2012年中考数学复习资料(直线型、全等、相似)
2012年中考数学一轮复习精品讲义 相似 人教新课标版
第二十七章相似本章小结小结1 本章概述本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,通过大量的实践活动来探索三角形相似的条件,并应用相似三角形的性质及判定方法来研究和解决实际问题.在研究相似三角形的基础上学习位似图形,知道位似变换是特殊的相似变换.小结2 本章学习重难点【本章重点】通过具体实例认识图形的相似,探索相似图形的性质,掌握相似多边形的对应角相等,对应边成比例,面积的比等于相似比的平方.了解两个三角形相似的概念,探索两个三角形相似的条件.【本章难点】通过具体实例观察和认识生活中物体的相似,利用图形的相似解决一些实际问题.【学习本章应注意的问题】通过生活中的实例认识物体和图形的相似,探索并认识相似图形的特征,掌握相似多边形的对应角相等,对应边成比例以及面积的比与相似比的关系,能利用相似三角形的性质解决一些简单的实际问题,了解图形的位似,能利用位似将一个图形放大或缩小,会建立坐标系描述点的位置,并能表示出点的坐标.小结3 中考透视图形的相似在中考中主要考查:(1)了解比例的基本性质,了解线段的比及成比例线段.(2)认识相似图形,了解相似多边形的对应角相等,对应边成比例,面积比等于相似比的平方.(3)了解两个三角形相似的概念,掌握两个三角形相似的条件,能利用图形的相似解决一些实际问题.(4)了解图形的位似,能利用位似将一个图形放大或缩小.相似是平面几何中重要的内容,在近几年的中考中题量有所增加,分值有所增大,且题型新颖,如阅读题、开放题、探究题等.由于相似图形应用广泛,且与三角形、平行四边形联系紧密,估计在今后中考的填空题、选择题中将会注重相似三角形的判定与性质等基础知识的考查,并在解答题中加大知识的横向与纵向联系.具体考查的知识点有相似三角形的判定、相似三角形的性质、相似三角形的实际应用、图形的放大与缩小等.知识网络结构图专题总结及应用一、知识性专题专题1 比例线段【专题解读】解决有关比例线段的问题时,常常利用三角形相似来求解.例1 如图27-96所示,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,AE=8,OC=12,∠EDC=∠BAO.(1)求证CD CE AC CB=;(2)计算CD·CB的值,并指出CB的取值X围.分析利用△CDE∽△CAB,可证明CD CE AC CB=.证明:(1)∵∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴CD CE AC CB=.解:(2)∵AE=8,OC=12,∴AC=12+4=16,CE=12-4=8.又∵CD CE AC CB=,∴CD·CB=AC·CE=16×8=128.连接OB,在△OBC中,OB=12AE=4,OC=12,∴8<BC<16.【解题策略】将证CD CEAC CB=转化为证明△CDE∽△CAB.专题2 乘积式或比例式的证明【专题解读】证明形如22a c b d =,33a c b d=或abcdef =1的式子,常将其转化为若干个比例式之积来解决.如要证22a c b d =,可设法证a c b x =,a xb d=,然后将两式相乘即可,这里寻找线段x 便是证题的关键。
2012年中考数学知识点备考复习9.doc
八.几何计算题选讲几何计算题历年来是中考的热点问题。
几何计算是以推理为基础的几何量的计算,主要有线段 与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。
解几何计算题的常用方法有:几何法、代数法、三角法等。
一、三种常用解题方法举例例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC交于P ,PE ⊥AB 于E ,AB=10,求PE 的长. 解法一:(几何法)连结OT ,则OT ⊥CD ,且OT=21AB =5 BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2=CP ·CA. ∴PC=5,∴AP=CA-CP=54.∵PE ∥BC ∴AC AP BC PE =,PE=5554×5=4. 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别要注意图形中的隐含条件. 解法二:(代数法) ∵PE ∥BC ,∴AB AE CB PE =. ∴21==AB CB AE PE . 设:PE=x ,则AE=2 x ,EB=10–2 x .连结PB. ∵AB 是直径,∴∠APB=900.在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE . ∴21==AE PE EP EB .∴EP=2EB ,即x=2(10–2x ). 解得x =4. ∴PE=4.说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系. 解法三:(三角法)连结PB ,则BP ⊥AC.设∠PAB=α 在Rt △APB 中,AP=10COS α,在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α. 在Rt △ABC 中, BC=5,AC=55.∴sin α=55555=, COS α=5525510=.∴PE=10×55255⨯=4. 说明:在几何计算中,必须注意以下几点:(1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系.(2) 注意推理和计算相结合,先推理后计算,或边推理边计算,力求解题过程规范化. (3) 注意几何法、代数法、三角法的灵活运用和综合运用. 二.其他题型举例例2.如图,ABCD 是边长为2 a 的正方形,AB 为半圆O 的直径,CE 切⊙O 于E ,与BA 的延长线交于F ,求EF 的长.分析:本题考察切线的性质、切割线定理、相似三角形性质、以及正方形有关性质.本题可用代数法求解.解:连结OE ,∵CE 切⊙O 于E , ∴OE ⊥CF ∴△EFO ∽△BFC ,∴FB FE BC OE ,又∵OE=21AB=21BC ,∴EF=21FB 设EF=x ,则FB=2x ,FA=2x –2a∵FE 切⊙O 于E ∴FE 2=FA ·FB ,∴x 2=(2x –2a )·2x 解得x =34a , ∴EF=34a. 例3.已知:如图,⊙O 1 与⊙O 2相交于点A 、B ,且点O 1在⊙O 2上,连心线O 1O 2交⊙O 1于点C 、D ,交⊙O 2于点E ,过点C 作CF ⊥CE ,交EA 的延长线于点F ,若DE=2,AE=52 (1) 求证:EF 是⊙O 1的切线;(2) 求线段CF 的长; (3) 求tan ∠DAE 的值. 分析:(1)连结O 1A ,O 1E 是⊙O 2的直径,O 1A ⊥EF ,从而知 EF 是⊙O 1的切线.(2)由已知条件DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线和割线,运用切割线定理EA 2=ED ·EC ,可求得EC=10.由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定理可得:(x +52)2= x 2+102,解得 x =54.即CF=54.(3)要求tan ∠DAE 的值,通常有两种方法:①构造含∠DAE 的直角三角形;②把求tan ∠DAE 的值转化为求某一直角三角形一锐角的正切(等角转化).在求正切值时,又有两种方法可供选择:①分别求出两线段(对边和邻边)的值;②整体求出两线段(对边和邻边)的比值. 解:(1)连结O 1A ,∵O 1E 是⊙O 2的直径,∴O 1A ⊥EF ∴EF 是⊙O 1的切线..(2)∵DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线和割线 ∴EA 2=ED ·EC ,∴EC=10由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定理可得:(x +52)2= x 2+102,解得 x =54.即CF=54.(3)解法一:(构造含∠DAE 的直角三角形) 作DG ⊥AE 于G ,求AG 和DG 的值.分析已知条件,在Rt △A O 1E 中,三边长都已知或可求(O 1A=4,O 1E=6),又DE=2,且DG ∥A O 1(因为DG ⊥AE ),运用平行分线段成比例可求得DG=,354,34=AG 从而tan ∠DAE=55. 解法二:(等角转化)连结AC ,由EA 是⊙O 1的切线知∠DAE=∠ACD.只需求tan ∠ACD.易得∠CAD=900,所以只需求AC AD 的值即可.观察和分析图形,可得△ADE ∽△CAE ,551052===CE AE AC AD .从而tan ∠ACD=55=AC AD ,即tan ∠DAE=55. 说明:(1)从已知条件出发快速地找到基本图形,得到基本结论,在解综合题时更显出它的基础性和重要性.如本题(2)求CF 的长时,要能很快地运用切割线定理,先求出CE 的长. (2)方程思想是几何计算中一种常用的、重要的方法,要熟练地掌握.例4.如图,已知矩形ABCD ,以A 为圆心,AD 为半径的圆交AC 、AB 于M 、E ,CE 的延长线交⊙A 于F ,CM=2,AB=4.(1) 求⊙A 的半径;(2) 求CF 的长和△AFC 的面积. 解:(1)∵四边形ABCD 是矩形,∴CD=AB=4,在Rt △ACD 中,AC 2=CD 2+AD 2,∴(2+AD )2=42+AD 2,解得AD=3.(2) A 作AG ⊥EF 于G.∵BG=3,BE=AB ―AE=1,∴CE=10132222=+=+BEBC由CE ·CF=CD 2,得CF=105810422==CE CD .又∵∠B=∠AGE=900,∠BEC=∠GEA ,∴△BCE∽△GAE.∴AE CE AG BC =,即,3103=AG S △AFC =21CF ·AG=536. 例5.如图,△ABC 内接于⊙O ,BC=4,S △ABC =36,∠B 为锐角,且关于x 的方程x 2–4xcosB+1=0有两个相等的实数根.D 是劣弧AC 上的任一点(点D 不与点A 、C 重合),DE 平分∠ADC ,交⊙O 于点E ,交AC 于点F.(1) 求∠B 的度数;(2) 求CE 的长.分析:本题是一道综合了代数知识的几何计算题,考察了圆的有关性质,解题时应注意线段的转化.解:(1)∵关于x 的方程x 2–4xcosB+1=0有两个相等的实数根,∴Δ=(-4cosB )2-4=0.∴cosB=21,或cosB=-21(舍去). 又∵∠B 为锐角,∴∠B=600.(2) 点A 作AH ⊥BC ,垂足为H. S △ABC =21BC ·AH=21BC ·AB ·sin600=36,解得AB=6 在Rt △ABH 中,BH=AB ·cos600=6×21=3,AH=AB ·sin600=6×3323=,∴CH=BC-BH=4-3=1. 在Rt △ACH 中,AC 2+CH 2=27+1=28.∴AC=72±(负值舍去).∴AC=72.连结AE ,在圆内接四边形ABCD 中,∠B+∠ADC=1800,∴∠ADC=1200.又∵DE 平分∠ADC ,∴∠EDC=600=∠EAC. 又∵∠AEC=∠B=600,∴∠AEC=∠EAC ,∴CE=AC=72.例6. 已知:如图,⊙O 的半径为r ,CE 切⊙O 于点C ,且与弦AB 的延长线交于点E ,CD ⊥AB 于D.如果CE=2BE ,且AC 、BC 的长是关于x 的方程x 2–3(r –2)x+ r 2–4=0的两个实数根.求(1)AC 、BC 的长;(2)CD 的长. 分析:(1)图中显然存在切割线定理的基本图形,从而可得△ECB ∽△EAC ,AC=2BC.又∵AC 、BC 是方程的两根,由根与系数关系可列出关于AC 、BC 的方程组求解.(2)∵CD 是Rt △CDB 的一边,所以考虑构造直角三角形与之对应.若过C 作直径CF ,连结AF ,则Rt △CDB ∽Rt △CAF ,据此可列式计算.解:(1)∵CE 切⊙O 于C ,∴∠ECB=∠A.又∵∠E 是公共角,∴△ECB ∽△EAC ,21==CE BE AC BC ,∴AC=2BC.由AC 、BC 的长是关于x 的方程x 2–3(r –2)x+ r 2–4=0的两个实数根,∴AC+BC=3(r-2);AC ·BC=r 2-4,解得r=6,∴BC=4,AC=8.(2) CO 并延长交⊙O 于F ,连结AF ,则∠CAF=900,∠CFA=∠CBD. ∵∠CDB=900=∠CAF ,∴△CAF ∽△CDB ,BC CF CD AC =.∴CD=381248=⨯=⋅CF BC AC . 说明:(1)这是一道代数、几何的综合题,关键是寻找相似三角形,建立线段之间的比例关系,再根据根与系数关系列等式计算;(2)构造与相似的直角三角形的方法有许多种,同学们不妨试一试.例7.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,PA 是过A 点的直线,∠PAC=∠B. (1)求证:PA 是⊙O 的切线;(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=CE ∶EB=6∶5,AE ∶EB=2∶3,求AB 的长和∠FCB 的正切值. 解:(1)∵AB 是⊙O 的直径,∴∠ACB=900. ∴∠CAB+∠B=900,又∠PAC=∠B ,∴∠CAB+∠PAC=900.即PA ⊥AB ,∴PA 是⊙O 的切线. (2) 设CE=6a ,AE=2x,则ED=5a ,EB=3 x.由相交弦定理,得2x ·3x=5a ·6a ∴x=5a. 连结AD.由△BCE ∽△DAE ,得553==ED EB AD BC .连结BD.由△BED ∽△CEA ,得25==AE BE AC BD . ∴BD=54.由勾股定理得BC=228-AB ,AD=2)54(-AB .∴553)54(82222=--AB AB .两边平方,整理得1002=AB ,∴10=AB (负值舍去). ∴AD=52.∵∠FCB=∠BAD ,∴tan ∠FCB= tan ∠BAD=25254==AD BD . 解几何计算题要求我们必须掌握扎实的几何基础知识,较强的逻辑推理能力,分析问题时应注意分析法与综合法的同时运用,还特别要注意图形中的隐含条件,在平时的学习中要善于总结归纳,只有这样才能掌握好几何计算题的解法.。
2012中考全等三角形复习
2012届中考数学备考复习课件
判定两个三角形全等一般可以从三个角度思考:一是看三 边;二是看两边和它们的夹角;三是看两角和一边.
·浙教版
2012届中考数学备考复习课件
► 类型之三 全等三角形开放性问题
命题角度: 1.三角形全等的条件开放性问题 2.三角形全等的结论开放性问题 3.三角形全等的策略开放性问题
·浙教版
2012届中考数学备考复习课件
考点3 三角形全等的判定方法
1.三条边对应相等的两个三角形全等(简记为____S_S_S__); 2.两个角和它们的夹边对应相等的两个三角形全等(简记为 ___A_S__A__); 3.两个角和其中一个角的对边对应相等的两个三角形全等(简 记为___A__A_S__); 4.两条边和它们的夹角对应相等的两个三角形全等(简记为 ___S_A__S__); 5.斜边和一条直角边对应相等的两个直角三角形全等(简记为 ____H_L___).
[2010·金华] 如图 20-3,在△ABC 中,点 D 是 BC 边上的点 (不与点 B,C 重合),点 F,E 分别是 AD 及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF(不再添加其他线段,不再标注或
·浙教版
2012届中考数学备考复习课件
使用其他字母),并给出证明. (1)你添加的条件是:_F_D_=_E_D___; (2)证明:
·浙教版
2012届中考数学备考复习课件
考点4 尺规作图
1.基本尺规作图:作角的平分线,作线段的垂直平分线,作 一角等于已知角.
2.按给定条件,如“边边边”、“边角边”、“角边角”作 三角形.► 类型之一 探索三角形全等的条件
命题角度: 1.利用三角形全等的判定方法探索三角形全等的条件 2.利用全等三角形性质求线段的长度 3.利用全等三角形性质证明角或线段相等
2012中考数学复习资料
2012中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
(备战中考)2012年中考数学深度复习讲义:全等三角形专题复习
(备战中考)2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)全等三角形◆考点聚焦1.探索并掌握两个三角形全等的特征和识别.2.了解定义、命题、逆命题和定理的含义,会区分命题的条件和结论.3.完成基本作图(等线段、等角、角的平分线、线段的垂直平分线);•会利基本作图作三角形及过不在同一直线上的三点作圆.◆备考兵法1.证边角相等可转化为证三角形全等,即“要证边相等,转化证全等.•”全等三角形是证明线段、角的数量关系的有力工具,若它们所在的三角形不全等,可找中间量或作辅助线构造全等三角形证明.在选用ASA 或SAS 时,一定要看清是否有夹角和夹边;要结合图形挖掘其中相等的边和角(如公共边、公共角和对顶角等),若题目中出现线段的和差问题,往往选择截长或补短法.2.本节内容的试题一改以往“由已知条件寻求结论”的模式,•而是在运动变化中(如平移、旋转、折叠等)寻求全等.对全等三角形的考查一般不单纯证明两个三角形全等,命题时往往把需要证明的全等三角形置于其他图形(如特殊平行四边形)中,或与其他图形变换相结合,有时也还与作图题相结合;解题时要善于从复杂的图形中分离出基本图形,寻找全等的条件.◆识记巩固1.三角形全等的识别方法:注意:要证全等必须满足至少一组边对应相等.2.三角形全等的证题思路: SAS HL SSS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→⎧⎪⎪→⎨⎨⎪⎪→⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边找夹角的另一边已知一边和一角找夹边的另一角找边的对角找夹边已知两角找任一边3.全等三角形的特征:全等三角形的对应边_______,•对应角______;•图形经过_______,_______,_______等几何变换后与原图形全等.•4.•________________•叫做命题.•正确的命题称为_______,•错误的命题称为_______.两个三角形中对应相等的边或角 全等识别法 一般三角形 三条边 两边及其夹角 两角及其夹边两角及一角的对边直角三角形 斜边及一条直角边5.在几何中,限定用________和_______来画图,称为尺规作图,新课标要求掌握四种基本作图(画线段、画角、画角平分线、画垂直平分线).6.全等三角形中常见的基本图形:识记巩固参考答案:1.SSS SAS ASA AAS HL3.相等相等对称平移旋转4.可以判断正确与错误的语句真命题假命题5.直尺圆规 ◆典例解析例1(2011重庆江津,22,10分)在△ABC 中,AB=CB,∠ABC=90º,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.(1)求证:Rt △ABE ≌Rt △CBF; (2)若∠CAE=30º,求∠ACF 度数.【答案】(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt △ABE 和Rt △CBF 中,∵AE=CF,AB=BC,∴Rt △ABE ≌Rt △CBF(HL)(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB-∠CAE=45°-30°=15°.由(1)知Rt △ABE ≌Rt △CBF ,∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=45°+15°=60°.例2在一次数学课上,王老师在黑板上画出下图,并写下了四个等式:①AB=DC ;②BE=CE ;③∠B=∠C ;④∠BAE=∠CDE .•要求同学从这四个等式中选出两个作为条件,推出△AED 是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)已知: 求证:△AED 是等腰三角形.证明:解析本例是一道开放性问题,考查全等三角形的识别,填法多样,•一般先看从题中已知的四个条件中取出两个共有六种取法,再看有几种正确.正确的填法可以是已知:①③(或①④,或②③,或②④)(任选一个即可).若选①③,证明如下:证明:在△ABE 和△DCE 中,∵,,,B C AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE , ∴AE=DE ,即△AED 是等腰三角形. 点评几何演绎推理论证该如何考?一直是大家所关注的.本题颇有新意,提供了一种较新的考查方式,让学生自主构造问题,自行设计命题并加以论证,给学生创造了一个自主探究的机会,具有一定的挑战性.这种考查的形式在近几种的中考试题中频繁出现,复习时值得重视.例3已知Rt △ABC 中,∠C=90°.(1)根据要求作图(尺规作图,保留作图痕迹,不写画法).①作∠BAC的平分线AD交BC于点D;②作线段AD的垂直平分线交AB于点E,交AC于点F,垂足为H;③连结ED.(2)在(1)的基础上写出一对全等三角形:△_____≌△______,并加以证明.解析(1)按照要求用尺规作∠BAC的平分线AD,作线段AD的垂直平分线,并连结相关线段.(2)由AD平分∠BAC,可以得到∠BAD=∠DAC.由EF垂直平分线段AD,可以得到∠EHA=∠FHA=∠EHD=90°,EA=ED,从而有∠EAD=∠EDA=∠FAH,再加上公共边,从而有△AEH≌△AFH≌△DEH.以上三组中任选一组即可.点拨本题的最大特点是将基本作图与证明结合起来,就目前的情况来看,“作图→证明”“作图→计算”“作图→变换”是考查基本作图的常见命题模式.作角平分线和线段的垂直平分线是新课标中明确提出的基本作图之一,作图的图形中含有很多相等的线段和角,蕴含着全等三角形.例4在△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图1,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)如图2,若E,F分别是AB,CA延长线上的点,仍有BE=AF,其他条件不变,•那么△DEF是否仍为等腰直角三角形?证明你的结论.解析(1)连结AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD,∴∠B=∠DAC=45°.又BE=AF,图1 图2∴△BDE≌△ADF(SAS),∴ED=FD,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)连结AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC.∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°.又AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF仍为等腰直角三角形.例5在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G,•一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,•另一条直角边恰好经过点B.(1)在图中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到如图2所示的位置时,一条直角边仍与AC•边在同一直线上,另一条直角边交BC 边于点D,过点D作DE⊥BA于点E.此时请你通过观察,•测量DE,DF与CG的长度,猜想并写出DE+DF与CG 之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)在基础上沿AC方向继续平移到如图3所示的位置(点F•在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)图1 图2 图3解析(1)BF=CG .证明:在△ABF 和△ACG 中,∵∠F=∠G=90°,∠FAB=∠GAC ,AB=AC , ∴△ABF ≌△ACG (AAS ), ∴BF=CG .(2)DE+DF=CG .证明:过点D 作DH ⊥CG 于点H (如图2).∵DE ⊥BA 于点E ,∠G=90°,DH ⊥CG . ∴四边形EDHG 为矩形, ∴DE=HG ,DH ∥BG , ∴∠GBC=∠HDC . ∵AB=AC , ∴∠FCD=∠GBC=∠HDC . 又∵∠F=∠DHC=90°,CD=DC , ∴△FDC ≌△HCD (AAS ),∴DF=CH . ∴GH+CH=DE+DF=CG ,即DE+DF=CG .(3)仍然成立.点评本题从直接证明三角形全等,到探究新的情况下如何构建新的全等三角形证明待定的数量关系,再到不同位置关系下的归纳猜想,三个问题由浅入深考查学生的不同层次的数学能力.本题还可以利用面积来进行证明,比如(2)中连结AD .全等三角形练习题一、选择题1.(2011安徽芜湖,6,4分)如图1,已知ABC △中,45ABC ∠=,F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ). A .B .4C .D .【答案】B图1 图2 图3 图42.(2011山东威海,6,3分)图2在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE,DF,EF.则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等( ).A .EF ∥AB B .BF=CFC .∠A=∠DFED .∠B=∠DFE 【答案】C 3.(2011浙江衢州,1,3分)如图3,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( ) A.1 B.2 C.3 D.4 【答案】B4.(2011江西,7,3分)如图下列条件中,不能..证明△ABD≌△ACD 的是( ).A.BD=DC ,AB=ACB.∠ADB=∠ADCC.∠B=∠C,∠BA D=∠CADD.∠B=∠C,BD=DC 【答案】D5.(2011江苏宿迁,7,3分)如图5,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是( ) A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA 【答案】B图5 图6 图86.(2011江西南昌,7,3分)如图6下列条件中,不能..证明△ABD≌△ACD 的是( ). A.BD=DC ,AB=AC B.∠ADB=∠ADC C.∠B=∠C,∠BA D=∠CADD.∠B=∠C,BD=DC 【答案】D7.(2011上海,5,4分)下列命题中,真命题是( ).A 周长相等的锐角三角形都全等;B 周长相等的直角三角形都全等;C 周长相等的钝角三角形都全等;D 周长相等的等腰直角三角形都全等. 【答案】D8.(2011安徽芜湖,6,4分)如图8,已知ABC △中,45ABC ∠=,F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ). A .B .4C .D .【答案】B二、填空题1.(2011江西,16,3分)如图1所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。
2012年中考数学总复习试卷(相似形)
20XX年中考数学总复习试卷(十)(相像形)( 试卷满分 150分,考试时间 120 分钟 )一、选择题 ( 此题共 10小题,每题 4分,满分40 分)每一个小题都给出代号为A,B,C,D的四个结论,此中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得 4 分,不选、选错或选出的代号超出一个的(无论能否写在括号内)一律得0 分。
1.以下命题:①全部的等腰三角形都相像,②全部的等边三角形都相像,③全部的等腰直角三角形都相像,④全部的直角三角形都相像。
此中,正确的选项是( A)A. ②③B.②③④C.③④D.②④2.已知ABC∽ A/ B/ C/,ABC的三边长分别为2、10、2,A/ B/ C/的两边长分别为 1和5,则ABC 的笫三边长为(A)A.2B.5C.10D.23.如图, DE ∥ FG∥ BC,且 DE、 FG 把△ ABC 的面积三平分,若BC= 12,则 FG 的长是( C)A. 8 B .6C.4 6D.4 34.如图,已知△ ABC 与△ ADE中,则∠ C=∠ E,∠DAB=∠ CAE,则以下各式建立的个数是( C)∠D=∠ BAF AD DE AE AD AB ,AC=AB,BC=AC,AE=ACA.1 个B. 2 个C. 3 个D. 4 个5. 如图,已知DE∥ BC, CE和 BD订交于点O,S DOE∶S COB4∶9 ,则AE∶EB为(A)A. 2∶1B.2∶ 3C.3∶2D.5∶4ADFEB C(第 3 题图)(第 4 题图)(第 5 题图)6.已知a c,则以下等式中不建立的是( D)b dA.bd B. a b c d a c b dC .a c D.ad aa b c dbc b7.若abb c c a k ,则 k 的值为 ( C )cabA.2B.- 1 C.2 或- 1 D.不存在8.如图, P 是 Rt △ABC 的斜边 BC 上异于 B , C 的一点,过 P 点作直线截△ ABC ,使截得的三角形与△ ABC 相像,知足这样条件的直线共有 ( C)A .1 条B. 2 条C. 3 条D .4 条9.如图,等边 △ ABC 的边长为 3, P 为 BC 上一点,且 BP 1, D 为 AC 上一点,若APD60°,则 CD 的长为 ( B)A .3B.2C.1D.3232410.如图,在 Rt △ABC 内有边长分别为 a 、 b 、 c 的三个正方形,则a 、b 、c 知足的关系式是( A)A . b a cB . b acC. b 2a 2 c 2D . b 2a 2cA60° DBCP(第 8 题图)(第 9 题图)(第 10 题图)二、填空题(每题5 分,共 20 分)11.两个相像三角形的面积比为4∶ 9,那么它们的周长比为 2 : 3 。
(最新最全)2012年全国各地中考数学解析汇编28章_图形的相似与位似
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第二十八章 图形的相似与位似28.1 图形的相似15.(2012北京,15,5)已知023a b =≠,求代数式()225224a b a b a b -⋅--的值.【解析】【答案】设a =2k ,b =3k ,原式=525210641(2)(2)(2)22682a b a b k k k a b a b a b a b k k k ----====+-++ 【点评】本题考查了见比设份的解题方法,以及分式中的因式分解,约分等。
28.2 线段的比、黄金分割与比例的性质(2011山东省潍坊市,题号8,分值3)8、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A . 215-B .215+C . 3D .2考点:多边形的相似、一元二次方程的解法解答:根据已知得四边形ABEF 为正方形。
因为四边形EFDC 与矩形ABCD 相似所以DF:EF=AB:BC 即 (AD-1):1=1:AD 整理得:012=--AD AD ,解得251±=AD 由于AD 为正,得到AD=215+,本题正确答案是B. 点评:本题综合考察了一元二次方程和多边形的相似,综合性强。
28.3 相似三角形的判定(2012山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC.ACAB AE AD = D. AD E ABC S S ∆∆=3 解析:根据三角形中位线定义与性质可知,BC=2DE ;因DE//BC ,所以△ADE ∽△ABC ,AD :AB=AE :AC ,即AD :AE=AB :AC ,ADE ABC S S ∆∆=4.所以选项D 错误.答案:D点评:三角形的中位线平行且等于第三边的一半.有三角形中位线,可以得出线段倍分关系、比例关系、三角形相似、三角形面积之间关系等.(2012四川省资阳市,10,3分)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC=MABN 的面积是A.B. C.D.【解析】由MC =6,NC =∠C =90°得S △CMN =,再由翻折前后△CMN ≌△DMN 得对应高相等;由MN ∥AB 得△CMN ∽△CAB 且相似比为1:2,故两者的面积比为1:4,从而得S △CMN :S 四边形MABN =1:3,故选C.【答案】C【点评】本题综合考查了直角三角形的面积算法、翻折的性质、由平行得相似的三角形相似的判定方法、相似图形的面积比等于相似比的平方等一些类知识点.知识点丰富;考查了学生综合运用知识来解决问题的能力.难度较大.(第10题图) N M D A CB(2012湖北随州,14,4分)如图,点D,E分别在AB、AC上,且∠ABC=∠AED。
(备战中考)2012年中考数学深度复习讲义:图形的相似
(备战中考)2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)图形的相似◆考点聚焦1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,•并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,•会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置.◆备考兵法1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定,•要注意基本图形的应用,如“A型”“X型”“母子型”等.2.用相似三角形的知识解决现实生活中实际问题,•关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.3.用直角坐标系中的点描述物体的位置,•用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.◆识记巩固1.相似形:形状相同,大小不一定相等的图形称为______.2.相似多边形的特征:对应边______,对应角______.3.成比例线段:如果四条线段a,b,c,d中,•某两条线段的长度的比与另两条线段的长度的比相等,那么这四条线段叫做成比例线段,简称比例线段.如a:b=c:d或a:d=b:c,则a,b,c,d叫___________;若a,b,b,c成比例,即a:b=b:•c,•则称b•是a•和c•的_______.4.相似三角形:对应角相等,对应边成比例的三角形叫做相似三角形.•对应边之比叫做________.当相似比为1时,两个三角形就称为_______.5.相似三角形的识别:(1)两组对应角分别__________的两个三角形相似;(2)两组对应边成比例,且_______相等的两个三角形相似;(3)三组对应边________的两个三角形相似;(4)平行于三角形一边的直线和其他两边(或其延长线)相交,所得的三角形与原三角形________.6.相似三角形的性质:(1)相似三角形对应边成_________,对应角_______.(2)相似三角形对应线段(对应角,对应中线,对应角平分线,•外接圆半径和内切圆半径)之比和周长之比都等于_______;(3)相似三角形的面积比等于_______.7.黄金分割:若线段AB 上一点P 分线段成AP 与PB 两条线段,且A P PB A BA P=(可求出比值为0.618……),这种分割叫黄金分割.P 点叫线段AB 的黄金分割点,一条线段有_____个黄金分割点.8.位似:对应顶点的连线_________的相似叫位似.•作位似图形的方法是先确定位似中心和每个顶点之间的直线,在直线的另一侧取原多边形的对应顶点,连结各点即得放大或缩小的位似图形(注意“放大”和“放大到”的区别).9.相似三角形中常见的基本图形: 条件:DE ∥BC ∠1=∠B ∠1=∠B条件:AB ∥DE ∠A=∠D CD 是斜边AB 上的高识记巩固参考答案:1.相似形2.成比例相等3.比例线段比例中项4.相似比全等三角形5.(1)相等(2)夹角(3)成比例(4)相似6.(1)比例相等(2)相似比•(3)相似比的平方7.两8.相交于一点 ◆典例解析例1(2011上海,25,14分)在Rt △ABC 中,∠ACB=90°,BC=30,AB=50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM=EN ,sin ∠EMP=1213.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP=x ,BN=y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1图2备用图【答案】(1.∵S=12AB C P ⋅⋅=12AC BC ⋅⋅, ∴CP=AC BC AB ⋅=403050⨯=24.在Rt△CPM 中,∵sin ∠EMP=1213, ∴1213C P C M=.∴CM=1312C P =132412⨯=26.(2)由△APE ∽△ACB ,得PE AP BCAC=,即3040PE x =,∴PE=34x . 在Rt△MPE 中,∵sin∠EMP=1213,∴1213PE M E=.∴E M=1312P E =133124x ⨯=1316x .∴PM=PN=516x . ∵AP+PN+NB=50,∴x+516x +y=50. ∴y=215016x -+(0<x<32).(3)、第三问:由于给出对应顶点,那么解法一可以直接运用相似和三角比求出对应边长再列比例式求解。
2012年数学中考第一轮复习:空间与图形考点整理
2012年中考数学第一轮总复习讲义第20-30课时空间与图形(一)考点整理:考点1 三种基本图形—直线、射线、线段:1、直线——直线公理:经过两点有且只有一条直线;2、射线——两条射线为同一射线必须同时具备:①端点是同一点;②延伸方向相同;3、线段——线段公理:两点之间,线段最短;说明:两个点之间连线有很多条,但只有线段最短,这条线段的长度,就叫做这两点之间的距离。
考点2 角:1)角的定义:①有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边;②一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形叫做角。
2)角的分类:角按照大小可以分为锐角、直角、钝角(初中阶段只要求小于平角的角)3)角的比较方法:①叠合法②度量法4)角平分线:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
性质:角平分线上的点到这个角两边的距离相等;判定:到一个角两边的距离相等的点在这个角的角平分线上。
考点3 互为余角、互为补角:1)互为余角:如果∠1和∠2互为余角,那么∠1+∠2= 90°;2)互为补角:如果∠1和∠2互为补角,那么∠1+∠2= 180°;3)同角或等角的余角相等,同角或等角的补角相等。
考点4 对顶角:1)定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫对顶角;2)对顶角的性质:对顶角相等。
考点5 平行:1)平行的定义:在同一平面内,不相交的两条直线叫做平行线;2)两直线平行的表示方法:直线AB与直线CD平行,可以表示为AB∥CD 或CD∥AB;3)平行线的性质:①经过直线外一点有且只有一条直线与已知直线平行;②如果两条直线都和第三条直线平行,那么这样两条直线也互相平行。
考点6 垂直:1)垂直定义:如果两条直线相交所构成的角为直角,那么这两条直线互相垂直,其中一条叫做另一条的垂线,互相垂直的两条直线的交点叫做垂足。
2)垂直的性质:平面内,过一点有且只有一条直线与已知直线垂直;3)点到直线的距离:过直线外一点作已知直线的垂线,这点与垂足之间的线段叫做垂线段,它的长度叫做点到直线的距离,4)在直线外各点与直线上各点的连线中,垂线段最短。
2012年中考数学系统复习资料(全面)
第一部分数与代数第一节:实数课时1:有理数课时2:实数课时3:实数的运算第二节:代数式课时4:整式及其运算课时5:因式分解课时6:分式及其运算课时7:二次根式第三节:方程与方程组课时8:一元一次方程与二元一次方程组课时9:一元二次方程与分式方程课时10:列方程(组)解应用题第四节:不等式与不等式组课时11:一元一次不等式(组)及其解法课时12:列一元一次不等式(组)解应用题第五节:函数及其图象课时13:函数及其图象课时14:一次函数课时15:反比例函数课时16:二次函数第二部分:空间与图形第六节:图形的初步认识课时17:点、线、面、角课时18:相交线、平行线第七节:三角形与四边形课时19:三角形课时20:全等三角形课时21:四边形课时22:特殊四边形的性质与判定第八节:图形与变换课时23:图形的平移、轴反射与旋转课时24:相似三角形课时25:位置的确定、平面直角坐标系第九节:解直角三角形。
课时26:锐角三角函数课时27:解直角三角形第十节:圆课时28:圆的有关性质课时29:点与圆的位置关系、直线与圆的位置关系。
课时30:圆与圆的位置关系、圆锥课时31:视图与投影第十一节:图形与证明:课时32:命题、证明、反证法课时33:尺规作图。
第三部分:统计与概率课时34:统计课时35:概率第四部分:实践与综合应用课时36:方程与函数综合课时37:圆与相似综合课时38:代数与几何综合课时1 有理数◆明纲亮标一、考标要求1.理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2.掌握五条法则:有理数的加、减、乘、除、乘方法则及简单的混合运算。
3.能运用有理数的运算解决简单的问题。
4.对含有较大数字的信息作出合理解释。
二、知识要点1.有理数的分类:整数、分数统称有理数;整数又包括________,___,_____;分数又包括________,________。
2.相反数、倒数、绝对值的概念:只有符号不同的两个数是________,a的相反数为-a;0的相反数是0。
2012年历年初三数学中考解题方法总复习三及答案
A C E DB 推理与证明一、利用三角形全等证明线段相等和角相等我们知道如果两个三角形全等,那么这两个三角形的对应边相等,对应角相等。
全等三角形的性质为我们证明线段相等和角相等提供了方法。
例1 已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =.求证:AC CD =.分析:从图形中我们发现,AC 、CD 正好是 △ ABC 和△CDE 的对应边,我们只要证明了△ABC 和△CDE全等就可以证明结论成立。
怎样证明这两个三角形确定呢?我们从已知条件出发,展开联想,寻找出全等的条件即可。
题目中的第一个条件:AB ED ∥→∠B =∠E题目中的第二个条件:AB CE =,BC ED =正好分别是等角的边。
这时,三角形全等的条件齐了,可以书写证明过程了。
证明:AB ED Q ∥,∴B E ∠=∠.在ABC △和CED △中, ∵AB CE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,,, ∴ABC CED △≌△.∴AC CD =.在上面的证明过程中,我们是怎样书写证明过程的呢?上面的证明过程可以分为三部分:第一部分,使用了一个逻辑推理。
AB ED Q ∥,∴B E ∠=∠.这个推理为后面证明两个三角形全等起到准备条件的作用,也就是说,在证明三角形全等的三个条件中,已知条件中已经具备了两个,还需要一个条件,这个推理为三角形全等找到了第三个条件。
第二部分,证明两个三角形全等。
第三部分,利用全等三角形的性质,推理得出线段相等。
例2 如图,在等腰梯形ABCD 中,AD BC ∥,M 是AD 的中点,求证:MB MC =.分析:从图中我们发现,线段MB ,MC 可以看成是△ABM 和△CDM 的对应边,我们只要证明了△ABM 和△CDM全等就可以证明结论成立。
怎样证明这两个三角形确定呢?我们从已知条件出发,展开联想,寻找出全等的条件即可。
题目中的第一个条件:在等腰梯形ABCD 中,AD BC ∥→AB =CD ,∠A =∠D题目中的第二个条件:M 是AD 的中点→AM =DM 。
2012年中考数学相似复习专题
总复习:相似1.如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A 、AB 2=BC ·BD B 、AB 2=AC ·BD C 、AB ·AD=BD ·BC D 、AB ·AD=AD ·CD(第1题) (第3题)2.如图,已知AD 为△ABC 的角平分线,AB DE //交AC 于E ,如果32=EC AE ,那么=ACAB( ) (A )31(B )32 (C )52(D )533.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD ∶AB =3∶4,AE =6,则AC 等于( )A .3B .4C .6D . 84.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC=2DE ;②△ADE ∽△ABC ;③AD ABAE AC=.其中正确的有( ) (A)3个 (B)2个 (C)1个 (D )0个5.如图,有一矩形纸片ABCD ,AB=6,AD=8,将纸片折叠,使AB 落在AD 边上,折痕为AE ,再将△AEB 以BE 为折痕向右折叠,AE 与DC 交于点F ,则CDFC 的值是( )6.如图,△ABC 中,D 、E 分别为AC 、BC 边上的点,AB ∥DE ,CF 为AB 边上的中线,若AD =5,CD =3,DE =4,则BF 的长为( ) A.332B. 316C. 310D.38AB CDE(第2题)第6题 F EDCBA7、在△ABC 中,D 为AC 边上一点,∠DBC =∠A ,BC =6,AC =3,则CD 的长为( ) A 、1 B 、23 C 、2 D 、258.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D .则△BCD 与△ABC 的周长之比为( )A . 1:2B . 1:3C . 1:4D . 1:5(第9题)9.某校数学兴趣小组为测量学校旗杆AC 的高度,在点F 处竖立一根长为1.5米的标杆DF ,如图(1)所示,量出DF 的影子EF 的长度为1米,再量出旗杆AC 的影子BC 的长度为6米,那么旗杆AC 的高度为 ( )(A )6米 (B )7米 (C )8.5米 (D )9米10.如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+第3题图 NM CBA(第10题) (第11题)11、如图,在△ABC 中,∠C =900,AC =8,CB =6,在斜边AB 上取一点M ,使MB =CB ,过M 作MN ⊥AB 交AC 于N ,则MN = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节相交线、平行线[知识要点]一、相交线1.线段的垂直平分线:(1)定义:垂直且平分一条线段的直线,叫做线段的垂直平分线。
(2)性质:线段垂直平分线上的点,到线段两端点的距离相等。
2.角(1)定义(2)角的分类:平角、周角、直角、锐角、钝角(3)角的度量:1°=60' 1'=60"(4)相关的角:对顶角、余角、补角、邻补角(5)角的平分线1)定义2)性质:角平分线上的点到角两边的距离相等。
二、平行线1.定义:在同一平面内不相交的两条直线,叫平行线。
2.性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补(4)平行线间的距离相等(5)平行线截相交两条直线,对应线段成比例。
3.判定:(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)平行于同一直线的两直线平行。
(5)垂直于同一直线的两直线平行。
第二节三角形[知识要点]一、三角形的分类二、三角形的边角关系1.边与边的关系(1)△两边之和大于第三边(2)△两边之差小于第三边2.角与角关系(1)△三个内角的和等于180°(2)△的一个外角等于和它不相邻的两个内角的和(3)△的一个外角大于任何一个和它不相邻的内角三、△的主要线段(1)角平分线(2)中线(3)高线(4)中位线四、△的重要的点(1)内心:内心到三边距离相等。
(2)重心:重心到顶点的距离等于到对边中点距离的2倍(3)垂心(4)外心:外心到三个顶点的距离相等。
五、特殊三角形1.等腰△(1)性质:1)两腰相等2)两个底角相等3)底边上“三线合一”4)轴对称图形(1条对称轴)(2)判定:1)两边相等的三角形是等腰△2)两个角相等的三角形是等腰△2.等边△性质:1)三边相等2)三个角相等,都等于60°3)三边上都有“三线合一”4)轴对称图形(3条对称轴)3.Rt△(1)性质:1)两个锐角互余2)勾股定理3)斜边上中线等于斜边的一半4)30°角所对的直角边等于斜边的一半(2)判定:1)有一个角是直角的三角形2)勾股定理逆定理第三节全等三角形[知识要点]一、定义:二、性质:1.对应边相等2.对应角相等3.对应线段(高线、中线、角平分线)相等4.全等三角形面积相等三、判定:(SAS)(AAS)(ASA)(SSS)(HL)第四节四边形[知识要点]一、特殊四边形二、平行四边形(1)性质:1)边:对边平行且相等2)角:对角相等,邻角互补3)对角线:互相平分4)对称性:中心对称图形(2)判定:1)边:两组对边分别平行两组对边分别相等一组对边平行且相等2)对角线:对角线互相平分3)角:两组对角分别相等。
三、矩形1.性质:(1)具有平行四边形的一切性质(2)4个角都是直角(3)对角线相等(4)既是中心对称图形,又是轴对称图形2.判定:(1)有一个角是直角的平行四边形是矩形(2)有三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形四、菱形1. 性质:(1)具有平行四边形的一切性质(2)四条边都相等(3)对角线互相垂直,且平分内对角2.判定:(1)邻边相等的平行四边形是菱形(2)四边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形。
五、正方形:(1)具有平行四边形、矩形、菱形的一切性质。
(2)判定:利用定义六、梯形1.等腰梯形的性质:(1)两腰相等(2)两底角相等(3)两条对角线相等(4)轴对称图形2.直角梯形的性质:一腰与底垂直3.梯形中常用辅助线七、多边形1. n 边形内角和(n-2)·180°2.n 边形外角和为360°3.n 边形对角线条数相似三角形本次我们一起来复习初二几何中的相似三角形,这一部分知识在中考中占有很重要的地位,而几乎所有初三同学复习到此内容时往往都感到非常困难,希望同学们认真复习这一部分知识,找出规律.一、基本知识及需要说明的问题:(一)比例的性质1.比例的基本性质:bc ad dc b a =⇔= 此性质非常重要,要求掌握把比例式化成等积式、把等积式转化成比例的方法.2.合、分比性质:dd c b b a d c b a d d c b b a d c b a -=-⇒=+=+⇒=或 注意:此性质是分子加(减)分母比分母,不变的是分母.如:已知dc c b a ad c b a +=+=:,求证 证明:∵d c b a = ∴c d a b = ∴c d c a b a +=+ ∴dc c b a a +=+ 3.等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n fd b n m fe d c b a 则ba n f db m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 4.比例中项:若c a b c a b cb b a ,,2是则即⋅==的比例中项. (二)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l 1∥l 2∥l 3, A D l 1B E l 2C F l 3可得EFBC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等. 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:ACAE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三.....边.对应成比例. AD EB C说明:①此定理和平行线分线段成比例定理的异同相同点:都是平行线不同点:平行线分线段成比例定理的推论是两条平行线截其它两边所成的对应线段成比例,即AD 与AE,DB 与EC,AB 与AC 这六条线段,而此定理是三角形的三边对应成比例.即AC AE AB AD BC DE AC AE BC DE AB AD ===或或,只要有图形中的BCDE ,它一定是△ADE 的三边与△ABC 的三边对应成比例.②注意:条件(平行线的应用)在作图中,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.如:如图(1),已知BD:CD=2:3,AE:ED=3:4求:AF:FC图(1) 图(2) 图(3)辅助线当然是添加平行线。
但如图(2),如果过D 作DG ∥BF,则在FC 中插入了G 点,不利求结论AF:FC ;如图(3)如果过F 做FG ∥AD 交CD 于G 时,在CD 上插入G,条件BD:DC=2:3就不好用了。
因此应过D 做DG ∥AC 交BF 于G,此辅助线做法既不破坏BD:DC,又不破坏AE:ED,还不破坏AE:FC.解: 过D 做DG ∥AC 交BF 于G∵BD:DC=2:3 ∴则DG:CF=2:5 设DG=2x CF=5x AE:ED=3:4 AF:DG=3:4 AF:2x AF=1.5x AF:FC=1.5x :5x =3:10B D C(三)相似三角形1、相似三角形的判定①两角对应相等的两个三角形相似(此定理用的最多);②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似;④直角边和斜边对应成比例的两个直角三角形相似.2、直角三角形斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.3、相似三角形的性质①相似三角形对应角相等、对应边成比例.②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比)二、本次练习:(一)判断题:1.已知dc c b a ad c b a d c b a +=+≠+≠+=则),0,0(.( ) 2.已知dc d c b a b a d c b a d c b a -+=-+≠≠=则),,(.( ) 3.若c a b c b a ,,253,215,1是则-=-==的比例中项. ( ) 4.如图:DE ∥BC,EF ∥AB,则ABEF BC DE =( ) A D EB F C5.在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D,则BD AD BCAC =22.( ) 6.有一组邻边对应成比例的两个矩形相似. ( )7.如图已知DE ∥BC,CD,EB 交于O, AS △POE:S △COB=4:9,则12=EC AE .( ) D E B C8.已知△ABC 中,∠BAC=Rt ∠,AD ⊥BC,AB=2AC,则AD:BC=2:5. ( )9.所有的等腰直角三角形都相似. ( )10.两个相似多边形的面积比为5,周长比是m,则55=m.( ) (二)填空题:1.已知c b a c b a c b a ,,,12987则且=-+==的第四比例项是______. 2.如图:∠ABC=∠CDB=90°,AC=a, BC=b, C当BD=______时,△ABC ∽△CDB. ADB3.若3132=-+y x y x ,则______:=y x . 4.已知在Rt △ABC 中,∠C=90°,CD ⊥AB 于D,若CD=6,AB=13,则CD 分AB 所成的两条线段是5.矩形ABCD 中,E 是DC 上一点,BE ⊥AF,若BE=10cm,AF=4cm,则S 矩形=______cm 2. F EB C6.如图:EF ∥BC,若S △AEF=S 四边形,则ABAE =______. A E FB C7.两个相似三角形面积之比是9:25,较大的三角形的周长是20cm,则较小的三 角形的周长是______cm.8.将一个矩形纸片对折,得到的矩形与原矩形相似,则原矩形的长:宽=______. 9.如图:BC=120,高AD=80,△ABC 的 A内接矩形EFGH 中,EH:EF=2:1,则矩形EFGH 的周长是______. E M HB F D G C10.△ABC 中,D,E 分别是AB,AC 上的点, A且BD=CE,DE 的延长线交BC 延长线于F,若AB:AC=3:5, D EEF=12cm,则DF=______cm. BC F11.如图:△ABC 中,EF ∥BC,AE:EB=1:2, D AS △ADE=S,则S △AEF=______S.E FB C12.如图BD:CD=2:3,DE ∥AC, ADF ∥AB,S △ABC=S,则S △AEF=______S. FEB D C(三)单选题:1.如图:PQ ∥BC,若S △APQ=3, AS △PQB=6,则S △CQB 等于: P QA.20B.18C.16D.9B C2.△ABC 中,BD,CE 分别是AC,AB 边上的中线 A并且BD ⊥CE,BD=4,CE=6,则S △ABC 等于:A.12B.14C.16D.18E DB C3.中,AF:FD=1:3,E 是AB 中点EF 交AC 于M,则AM:MC 等于:A E4.如图:DE ∥BC,EF ∥AB,在下面的比例式中,正确的有:①FC BF DB AD = ②BCDE DB AD = A ③BC BF AB AD = ④BCDE AB EF = D E ⑤BC BF AC AE = ⑥CFBF AD BD = B F C A.①③ B.①②③ C.③⑤⑥ D.①③⑤(四)证明题:1.D 是△ABC 的AC 上一点,E 是BC 延长 A线上一点,ED 交AB 于F,且AC:BC=EF:FD D求证:AD=EB. FE B C2.如图:E 是梯形ABCD 上底DC 中点, GBE 交AC 于F 交AD 的延长线于G求证:EF ·GB=BF ·GE D E CFA B3.已知:在△ACB 中,∠ACB 是Rt ∠,M 是 AAB 中点,MD ⊥AB 交AC 于E,BC的延长线于D M求证:AB 2=4ME ·MD EB C D4.AD 是△ABC(AB>AC)的角平分线, AAD 的中垂线和BC 的延长线交于点E求证:DE 2=BE ·CEB DC E5.AD,BE 是△ABC 的高,A ’D ’,B ’E ’, A A ’是△A ’B ’C ’的高,且',''''C C D A B A AD AB ∠=∠= 求证:AD ·B ’E ’=A ’D ’·BE E E ’B DC B ’D ’ C ’6.如图:AH 是Rt △ABC 的斜边BC 上的高, D A E以AB 和AC 做等边三角形ABD 和等边△ACE,连结DH,EH求证: △AEH ∽△BDHB H C7.如图:已知四边形ABCD 是正方形E 是AD 中点,BF=3AF,EG ⊥CF 于G,求证:EG2=FG·CG F GB C例题分析例1已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°,求:∠AOC与∠EOD的度数。