ⊥于E ,连结,AB AD ,若1AD =,则R 的值为()A.12 B.22 C.1 D.【答案】B【解析】【分析】连接OA ,OD ,由弦AC BD =,可得 AC BD =,继而可得 =BC AD ,然后由圆周角定理,证得ABD BAC ∠=∠,即可判定AE BE =,由AE BE =,AC BD 丄,可求得45ABD ∠=︒,继而可得AOD △是直角三角形,则可求得AD =,由此可解决问题.【详解】解: 弦AC BD =, AC BD∴=, BC AD ∴=,ABD BAC ∴∠=∠,;AE BE ∴=如图,连接,OA OD ,,AC BD AE BE ⊥= ,45ABE BAE ∠∠∴== ,290AOD ABE ∠∠∴== ,OA OD = ,AD ∴=,1AD = ,22R ∴=,故选:B.6.已知点()()111222,,,P x y P x y 为抛物线()240y ax ax c a =-++≠上两点,且12x x <,则下列说法正确的是()A.若124x x +<,则12y y <B.若124x x +>,则12y y <C.若()1240a x x +->,则12y y >D.若()1240a x x +-<,则12y y >【答案】C【解析】【分析】分a<0和0a >,结合图象对选项一一判断即可得出答案.【详解】解:24y ax ax c =-++ ,∴抛物线对称轴为直线422a x a=-=-,当点()()111222,,,P x y P x y 恰好关于2x =对称时,有1222x x +=,124x x ∴+=,即1240x x +-=,12x x < ,122;x x ∴<< 抛物线的开口方向没有确定,则需要对a 进行讨论,故排除A ,B ;当0a >时,抛物线24y ax ax c =-++的开口向下,此时距离直线2x =越远,y 值越小;()1240a x x +-> ,1240x x ∴+->,∴点()222,P x y 距离直线2x =较远,12y y ∴>当0a <时,抛物线24y ax ax c =-++的开口向上,此时距离直线2x =越远,y 值越大;()1240a x x +-> ,1240x x ∴+-<,∴点()111,P x y 距离直线2x =较远,12y y ∴>故C 符合题意,D 不符合题意.7.如图,点,,A B C 在正方形网格的格点上,则sin BAC ∠等于()A.3B.105 C.510 D.【答案】D【解析】【分析】求出CD ,AD 和AC ,由勾股定理可证明ACD 是直角三角形,再由sin sin CDBAC CAD AC ∠=∠=,代入即可得出答案.【详解】解:连接CD ,点D 在格点上,如图所示:设每个小正方形的边长为a ,则CD ==,AC ==,AD ==,222222)))CD AD AC ∴+=+==,ACD ∴是直角三角形,5sin sin5CD BAC CAD AC ∠∠∴===,8.如图,四边形ABCD 为O 的内接四边形,110BCD ∠= ,则BOD ∠的度数是()A.70B.120C.140D.160o【答案】C【解析】【分析】利用圆周角和圆心角关系求解.【详解】 四边形ABCD 为O 的内接四边形,110BCD ∠= ,18070A BCD ∠∠∴=-= ,由圆周角定理得,2140BOD A ∠∠== ,故选:C.9.如图,在平面直角坐标系中,四边形OABC 是矩形,四边形ADEF 是正方形,点,A D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点,B E 在反比例函数(0,0)k y x k x=>>的图象上,若正方形ADEF 的面积为4,且BF AF =,则k 的值为()A.12B.8C.6D.3【答案】B【解析】【分析】先由正方形的面积得出边长,据此可设B (),4t ,则E ()2,2t +,根据点,B E 在反比例函数(0,0)k y x k x=>>的图象上,得()422k t t ==+,求解即可.【详解】解: 正方形ADEF 的面积为4,∴正方形ADEF 的边长为2,2,224BF AF AB AF BF ∴===+=+=.设B 点坐标为(),4t ,则E 点坐标()2,2t +,点,B E 在反比例函数(0,0)k y x k x=>>的图象上,()422k t t ∴==+,解得2,8t k ==.故选:B.10.如图,在等边三角形ABC 中,4AB =,点D 是边AB 上一点,且1BD =,点P 是边BC 上一动点(D P 、两点均不与端点重合),作60,DPE PE ∠= 交边AC 于点E .若CE a =,当满足条件的点P 有且只有一个时,则a 的值为()A.2B.2.5C.3D.4【答案】D【解析】【分析】依题意得BDP CPE ,即240BP BP a -+=,根据一元二次方程有一个解Δ0=求解即可.【详解】解:ABC 是等边三角形,60B C ∴∠=∠= ,180120BDP BPD B ∠∠∠∴+=-= ,60DPE ∠= ,120BPD CPE ∠∠∴+= ,BDP CPE ∴∠=∠,60B C ∠=∠= ,BDP CPE ∴ ;BD BP CP CE∴=,14BP BP a∴=-,240BP BP a ∴-+=,满足条件的点P 有且只有一个,∴方程240BP BP a -+=有两个相等的实数根,2Δ440a ∴=-⨯=,4a ∴=.故选:D.二、填空题:本题共9小题,每小题4分,共36分.11.点()3,2m +和点3,3m ⎛⎫ ⎪⎝⎭是同一个反比例函数图象上的点,则m 的值为__________.【答案】6-【解析】【分析】根据两点在同一反比例函数图象上,可构造方程求得结果.【详解】 点()3,2m +和点3,3m ⎛⎫ ⎪⎝⎭是同一个反比例函数图象上的点,()2333m m ∴+=⨯,解得:6m =-.故答案为:6-.12.已知二次函数222(0)y x kx k k k =-+->,当1x <时,y 随x 的增大而减小,则k 的最小整数值为__________.【答案】1【解析】【分析】根据二次函数的图象、单调性即可求解.【详解】二次函数2222()y x kx k k x k k =-+-=--的对称轴为x k =,开口向上,所以当x k ≤时,y 随x 的增大而减小,又当1x <时,y 随x 的增大而减小,所以1k ≥,即k 的最小整数值为1.故答案为:1.13.如图,线段9,AB AC AB =⊥于点,A BD AB ⊥于点,2,4B AC BD ==,点P 为线段AB 上一动点,且以A C P 、、为顶点的三角形与以B D P 、、为顶点的三角形相似,则AP 的长为__________.【答案】1或3或8.【解析】【分析】由三角形相似,对应边成比例,列方程求AP 的长.【详解】设AP x =,以A C P 、、为顶点的三角形与以B D P 、、为顶点的三角形相似,①当AC AP BD PB =时,249x x=-,解得3x =.②当AC AP BP BD=时,294x x =-,解得1x =或8x =,所以当以A C P 、、为顶点的三角形与以B D P 、、为顶点的三角形相似时,AP 的长为1或3或8,故答案为:1或3或8.14.已知二次函数22y x x n =++,当自变量x 的取值在21x -≤≤的范围内时,函数的图象与x 轴有且只有一个公共点,则n 的取值范围是__________.【答案】1n =或30n -≤<【解析】【分析】先确定抛物线的对称轴为直线=1x -,利用函数图象,可得120n ++≥且440n -+<,解不等式组即可.【详解】解:抛物线的对称轴为直线2121x =-=-⨯,且开口向上,若抛物线与x 轴有且仅有一个交点,则有1,0x y =-=;当1,0x y =≥时,在21x -≤≤的范围内,抛物线与x 轴有且只有一个公共点,根据对称性,公共点不可能在20x -≤≤范围内,而在01x <≤范围内,则120n ++≥且440n -+<,解得30n -≤<;所以,n 的取值范围是1n =或30n -≤<.故答案为:1n =或30n -≤<.15.若关于x 的方程()221210mx mx -+-=的所有根都是比1小的正实数,则实数m 的取值范围是__________.【答案】{}12m m m =>或【解析】【分析】对m 分类讨论,求出方程的根,根据方程的根满足条件求m 的范围.【详解】解:当210-=m 时,1m =±.当1m =时,可得1210,2x x -==,符合题意;当1m =-时,可得1210,2x x --==-,不符合题意;当210m -≠时,()221210m x mx -+-=,即()()11110m x m x ⎡⎤⎡⎤+--+=⎣⎦⎣⎦,1211,11x x m m-∴==+-. 关于x 的方程()221210m x mx -+-=的所有根都是比1小的正实数,10111011m m⎧<<⎪⎪+∴⎨-⎪<<⎪-⎩,解得02m m >⎧⎨>⎩,即2m >.综上可得,实数m 的取值范围是{}12m m m =>或.故答案为:{}12m m m =>或.16.对,x y 定义一种新运算T ,规定:(),2ax by T x y x y +=+(其中,a b 均为非零常数),这里等式右边是通常的四则运算,例如:()010,1201a b T b ⨯+⨯==⨯+,已知()()1,12,4,21-=-=T T ,若关于m 的不等式组()()2,544,32T m m T m m P ⎧-≤⎪⎨->⎪⎩恰好有3个整数解,则实数P 的取值范围是________.【答案】123P -≤<-【解析】【分析】根据已知得出关于,a b 的方程组,求出,a b ,再代入不等式组求出解集,再根据已知条件得到取值范围.【详解】因为()()1,12,4,21-=-=T T ,所以422,212124a b a b -+=-+=-⨯,解得1,3a b ==,所以()()235412,5444542m m T m m m m m +⨯--=≤⇒≥-+-,()()33293,322325m m P T m m P m m m +⨯---=>⇒<+-,因为不等式组恰有3个整数解,所以93123253P P -<≤⇒-≤<-,故答案为:123P -≤<-.17.如图,四边形OABC 为矩形,点A 在第二象限,点A 关于OB 的对称点为点D ,点,B D 都在函数(0)y xx =>的图像上,BE x ⊥轴于点E .若DC 的延长线交x 轴于点F ,当矩形OABC 的面积为时,EF OE的值为___________;点F 的坐标为___________.【答案】①.12##0.5;②.33(,0)2【解析】【分析】连接OD ,作DG x ⊥轴,设点6262(,),(,)B b D a b a,根据矩形的面积得出三角形BOD 的面积,将三角形BOD 的面积转化为梯形BEGD 的面积,从而得出, a b 的等式,将其分解因式,从而得出, a b 的关系,进而在直角三角形BOD 中,根据勾股定理列出方程,进而求得 B D 、的坐标,进一步可求得结果.【详解】如图,作DG x ⊥轴于G ,连接OD ,设BC 和OD 交于I ,设点6262(,(,)B b D a b a,由对称性可得:,BOD BOA OBC ≌≌ ,OBC BOD BC OD OI BI ∴∠=∠=∴=,,DI CI ∴=,,DI CI OI BI∴=,CID BIO ∠=∠ ,,CDI BOI CDI BOI ∴∴∠=∠ //,CD OB ∴1,22BOD AOB EAOCB S S S ∴=== 矩形1||2BOE DOG S S k === ,BOD DOG BOE BEGD S BOGD S S S BEGD S =+=+ 四边形梯形92,2BOD BEGD S S == 梯形1()22a b a b ∴+-=222320,a ab b ∴--=(2)(2)0,a b a b ∴-⋅+=2,2b a b a ∴==-(舍去),62(2,),2D b b ∴即32(2,),D b b在Rt BOD 中,由勾股定理得222,OD BD OB +=22222232623262(2)()(2)()(),b b b b b b b b ⎡⎤⎡⎤∴++-+=+⎢⎥⎢⎥⎣⎦⎣⎦b ∴=B D ∴因为直线OB 的解析式为:,y =所以直线DF 的解析式为:y =-当0y =时,0,2x -=∴=3333(,0),22F OE OF ∴== 31,,22EF EF OF OE OE ∴=-=∴=故答案为:133,(,0).22【点睛】关键点点睛:本题考查了矩形性质,轴对称性质,反比例函数的“k ”的几何含义,勾股定理,一次函数及其图像性质,分解因式等知识,解决问题的关键是等式变形,进行分解因式.18.如图,面积为4的平行四边形ABCD 中,4AB =,过点B 作CD 边的垂线,垂足为点E ,点E 正好是CD 的中点,点M 、点N 分别是AB AC 、.上的动点,MN 的延长线交线段DE 于点P ,若点P 是唯一使得线段45MPB ∠= 的点,则线段BM 长x 的取值范围是__________.【答案】24x -≤≤【解析】【分析】根据点P 是唯一使得线段45MPB ∠= 的点,可看成弦MB 所对的圆周角45MPB ∠= ,设MBP 外接圆的圆心为O ,由CD 与AB 之间的距离为1,12122x x +≥,又4MB ≤,即可得出答案.【详解】解: 平行四边形ABCD 的面积为4,4,AB BE CD =⊥,1BE ∴=, 点P 是唯一使得线段45MPB ∠= 的点,则可看成弦MB 所对的圆周角45MPB ∠= ,设MBP 外接圆的圆心为O ,则90MOB ∠= ,22OB x ∴=,CD 与AB 之间的距离为1,12122x x ∴+≥,2x ∴≥,又4MB ≤ ,24x ∴≤≤.故答案为:24x -≤≤.19.如图,平行四边形,,4,60ABCD AB AD AD ADB ∠>== ,点E F 、为对角线BD 上的动点,2DE BF =,连接AE CF 、,则2AE CF +的最小值为__________.【答案】【解析】【分析】在直线DB 的上方作60BDT ∠= ,且使得2DT BC =.过点T 作TH AD ⊥交AD 的延长线于,将2AE CF +的最小值问题转化为AT 的最小值问题,利用平面几何知识求解即可.【详解】如图,在直线DB 的上方作60BDT ∠= ,且使得2DT BC =.过点T 作TH AD ⊥交AD 的延长线于H .四边形ABCD 是平行四边形,BC ∴ ,4AD AD BC ==,60ADB DBC ∠∠∴== ,CBF TDE ∠∠∴=,12BC BF DT DE == ,CBF TDE ∴~ ,12CF BC ET DT ∴==,2ET CF ∴=,180606060,90,28TDH H DT BC ∠∠=--==== ,cos604,DH DT HT ∴=⋅===,8AH AD DH ∴=+=,AT ∴===,2,AE CF AE ET AE ET AT +=++≥ ,2AE CF ∴+≥2AE CF ∴+的最小值为.故答案为:三、计算题:本大题共1小题,共12分.20.(1)计算:0(1π)2cos451++-+- .(2)解不等式组:()5231131722x x x x ⎧->+⎪⎨-≤-⎪⎩①②【答案】(1)2;(2)542x <≤【解析】【分析】(1)分别进行算术平方根、零次幂、三角、绝对值运算,再由加减运算法则计算求值;(2)分别求解两个一次不等式的解集,再利用数轴求它们的公共部分即可.【详解】(1)原式21212=+-⨯+-211=+-+-2=;(2)由①得:52x >,由②得:4x ≤,则不等式组的解集为542x <≤.四、解答题:本题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.21.先化简,再求值:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭,其中3=a .【答案】13a +,3【解析】【分析】对式子变形结合因式分解及完全平方和化简式子,代入3=-a 即可计算.【详解】原式212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=-a时,原式33==.22.河南某中学准备在感恩节向全校学生征集书画作品,美术田老师从全校随机抽取了四个班级记作A 、B 、C 、D ,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图2.(1)田老师抽查的四个班级共征集到作品多少件?(2)请把图2的条形统计图补充完整.(3)若全校参展作品中有五名同学获奖,其中有二名男生、三名女生.现在要在其中抽三名同学去参加学校书画座谈会,请用画树状图或列表的方法求恰好抽中一名男生、两名女生的概率.【答案】(1)15件;(2)答案见解析(3)35【解析】【分析】(1)根据B 班有5件作品,且对应的圆心角为120 求解;(2)结合(1)根据总件数和A ,B ,D 班的件数求解;(3)利用古典概型的概率求解.【小问1详解】解:120515360︒÷=︒(件),即田老师抽查的四个班级共征集到作品15件;【小问2详解】C 班级的作品数为:153543---=(件),把图2的条形统计图补充完整如下:【小问3详解】恰好抽中一名男生、两名女生的概率,即为不参加学校书画座谈会的获奖选手为一名男生、一名女生的概率.不参加学校书画座谈会的获奖选手情况画树状图如下:共有20种等可能的结果,恰好一名男生、一名女生不参加学校书画座谈会的结果有12种,∴恰好抽中一名男生、两名女生的概率为123205=.23.东西走向海岸线上有一个码头(图中线段AB ),已知AB 的长为132米,小明在A 处测得海上一艘货船M 在A 的东北方向,小明沿海岸线向东走60米后到达点C ,在C 测得M 在C 处的北偏东15 方向(参考数据:2 1.41,3 1.73,6 2.45)≈≈≈(1)求AM 的长;(结果精确到1米)(2)如图,货船从M 出发,沿着南偏东30 方向行驶,问该货船是否能行驶到码头所在的线段AB 上?请说明理由.【答案】(1)116米(2)该货船能行驶到码头所在的线段AB 上,理由见解析【解析】【分析】(1)过点C 作CD AM ⊥,垂足为D ,45MAC ∠= ,30∠= AMC ,60AC =米,利用三角函数求出,AD DM ,得AM 的长;(2)设货船行驶路线交线段AB 所在的直线于点G ,构造直角三角形,利用三角函数求AG 的长度,与AB 比较即可.【小问1详解】过点C 作CD AM ⊥,垂足为D ,由题意得:904545,9015105MAC ACM ∠∠=-==+= ,18030AMC MAC ACM ∠∠∠∴=--= ,在Rt ADC 中,60AC =米,2cos456022AD AC ∴=⋅=⨯= (米),2sin456022CD AC =⋅=⨯= (米),在Rt CDM △中,26tan3033CD DM == (米),302306116AM AD DM ∴=+=+≈(米),AM ∴的长约为116米;【小问2详解】该货船能行驶到码头所在的线段AB 上,理由:过点M 作MF AB ⊥,垂足为F ,设货船从M 出发,沿着南偏东30 方向行驶,交线段AB 所在的直线于点G ,由题意得:30FMG ∠= ,在Rt AMF 中,(26AM =米,45MAF ∠= ,((cos45302AF AM ∴=⋅=⨯=+ 米,((2sin45302FM AM =⋅=⨯=+ 米,在Rt MGF 中,(()3tan3030303FG MF =⋅=+⨯=+ 米,303060129.2(AG AF FG ∴=+=+=+米),132AB = 米,132∴米>129.2米,∴该货船能行驶到码头所在的线段AB 上.24.如图,在平面直角坐标系中,直线3y x b =+经过点()1,0A -,与y 轴正半轴交于B 点,与反比例函数(0)k y x x =>交于点C ,且3,//AC AB BD x =轴交反比例函数(0)k y x x=>于点D .(1)求b k 、的值;(2)如图1,若点E 为线段BC 上一点,设E 的横坐标为m ,过点E 作//EF BD ,交反比例函数(0)k y x x =>于点F .若13EF BD =,求m 的值.(3)如图2,在(2)的条件下,连接FD 并延长,交x 轴于点G ,连接OD ,在直线OD 上方是否存在点H ,使得ODH 与ODG 相似(不含全等)?若存在,请求出点H 的坐标;若不存在,请说明理由.【答案】(1)3b =,18k =(2)1(3)存在,()3,4或()1,3或927,22⎛⎫ ⎪⎝⎭或1515,22⎛⎫- ⎪⎝⎭,理由如下【解析】【分析】(1)作CM x ⊥轴于M ,证明BOA CMA ,再根据直线3y x b =+经过点A ,即可求得b ,进而可求得B 点的坐标,即可求出C 点的坐标,进而可求得k ;(2)根据BD //x 轴可求出D 点的坐标,再根据EF //BD 可求得F 点的坐标,再根据13EF BD =即可得解;(3)过点D 作DQ x ⊥轴于点Q ,先求出,OD DG ,再分HOD DOG ∠=∠,HOD DGO ∠=∠和HOD ODG ∠=∠三种情况讨论即可得解.【小问1详解】作CM x ⊥轴于M ,如图1:,BOA CMA BAO CAM ∠∠∠∠== ,BOA CMA ∴ ,直线3y x b =+经过点()1,0A -,30b ∴-+=,解得3b =,∴直线解析式为:33y x =+,()0,3B ∴,3AC AB = ,39,33CM BO AM OA ∴====,C ∴点坐标为()2,9,∴将C 点坐标代入k y x=,得18k =;【小问2详解】BD Q //x 轴,D ∴点的纵坐标为3,代入18y x=,得6x =,D ∴点坐标为()6,3,将E 点横坐标代入33y x =+,得33y m =+,EF //BD ,F ∴点纵坐标为33m +,代入18y x =,得61x m =+,F ∴点坐标为6,331m m ⎛⎫+ ⎪+⎝⎭,13EF BD = ,61613m m ∴-=⨯+,解方程得1m =或4-(舍),1m ∴=;【小问3详解】存在,理由如下:如图2,过点D 作DQ x ⊥轴于点Q ,由(2)知()()3,6,6,3D F ,∴直线FD 的解析式为:9,6,3y x OQ DQ =-+==,9OG ∴=,:3DQ GQ ∴=,45QGD QDG ∠∠∴== ,OD DG ∴==,当HOD DOG ∠=∠时,如图2所示,设BD 与OH 交于点P ,由(2)知,BD //x 轴,BDO DOG ∴∠=∠,BDO HOD ∴∠=∠,OP PD ∴=,设OP m =,则6BP m =-,在Rt OBP △中,由勾股定理可得,2223(6)m m +=-,解得154m =,94BP ∴=,9,34P ⎛⎫∴ ⎪⎝⎭,∴直线OP 的解析式为:43y x =;①若ODG ODH ,则::1OD OD OG OH ==,不符合题意,舍去;②若ODG OHD ,::OD OH OG OD ∴=,即9OH =,解得5OH =,设()3,4H t t ,222(3)(4)5t t ∴+=,解得1t =,负值舍去,()3,4H ∴;当HOD DGO ∠=∠时,①若ODG DHO ,如图4,,::DOG ODH DG OH OG DO ∠∠∴==,DH ∴//OG,即点H 在BD 上,:9OH =,OH ∴=,1BH ∴=,()1,3H ∴,直线OH 的解析式为:3y x =;②若ODG HDO ~ ,::DG OD OG OH ∴=,即9:OH =,解得OH =设(),3H t t ,222910(3)2t t ⎛∴+= ⎝⎭,解得92t =,负值舍去,927,22H ⎛⎫∴ ⎪⎝⎭;当HOD ODG ∠=∠时,OH //EG ,∴直线OH 的解析式为:y x =-;①若ODG DOH ,则::1OD OD OG DH ==,不符合题意,舍去;②若ODG HOD ,如图5,::OD OH DG OD ∴=,即OH =,解得2OH =,设(),H t t -,222152()2t t ⎛⎫∴+-= ⎪ ⎪⎝⎭,解得152t =-,正值舍去,1515,22H ⎛⎫∴- ⎪⎝⎭;综上,符合题意的点H 的坐标为:()3,4或()1,3或927,22⎛⎫ ⎪⎝⎭或1515,22⎛⎫- ⎪⎝⎭.【点睛】关键点点睛:熟练掌握三角形相似的判定和性质是解决本题的关键.25.在O 中»»AB AC =,顺次连接A B C 、、.(1)如图1,若点M 是 AC 的中点,且//MN AC 交BC 延长线于点N ,求证:MN 为O 的切线;(2)如图2,在(1)的条件下,连接MC ,过点A 作AP BM ⊥于点P ,若,,BP a MP b CM c ===,则a b c 、、有何数量关系?(3)如图3,当60BAC ∠= 时,E 是BC 延长线上一点,D 是线段AB 上一点,且BD CE =,若5,BE AEF = 的周长为9,请求出AEF S 的值?【答案】(1)证明见解析(2)a b c=+(3)15316【解析】【分析】(1)利用切线定义,证明OM MN ⊥即可;(2)连接OM 交AC 于K ,通过勾股定理和ABP MCK 对应边成比例,得a b c 、、的数量关系;(3)构造平行四边形,求利用三角形全等和平行线的性质求相应的边长,由AEF ADE ADF S S S =- 计算面积.【小问1详解】如图1,连接OM ,M 是 AC 的中点,OM AC ∴⊥,//MN AC ,OM MN ∴⊥,OM Q 为O 的半径,MN ∴为O 的切线;【小问2详解】如图2,连接OM 交AC 于K ,连结AM ,M 是 AC 的中点, AM CM∴=,AM CM c ∴==,AP BM ⊥ ,90APM APB ∠∠∴== ,22222AP AM PM c b ∴=-=-,222222AB AP BP c b a ∴=+=-+,AC AB ∴==,M 是 AC 的中点,OM AC ∴⊥,12AK CK AC ∴===90,APB CKM ABP MCK ∠∠∠∠=== ,ABP MCK ∴ ,BP CK AB CM ∴=,BP CM CK AB ∴⋅=⋅,ac ∴=,2222ac c b a ∴=-+,22()0a c b ∴--=,()()0a b c a b c ∴+---=,0a b c +-> ,0a b c ∴--=,a b c ∴=+;【小问3详解】过点B 作//BH AC ,过点D 作//DH BC ,BH 与DH 交于点H ,连接CH ,当60BAC ∠= 时,BAC 为等边三角形,则60,60BDH ABC DBH BAC ∠∠∠∠==== ,BDH ∴ 是等边三角形,,60BH BD DHB ∠∴== ,BH CE ∴=,6060120CBH ABC DBH ∠∠∠=+=+= ,180120,ACE ACB CBH AC BC ∠∠∠=-=== ,()ACE CBH SAS ∴≅ ,,CAE BCH AE CH ∠∠∴==,//DH BC Q ,DH CE =,∴四边形CEDH 是平行四边形,//D CH E ∴,CH ED =,BCH BED ∠∠∴=,CH AE =,AE ED ∴=,,BED CAE ∠∠=过点E 作ET AB ⊥于点T ,交AC 于点L ,连接DL ,则12AT TD AD ==,AL DL =,60BAC ∠= ,ADL ∴ 是等边三角形,60ALD ACB ∠∠∴== ,//DL BC ∴,即HD 与DL 在同一直线上,∴四边形BCLH 是平行四边形,CL BH BD CE ∴===,LH BC =,设CE x =,则52,5,52,2x CL x BC AC x AD DL AL AC CL x AT -===-===-=-=,//DF CH ,LF LD CL LH ∴=,即525LF x x x -=-,()525x x LF x-∴=-,()()525525255x xx AF AL LF x x x --∴=+=-+=--,在Rt BET 中,53sin602ET BE =⋅= ,222AE AT ET =+ ,22225252522x AE x x ⎛-⎛⎫∴=+=-+ ⎪ ⎝⎭⎝⎭,延长,BH ED 交于点R ,则,,RHD FCE R CFE DH CE ∠∠∠∠===,()HDR CEF AAS ∴≅ ,DR EF ∴=,()552209955x x ER ED DR AE EF AF x x-+∴=+=+=-=-=--,//CH ED ,CH BC ER BE ∴=,52020555BC x x x CH ER BE x -++∴=⋅=⨯=-,205x AE +∴=,22205255x x x +⎛⎫∴-+= ⎪⎝⎭,解得:15=x (舍去),2158x =,()5521552552,1021584558x AD AF x -∴=-⨯===-=--,作DM AL ⊥于点M ,则5353sin60428DM AD =⋅=⨯= ,1115531531532222422816AEF ADE ADF S S S AD ET AF DM ∴=-=⋅-⋅=⨯⨯-⨯⨯= .26.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是__________元;当每个公司租出的汽车为__________辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元(0)a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000;37(2)33150(3)50150a <<【解析】【分析】(1)直接根据条件列式计算即可;(2)分甲公司的利润大于乙公司和乙公司的利润大于甲公司两种情况分别计算,算出最大利润差;(3)根据利润差最大,利用二次函数的性质列不等式求解.【小问1详解】()5010503000102001048000⎦-⨯+⨯-⎡⎤⎣⨯=元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:37x =或=1x -(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;【小问2详解】设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲()50503000200,x x x ⎡⎤=-⨯+-⎣⎦35001850y x =-乙,当甲公司的利润大于乙公司时,037,x <<()()5050300020035001850y y y x x x x ⎡⎤=-=-⨯+---⎣⎦甲乙25018001850x x =-++,当180018502x =-=-⨯时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,3750,x <≤()3500185050503000200y y y x x x x⎡⎤=-=---⨯++⎣⎦乙甲25018001850x x =--,对称轴为直线180018502x -=-=⨯,当50x =时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;【小问3详解】捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为()2250180018505018001850y x x ax x a x =-++-=-+-+,对称轴为直线1800100a x -=,x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,180016.517.5100a -∴<<,解得:50150a <<.27.在ABC 中,90,CAB AC AB ∠== .若点D 为AC 上一点,连接BD ,将BD 绕点B 顺时针旋转90 得到BE ,连接CE ,交AB 于点F .(1)如图1,若75,4ABE BD ∠== ,求AC 的长;(2)如图2,点G 为BC 的中点,连接FG 交BD 于点H .若30ABD ∠= ,猜想线段DC 与线段HG 的数量关系,并写出证明过程;(3)如图3,若4,AB D =为AC 的中点,将ABD △绕点B 旋转得A BD '' ,连接A C A D ''、,当22A D A C ''+最小时,求A BC S '△.【答案】(1(2)34HG CD =,证明见解析(3)4-【解析】【分析】(1)过D 作DG BC ⊥,垂足是G ,构造直角三角形,借助解直角三角形求得线段的长度;(2)延长CA ,过E 作EN 垂直于CA 的延长线,垂足是N ,连接,BN ED ,过G 作GM AB ⊥于M ,构造全等三角形,设AC a =,利用中位线定理,解直角三角形,用a 的代数式表示CD 和HG ,即可得CD 和HG 的数量关系;(3)取BC 的中点N ,连接A N ',连接DN ,构造相似三角形,利用两点之间线段最短,确定A '的位置,继而求得相关三角形的面积.【小问1详解】过D 作DG BC ⊥,垂足是G ,如图1:将BD 绕点B 顺时针旋转90 得到BE ,90EBD ∠∴= ,75ABE ∠= ,15ABD ∠∴= ,45ABC ∠= ,30DBC ∴∠= ,∴在直角BDG 中有12,332DG BD BG DG ====,45ACB ∠= ,∴在直角DCG △中,2CG DG ==,23BC BG CG ∴=+=+226;2AC BC ∴==【小问2详解】线段DC 与线段HG 的数量关系为:34HG CD =,证明:延长CA ,过E 作EN 垂直于CA 的延长线,垂足是N ,连接,BN ED ,过G 作GM AB ⊥于M ,如图:90END ∠∴= ,由旋转可知90EBD ∠= ,45EDB ∴∠=90END EBD ∠∠∴== ,,,,E B D N ∴四点共圆,45,180BNE EDB NEB BDN ∠∠∠∠∴==+=180,45BDC BDN BCD ∠∠∠+== ,BEN BDC ∠∠∴=,45BNE BCD ∠∠∴== ,在BEN 和BDC 中,BNE BCD BEN BDC BE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEN BDC AAS ∴≅ ,BN BC ∴=,90BAC ∠= ,在等腰BNC 中,由三线合一可知BA 是CN 的中线,90BAC END ∠∠== ,EN ∴//AB ,A 是CN 的中点,F ∴是EC 的中点,G 是BC 的中点,FG ∴是BEC 的中位线,FG ∴//1,2BE FG BE =,BE BD ⊥ ,FG BD ∴⊥,30ABD ∠= ,60BFG ∠∴= ,45ABC ∠= ,75BGF ∠∴= ,设AC a =,则AB a =,在Rt ABD △中,,33AD a BD BE ===,12FG BE ∴=,3FG a ∴=,GM AB ⊥ ,BGM ∴是等腰三角形,221211222222MG MB BG BC a ∴====⨯⨯=,在Rt MFG 中,60MFG ∠=,MG =,36MF a ∴=,336BF BM MF ∴=+=,在Rt BFH △中,60BFG ∠=,13212FH BF a +∴==,)3113124HG FG FH a a a +∴=-=-=-,又)33133CD a a a =-=- ,CD HG ∴=,4HG CD ∴=.【小问3详解】设AB a =,则BC =,取BC 的中点N ,连接,,A D A C A N ''',连接DN ,如图3,由旋转可知A B AB a '==,22A B BC BN A B a===''=,A B BC BN A B∴'==',又A BN CBA ∠∠''=,A BN CBA ∴'' ∽,22A N A B A C BC ''=='∴,22A N A C =''∴,根据旋转和两点之间线段最短可知,22A D A C ''+最小,即是A D A N '+'最小,此时D A N '、、共线,即A '在线段DN 上,设此时A '落在A ''处,过A ''作A F AB ''⊥于F ,连接AA '',如图4,,D N 分别是,AC BC 的中点,DN ∴是ABC 的中位线,DN ∴//AB ,AB AC ⊥ ,DN AC ∴⊥,90A A FA A DA ∠∠∠=='''=' ,∴四边形A FAD ''是矩形,,2AF A D A F AD '''='∴==, 又4A B AB ='=',设AF x =,在直角三角形A FB ''中,222A B A F BF ''=+'',22242(4)x ∴=+-,解得4x =-∴此时111222A BC ABC AA B A AC S S S S AB AC AB A F AC A D ''''''=--=⋅-'-''⋅'⋅(1114442444222=⨯⨯-⨯⨯-⨯⨯-=-.28.如图,抛物线222y x mx m =-+++与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,3OB OA =.(1)求抛物线的解析式;(2)设D 是第四象限内抛物线上的点,连接,:12:5COD AOD AD OD CD S S = 、、.①求点D 的坐标;②连接BD ,若点,P Q 是抛物线上不重合的两个动点,在直线(0)x a a =>上是否存在点,M N (点,,A P M 按顺时针方向排列,点,,A Q N 按顺时针排列),使得APM AQN ≅ 且APM ABD ∽?若存在,求出a 的值;若不存在,请说明理由.【答案】(1)223y x x =-++(2)①()4,5-,②存在,214a =【解析】【分析】(1)将点带入抛物线方程,利用韦达定理求得m ,即可得到抛物线方程.(2)①利用三角形面积之比、点D 抛物线上并根据象限即可求得点D 坐标;②假设存在利用三角形全等、相似知识确定P Q 、的位关系,再根据相似比得到a 的值.【小问1详解】由题设A 坐标()0,0x -,则B 为()003,0,0x x ≠且00x >,则有()2002002209620x m x m x mx m ⎧-+⋅-++=⎨-+++=⎩,两式作差得200880x mx -=,则0m x =,又0032-⋅=-- x x m ,则解得1m =或23-(舍去),即1m =,所以抛物线解析式为223y x x =-++.【小问2详解】①如图1,设()00,D x y ,易知3CO =,1AO =,则001322COD S CO x x =⨯⋅= ,()001122AOD S AO y y =⨯⨯-=- ,又:12:5COD AOD S S = ,003122152x y ∴=-,则0054y x =-,又 点D 在抛物线上,200023y x x ∴=-++,解得04x =或034x =-(舍去),则004,5x y ==-,即点D 的坐标为()4,5-.②由(1)得()3,0B ,如图2,APM AQN ≅ ,AM AN ∴=,又P Q 、不重合,则M N 、不重合,且MN 都在x a =上,M N ∴、关于x 轴对称,假设存在这样的P Q 、,APM ABD ∽,AQN ABD ∴ ∽,且相似比相同,APQ AMN ∴ ∽,且45NAQ DAB ∠∠== ,AMN ∴ 的中线与APQ △中线夹角也为45 ,而AMN 的中线在x 轴上,APQ ∴△的中线在1y x =+上,P Q ∴、关于1y x =+对称,从而PQ 与直线1y x =+垂直.设PQ 解析式为:,y x b PQ =-+中点为(),R m n ,联立223y x b y x x =-+⎧⎨=-++⎩,得2330x x b -+-=,123x x ∴+=,32m ∴=,将3,2R n ⎛⎫ ⎪⎝⎭代入1y x =+得52n =,35,22R ⎛⎫∴ ⎪⎝⎭,AR ∴=设x a =与x 轴交于H ,则由APQ AMN ∽可得,AR AP AB AH AM AD ===,254AH ∴=,214a ∴=.【点睛】方法点睛:在求解解析式时,可以考虑代入曲线上的点,并根据数量关系求得系数,进而得到解析式;在解决解析几何问题时,要充分利用初中所学的三角形相关的全等、相似知识,对于直线和圆锥曲线交点的问题,可以联立方程结合韦达定理得到相关数值.。
省级重点高中自主招生数学真题8套(含答案)
省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。
以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。
)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。
2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。
3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。
2024年高中自主招生素质检测数学试题及参考答案
学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。
2025年重点高中自主招生考试数学模拟试卷试题(含答案)
2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。
高一自主招生考试数学测试题及参考答案
师大附中高一自主招生考试数学测试题本卷满分150分 考试时间100分钟题号 一 二 三总 分 复 核 1 2 3 4 5 得分 阅卷教师一、选择题(每小题6分,共30分。
每小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填均得0分)一、选择题(每小题5分,满分40分。
以下每小题均给出了代号为A ,B ,C ,D 的四个1、已知四边形1S 的两条对角线相等,但不垂直,顺次连结1S 各边中点得四边形2S ,顺次连结2S 各边中点得四边形3S ,以此类推,则2006S 为( )A .是矩形但不是菱形; B. 是菱形但不是矩形; C.既是菱形又是矩形; D.既非矩形又非菱形. 2、方程1)1(32=-++x x x 的所有整数解的个数是( ) A..5个 B.4个 C.3个 D.2个3、若1xy ≠,且有272009130x x ++=及213200970y y ++=,则xy的值是 ( ) A .137 B .713 C .20097- D .200913- 4.如图,△AOB 和△ACD 均为正三角形,且顶点B 、D 均在双曲线)0(4>=x xy 上,则图中S △OBP = .A .32B .33C .34D .4二、填空题(每小题6分,共36分)(3)=33134=+,f (13)=1131413=+, 1、对于正数x ,规定f (x )=x1x+,例如f 计算f (12006)+ f (12005)+ f (12004)+ …f (13)+ f (12)+ f (1)+ f (1)+ f (2)+ f (3)+ … + f (2004)+ f (2005)+ f (2006)= .2、函数y =224548x x x x +++-+的最小值是____________3.=+++34716251 .三、解答题(共6题,10+10+13+13+15+15=74分)15、已知关于x 的方程022=-++a a x x 和0)2)(12()13(2=-++--a a x a x 。
高中阶段自主招生考试数学试卷及参考答案
第2题乐清中学自主招生考试数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。
2.全卷由试题卷和答题卷两部分组成。
试题的答案必须做在答题卷的相应位置上。
做在试题卷上无效。
3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。
4.答题过程不准使用计算器。
祝你成功! 一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求) 1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是,则A S S S 123<<B S S S 213<<C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是 A π-1 B π-2 C D4.由得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠ 为直角的点P 的个数是S S S 123、、121-π221-π第3题A 0B 1C 2D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2, 且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =a x 2+(a -b )x —b 的图象如图所示, 那么化简的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂 直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S正方形ABCD =▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案: (1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张11.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.第10题第11题第7题第8题第12题读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答:▲.(2)作DE∥AB的目的是:▲.(3) 判断四边形ABED为平行四边形的依据是:▲.(4)判断四边形ABCD是等腰梯形的依据是▲.(5)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?答▲.乐清中学自主招生考试数学标准答案题号 1 2 3 4 5 6答案 A D A C C A二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8.256 9.576或10.(1)13 (2)3n+1 (3)15250 11. a b ab12.(1)没有错误(2)为了证明AD∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义(5)不一定,因为当AD=BC时,四边形ABCD是矩形三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。
2023年广东省深圳中学自主招生数学试卷与答案
2023年广东省深圳中学自主招生数学试卷1.(4分)=.2.(4分)f(x)=(x﹣1)2+(x﹣2)2+(x﹣3)2+…+(x﹣21)2的最小值为.3.(4分)如图,已知Rt△ABC中,∠B=30°,BE=AC,求AB+DE=480时,DE的长度为.4.(4分)已知x,y为正整数,x=7,求x+y=.5.(4分)如图,在矩形ABCD中,E为AB中点且DE⊥AC,求+100=.6.(4分)如图,在半径为10的圆中,距圆心O点为20的A点做割线,交圆于BC两点,O点到BC距离为6,设AB为x,则(x+8)2=.7.(4分)已知xy+x+y=44,x2y+xy2=484,则x2+y2=.8.(4分)如图,两个同心圆,已知AB=2,BC=10,AX=3,求XY=.9.(4分)如图,由三个半圆和一个整圆构成,已知大半圆半径60,小半圆半径为30,则圆O的直径.10.(4分)若抛物线y=x2+(2a+1)x+2a+的图象与x轴仅一个交点,则a4﹣a3﹣a+100的值为.11.(6分)若方程|x﹣10|+|x﹣40|﹣|x﹣20|=a恰有三个解,则所有符合条件的a之和为.12.(6分)对于任意一个非负整数N,都定义有N*且=N*+1,若0*=0,100*=20000,记P=200*,则=.13.(6分)已知正数a,b,c满足,若,则S=.14.(6分)如图,已知正五边形ABCDE中,点P为线段AC上一点,且满足,直线BP交AE于点Q,设=t,则60t2+7=.15.(6分)若三角形的三边长均为正整数,且其面积与其周长的数值相等,则满足条件的三角形面积之和为.2023年广东省深圳中学自主招生数学试卷答案1.(4分)=25.【分析】利用平方差公式把原式变形为,即可求解.【解答】解:=====25;故答案为:25.【点评】本题主要考查了二次根式的混合运算法则,理解相关知识是解答关键.2.(4分)f(x)=(x﹣1)2+(x﹣2)2+(x﹣3)2+…+(x﹣21)2的最小值为770.【分析】由f(x)=(x﹣1)2+(x﹣2)2+(x﹣3)2+⋯+(x﹣21)2=21(x﹣11)2+770,然后根据二次函数的性质,求最值即可.【解答】解:f(x)=(x﹣1)2+(x﹣2)2+(x﹣3)2+⋯+(x﹣21)2=(x2﹣2⋅x+1)+(x2﹣2⋅2x+22)+⋯+(x2﹣2⋅21x+212)=21x2﹣2(1+2+⋯+21)x+(12+22+⋯+212)==21x2﹣462x+3311=21(x﹣11)2+770,∵21>0,∴当x=11时,有最小值f(11)=770,故答案为:770.【点评】本题考查了完全平方公式,二次函数的最值.解题的关键在于对知识的熟练掌握与灵活运用.3.(4分)如图,已知Rt△ABC中,∠B=30°,BE=AC,求AB+DE=480时,DE的长度为120..【分析】根据30°角正切值可求得,结合AB+DE=480,即可列方程,求解即可得出答案.【解答】解:∵∠B=30°,,在Rt△BDE中,,即,∴,在Rt△ABC中,,即,故AB+DE=3DE+DE=4DE=480,∴DE=120.故答案为:120.【点评】本题考查了解直角三角形的应用,熟练掌握特殊角的锐角三角函数值是解题的关键.4.(4分)已知x,y为正整数,x=7,求x+y=8.【分析】将等式进行因式分解,得到,求得xy=7,即可求解.【解答】解:∵,∴,∴,∴,∴,∵,∴,∴xy=7,又x,y为正整数,则(x,y)=(1,7)或(7,1),从而x+y=8,故答案为:8.【点评】本题考查代数值求值、二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.5.(4分)如图,在矩形ABCD中,E为AB中点且DE⊥AC,求+100=102.【分析】根据矩形性质得到,结合相似三角形的判定与性质求解即可得到答案【解答】解:∵四边形ABCD为矩形,∴AB∥CD,AB=CD,AD=BC,∠ADC=∠DAE=90°,∵E为AB中点,∴,∵DE⊥AC,∴∠AFE=∠DFA=90°,∵∠AEF=∠DEA,∠DAF=∠CAD,∴△AEF∽△DAE,△ADF∽△ACD,∴,,∴AE2=EF•ED,AD2=AF•AC,∴,又AB2=4AE2,BC2=AD2,∴,∴;故答案为:102.【点评】本题考查平行四边形的性质,三角形相似的性质及射影定理,解题的关键是熟练掌握射影定理.6.(4分)如图,在半径为10的圆中,距圆心O点为20的A点做割线,交圆于BC两点,O点到BC距离为6,设AB为x,则(x+8)2=364.【分析】连接OA,OC,过点O作OD⊥BC于D,依题意得:OA=20,OC=10,OD=6,先由勾股定理求出CD=8,则BD=CD=8,再由勾股定理得AD2=OA2﹣OD2=364,然后根据AB为x,BD=8得x+8=AB+BD=AD,据此可得出答案.【解答】解:连接OA,OC,过点O作OD⊥BC于D,如图所示:依题意得:OA=20,OC=10,OD=6,在Rt△OCD中,OC=10,OD=6,由勾股定理得:CD=8,∵OD⊥BC,∴BD=CD=8,在Rt△AOD中,OA=20,OD=6,由勾股定理得:AD2=OA2﹣OD2=364,∵AB为x,BD=8,∴x+8=AB+BD=AD,∴(x+8)2=364.故答案为:364.【点评】此题主要考查了垂径定理,勾股定理,理解垂径定理,灵活运用勾股定理进行计算是解决问题的关键.7.(4分)已知xy+x+y=44,x2y+xy2=484,则x2+y2=440.【分析】设m=xy,n=x+y,然后解,即可得xy=22,x+y=22,再代入x2+y2=(x+y)2﹣2xy,即可作答.【解答】解:设m=xy,n=x+y,因为xy+x+y=44,x2y+xy2=484,所以,解得,即xy=22,x+y=22,把xy=22,x+y=22代入x2+y2=(x+y)2﹣2xy,得x2+y2=(x+y)2﹣2xy=484﹣44=440.故答案为:440.【点评】本题考查了代数式求值,换元法解二元二次方程组,解一元二次方程及完全平方公式的运用,难度适中,正确掌握相关性质内容是解题的关键.8.(4分)如图,两个同心圆,已知AB=2,BC=10,AX=3,求XY=5.【分析】连接BX,CY,根据圆内接四边形的性质得∠ABX=∠AYC,由此可得△ABX和△AYC相似,进而得AB:AY=AX:AC,然后根据AB=2,BC=10,AX=3,得AC=12,AY=3+XY,由此得2:(3+XY)=3:12,据此求出XY即可.【解答】解:连接BX,CY,如图所示:∵四边形BCYX内接于小圆,∴∠ABX=∠AYC,又∠A=∠A,∴△ABX∽△AYC,∴AB:AY=AX:AC,∵AB=2,BC=10,AX=3,∴AC=AB+BC=12,AY=AX+XY=3+XY,∴2:(3+XY)=3:12,∴XY=5.故答案为:5.【点评】此题主要考查了圆内接四边形的性质,相似三角形的判定和性质,理解圆内接四边形的一个外角等于它的内对角,熟练掌握相似三角形的判定和性质是解决问题的关键.9.(4分)如图,由三个半圆和一个整圆构成,已知大半圆半径60,小半圆半径为30,则圆O的直径40.【分析】设圆O的半径为r,由题意可知,OP⊥PQ,OP=60﹣r,OQ=30+r,利用勾股定理得到关于r的方程,解方程即可求得圆O的半径,进一步求得圆O的直径.【解答】解:如图,设圆O的半径为r,则OP=60﹣r,OQ=30+r,由题意可知,OP⊥PQ,则OP2+PQ2=OQ2,∴(60﹣r)2+302=(30+r)2,解得r=20,∴圆O的直径为40.故答案为:40.【点评】本题考查了圆与圆的位置关系,勾股定理的应用,构建直角三角形是解题的关键.10.(4分)若抛物线y=x2+(2a+1)x+2a+的图象与x轴仅一个交点,则a4﹣a3﹣a+100的值为101.【分析】由抛物线的图象与x轴仅一个交点,可得,则,解得:a2﹣a=1,然后根据a4﹣a3﹣a+100=a2(a2﹣a)﹣a+100=a2﹣a+100,计算求解即可.【解答】解:∵抛物线的图象与x轴仅一个交点,∴,∴,解得:a2﹣a=1,∴a4﹣a3﹣a+100=a2(a2﹣a)﹣a+100=a2﹣a+100=1+100=101,故答案为:101.【点评】本题考查了二次函数与一元二次方程的综合,一元二次方程根的判别式,代数式求值.解题的关键在于对知识的熟练掌握与灵活运用.11.(6分)若方程|x﹣10|+|x﹣40|﹣|x﹣20|=a恰有三个解,则所有符合条件的a之和为50.【分析】令f(x)=|x﹣10|﹣|x﹣40|+|x﹣20|,分段求出f(x)的解析式,进而画出f(x)的大致图象,方程|x﹣10|+|x﹣40|﹣|x﹣20|=a恰有3个解,即可转化为y=f(x)与y=a 图象有3个交点.【解答】解:令f(x)=|x﹣10|﹣|x﹣40|+|x﹣20|①当x≥40时,f(x)=x﹣10+x﹣40﹣x+20=x﹣30;②当20≤x<40时,f(x)=x﹣10﹣x+40﹣x+20=﹣x+50;③当10≤x<20时,f(x)=x﹣10﹣x+40+x﹣20=x+10;④当x<10时,f(x)=﹣x+10﹣x+40+x﹣20=﹣x+30.综上由此可画出f(x)的图象如图所示,而a=f(x)有3个解,∴y=a与f(x)有三个交点,由图象可知a=30或a=20,∴a的值的和为50.【点评】此题考查了函数与方程的关系,解题的关键是通过数形结合,正确理解函数的图象与方程.12.(6分)对于任意一个非负整数N,都定义有N*且=N*+1,若0*=0,100*=20000,记P=200*,则=600.【分析】依据题意,分别计算出N=1,2,3的结果,得出N*=N•1*+N(N﹣1),再根据100*=20000得出1*=101,从而求出P,进而得解.【解答】解:∵=N*+1,∴(N+1)*+(N﹣1)*=2N*+2.当N=1时,2*+0*=2•1*+2,即2*=2•1*+2=2•1*+1×2;当N=2时,3*+1*=2•2*+2=2(2•1*+2)+2.∴3*=2(2•1*+2)+2﹣1*=3•1*+6=3•1*+2×3;当N=3时,4*+2*=2•3*+2=2(3•1*+6)+2.∴4*=2(3•1*+6)+2﹣2*=2(3•1*+6)+2﹣2*=2(3•1*+6)+2﹣(2•1*+2)=4•1*+3×4.……由此,可猜想N*=N•1*+N(N﹣1).∵100*=20000,∴20000=100•1*+100×99.∴1*=101.∴P=200*=200•1*+199×200=200×101+199×200=60000.∴==600.故答案为:600.【点评】本题主要考查了代数式的求值,解题时要熟练掌握并理解是关键.13.(6分)已知正数a,b,c满足,若,则S=160.【分析】已知三个数的乘积,探索这三个数的和与这三个数的积之间的关系,从而求得,,,,即可求解.【解答】解:令,,,则,∴(a﹣b)=x(a+b),b﹣c=x(b+c),c﹣a=x(c+a),∴a﹣ax=bx+b,b﹣bx=cx+c,c﹣cx=ax+a,∴a(1﹣x)=b(1+x),b(1﹣x)=c(1+x),c(1﹣x)=a(1+x),∴,,,∴,∴(1+x)(1+y)(1+z)=(1﹣x)(1﹣y)(1﹣z)整理,得x+y+z=﹣xyz,∴,由可知,,∴,∴,从而,∴,同理,可得,,∴.故答案为:160.【点评】本题考查分式的化简求值,熟练掌握运算法则求得x+y+z=﹣xyz是解题的关键.14.(6分)如图,已知正五边形ABCDE中,点P为线段AC上一点,且满足,直线BP交AE于点Q,设=t,则60t2+7=67.【分析】作BF∥AE交AC于点F,证明△BFC∽△ABC,△AQP∽△BFP根据线段关系直接求解即可得到答案.【解答】解:如图,作BF∥AE交AC于点F,∵ABCDE为正五边形,∴∠BAC=∠ACB=36°,∠BFA=∠FAQ=72°,∴∠ABF=∠AFB,∴AB=AF,∵BF∥AE,∴∠CBF=36°,BF=CF,设AB=AF=1,BF=CF=x,∵∠BCF=∠ACB,∠CBF=∠CAB,∴△BFC∽△ABC,∴∴BF⋅AC=AB⋅BC,∴x⋅(x+1)=1,解得:或(舍去),∴,∴,又,∴,∴,∴,∵BF∥AE,∴△AQP∽△BFP,∴,∴,∴,∴,∴60t2+7=60×1+7=67.故答案为:67.【点评】本题考查三角形相似的判定与性质,解题的关键是作出辅助线结合正五边形的性质找到相似三角形的条件.15.(6分)若三角形的三边长均为正整数,且其面积与其周长的数值相等,则满足条件的三角形面积之和为192.【分析】设三角形的三边长分别为a,b,c,面积为S,半周长为,由海伦公式.周长与面积相等的三角形应当满足,即4p2=p(p﹣a)(p﹣b)(p﹣c).设a≤b≤c,,可得4<(p﹣b)(p﹣c)≤12,即可求解.【解答】解:设三角形的三边长分别为a,b,c,面积为S,半周长为,由海伦公式.再由,可得:周长与面积相等的三角形应当满足,即4p2=p(p﹣a)(p ﹣b)(p﹣c).(1)∵,∴,同理,,∴(p﹣a)+(p﹣b)+(p﹣c)=p,∴4[(p﹣a)+(p﹣b)+(p﹣c)]=(p﹣a)(p﹣b)(p﹣c),即(2),设a≤b≤c,则有,∴,即(p﹣b)(p﹣c)≤12.又由(2)式有,即(p﹣b)(p﹣c)>4.因此,4<(p﹣b)(p﹣c)≤12.(3)由(3)式可知,p﹣c和p﹣b的乘积只能取5至12中的整数,若(p﹣c)(p﹣b)=5,则(p﹣c,p﹣b)=(1,5),代入(2)式可得,解得p﹣a=24.故p=(p﹣a)+(p﹣b)+(p﹣c)=24+5+1=30,30﹣a=24,30﹣b=5,30﹣c=1,30﹣b=5,30﹣c=1,∴a=6,b=25,c=29.类似地,若(p﹣c)(p﹣b)=6,7,8,9,10,11,12时,可得(p﹣c,p﹣b,p﹣a)=(1,6,14)=(2,3,10)=(1,8,9)=(2,4,6)由此得到5个满足周长和面积值相等的整数边三角形为(a,b,c)=(6,25,29),(7,15,20),(5,12,13),(9,10,17),(6,8,10).其面积和为:60+42+30+36+24=192.【点评】本题考查海伦公式,熟练运用海伦公式确定4<(p﹣b)(p﹣c)≤12是解题的关键.。
2024初升高自主招生数学试卷(一)及参考答案
—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。
高中自招试题数学答案及解析
高中自招试题数学答案及解析试题一:已知函数\( f(x) = 3x^2 - 2x + 1 \),求其导数\( f'(x) \)。
答案:首先,根据导数的定义,我们对函数\( f(x) \)进行求导。
对于\( f(x) = 3x^2 - 2x + 1 \),其导数\( f'(x) \)为:\[ f'(x) = 6x - 2 \]解析:求导的过程涉及到幂函数的导数规则,即\( (x^n)' = n \cdot x^{n-1} \)。
对于常数项1,其导数为0。
将各项的导数相加,得到最终的导数表达式。
试题二:设集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B 的交集A∩B。
答案:集合A和集合B的交集A∩B为{2, 3}。
解析:交集是指两个集合中共有的元素。
在这个例子中,我们可以看到元素2和3同时出现在集合A和集合B中,因此它们构成了这两个集合的交集。
试题三:若\( \sin(2x) = 2\sin(x) \),求\( x \)的值。
答案:根据二倍角公式,我们知道\( \sin(2x) = 2\sin(x)\cos(x) \)。
将题目中的等式代入,得到:\[ 2\sin(x)\cos(x) = 2\sin(x) \]由于\( \sin(x) \neq 0 \),我们可以除以\( 2\sin(x) \)得到:\[ \cos(x) = 1 \]这意味着\( x \)的值是\( 2k\pi \),其中\( k \)是整数。
解析:这个问题的关键在于识别并应用二倍角公式。
通过将等式转换为已知的三角恒等式,我们可以简化问题并找到\( x \)的解。
试题四:解不等式\( |x - 3| < 2 \)。
答案:不等式\( |x - 3| < 2 \)可以分解为两个不等式:\[ -2 < x - 3 < 2 \]解得:\[ 1 < x < 5 \]解析:绝对值不等式可以通过将其分解为两个不等式来解决。
高中自主招生考试数学试题(含答案详解)
一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】方案、情况、矛盾、自主、关系、满足2018高中自主招生必做试卷(数学)(满分150分 时间120分钟)一、选择题(每题4分,共40分)1、在-|-3|3,-(-3)3,(-3)3,-33中,最大的是 ( ) A 、-|-3|3 B 、-(-3)3 C 、(-3)3 D 、-332、已知114a b -=,则2227a ab ba b ab ---+的值等于 ( ) A 、215 B 、27- C 、6- D 、63、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是 ( ) A 、b a c =+ B 、b ac = C 、222b a c =+ D 、22b a c ==4、a 、b 是有理数,如果,b a b a +=-那么对于结论:(1)a 一定不是负数;(2)b 可能是负数,其中 ( ) A 、只有(1)正确 B 、只有(2)正确C 、(1),(2)都正确D 、(1),(2)都不正确5、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203bx a x 的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所 有可能的整数对(a,b)的个数有 ( )A 、1B 、2C 、4D 、66、如图,表示阴影区域的不等式组为 ( ) 2x +.y ≥5, 2x + y ≤5, 2x +.y ≥5, 2x + y ≤5, A 、 3x + 4y ≥9, B 、 3x + 4y ≥9, C 、 3x + 4y ≥9, D 、 3x + 4y ≤9, y ≥0 x ≥0 x ≥0 y ≥07、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于 ( )A 、43 B 、54 C 、32 D 、65 8、若b x ax x x +++-732234能被22-+x x 整除则a :b 的值是 ( ) A 、-2 B 、-12 C 、6 D 、49、在矩形ABCD 中,AB =8,BC =9,点E 、F 分别在BC 、AD 上,且BE =6,DF =4,AE 、FC 相交于点G ,GH ⊥AD ,交AD 的延长线于点H ,则GH 的长为 ( ) A 、16 B 、20 C 、24 D 、28 10、若a 与b 为相异实数,且满足:21010=+++a b b a b a ,则ba= ( )A 、0.6B 、0.7C 、0.8D 、0.9二、填空题(每题5分,共20分)A B C DE FG第3题图 第9题图 第7题图第6题图 学校 姓名 考号装 订 线 外 请 不 要 答 题11、已知,αβ是方程2210x x +-=的两根,则3510αβ++的值为12、在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标(,x y )的个数为 13、今年参加考试的人数比去年增加了30%,其中男生增加了20%,女生增加了50%。
设今年参加考试的总人数为a ,其中女生人数为b ,则ba= 14、在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA =5,PC =5,则PB = .三、解答题(共90分)15、(12分)因式分解:224443x x y y --+-16、(14分)如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大?若存在,求出点M 的坐标;若不存在,请说明理由.17、(15分)如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值. 18、(15分)如图,在以O 为圆心的圆中,弦CD 垂直于直径AB ,垂足为H ,弦BE 与半径OC 相交于点F ,且OF=FC ,弦DE 与弦AC 相交于点G. (1)求证:AG=GC ; (2)若AG=3,AH :AB=1:3,求△CDG 的面积与△BOF 的面积.19、(16分)已知直角三角形ABC 和ADC 有公共斜边AC ,M 、N 分别是AC ,BD 中点,且M 、N 不重合.(1)线段MN 与BD 是否垂直?请说明理由. (2)若∠BAC = 30°,∠CAD = 45°,AC = 4,求MN 的长 . 20、(18分)已知实数,,a b c 满足:2,4a b c abc ++==。
(1)求,,a b c 中最大者的最小值; (2)求a b c ++的最小值。
参考答案1 2 3 4 5 6 7 8 9 10 BDAADBCABC二、填空题(每题5分,共20分)11、2- 12、9 13、51314、10 三、解答题(本题6小题,共90分)15、224443x x y y --+-22(441)(44)x x y y =-+--+ …………6分= (2x+y-3)(2x-y+1) …………12分16、解:(1)令x =0,则y =4,∴点C 的坐标为(0,4), …………1分B x Ay O C不 要 答 题17、要考虑的不同画线方案,可归纳为如下4类:(1)如图(1),其周长和=112(212)5.33⨯⨯+⨯= …………3分(2)如图(2),其周长和=[]2(3)2(1)3(1)8.x x x x ++-+-= …………6分 (3)如图(3),其周长和=8. …………9分(4)如图(4),其周长和=3162(3)2(3)8.33x x x x x -⎡⎤++-+=+⎢⎥⎣⎦ ∵031x <≤,10.3x <≤∴当13x =时,周长和有最大值79.9 …………14分综上所述,剪得的两个小长方形周长之和的最大值为79.9…………15分18、(1)证明:连接AD ,BC ,BD ∵AB 是直径,AB ⊥CD,∴BC=BD ,∠CAB=∠DAB, ∴∠DAG=2∠CAB, ∵∠BOF=2∠CAB, ∴∠BOF=∠DAG ,又∵∠OBF=∠ADG, ∴△BOF ∽△DAG , ∴OB DAOF AG=, ∵OB=OC=2OF,∴2DAAG=, 又∵AC=DA ,∴AC=2AG , ∴AG=GC; …………7分 (2)解:连接BC ,则∠BCA=90°, 又∵CH ⊥AB,∴2AC AH AB =,∵222,:1:3AC AG AH AB === ∴21(23),3AB AB = ∴AB=6,∴AH=2,∴CH=22,∴S △ACD =1124242,22CD AH =⨯⨯=又∵AG=CG ,∴S △CDG = S △DAG =12S △ACD =22, …………11分 ∵△BOF ∽△DAG , ∴23(),4BOF DAG S OB S AD == ∴S △BOF =32. …………15分 19、(1)证明:如图(1)当B,D 在AC 异侧时,连接BM,DM如图(2)当B,D 在AC 同侧时同理可证MN BD ⊥ …………6分 (2)如图三:连接BM 、MD ,延长DM ,过B 作DM 延长线的垂线段BE , 则可知在Rt △BEM 中,∠EMB=30°, ∵AC=4,∴BM=2,∴BE=1,EM=3,MD=2,从而可知 BD=1223+=+2(2+3),∴BN=23+ 由Rt △BMN 可得:MN=262223--=-=2(2+3)(不化简不扣分) …………11分 如图四:连接BM 、MD ,延长AD ,过B 作垂线BE ,∵M 、N 分别是AC 、BD 中点,∴MD=12AC ,MB=12AC , ∴MD=MB ∵∠BAC=30°,∠CAD=45°, ∴∠BMC=60°,∠DMC=90°, ∴∠BMD=30°,∴∠BDM=18030752-= ∵∠MDA=45°,∴∠EDB=180°-∠BDM -∠MDA=60° 令ED=x ,则BE=3x ,AD=22,AB=23 ∴由Rt △ABE 可得:222(23)(3)(22)x x =++, 解得23x =-,则BD=223-∵M 、N 分别是AC 、BD 中点∴MD=2,由Rt △MND 可得:(不化简不扣分) …………16分 20、解:(1)由题意不妨设a 最大,即,,0.a b a c a ≥≥>且42,.b c a bc a+=-= ∴ b 、c 是方程24(2)0x a x a--+=的两实根 △24(2)40a a=--⨯≥ ∴2(4)(4)0a a +-≥∴4a ≥(当4a =时,1b c ==-满足题意) ……………9分 (2)∵0abc > ∴,,a b c 全大于0,或一正二负若,,a b c 均大于0,由(1)知,,,a b c 最大者不小于4,这与2a b c ++=矛盾,故此情况不存在 故,,a b c 为一正二负,不妨设0,0,0a b c ><<(2)226a b c a b c a a a ++=--=--=-≥(当4a =时成立)所以a b c ++最小值为6 …………18分。