数学:任意角和弧度制必修
《任意角和弧度制》教案
![《任意角和弧度制》教案](https://img.taocdn.com/s3/m/0017e358a9956bec0975f46527d3240c8547a158.png)
《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。
必修4-1.1-任意角和弧度制PPT课件
![必修4-1.1-任意角和弧度制PPT课件](https://img.taocdn.com/s3/m/f9ba59facfc789eb162dc88e.png)
正半轴。
➢角的终边落在第几象限,就说这个角是第几 象限的角(包含第一、 二、三、 四象限角)
➢角的终边落在哪坐标轴上,就说这个角是 哪坐标轴上角(包含x,y正负半轴上的角)
.
7
2.象限角和坐标轴上角
终边
终边
y
x
o
始边
终边
终边 是第一象限角
是 第 二 象 限 角 是 第 三 象 限 角 是 第 四 象 限 角
1.{β| β=k∙1800 ,k∈Z} {β| β=kπ ,k∈Z}
2.{β| β=k∙900 ,k∈Z}
{β| β=k∙
2
,k∈Z}
3.{β| k ∙ <β<2kπ
3600 +
<β<k∙ 3600+900 ,k∈Z}
,k∈Z}
={β| β=900+(2K+1)1800 ,K∈Z} ={β| β=900+1800 的奇数倍}
.
11
所以 终边落在y轴上的角的集合为
S=S1∪S2 ={β| β=900+1800 的偶数倍} ∪{β| β=900+1800 的奇数倍} ={β| β=900+1800 的整数倍} ={β| β=900+K∙1800 ,K∈Z}
现状生活中:体操、跳水、滑冰、 转体720度的高难度动作,直体后空 翻转体900度及以上的旋转 时钟的时针、分针转动和调准时间 时顺时针、逆时针拨转角度 主从动轮转动角 车的轮子的转动角 风车,风扇叶片等转动
.
4
思考:这些旋转形成的角该如何表示和区分?
引入新的角定义:
定义2:平面内一条射线绕着端点从一个位 置旋转到另一个位置所成的图形.射线OA、 OB分别是角的始边和终边,端点O为角的 顶点。
高中数学 1.1 任意角和弧度知识表格素材 新人教版必修4
![高中数学 1.1 任意角和弧度知识表格素材 新人教版必修4](https://img.taocdn.com/s3/m/4392946903d8ce2f00662382.png)
弧 度
0
6
4
Байду номын сангаас 3
2
2 3
3
5
4
6
π
3.弧度制与角度制的区别与联系
区别
①单位不同,弧度制以“弧度”为度量单位,角度制以 “度”为度量单位; ②定义不同.
不管以“弧度”还是以“度”为单位的角的大小都是一个 联系
与圆的半径大小无关的定值.“弧度”与“度”之间可以相
互转化.
4.弧度制与角度制下弧长公式和扇形面积公式的比较
单位制 公式
弧度制
角度制
弧长公式
l ·r(0< 2)
l nr (0 n<360) 180
扇形面积公式
S 1l r 2
S nr2 (0 n<360) 360
1.角度制与弧度制的换算
角度化弧度 360°=2π rad 180°=π rad
1 rad 0.017 45 rad 180
弧度化角度 2π rad=360° π rad=180°
1 rad (180) 57.30
2.一些特殊角的度数与弧度数的对应表 度 0° 30° 45° 60° 90° 120° 135° 150° 180°
高中数学必修四任意角与弧度制知识点汇总
![高中数学必修四任意角与弧度制知识点汇总](https://img.taocdn.com/s3/m/7a6bd185bb68a98270fefa22.png)
任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。
注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。
例1、若13590<<<αβ,求βα-和βα+的范围。
(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。
例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。
1.1_任意角与弧度制
![1.1_任意角与弧度制](https://img.taocdn.com/s3/m/0e597f43e518964bcf847ccc.png)
(3)
990 15 ( 3) 360 89 45 是第一象限角
990 15的角与89 45的角终边相同,
RTX3:
如何判断一个给定角所在象限?
只需把它们写成:k 360 (0 360 ) 即可
k 180 120 (k Z ) 2
是第二或第四象限角 2
变:判断 2是第几象限角呢?
课堂练习:
1.一角为30°,其终边按逆时针方向旋转 三周后的 角度数为____,若按顺时针方向旋转呢? 2.在0度到360度范围内,找出与下列各角终边相同 的角,并分别判断它们是哪个象限的角? ① -55º ② 395º8′ ③ 1563º
( 3 )角 的 终 边 在 坐 标 轴 上 , 就 说 这 个 角 不 属 于 任 何 象 限.
RTX2:
锐角是第几象限的角?第一象限的角都是锐角吗? 直角和钝角呢?小于90°的角是锐角吗?
锐角是第一象限角 直角不是象限角 第一象限的角不都是锐角 钝角是第二象限角
小于90°的角不都是锐角
集体探究学习活动2
第二象限的角表示为
{|k360+90<<k360+180,(kZ)}
第三象限的角表示为
{|k3,(kZ)}
第四象限的角表示为
{|k360+270<<k360+360,(kZ)} 或{|k36090<<k360,(kZ)}
( 2 )范 围 都 在 : 0 0 ~ 3 6 0 0.
实际使用中的角 :既要知道旋转量,又要知道旋 转 方 向.
集体探究学习活动1
1.任意角的概念是什么? 2.角是怎样分类的?
高一数学必修任意角和弧度制
![高一数学必修任意角和弧度制](https://img.taocdn.com/s3/m/610ca7538e9951e79b8927a1.png)
高一数学必修4任意角和弧度制第一课时 1.1.1 任意角教学要求:理解任意大小地角正角、负角和零角,掌握终边相同地角、象限角、区间角、终边在坐标轴上地角.教学重点:理解概念,掌握终边相同角地表示法.教学难点:理解角地任意大小.教学过程:一、复习准备:1.提问:初中所学地角是如何定义?角地范围?(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成地图形;0°~360°)2.讨论:实际生活中是否有些角度超出初中所学地范围? → 说明研究推广角概念地必要性(钟表;体操,如转体720°;自行车车轮;螺丝扳手)二、讲授新课:1.教学角地概念:① 定义正角、负角、零角:按逆时针方向旋转所形成地角叫正角,按顺时针方向旋转所形成地角叫负角,未作任何旋转所形成地角叫零角.② 讨论:推广后角地大小情况怎样? (包括任意大小地正角、负角和零角) ③ 示意几个旋转例子,写出角地度数.④ 如何将角放入坐标系中?→定义第几象限地角.(概念:角地顶点与原点重合,角地始边与x 轴地非负半轴重合. 那么,角地终边(除端点外)在第几象限,我们就说这个角是第几象限角. )⑤ 练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限? ⑥ 讨论:角地终边在坐标轴上,属于哪一个象限?结论:如果角地终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角. 口答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.⑦ 讨论:与60°终边相同地角有哪些?都可以用什么代数式表示?与α终边相同地角如何表示?⑧ 结论:与α角终边相同地角,都可用式子k ×360°+α表示,k ∈Z ,写成集合呢? ⑨ 讨论:给定顶点、终边、始边地角有多少个?注意:终边相同地角不一定相等;但相等地角,终边一定相同;终边相同地角有无数多个,它们相差360°地整数倍2.教学例题:① 出示例1:在0°~360°间,找出下列终边相同角:-150°、1040°、-940°. (讨论计算方法:除以360求正余数 →试练→订正)② 出示例2:写出与下列终边相同地角地集合,并写出-720°~360°间角. 120°、-270°、1020°(讨论计算方法:直接写,分析k 地取值 →试练→订正)③ 讨论:上面如何求k 地值? (解不等式法)④ 练习:写出终边在x 轴上地角地集合,y 轴上呢?坐标轴上呢?第一象限呢? ⑤ 出示例3:写出终边直线在y =x 上地角地集合S , 并把S 中适合不等式360720α︒-≤<︒地元素β写出来. (师生共练→小结)3. 小结:角地推广;象限角地定义;终边相同角地表示;终边落在坐标轴时等;区间角表示.三、巩固练习:1. 写出终边在第一象限地角地集合?第二象限呢?第三象限呢?第四象限呢?直线y =-x 呢?2. 作业:书P6 练习 3 ③④、4、5题.第二课时:1.1.2 弧度制(一)教学要求:掌握弧度制地定义,学会弧度制与角度制互化,并进而建立角地集合与实数集R 一一对应关系地概念.教学重点:掌握换算.教学难点:理解弧度意义.教学过程:一、复习准备:1. 写出终边在x 轴上角地集合 .2. 写出终边在y 轴上角地集合 .3. 写出终边在第三象限角地集合 .4. 写出终边在第一、三象限角地集合 .5. 什么叫1°地角?计算扇形弧长地公式是怎样地?二、讲授新课:1. 教学弧度地意义:① 如图:∠AOB 所对弧长分别为L 、L ’,半径分别为r 、r ’,求证:l r =''l r . ② 讨论:l r 是否为定值?其值与什么有关系?→结论:l r =180n π=定值. ③ 讨论:l r 在什么情况下为值为1?l r是否可以作为角地度量? ④ 定义:长度等于半径长地弧所对地圆心角叫1弧度地角. 用rad 表示,读作弧度. ⑤ 计算弧度:180°、360°→ 思考:-360°等于多少弧度?⑥ 探究:完成书P7 表1.1-1后,讨论:半径为r 地圆心角α所对弧长为l ,则α弧度数=?⑦ 规定:正角地弧度数是一个正数,负角地弧度数是一个负数,零角地弧度数是0. 半径为r 地圆心角α所对弧长为l ,则α弧度数地绝对值为|α|=l r. 用弧度作单位来度量角地制度叫弧度制.⑧ 讨论:由弧度数地定义可以得到计算弧长地公式怎样?⑨ 讨论:1度等于多少弧度?1弧度等于多少度?→度表示与弧度表示有啥不同? -720°地圆心角、弧长、弧度如何看?2 .教学例题:①出示例1:角度与弧度互化:6730' ;35rad π.分析:如何依据换算公式?(抓住:180︒=π rad ) → 如何设计算法?→ 计算器操作: 模式选择 MODE MODE 1(2);输入数据;功能键SHIFT DRG 1(2)=② 练习:角度与弧度互化:0°;30°;45°;3π;2π;120°;135°;150°;54π ③ 讨论:引入弧度制地意义?(在角地集合与实数地集合之间建立一种一一对应地关系)④ 练习:用弧度制表示下列角地集合:终边在x 轴上; 终边在y 轴上.3. 小结:弧度数定义;换算公式(180︒=π rad );弧度制与角度制互化.三、巩固练习:1. 教材P10 练习1、2题.2. 用弧度制表示下列角地集合:终边在直线y =x ; 终边在第二象限; 终边在第一象限.3. 作业:教材P11 5、7、8题.第三课时:1.1.2 弧度制(二)教学要求:更进一步理解弧度地意义,能熟练地进行弧度与角度地换算. 掌握弧长公式,能用弧度表示终边相同地角、象限角和终边在坐标轴上地角. 掌握并运用弧度制表示地弧长公式、扇形面积公式教学重点:掌握扇形弧长公式、面积公式.教学难点:理解弧度制表示.教学过程:一、复习准备:1. 提问:什么叫1弧度地角?1度等于多少弧度?1弧度等于多少度?扇形弧长公式?2. 弧度与角度互换:-43π、310π、-210°、75° 3. 口答下列特殊角地弧度数:0°、30°、45°、60°、90°、120°、135°、…二、讲授新课:1. 教学例题:① 出示例:用弧度制推导:S 扇=12LR ;212S R α=扇. 分析:先求1弧度扇形地面积(12ππR 2)→再求弧长为L 、半径为R 地扇形面积? 方法二:根据扇形弧长公式、面积公式,结合换算公式转换.② 练习:扇形半径为45,圆心角为120°,用弧度制求弧长、面积. ③ 出示例:计算sin 3π、tan1.5、cos 4π (口答方法→共练→小结:换算为角度;计算器求)② 练习:求6π、4π、3π地正弦、余弦、正切. 2. 练习:①. 用弧度制写出与下列终边相同地角,并求0~2π间地角.193π、-675° ② 用弧度制表示终边在x 轴上角地集合、终边在y 轴上角地集合?终边在第三象限角地集合?③ 讨论:α=k ×360°+3π与β=2k π+30°是否正确? ④ α与-94π地终边相同,且-2π<α<2π,则α= . ⑤ 已知扇形AOB 地周长是6cm ,该扇形地中心角是1弧度,求该扇形地面积.解法:设扇形地半径为r ,弧长为l ,列方程组而求.3. 小结:扇形弧长公式、面积公式;弧度制地运用;计算器使用.三、巩固练习:1. 时间经过2小时30分,时针和分针各转了多少弧度?2. 一扇形地中心角是54°,它地半径为20cm ,求扇形地周长和面积.3. 已知角α和角β地差为10°,角α和角β地和是10弧度,则α、β地弧度数分别是 .4. 作业:教材P10 练习4、5、6题.。
高中数学5.1任意角和弧度制
![高中数学5.1任意角和弧度制](https://img.taocdn.com/s3/m/41b7292d571252d380eb6294dd88d0d233d43cf7.png)
高中数学5.1 任意角和弧度制一、概述高中数学中,三角函数是一个重要内容。
而在学习三角函数之前,我们需要先了解一些基本概念,比如任意角和弧度制。
本文将围绕着这两个概念展开讲解,帮助读者更好地理解和掌握这些内容。
二、任意角的概念1. 任意角是指不限制在0°到360°之间的角。
在平面直角坐标系中,任意角可以被表示为一个终边落在坐标轴上的角。
这意味着任意角可以包括整个360°的范围。
2. 我们通常用θ来表示任意角,其实任意角可以被表示为θ=360k +α,其中k是整数,α是小于360°的正角,它是唯一的。
三、弧度制的概念1. 弧度制是另一种角度的度量方式,它是以圆的半径长为单位进行度量的。
一个圆的全周长为2πr,所以一个圆的一周等于2π弧度。
2. 我们知道360°等于2π弧度,所以1°等于π/180弧度。
角度和弧度之间可以通过π进行转换。
3. 弧度制适合用于求解圆的性质问题,因为它更直接地与圆的半径有关,可以简化很多计算,并且更具有普适性。
四、任意角与弧度的转换1. 已知一个角的度数,求其对应的弧度。
我们可以根据1°等于π/180弧度的关系,进行计算转换。
30°对应的弧度是30°×π/180=π/6弧度。
2. 已知一个角的弧度,求其对应的度数。
同样可以根据π弧度等于180°进行转换计算。
π/3弧度对应的度数是π/3÷π×180°=60°。
五、扩展知识1. 在解决某些三角函数的问题时,可能会遇到弧度制和角度制混用的情况。
在这种情况下,我们需要先将角度统一转换为弧度,然后再进行计算。
2. 在高等数学中,弧度制被广泛应用于导数、积分和微分等计算中。
了解弧度制可以为后续高等数学的学习奠定坚实基础。
六、总结任意角和弧度制是高中数学中一个基础而重要的知识点,它为后续学习三角函数和高等数学打下了基础。
数学人教A版必修第一册5.1.2弧度制课件
![数学人教A版必修第一册5.1.2弧度制课件](https://img.taocdn.com/s3/m/1bb4a1b527fff705cc1755270722192e453658ab.png)
144 6
l
,
120 5
r
96
6 180
(
) ( )
5
课堂小结
本节课你学会了哪些主要内容?
知识点:(1)弧度制的概念.
(2)弧度与角度的相互转化.
(3)掌握特殊角的度数与弧度数的对应关系.
(4)扇形的弧长与面积的计算.
方法归纳:由特殊到一般、数学运算.
易错点:弧度与角度混用.
(2)1弧度的角:____________________________;
(3)记法:弧度的单位符号是rad,读作弧度
注:弧度单位可省略,角度单位不能省略.
半径为1的圆
(4)单位圆:____________;
∠AOB 即为1弧度的角
概念生成
(5)弧度的计算:在半径为r的圆中,弧长为l的弧所对的圆心角为α rad,
第五章
三角函数
5.1 任意角和弧度制
5.1.2 弧度制
学习目标
学习
目标
一
理解弧度制
二
理解1弧度的角及弧度的定义
三
掌握角度与弧度的换算公式,能进行角度
与弧度的换算,熟记特殊角的度数对应的
弧度数.
复习回顾
请说说角的概念是怎样扩大的?
角的概念
(0°~360°)
放在坐标系中
看终边的位置
0°~360°
的角不够用
心角对对弧的长度。
n R 60
( mm )
简析: 角度制下: 60 n 60, l
180
180
3
弧度制下: 60
3
, l R
必修四 任意角和弧度制 课时练习 含答案
![必修四 任意角和弧度制 课时练习 含答案](https://img.taocdn.com/s3/m/6e7cfee05ebfc77da26925c52cc58bd6318693e8.png)
必修四§1.1任意角和弧度制第一课时:§1.1.1任意角1. 下列命题中正确的是( )A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同2.将-885化为360k α+⋅ (0360α≤<k ,∈Z )的形式是 ( ) A.-165(2)360+-⨯ B.195(3)360+-⨯ C.195(2)360+-⨯ D.165(3)360+-⨯3.在[360°,1440°]中与-21°16′终边相同的角有( )A .1个B .2个C .3个D .4个4.终边落在X 轴上的角的集合是( )A.{ α|α=k ·360°,K ∈Z }B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }5.角α=45°+k·180°,k∈Z的终边落在 ( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限6.设,,,,那么( ) A .B C A B .B A C C .D (A ∩C) D .C ∩D=B7.下列各组角中终边相同的是( )A. +90与Z B.与ZC. +30与+30Z D.与+60Z 8.若角和的终边关于y 轴对称,则有 ( ) A. B.Z C.Z D.Zo {90A =小于的角}{B =锐角}{C =第一象限的角}00{900}D =小于而不小于的角180k ⋅90k ⋅k ,∈(21)180k +⋅(41)180k ±⋅k ,∈180k ⋅360k ⋅k ,∈60k ⋅180k ⋅k ,∈αβ90αβ+=90αβ+=360k +⋅k ,∈360k αβ+=⋅k ,∈180αβ+=360k +⋅k ,∈9.若β是第四象限角,则180β-是第 象限角。
人教A版高中数学必修一课件 《任意角和弧度制》三角函数PPT(第一课时任意角)
![人教A版高中数学必修一课件 《任意角和弧度制》三角函数PPT(第一课时任意角)](https://img.taocdn.com/s3/m/f182eb0dae45b307e87101f69e3143323868f546.png)
理解与角的概念有关问题的关键 正确理解象限角与锐角、直角、钝角、平角、周角等概念,弄清角 的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否 的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反 例即可.
经过 2 个小时,钟表的时针和分针转过的角度分
别是( )
A.60°,720°
B.-60°,-720°
D.-390°
解析:选 D.-390°=330°-720°,所以与 330°角终边相同 的角是-390°.
3.若角 α 的终边与 75°角的终边关于直线 y=0 对称,且-360° <α<360°,则角 α 的值为____________. 解析:如图,设 75°角的终边为射线 OA,射线 OA 关于直线 y= 0 对称的射线为 OB,则以射线 OB 为终边的一个角为-75°,所 以以射线 OB 为终边的角的集合为{α|α=k·360°-75°,k∈Z}.又 -360°<α<360°,令 k=0 或 1,得 α=-75°或 285°.
-110°是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 答案:C
与 30°角终边相同的角的集合是( ) A.{α|α=30°+k·360°,k∈Z} B.{α|α=-30°+k·360°,k∈Z} C.{α|α=30°+k·180°,k∈Z} D.{α|α=-30°+k·180°,k∈Z}
本部分内容讲解结束
按ESC键退出全屏播放
象限角的条件是角的顶点与坐标原点重合,角的始边与 x 轴的非负 半轴重合.
3.终边相同的角 所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S= _{_β_|β_=__α_+__k_·_3_6_0_°__,__k_∈__Z_}__,即任一与角 α 终边相同的角,都可以 表示成角 α 与_______整__数_个__周_角_____的和. ■名师点拨
高中数学 必修四 1.1.1任意角和弧度制
![高中数学 必修四 1.1.1任意角和弧度制](https://img.taocdn.com/s3/m/5e125b0f0b4c2e3f57276342.png)
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.
5.1 任意角和弧度制(共2课时)高一数学同步精品课件(人教A版2019必修第一册)
![5.1 任意角和弧度制(共2课时)高一数学同步精品课件(人教A版2019必修第一册)](https://img.taocdn.com/s3/m/31167f36a88271fe910ef12d2af90242a895ab2a.png)
(4)4.
练习巩固
变式1-2:把下列角度与弧度进行互化.
(1)120°;
(2)-32°;
解:(1)120° = 120 ×
(2)−32° = −32 ×
3
(3)−
5
(4)
9
=
9
3
−
5
= ×
3
(3)− ;
5
×
180
( )°
180
180
=−
180
( )°
=
=
2
.
3
8
.
45
α
变式3-3:角α是第一象限角,试写出角 的集合.
2
第一象限角α的范围:
则角α/2的范围:
0°+k ·360°<α<90°+k ·360°,k∈Z
0°+k ·180°<α/2<45°+k ·180°,k∈Z
则角α/2位于第一、三象限
α
α在第一象限
α在第二象限
α在第三象限
α在第四象限
α/2
一、三
一、三
= {| = 45° + ∙ 180°, ∈ }.
练习巩固
例3:写出终边在y = x上的角的集合S. S中满足不等式−360° ≤ β ≤ 720°的
元素β有哪些?
解:中适合不等式−360° ≤ ≤ 720°的元素有:
45° − 2 × 180° = −315°,
45° − 1 × 180° = −135°,
元素β有哪些?
解:如图,在直角坐标系中画出直线 = ,可以发现它与轴的夹角是
高中数学必修一第五单元公式
![高中数学必修一第五单元公式](https://img.taocdn.com/s3/m/32e9fcc1690203d8ce2f0066f5335a8102d26607.png)
高中数学必修一第五单元公式
高中数学必修一第五单元公式包括任意角和弧度制以及任意角的三角函数。
1. 任意角:正角是按逆时针方向旋转形成的角,负角是按顺时针方向旋转形成的角,零角是不作任何旋转形成的角。
角α的终边与角α相同的角的集合表示为{ββ=k 360°+ a,k∈z}。
2. 弧度制:长度等于半径长的弧所对的圆心角叫做1弧度的角。
弧度与角度的换算关系是360°=2π弧度,180°=π弧度。
若扇形的圆心角为a(a为弧度制),半径为r,弧长为l,周长为C,面积为s,则有l=ar,C=ar+2r,s=ar^2/2。
3. 任意角的三角函数定义:设α是一个任意角,角α的终边上任意一点
P(x,y),它与原点的距离为r,那么角α的正弦、余弦、正切分别是
sinα=y/r,cosα=x/r,tanα=y/x。
以上信息仅供参考,如果您还有疑问,建议咨询高中数学老师或查阅高中数学教材。
02-第一节 任意角和弧度制-课时2 弧度制高中数学必修一人教A版
![02-第一节 任意角和弧度制-课时2 弧度制高中数学必修一人教A版](https://img.taocdn.com/s3/m/b63b61b5370cba1aa8114431b90d6c85ec3a88fb.png)
⌢
为圆心,的长为半径画弧,两弧交于点,则 , ,围成的阴影部
4π
− 3
分的面积为________.
3
【解析】 如图,连接,.由题意知,线段,,
的长度都等于2,所以△ 为正三角形,则
∠ = ∠ =
1
2
π
.又△
3
的面积
1 = × 2 × 3 = 3,扇形的面积
2.4 rad的角的终边所在的象限为( C )
A.第一象限
B.第二象限
C.第三象限
【解析】 因为4 ≈ π + 0.86,所以π < 4 < π
D.第四象限
π
+ ,故其终边在第三象限.
2
知识点2 弧度制与角度制的互化
3.用弧度制表示与150∘ 角终边相同的角的集合为( D )
A.{| =
5π
D.用弧度表示的角都是正角
【解析】 对于A,根据弧度的定义知,“1弧度的圆心角所对的弧长等于
所在圆的半径”,故A正确;对于B,大圆中1弧度的圆心角与小圆中1弧度
的圆心角相等,故B错误;对于C,只有在同圆或等圆中,1弧度的圆心角
所对的弧长是相等的,故C错误;对于D,用弧度表示的角也可以是负角
或零角,故D错误.
2π
−
准,则手表分针转过的角的弧度数为_____,已知手表分针长1
cm,则分针扫
π
2.
过的扇形面积为__cm
3
3
【解析】 由题意得手表分针转过的角的弧度数为 = −2π ×
20
60
=
2π
− .由
3
π
3
cm2 .
手表分针长1 cm,即扇形的半径 = 1 cm,得分针扫过的扇形弧长
必修4第一章任意角的概念与弧度制,三角函数定义
![必修4第一章任意角的概念与弧度制,三角函数定义](https://img.taocdn.com/s3/m/08b5a31f6bec0975f565e284.png)
角的概念的推广一、考点突破1. 掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义;2. 掌握所有与α角终边相同的角(包括α角)的表示方法;3. 体会运动变化观点,深刻理解推广后的角的概念。
二、重难点提示重点:掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
难点:终边相同的角、第几象限角的表示。
1. 角的概念的推广:一条射线由原来位置OA,绕着它的端点O 点,可以向两个方向旋转:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转时,也看作一个角,叫零角。
这样就形成了任意大小的角。
2. 记法与运算: (1)记法:射线OA 绕O 点旋转到OB 所成的角记作∠AOB ; 射线OB 绕O 点旋转到OA 所成的角记作∠BOA ; (2)运算:各角和的旋转量等于各角旋转量的和:射线OA 绕点O 旋转到OB ,又从OB 旋转到OC ,得到∠AOC ,这个过程可表示成角的运算:∠AOC=∠AOB+∠BOC 。
3. 终边相同的角:与α终边相同的角的集合:},360|{Z k k ∈︒⨯+=αββ。
4. 象限角:角的顶点与坐标原点重合,始边与x 轴正半轴重合,此时终边在第几象限,则称这个角是第几象限角。
例题1 射线OA 绕点A 顺时针旋转80°到OB ,再逆时针旋转300°到OC ,再顺时针旋转100°到OD 位置,求AOD ∠的大小。
思路分析:利用正负角的概念结合角的运算求解。
答案:解:AOD ∠=AOB ∠+BOC ∠+COD ∠=︒=︒-+︒+︒-120)100(300)80(。
例题2 在 0~360之间,找出下列终边相同的角,并判定它们是第几象限角: (1)︒-150;(2)︒650;(3)'︒-15950。
思路分析:把负角逆时针旋转一周或者几周,即可得到 0~ 360之间的角,把超过 360 的角顺时针旋转一周或者几周,即可得到 0~ 360之间的角。
高中数学必修一第五章讲义
![高中数学必修一第五章讲义](https://img.taocdn.com/s3/m/2fa7adf927fff705cc1755270722192e453658fc.png)
5.1 任意角和弧度制知识点一 任意角 1.角的概念:角可以看成平面内一条 绕着它的端点 所成的 . 2.角的表示:如图所示:角α可记为“α”或“∠α”或“∠AOB ”,始边: ,终边: ,顶点 .3.角的分类:名称 定义图示正角一条射线绕其端点按 方向旋转形成的角负角 一条射线绕其端点按 方向旋转形成的角零角一条射线 做任何旋转形成的角设α,β是任意两个角, 为角α的相反角. (1)α+β:把角α的 旋转角β. (2)α-β:α-β= .知识点三 象限角把角放在平面直角坐标系中,使角的顶点与 重合,角的始边与x 轴的非负半轴重合,那么,角的 在第几象限,就说这个角是第几 ;如果角的终边在 ,就认为这个角不属于任何一个象限.知识点四 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∠Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 知识点五 度量角的两种制度角度制定义用度作为单位来度量角的单位制1度的角 1度的角等于周角的1360弧度制定义 以 作为单位来度量角的单位制 1弧度的角长度等于 的圆弧所对的圆心角知识点六 弧度数的计算 (1)弧度数正角的弧度数是一个 数. 负角的弧度数是一个 数. (2)零角的弧度数是 (3)弧度数的计算 公式:rl =α知识点七 角度与弧度的互化角度化弧度 弧度化角度 360°= rad 2π rad = 180°= rad π rad = 1°=π180 rad≈0.017 45 rad1 rad =⎝⎛⎭⎫180π°≈57.30° 度数×π180=弧度数弧度数×⎝⎛⎭⎫180π°=度数知识点八 弧度制下的弧长与扇形面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 (1)弧长公式:l =αR .(2)扇形面积公式:S =12lR =12αR 2.1.与2022︒终边相同的角是( ) A .488-︒B .148-︒C .142︒D .222︒ 2.135-的角化为弧度制的结果为( ) A .32π-B .35π-C .34π-D .34π 3.下列说法正确的是( ) A .终边相同的角相等 B .相等的角终边相同 C .小于90︒的角是锐角 D .第一象限的角是正角4.如图所示的时钟显示的时刻为4:30,此时时针与分针的夹角为(0).ααπ<≤则α=( )A .2π B .4π C .8π D .16π 5.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 后的弧长的近似值s 的计算公式:2CD s AB OA=+,记实际弧长为l .当2OA =,60AOB ∠=︒时,l s -的值约为( )(参考数据: 3.14π≈3 1.73≈)A .0.01B .0.05C .0.13D .0.536.把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( ) A .π12B .π12-C .5π12D .5π12-7.角76π所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限8.已知一扇形的周长为6(0)a a >,则当该扇形的面积取得最大时,圆心角大小为( ) A .6π B .4π C .1 D .2二、多选题9.若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角 D .α-是第三或第四象限角10.设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A .若α,r 确定,则L ,S 唯一确定 B .若α,l 确定,则L ,S 唯一确定 C .若S ,L 确定,则α,r 唯一确定 D .若S ,l 确定,则α,r 唯一确定11.下列结论中正确的是( )A .终边经过点()(),0m m m >的角的集合是2,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭;B .将表的分针拨慢10分钟,则分针转过的角的弧度数是3π; C .若α是第三象限角,则2α是第二象限角,2α为第一或第二象限角; D .{}4590,M x x k k Z ==︒+⋅︒∈,{}9045,N y y k k Z ==︒+⋅︒∈,则M N ⊆12.已知A ={第一象限角},B ={锐角},C ={小于90︒的角},那么A 、B 、C 关系是( ) A .B A C =⋂ B .C C =B ∪ C .B A B = D .A B C ==三、填空题13.写出两个与6π终边相同的角______.14.半径为2cm ,中心角为30的扇形的弧长为______cm .15.如图,扇环ABCD 中,弧4AD =,弧2BC =,1AB CD ==,则扇环ABCD 的面积S =__________.16.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43___________.四、解答题17.已知1690α=.(1)把α表示成2k πβ+的形式,其中k ∈Z ,[)0,2βπ∈; (2)求θ,使θ与α的终边相同,且[)4,2θππ∈--.18.已知一扇形的圆心角为α,半径为R ,弧长为()0L α>. (1)已知扇形的周长为10cm ,面积是24cm ,求扇形的圆心角;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?并求此扇形的最大面积.19.已知1570α=-︒,2750α=︒,135rad πβ=,23rad πβ=-.(1)将1α,2α用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将1β,2β用角度制表示出来,并在{}720180ββ-︒≤≤-︒内找出与它们终边相同的所有角.5.2 三角函数的概念知识点一任意角的三角函数的定义条件如图,设α是一个任意角,α∠R,它的终边OP与单位圆交于点P(x,y)定义正弦点P的叫做α的正弦函数,记作sin α,即y=余弦点P的叫做α的余弦函数,记作cos α,即x=正切点P的纵坐标与横坐标的比值yx叫做α的正切,记作tan α,即yx=三角函数正弦函数y=sin x,x∠R余弦函数y=cos x,x∠R正切函数y=tan x,x≠π2+kπ,k∠Z知识点二正弦、余弦、正切函数值在各象限内的符号1.图示:2.口诀:“一全正,二正弦,三正切,四余弦”.知识点三公式一终边相同的角的同一三角函数的值.即=+)2sin(παk=+)2cos(παk=+)2tan(παk其中Zk∈知识点四 同角三角函数的基本关系关系式文字表述平方关系sin 2α+cos 2α= 同一个角α的正弦、余弦 的 等于 商数关系sin αcos α= ⎝⎛⎭⎫α≠π2+k π,k ∠Z同一个角α的正弦、余弦的商等于角α的一、单选题1.已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( )A .3B .12-C 3D .122.已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12B .1C .2D .523.已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22B .225C .434D 4344.若12cos 13α=,且α为第四象限角,则tan α的值为( ) A .125B .125-C .512D .512-5.已知π,π2α⎛⎫∈ ⎪⎝⎭,且3tan 4α=-,则cos α=( )A .35B .35C .45-D .456.已知α为第二象限角,则( ) A .sin 0α<B .tan 0α>C .cos 0α<D .sin cos 0αα>7.已知P 是半径为3cm 的圆形砂轮边缘上的一个质点,它从初始位置0P 开始,按逆时针方向做匀速圆周运动,角速度为πrad/s 2.如图,以砂轮圆心为原点,建立平面直角坐标系xOy ,若0π3P Ox ∠=,则点P 到x轴的距离d 关于时间t (单位:s )的函数关系为( )A .π3sin 43d t ⎛⎫=+ ⎪⎝⎭B .ππ3sin 23d t ⎛⎫=+ ⎪⎝⎭C .π3sin 43d t ⎛⎫=- ⎪⎝⎭D .ππ3sin 23d t ⎛⎫=- ⎪⎝⎭8.在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P 与原点O 之间距离为r ,比值rx叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值xy叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=-;乙:5csc 3β=;丙:3tan 4β=-;丁:4cot 3β=. 如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙 C .丙 D .丁二、多选题9.下列说法错误的是( )A .将表的分针拨快5分钟,则分针转过的角度是6πB .若角2rad α=,则α角为第二象限角C .若角α为第一象限角,则角2α也是第一象限角 D .在区间ππ,22⎛⎫- ⎪⎝⎭内,函数tan y x =与sin y x =的图象有3个交点10.已知角α的终边与单位圆交于点3,55m P ⎛⎫⎪⎝⎭,则sin α的值可能是( )A .45B .35C .45-D .3511.已知角θ的终边经过点(2,3)--,且θ与α的终边关于x 轴对称,则( ) A .21sin 7θ=- B .α为钝角C .27cos 7α=-D .点(tan θ,tan α)在第四象限12.已知点()(),20P m m m -≠是角α终边上一点,则( ) A .tan 2α B .5cos 5α=C .sin cos 0αα<D .sin cos 0αα>三、填空题13.已知角α的终边经过点()1,2P ,sin 2cos sin cos αααα--+的值是____________.14.已知角2022α= , 则sin cos tan sin cos tan αααααα++= _______________________. 15.若π0,4θ⎛⎫∈ ⎪⎝⎭,记22cos sin P θθ=-,33cos sin Q θθ=-,44cos sin R θθ=-,则P 、Q 、R 的大小关系为_________.16.已知1sin cos 52παααπ⎛⎫+=-<< ⎪⎝⎭,则11sin cos αα-的值为___________.四、解答题17.已知第一象限角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过点()1P m m +,,且3cos 5α=. (1)求m 及tan α的值; (2)求()sin sin cos ααα+的值.18.已知tan 2α=,求下列各式的值. (1)1sin cos αα; (2)111sin 1sin αα+-+. 19.已知2212sin cos 2cos sin αααα+=-. (1)求tan α的值; (2)求222sin 3sin cos cos αααα+-的值.20.已知第二象限角α满足sin ,cos αα是关于x 的方程2255120x x --=的两个实根. (1)求1tan tan αα+的值; (2)求()22sin cos sin 2cos sin ααααα+-的值.5.3 诱导公式知识点一 公式二~四终边关系 图示公式公式二角π+α与角α的终边关于 对称sin(π+α)= , cos(π+α)= , tan(π+α)= 公式三角-α与角α的终边关于 轴对称sin(-α)= , cos(-α)= , tan(-α)= 公式四角π-α与角α的终边关于 轴对称sin(π-α)= , cos(π-α)= , tan(π-α)=知识点二 诱导公式五、六 (1)公式五=-)2sin(απ=-)2cos(απ(2)公式六=+)2sin(απ=+)2cos(απ一、单选题1.cos210︒的值等于( ) A .12 B .32C .32-D .22-2.已知5sin 5α=,则πcos 2α⎛⎫-= ⎪⎝⎭( )A .55B .55-C .255-D .2553.3cos()sin 2x x ππ⎛⎫-++= ⎪⎝⎭( ) A .2cos x -B .0C .2sin x -D .cos sin x x -4.已知()0,απ∈,()tan 3sin παα-=,则tan α=( ) A .22B 2C .2D .22-5.若()tan π3α-=,则sin 2cos sin cos αααα-=+( ) A .52B .52-C .14-D .146.若()1sin 2π3α+=,tan 0α<,则cos α=( )A .22B .13-C .13D 227.已知()113sin cos 2013cos 22ππαπαα⎛⎫⎛⎫-+-=-- ⎪ ⎪⎝⎭⎝⎭,则22sin sin cos ααα-=( ) A .2110 B .32C 3D .28.若α为任意角,则满足cos cos 2k παα⎛⎫+⋅=- ⎪⎝⎭的一个k 的值为( )A .1B .2C .3D .4二、多选题9.下列转化结果正确的有( ) A .171sin62π= B .113tan 6π⎛⎫-= ⎪⎝⎭C .150-化成弧度是76π-D .12π化成度是15 10.在∠ABC 中,下列关系式恒成立的有( ) A .()sin sin A B C += B .cos sin 22A B C +⎛⎫= ⎪⎝⎭C .()sin 22sin20A B C ++=D .()cos 22cos20A B C ++=11.在平面直角坐标系中,若α与β的终边关于y 轴对称,则下列等式恒成立的是( ) A .()sin sin απβ+= B .()sin sin απβ-= C .()sin 2sin παβ-=- D .()sin 2sin παβ+=12.下列说法正确的有( ) A .3sin 600tan 240︒+︒=B .若已知cos31m ︒=,则2sin 239tan1491m =-︒︒C .已知()1cos 753α︒+=,且18090α-︒<<-︒,则()22cos 15α︒-=D .函数()1f x ax =+在区间()1,1-上存在一个零点的充分必要条件是1a <-或1a > 三、填空题13.172053sin cos tan 636πππ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.14.()()cos585tan 585sin 570︒=-︒+-︒__________. 15.已知π3cos 64α⎛⎫+=- ⎪⎝⎭,则5ππcos sin 63αα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭__________.16.若tan()2πα-=-,则3cos(2)2cos 2sin()sin 2ππααππαα⎛⎫-+- ⎪⎝⎭=⎛⎫---- ⎪⎝⎭__________.四、解答题17.已知()4cos 5πα+=,且tan 0α>. (1)求tan α的值; (2)()()()2sin sin 22ππααπ⎛⎫-+- ⎪⎝⎭'的值.18.已知角α终边上一点()43P ,-,求下列各式的值.(1)sin cos sin cos αααα+- (2)()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭19.(1)已知()1sin 3πα-=,求()sin 3,cos 2ππαα⎛⎫+- ⎪⎝⎭的值.(2)化简()()sin 2cos 3sin cos 22παπαππαα-⋅+⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭.20.已知正弦三倍角公式:3sin 33sin 4sin x x x =-∠(1)试用公式∠推导余弦三倍角公式(仅用cos x 表示cos3x ); (2)若角α满足sin 33sin 2αα=,求cos3cos αα的值.5.4 三角函数的图象与性质知识点一正弦函数、余弦函数的图象函数y=sin x y=cos x图象图象画法五点法五点法关键五点,⎝⎛⎭⎫π2,1,,⎝⎛⎭⎫3π2,-1,(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1)正(余)弦曲线正(余)弦函数的叫做正(余)弦曲线知识点二函数的周期性1.函数的周期性一般地,设函数f(x)的定义域为D,如果存在一个,使得对每一个x∠D都有x+T∠D,且,那么函数f(x)就叫做周期函数.叫做这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个,那么这个最小正数叫做f(x)的最小正周期.知识点三正弦函数、余弦函数的周期性和奇偶性函数y=sin x y=cos x图象定义域R R周期2kπ(k∠Z且k≠0)2kπ(k∠Z且k≠0)最小正周期2π奇偶性知识点四正弦函数、余弦函数的单调性与最值正弦函数 余弦函数图象定义域 RR值域单调性在每一个闭区间⎣⎡⎦⎤2k π-π2,2k π+π2(k ∠Z )上都单调递增,在每一个闭区间⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∠Z )上都单调递减在每一个闭区间[2k π-π,2k π](k ∠Z )上都单调递增,在每一个闭区间[2k π,2k π+π] (k ∠Z )上都单调递减最值x =π2+2k π(k ∠Z )时,y max =1;x =-π2+2k π(k ∠Z )时,y min =-1x =2k π(k ∠Z )时,y max =1;x =2k π+π(k ∠Z )时,y min =-1知识点五 正切函数的图象与性质解析式y =tan x图象定义域 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∠Z 值域 R 最小正周期 π 奇偶性 奇函数单调性 在每一个区间⎝⎛⎭⎫-π2+k π,π2+k π(k ∠Z )上都单调递增 对称性对称中心⎝⎛⎭⎫k π2,0(k ∠Z )一、单选题1.下列关于函数tan 23y x π⎛⎫=-+ ⎪⎝⎭的说法正确的是( )A .最小正周期为πB .图像关于点5,012π⎛⎫⎪⎝⎭成中心对称C .在区间,312ππ⎛⎫-- ⎪⎝⎭上单调递增 D .图像关于直线12x π=-成轴对称2.与图中曲线对应的函数可能是( )A .sin y x =B .sin y x =C .sin y x =-D .sin y x =-3.函数sin(2)4y x π=-的单调减区间是( )A .3[,],(Z)88k k k ππππ-+∈ B .3[2,2],(Z)88k k k ππππ-+∈ C .37[2,2],(Z)88k k k ππππ++∈ D .37[,],(Z)88k k k ππππ++∈ 4.已知函数()sin()f x x ϕ=+为偶函数,则ϕ的取值可以为( ) A .π2-B .πC .π3D .05.已知函数()tan 24f x x π⎛⎫=- ⎪⎝⎭,下列说法正确的有( )∠函数()f x 最小正周期为2π; ∠定义域为|R,,Z 28k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭∠()f x 图象的所有对称中心为,0,Z 48k k ππ⎛⎫+∈⎪⎝⎭; ∠函数()f x 的单调递增区间为3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭. A .1个 B .2个 C .3个 D .4个6.函数()()sin 2,0,6f x x x ππ⎛⎫=-∈ ⎪⎝⎭,若方程()2f x =的解为()1212,0x x x x π<<<,则()12sin x x -=( )A .23-B .33-C .73-D .26-7.记函数()sin()f x x ωϕ=+π0,02ωϕ⎛⎫><< ⎪⎝⎭的最小正周期为T ,若2()2f T =,3π4x =为()f x 的零点,则T的最大值为( ) A .πB .2πC .4πD .6π8.已知函数π()cos 22cos 2f x x x ⎛⎫=+- ⎪⎝⎭,给出下列结论:∠()f x 的最小正周期为2π: ∠()f x 是奇函数:∠()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦; ∠()f x 在ππ,26⎡⎤-⎢⎥⎣⎦上单调递增.其中所有正确结论的序号是( ) A .∠∠ B .∠∠ C .∠∠∠ D .∠∠∠二、多选题9.下列函数以π02⎛⎫⎪⎝⎭,为对称中心的有( ) A .sin y x = B .tan y x = C .πsin 4y x ⎛⎫=+ ⎪⎝⎭D .sin 2y x =10.函数()π3sin 334g x x ⎛⎫=-- ⎪⎝⎭,则( )A .()g x 的最小正周期为6πB .()g x 的图像关于直线π4x =对称 C .()g x 的图像关于点5π,312⎛⎫- ⎪⎝⎭对称 D .()g x 在π0,3⎡⎤⎢⎥⎣⎦上单调递增11.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法错误的是( )A .函数()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称;B .函数()y f x =的图象关于直线512x π=-对称;C .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减; D .该图象向右平移3π个单位可得2sin2y x =的图象. 12.已知函数()sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列命题正确的是( )A .若()f x 在[0,)π上有10个零点,则3943,44ω⎛⎤∈ ⎥⎝⎦B .若()f x 在[0,)π上有11条对称轴,则3943,44ω⎛⎤∈ ⎥⎝⎦C .若()f x 2在[0,)π上有12个解,则21,122ω⎛⎤∈ ⎥⎝⎦D .若()f x 在,32ππ⎛⎫⎪⎝⎭上单调递减,则35,42ω⎡⎤∈⎢⎥⎣⎦三、填空题13.函数()=sin2+1(0)f x x ωω>在ππ62⎡⎤⎢⎥⎣⎦,上单调递增,则ω取值范围为_____________14.已知函数()(25sin π,0,4f x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,设方程(),(01)f x m m =<<的根从小到大依次为123,,x x x ,且2132x x x =,则m =___________.15.设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是__________.16.设函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在0,2π⎛⎫ ⎪⎝⎭上有且仅有2个零点,则实数ω的取值范围为______________.四、解答题17.已知函数()sin 62f x x π⎛⎫=+ ⎪⎝⎭.(1)求函数()f x 的单调递增区间;(2)求函数()f x 在区间[]0,2π上的所有零点之和.18.已知函数()sin()(R,0,0,0)2f x A x x A πωϕωϕ=+∈>><<的部分图象如图所示.(1)求()f x 的解析式; (2)求不等式()1f x >的解集.19.已知函数2π()sin(2)3f x x =+. (1)请用五点法做出()f x 一个周期内的图像;(2)若函数()()g x f x m =-在区间π[0,]2上有两个零点,请写出m 的取值范围,无需说明理由.20.已知函数()()2sin f x x ωϕ=+(0>ω,π<ϕ),其图象一条对称轴与相邻对称中心的横坐标相差π4,______;从以下两个条件中任选一个补充在空白横线中.∠函数()f x 向左平移π6个单位得到的图象关于y 轴对称且()00f <.∠函数()f x 的一条对称轴为π3x =-且()π16f f ⎛⎫< ⎪⎝⎭;(1)求函数()f x 的解析式;(2)若π17π,212x ⎡⎤∈⎢⎥⎣⎦,方程()()()2430f x a f x a +-+-=存在4个不相等的实数根,求实数a 的取值范围.勉,学习需坚持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数
1.1任意角和弧度制
一、 教学目标:
(1)推广角的概念、引入大于360︒
角和负角; (2)理解并掌握正角、负角、零角的定义;
(3)理解任意角以及象限角的概念;
(4)掌握所有与α角终边相同的角(包括α角)的表示方法;
二、教学重、难点
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.
难点:终边相同的角的表示.
三、学法与教学用具
之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.
教学用具:电脑、投影机、三角板
四、教学设想
【创设情境】
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25
小时,你应当如何将它校准?当时间校准以后,分针转了多少度?
[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒
~之间,这正是我们这节课要研究的主要内容——任意角.
【探究新知】
1.初中时,我们已学习了0360︒︒
~角的概念,它是如何定义的呢? [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1—1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点
O 叫做叫α的顶点.
2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒
的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒
的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle ),按顺时针方向旋转所形成的角叫负角(negative angle ).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle ).
[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒
;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒
=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.
3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.
角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角(quadrant angle ).如教材图1.1—4中的30︒角、210︒-角分别是第一象限角和第三象限角.要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.
4.[展示投影]练习:
(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.
(2)(回答)今天是星期三那么7()k k Z ∈天后的那一天是星期几? 7()k k Z ∈天前的那一天是星期几?100天后的那一天是星期几?
5.探究:将角按上述方法放在直角坐标系中后,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系中任意一条射线OB (如图1.1—5),以它为终边的角是否唯一?如果不惟一,那么终边相同的角有什么关系?请结合4.(2)口答加以分析.
[展示课件]不难发现,在教材图1.1—5中,如果32︒
-的终边是OB ,那么328,392︒︒-角的终边都是OB ,而328321360︒︒︒=-+⨯,39232(1)360︒︒︒-=-+-⨯.
设{|32360,}S k k Z ββ︒︒==-+⋅∈,则328,392︒︒-角都是S 的元素,32︒-角也是S
的元素.因此,所有与32︒-角终边相同的角,连同32︒
-角在内,都是集合S 的元素;反过来,集合S 的任一元素显然与32︒
-角终边相同. 一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合
{|360,}S k k Z ββα︒==+⋅∈,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.
6.[展示投影]例题讲评
例1. 例1在0360︒︒
~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒
≤<) 例2.写出终边在y 轴上的角的集合.
例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒
-≤ 720︒<的元素β写出来.
7.[展示投影]练习
教材第3、4、5题.
注意:(1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角
不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍.
8.学习小结
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直
线y x=上的角的集合.
五、评价设计
1.作业:习题1.1A组第1,2,3题.
2.多举出一些日常生活中的“大于360︒的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点.。