振动作业答案

合集下载

振动与波习题课及课后作业解答

振动与波习题课及课后作业解答
O B N X
π

λ
2OB π = 5π

= 入 反 = π
λ
x (5π +

λ
x) = 6π

2kπ , 波腹 = (2k + 1)π , 波节
0≤x≤1.25λ ≤ ≤ λ
λ
x
3. 空气中声速为 空气中声速为340m/s, 一列车以 一列车以72km/h的速度行驶 车上旅客 的速度行驶, 的速度行驶 听到汽笛声频率为360Hz, 则目送此火车离去的站台上的旅客听到 听到汽笛声频率为 此汽笛声的频率为( 此汽笛声的频率为 B) (A) 360Hz (B) 340Hz (C) 382.5Hz (D) 405Hz 解:
t = ( / 2π )T = T / 12 6
A/2 -π/3
π
ω
x
A
2. 如图为用余弦函数表示的一质点作谐振动曲线 振动圆频率 如图为用余弦函数表示的一质点作谐振动曲线, ,从初始状态到达状态 所需时间为 2s 从初始状态到达状态a所需时间为 . 为 7π/6 π 从初始状态到达状态 分析: 分析:本题的关键是确定各时刻 X(m) 6 的位相, 的位相,在振动曲线上由位移和 3 速度方向(斜率的正负) 速度方向(斜率的正负)定 0 t=0时: -3 X0=A/2,v0<0 = π/3 t=1时: X=0,v>0 ωt+= 3π/2
u vs
s
u = 334m s 1 (3)
u v0 ( 4) λ ′ = ν′ 334 65 = = 0.190m 1418
ω
t = 0, v0 = ωA sin 0 = 10cm / s
3 ∴0 = π 2

机械振动基础作业(有答案-全版)

机械振动基础作业(有答案-全版)

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?解:前轴或后轴垂直振动的振动模型简图为图1.2所示,此时汽车振动简化为二自由度振动系统。

2m 为非悬架质量,1m 为悬架质量1. 3设有两个刚度分别为21,k k 的线性弹簧如图T-1.3所示, 试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 为:21111k k k eq +=证明:1) 如图T-1.3(a)所示,21,k k 两个弹簧受到力的作用,变形相同, 即2211k F k F k F eq ==, 而F F F =+21,故有 F F k kF k k eq eq =+21, 从而 21k k k eq +=2)如图T-1.3(b)所示,21,k k 两个弹簧受到相同的力作用 即∆=∆=∆=eq k k k F 2211 (1)且21∆+∆=∆ (2)由(1)和(2)有:)(21k Fk F k F eq += (3) 由(3)得:21111k k k eq += 1.8证明:两个同频率但不同相角的简谐运动的合成仍是同频率的简谐运动,即)cos()cos(cos θωϕωω-=-+t C t B t A ,并讨论ϕ=0,ππ,2三种特例。

证明:因t B t B t B ωϕωϕϕωsin sin cos cos )cos(+=-从而有t B t B A t B t A ωϕωϕϕωωsin sin cos )cos ()cos(cos ++=-+令 ()ϕϕϕθ222sin cos sin sin B B A B ++=则()[]t t B B A t B t A ωθωθϕϕϕωωsin sin cos cos sin cos )cos(cos 222+++=-+=())cos(sin cos 222θωϕϕ-++t B B A令C=()ϕϕ222sin cos B B A ++,则有 )cos()cos(cos θωϕωω-=-+t C t B t A当ϕ=0时,C=A+B ;当ϕ=2π时,22B A C +=,22BA arcsin +=B θ ;当ϕ=π时,B A -=C ,0=θ1.13汽车悬架减振器机械式常规性能试验台,其结构形式之一如图T-1.13所示。

机械振动第二三四次作业参考答案

机械振动第二三四次作业参考答案

θ
由题意可得,质心的速度为:
v ( R r )
又由于圆盘的速度等于质心的速度,故有
v盘 v ( R r )
故有: 则系统的动能为:

v盘 R r r r
Ek
1 2 1 2 1 1 1 Rr 2 2 2 mv J盘 mR - r ( mr 2 )( ) 2 2 2 2 2 r
cx kx p(t ) m x
带入数据后可得,该系统运动方程为:
400 x 17000 x 240 sin 3t 0 275 x
(2)由(1)可知,系统的固有频率为:
n
系统的阻尼比为:
k 17000 7.862rad / s m 275
2
1 . 1 9 9 4 1m 0
h tan 1
故有:
2 1 2 0.0925 1.199 tan 2.67 rad 2 2 1 1 1.199
xu hu pu 1.199 104 240 0.0288 m
因此,系统的稳态响应为:
I 0 a k1 a l k2 l 0
整理可得,系统运动方程为: 1 2 ml (a 2 k1 l 2 k2 ) 0 3 (2)由系统运动微分方程,求固有频率:
n
keq meq
a 2 k1 l 2 k2
3(a 2 k1 l 2 k2 ) 1 2 ml 3 ml 2
对于激励 p2 (t ) ,求其阻尼比
2
p 2 0.7992 n 7.862
2
对应的频响函数的幅值和相位角分别为:
hu 2
1 1 k (1 22 )2 (22 )2 1 1 17000 (1 0.79922 )2 (2 0.0925 0.7992) 2

大学物理 机械振动 试题(附答案)

大学物理 机械振动 试题(附答案)

w w w .z h i n a n ch e.com《大学物理》AI 作业No No..01机械振动一、选择题1.把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[C ](A)θ;(B)23;(C)0;(D)π21。

解:t =0时,摆角处于正最大处,角位移最大,速度为零,用余弦函数表示角位移,0=ϕ。

2.轻弹簧上端固定,下系一质量为1m 的物体,稳定后在1m 下边又系一质量为2m 的物体,于是弹簧又伸长了x ∆。

若将2m 移去,并令其振动,则振动周期为[B](A)gm x m T 122∆=π(B)gm x m T 212∆=π(C)gm xm T 2121∆=π(D)()gm m x m T 2122+∆=π解:设弹簧劲度系数为k ,由题意,x k g m ∆⋅=2,所以xgm k ∆=2。

弹簧振子由弹簧和1m 组成,振动周期为gm xm k m T 21122∆==ππ。

3.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。

则振动系统的频率为[B](A)m k π21(B)mk 621π(C)mk 321π(D)mk 321π解:每一等份弹簧的劲度系数k k 3=′,两等份再并联,等效劲度系数k k k 62=′=′′,所以振动频率mk m k 62121ππν=′′=4.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量E 变为[D ](A)1E /4(B)1E /2(C)21E (D)41E 解:原来的弹簧振子的总能量212112112121A m kA E ω==,振动增加为122A A =,质量增加+w w w .z h i n a n ch e为124m m =,k 不变,角频率变为1122214ω===m k m k ,所以总能量变为()1212112121122222242142242121E A m A m A m E =⎟⎠⎞⎜⎝⎛=×⎟⎠⎞⎜⎝⎛××==ωωω5.一质点作简谐振动,周期为T 。

大物参考答案

大物参考答案

©物理系_2015_09《大学物理AII 》作业 No.01 机械振动一、 判断题:(用“T ”表示正确和“F ”表示错误) [ F ] 1.只有受弹性力作用的物体才能做简谐振动。

解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。

[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。

解:根据简谐振子频率mk=ω,可知角频率由系统本身性质决定,与初始条件无关。

[ F ] 3.单摆的运动就是简谐振动。

解:单摆小角度的摆动才可看做是简谐振动。

[ T ] 4.孤立简谐振动系统的动能与势能反相变化。

解:孤立的谐振系统机械能守恒,动能势能反相变化。

[ F ] 5.两个简谐振动的合成振动一定是简谐振动。

解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。

二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。

解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为: ()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m ,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。

3. 水平弹簧振子,动能和势能相等的位置在:[ C ] (A)4A x =(B) 2A x = (C) 2A x = (D)3Ax =解:对于孤立的谐振系统,机械能守恒,动能势能反相变化。

那么动能势能相等时,有:221412122Ax kx kA E E E p k =⇒====,所以选C 。

西北工业大学大学物理作业答案4振动10

西北工业大学大学物理作业答案4振动10

第四次作业 振动一、选择题: ⒈ B ; ⒉ D ; ⒊ ABC ; ⒋ ACD ; ⒌ C ; ⒍ BC ; ⒎ D ; ⒏ C 。

二、填空题: ⒈)22c o s (1062ππ-⨯-t m ; ⒉ )63c o s (5ππ+t cm ; ⒊ 4Hz , m /s 1082-⨯π, 6π; ⒋ kx -,221kx ;⒌ππ522+k ,0.14m ;ππ52)12(++k ,0.02m ;⒍ 周期性外力(或强迫力),周期性外力(或强迫力), 周期性外力的频率趋近系统的固有频率; ⒎ ]2cos[10502ϕπ+⨯-t (注:这里0ϕ有几个表达式:00189.=ϕ;000 1.98-180=ϕ;arctan70-=πϕ;34arctan40+=πϕ;54arcsin40+=πϕ;53arccos40+=πϕ等)⒏ 2101.3-⨯m ; ⒐ 108 三、简答题(1)振幅A :振动量最大值的绝对值;角频率ω:振动的快慢程度,即在π2时间内的振动的次数; 相位ωt+φ或初相位φ:在t 时刻(或初始时刻)的振动状态。

(2)四、计算题1. 解:(1))25cos(06.0π-=t x , )25s i n (3.0π--=t v , )25c o s (5.1π--=t a当π=t s 时,代入上式得 0=x , m /s 3.0-=v , 0=a ;(2)J1025.2212132max 2-⨯===kv kA E km(3)当p k E E =时,即2221212121kA E kx E p ⋅===则 mA x 042.022±=±=2. 解:由余弦定理得4cos212122πAA A A A -+=cm 7.142210202100400=⨯⨯⨯-+=3. (1)证:沙盘平衡时,弹簧伸长量为 gkM s =沙盘和小球平衡时,弹簧伸长量为 gkm M l +=取(m+M )的平衡位置为坐标原点,则在任意位置y 处(m+M )受力为)()()()(g km M y k g M m l y k g M m F ++-+=+-+=即 ky F -=对系统(m+M )列牛顿第二定律方程,有a M m ky F )(+=-=则 yMm k a +-= 满足简谐振动的判据,则得证。

大学物理活页答案(振动和波)

大学物理活页答案(振动和波)

大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。

11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。

4作业振动

4作业振动

一、单选题1、一弹簧振子振动方程为)3ππcos(1.0-=t x m 。

若振子从t =0时刻的位置到达x =-0.05m 处,且向x 轴负方向运动,则所需的最短时间为 ( D ) A .31s B .35s C .21s D . 1s2、一质点在x 轴上作简谐振动,已知t =0时,x 0=-0.01m ,v 0=0.03m//s ,3=ωrad/s ,则质点的振动方程为 ( B ) A .)3π23cos(02.0+=t x m B . )3π43cos(02.0+=t x m C . )3π23cos(01.0+=t x m ; D .)3π43cos(01.0+=t x m 3、两个小球1与2分别沿Ox 轴作简谐振动。

已知它们的振动周期各为T 1,T 2,且T 1=2T 2=2s ,在t =0时,两球均在平衡位置上,且球1向x 的正方向运动,球2向x 的负方向运动。

当t =31s 时,两球振动的相位差为( B ) A .3π B .π34 C . 3π- D .π34- 4、一个弹簧振子作简谐振动,已知振子势能的最大值为100J ,当振子处于最大位移一半处时其动能瞬时值为( C )A .25JB .50JC .75JD .100J二、判断题1、拍皮球时,皮球的运动为简谐振动。

设球与地面的碰撞为弹性碰撞。

( × ) 分析:皮球在运动过程中所受的外力与位移动关系不满足f =-kx 。

2、线悬挂一小球,令其在水平面内作匀速率圆周运动为简谐振动。

( × )分析:物体在任一位置所受合力的大小为恒量,而方向却在不断改变,不满足f =-kx 。

3、“质点作简谐振动时,从平衡位置运动到最远点需时1/4周期,因此走过该距离的一半时需时81周期。

” ( × )分析:从平衡位置运动到最远点需时1/4周期,走过该距离的一半时相位差为6π,需时121周期。

三、填空题1、已知作简谐振动物体的周期T =0.5s ,某刻,物体的位移x =3×10-2m ,速度2υm/s,加速度a=-48π2×10-2m/s2。

汽车振动分析作业习题与参考答案(更新)

汽车振动分析作业习题与参考答案(更新)

1、 方波振动信号的谐波分析,00,02(),2T x t x t T x t T⎧<<⎪⎪=⎨⎪-<<⎪⎩。

绘制频谱图。

解:()x t 的数学表达式可写为: 计算三要素:()a n =0202()()sin 22Tn t b n x t dt T T π⎛⎫ ⎪= ⎪⎪⎝⎭⎰=20042sin Tn t x dt T T π⎛⎫ ⎪⎝⎭⎰=0222cos T n t n T ππ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=()021cos ,1,2,x n n n ππ-=⋅⋅⋅⋅⋅⋅⎡⎤⎣⎦ =4,1,3,5x n nπ=⋅⋅⋅⋅⋅⋅ 01()cos sin 222n n n a n t n t X t a b T T ππ∞=⎛⎫ ⎪∴=++ ⎪ ⎪⎝⎭∑=12sin n n n t b T π∞=∑=0142sin n x n t nT ππ∞=∑,n=1,3,5, ⋅⋅⋅⋅⋅⋅,02T t <<或2Tt T <<振幅频谱图4,1,3,5n n x A b n nπ===⋅⋅⋅⋅⋅⋅ ()⎩⎨⎧≤≤-≤≤-=02/2/00t T T t x x t x相位频谱图1tan 0,1,3,5nn n a n b φ-⎛⎫===⋅⋅⋅⋅⋅⋅⎪⎝⎭2、 求周期性矩形脉冲波的复数形式的傅立叶级数,绘频谱图。

解: 数学表达式:计算三要素:傅立叶级数复数形式:频谱图0000,0sin ,0,n x t n TA x n t n n n T ππ⎧=⎪⎪=⎨⎪≠-∞<<∞⎪⎩()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤--≤≤-=220222200000T t t t t t x t t T t x 偶函数 T x t a 0002=2sin 2010tn n x a n ωπ⋅=0=n b 2sin 22010tn n x a ib a X n n nn ωπ⋅==-=()2sin 1101012/2/02/2/102/2/02/2/010********t n n x tin e e T x t in e T x dt e x T dt e t x T X t in t in t t t in t in t t tin T T n ωπωωωωωωω⋅=--⋅=-⋅=⋅⋅=⋅⋅=-------⎰⎰T t x t n n x X n 00010002sinlim =⋅=→ωπ()∑∑∞-∞=∞-∞===n tin n t in n e n t n x e X t x 112sin 010ωωωπ2.1解:(1)能量法222341222111()()222e a a k x k x k x a a += 2232122244e a a k k k a a ∴=+(2)能量法222 (1214)111222e a m x m x m x a ⎛⎫+= ⎪⎝⎭212124e a m m m a ∴=+(3)固有频率222132224211e e k a k a k p m a m a m +==+2.3解:平衡位置系统受力如图 则122,2F G F G == 弹簧1k 变形112G x k =,弹簧变形222Gx k =,且m 静位移1222x x x =+ 12124422e G G Gx x x k k k ∴==+=+ ()1212,4e e k k k m m k k ∴==+∴固有圆频率()121212e e k k k p m k k m==+2.5解对数衰减率:111110ln ln 0.06920 2.5j A j A δ+=== 相对阻尼系数:22110.01122110.069ζππδ===⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭衰减系数:9.80.0110.3140.012n k g n ms ζωζζ===== 阻尼系数:220.3149 5.652(/)c nm N s m ==⨯⨯= 临界阻尼: 5.652513.8(/)0.011c cc N s m ζ=== 2.7解受力分析如图-xs ’)单自由度振动系统振动微分方程()2022s sn n n smx c x x kx mx cx kx cx x x x x ζωωζω+-+=∴++=∴++=设iwtcs x e =,则()c cs x H x ω=22222()212n n n i iH i iζωωζλωωωζωωλζλ∴==-+-+()H ω=,相位差角:122tan ()12ζλπϕλ-=--()()()()()i iwt i wt s x t H x t H e ae ϕϕωω--===()0sin )s x a t x t t ωωϕ=∴=-Xa =其中,n ωλω==ζ= 2.8 解:1、 系统的振动微分方程为:0=⎪⎭⎫ ⎝⎛-+++•••s x x k kx x c x m即:s kx kx x c x m =++2激励函数为:()T t t Tdk kx s ≤≤=0 傅立叶级数三要素:kd tdt T dk T a T ==⎰002()0cos 20=⋅=⎰dt nwt t T dk T a T n()πn kd dt nwt t T d k T b T n -=⋅=⎰sin 20所以,激励函数的前四项为:()()()∑=⋅+⋅+=41sin cos 2n n n s t n b t n a a kx ωω)4sin 413sin 312sin 21(sin 2wt wt wt wt d k d k+++-=π 系统稳态响应的前三项为:])6()91(3)3sin()4()41(2)2sin()2()1()sin([24)2()1(2)sin(4222322222221312222ζλλψζλλψζλλψπλζλψ+--++--++---=+--+=∑=wt wt wt dd n n k nwt b d x n n n 其中3,2,1,12arctan22=-=n n n n λλζψ2.9 解:运用杜哈美积分法())]03.0sin()02.0(sin(50)03.0cos()02.0cos(5.0[)03.0sin()03.0(sin )(1)03.0sin(03.0)];01.0sin(50)01.0cos(5.0[)01.0sin()01.0(sin )50(1)01.0sin(01.0);01.00(50)(;)(sin )(1sin )(sin )(1sin )/(cos 20001.0020001.00000000000.0p p p p p mpF p p d p f mp p p x s t p p p mp F p pd p F F mpp px s t t t F F t f d t p f mppt p d t p f mp pt p x pt x t t t ---+=-+==+-+=--+==≤≤-=-+=-+⎪⎭⎫ ⎝⎛+=⎰⎰⎰⎰υτττυυτττυτττυτττχ时,当时,当4.1解直接法()11121221111221222213222212320()0()0()0m x k k x k x m x k x k x x m x k x x k x m x k x k k x ++-=⎧+--=⎧⎪⇒⎨⎨+-+=-++=⎪⎩⎩122111223222000k k k m x x k k k m x x +-⎡⎤⎡⎤⎡⎤⎡⎤∴+=⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦其中,122223k k k K k k k +-⎡⎤=⎢⎥-+⎣⎦拉格朗日法系统为无阻尼自由振动系统,拉格朗日方程形式为:0ii id TT Udt q q q δδδδδδ⎛⎫-+= ⎪⎝⎭ 广义坐标为:12,x x2211221122T m x m x =+ 0,1,2iTi x δδ== 111111,T d T m x m x x dt x δδδδ⎛⎫== ⎪⎝⎭222222,T d T m x m x x dt x δδδδ⎛⎫== ⎪⎝⎭()2221122132111222U k x k x x k x =+-+ 112212213212(),()U U k x k x x k x x k x x x δδδδ=--=-+ ∴()11121221111221222213222212320()0()0()0m x k k x k x m x k x k x x m x k x x k x m x k x k k x ++-=⎧+--=⎧⎪⇒⎨⎨+-+=-++=⎪⎩⎩影响系数法令121,0x x ==11112112k k x k x k k =+=+ 2112212k k k x k ==-=-令120,1x x ==22223223k k x k x k k =+=+122223k k k K k k k +-⎡⎤∴=⎢⎥-+⎣⎦4.2解:直接法∴111213311113112332212123222111222333232331333122233()()0()0()()0()0()()0()0J k r k r J k r k r k r k r J k r k r J k r k r k r k r J k r k r J k r k r k r k r θθθθθθθθθθθθθθθθθθθθθθθθθθθ⎧⎧----=++--=⎪⎪+---=⇒-++-=⎨⎨⎪⎪+-+-=--++=⎩⎩ ∴12300100000100001J M J J J ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦131311223223211121112k r k rk r k r K k rk r k r k r kr k rk rk r k r +----⎡⎤⎡⎤⎢⎥⎢⎥=-+-=--⎢⎥⎢⎥⎢⎥⎢⎥--+--⎣⎦⎣⎦4.3解a,1234mmMmm⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1222233334444k k kk k k kKk k k kk k+-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-⎢⎥⎣⎦b,1234mmMmm⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,222233334444k kk k k kKk k k kk k-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-⎢⎥⎣⎦c,1234mmMmm⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,12222333344443k k kk k k kKk k k kk k k+-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-+⎢⎥⎣⎦4.4解:质心位于距左端34l处0324l m xdx mllx lm⎛⎫+⎪==⎪⎪⎝⎭⎰令1,0xθ==11211223442 k kx kx kl kl k k kx kx l=+===-=-令0x=,1θ=22233544448l l k k k l l kl θθ=+= ∴刚度矩阵为,222528kl kK kl kl ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦令1,0x θ==1122m mx m ∴==21120m m ==令0,1x θ==222524m I ml θ==,3222445()424ll m l I x dx m ml l -=+=⎰∴质量矩阵为,2205024mM ml ⎡⎤⎢⎥=⎢⎥⎣⎦22202205502428kl mk x x klml kl θθ⎡⎤-⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥∴+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦特征矩阵为,22222222552824n n nkl k m H K M kl kl ml ωωω⎡⎤--⎢⎥=-=⎢⎥⎢⎥--⎢⎥⎣⎦将20n H K M ω=-=整理为,22422221440335n n m ll km k l ωω-+=求得特征值为,2120.735k k m m ω⎛=≈ ⎝,222 3.265k k mm ω⎛=+≈ ⎝ 2n H K M ω=-的伴随阵,2222558242222n n kl kl ml adjH kl k m ωω⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦将22120.735, 3.265k km mωω==代入 得对应特征向量,1211,1.0599.06A A l l ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则主振型矩阵为,111.0599.06A l l ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦模态质量矩阵为21111201.0599.06 1.0599.065024TT P mM A MA ml l l l l ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2.2340019.1mm ⎡⎤=⎢⎥⎣⎦模态刚度矩阵为21111221.0599.06 1.0599.06528TT P kl k K A KA kl kl l l l l ⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦1.6420062.362kk ⎡⎤=⎢⎥⎣⎦归一化因子为,i α==∴归一化因子方阵,0.669000.229R ⎤=⎥⎦ ∴正则振型矩阵为,110.6690.2290.66901.0599.060.708 2.07500.229N A AR ll l l ⎡⎤⎡⎤⎡⎤⎢⎥⎥===--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎦正则模态质量矩阵为,20.6690.2290.6690.229200.9990.0000.7082.0750.708 2.07550.000 1.002024TTN N N mM A MA ml ll l l ⎡⎤⎡⎤⎡⎤⎡⎤⎥⎥⎢===--⎢⎥⎢⎥⎢⎥⎢⎣⎦⎢⎥⎢⎥⎣⎦⎦正则模态刚度矩阵为,20.6690.2290.6690.22920.7340.00020.7082.0750.708 2.07550.0003.16528T TN N N kl kk K A KA kl m kl l l l l ⎡⎤-⎡⎤⎡⎤⎢⎥⎡⎤⎥⎥===⎢--⎢⎥⎢⎥⎢⎥⎣⎦⎢-⎢⎥⎢⎥⎦⎦⎢⎣⎦第一阶主振型示意图,1N 为节点1第二阶主振型示意图,2N 为节点1.265习题4.6解:(1)直接法,受力如图f f k mz)r r l ϕ2m ρϕ2()()0()()0r r f f r r r f f f mz k z l k z l m k z l l k z l l ϕϕρϕϕϕ+++-=⎧⎪⎨++--=⎪⎩222()()0()()0f r r r f f r r f f r r f f mz k k z k l k l m k l k l z k l k l ϕρϕϕ+++-=⎧⎪⇒⎨+-++=⎪⎩ 运动微分方程为222000f r r r f f r rf f r r f f k k k l k l mz z k l k lk l k l m ρϕϕ+-⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦ 特征矩阵为222222f r r r f fr r f f r r f f k k m k l k l H K M k l k l k l k l m ωωωρ⎡⎤+--=-=⎢⎥-+-⎢⎥⎣⎦由20H K M ω=-=得()()2422222()0f r r r f f f r f r m k k m kl k l m k k l l ρωρω⎡⎤-+++++=⎣⎦21ω=22ω=H 的伴随矩阵22222r r f ff f r r f f r r f r k l k l m k l k l adjH k l k l k k m ωρω⎡⎤+--=⎢⎥-+-⎢⎥⎣⎦将固有频率21ω、22ω代入adjH ,得主振型:22(1)(2)1211,f r f r f f r r f f r r k k m k k m A A k l k l k l k l ωω⎡⎤⎡⎤⎢⎥⎢⎥+-+-==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦(2)f f r r k l k l = 则运动微分方程变为22200000f r r r f f k k mz z k l k l m ρϕϕ+⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦ z自由度的固有频率为ω=ϕ自由度的固有频率为ω=两运动互不相关 (3)2f r l l ρ=()()21,22fr f f r r f f r rf rll k l k l k l k l ml l ω++±-=若f f r r k l k l >()()2212,f r rf r ffrl l k l l k ml ml ωω++==,(1)(2)111,1f r A A l l ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦若f f r r k l k l <()()2212,f r ff r rrfl l k l l k ml ml ωω++==,(1)(2)111,1f r A A l l ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦4.9柔度矩阵 F=1111122123k ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦刚度矩阵 K=1210121011F k --⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥-⎣⎦质量矩阵 000000J M J J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦所以222362422322025600nn nn n n nk J kH K M k k J kJ J k Jk k kk J ωωωωωωω--=-=---=-+-+=--解得:2(1)2(2)2(3)0.2, 1.5, 3.2nn n k k k J J Jωωω===(1)(2)(3)N1111.80.5 1.22.240.750.441111.80.5 1.22.240.750.440.330.740.62A0.60.370.740.740.560.27P0.5TCpA A AA⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥∴=-⎢⎥⎢⎥-⎣⎦∴⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥-⎣⎦=对应主振型正则振型矩阵TN NPNiNi2Pi PiN0.67P A P0.11.5T sin t0.249.26000 1.81000 2.634.07k00K K00.75k0008.97kPXK M0.6XTP p PTp PJA MA JJA Aωω⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥∴==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦=-∴=质量模态矩阵 M刚度模态矩阵简谐力作用下2222N N2274.07k9.26J0.110.75k1.81J0.248.97k 2.63J0.0094.07k9.26J0.539X=A X0.75k1.81J0.4938.97k 2.63Jωωωωωω⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦∴-⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦物理坐标下位移响应4.102222(1)2(2)(1)(2)P TP P Pi Pi i i 0202202113,,A ,A 1111A 11Q 0P P A P Q 2Q X P (1cos t)/n nnnn m k k M K m kk k mk H K M kk mk k m m ωωωωωωω-⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦--∴=-==--⎡⎤⎡⎤∴====⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤∴=⎢⎥⎢⎥-⎣⎦⎡⎤⎡⎤=∴==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=-对应主振型由杜哈梅积分得2P 2P P 0m X 2k Q(1cos t)312mQ X A X (13k 1ω⎡⎤⎢⎥∴=⎢⎥-⎢⎥⎣⎦⎡⎤∴==-⎢⎥⎢⎥⎣⎦5.1 解:系统质量刚度矩阵分别为22,2m kk m k k k M K m kk k m kk -⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦第一瑞丽商:假设21111112111112111,0.2;2211111222;1233123411,0.1234;22111112221,0.112331234TTTT A KA k A p A MA m A MA k p A MFMA m k p trD m⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦1则第二瑞丽商:1系统柔度矩阵 F=k 假设 A 则邓克莱法:m D=FM=则k这三种方法中,第二瑞丽商精度最高,邓克莱法计算结果偏小。

第十三章 机械振动作业 作业答案

第十三章 机械振动作业 作业答案

一. 选择题: 【 D 】1、(基础训练2)一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联,下面挂一质量为m 的物体,如图所示。

则振动系统的频率为 (A) m k 32π1.(B)mk2π1.(C)m k 32π1. (D) mk62π1.【解】提示:劲度系数为k 的轻弹簧截成三等份,相当于三等份串联后为原来的弹簧,设每份的劲度系数为k ',则:1111k k k k =++''',3k k '∴=;取出其中2份并联,系统的劲度系数为:6k k k k ''''∴=+=【 C 】2、(基础训练3)一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为:(A) g l π2. (B) g l 22π. (C) g l 322π. (D) gl3π.【解】 提示:均匀的细棒一端悬挂,构成一个复摆,所受重力矩为:sin 22l lM mg mg θθ=-≈-,根据转动定律22d M J dt θ=,可得2220mgl d dt J θθ+=,所以22322123l lmg mgg J l ml ω===,22T πω== 【 E 】3、(基础训练5)一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( )(A) 7 /16. (B) 9 /16 (C) 11 /16. (D) 13 /16. (E) 15 /16. 【解】222p 11111()22416216A E kx k kA E ===⋅=,则:k 1151616p E E E E E E =-=-= [ D ] 4、(自测提高4)质量为m 的物体,由劲度系数为k 1和k 2的两个轻质弹簧串联后连接到固定端,在光滑水平轨道上作微小振动,则振动频率为(A) m k k v 212+=π. (B) mk k v 2121+=π. (C) 212121k mk k k v +=π. (D) )(212121k k m k k v +=π.【解】劲度系数为k 1和k 2的两个轻质弹簧串联后,设系统的弹性系数为k ,则有:12111k k k =+,2112k k k k k +=,21212()k k km m k k ω==+,振动频率为:2ωνπ==【 B 】 5、(自测提高5)一简谐振动曲线如图所示.则振动周期是 (A) 2.62 s . (B) 2.40 s . (C) 2.20 s . (D) 2.00 s .【解】提示:t=0时,物体偏离平衡位置的位移为0.5A,且向正的最大位移方向移动,可以确定t=0时,旋转矢量位于第四象限,初始相位为-π/3,从t=0时刻到物体第一次到达平衡位置,花费的时间是1s ,在旋转矢量图上矢量转过的角度为5326πππ+=,可以得出:55616t πϕωπ∆===∆,S T 5122==ωπ【 D 】 6、(自测提高6)弹簧振子在光滑水平面上作简谐振动,其弹性力在半个周期内所做的功为( )(A) KA 2. (B) (1/2)KA 2. (C) (1/4)KA 2. (D) 0.【解】经过半个周期,前后的相位差为π,弹簧的弹性势能没有变化,振子的动能也没有变化,所以做功为0.二 填空题7、(基础训练13) 一质点作简谐振动.其振动曲线如图13-21所示.根据此图,它的周期T =724S ,用余弦函数描述时初相=π34. 【解】提示:t=0时,物体偏离平衡位置的位移为-0.5A,且向平衡位置移动,可以确定t=0时,旋转矢量位于第三象限,初始相位为4π/3,从t=0时刻到物体第二次到达平衡位置,花费的时间是2s ,在旋转矢量图上矢量转过的角度为:766πππ+=,可以得出:776212t πϕωπ∆===∆,S T 7242==ωπ 8、(基础训练16) 两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x (SI) ,)5cos(10222t x -π⨯=- (SI)它们的合振动的振辐为_210102-⨯(SI)_,初相为_108.40_.【解】提示: 用旋转矢量图示法求解222210cos(5)210cos(5)x t t --=⨯π-=⨯-π9、(自测提高 8) 在静止的升降机中,长度为l 的单摆的振动周期为T 0.当升降机以加速度g a 21=0 .【解】 提示:当升降机以加速度加速下降时,小球受到向上的惯性力作用,分析单摆切线方向受力:sin sin t mg ma ma θθ-+=, 当摆角θ 很小时,有:22()d m g a ml dt θθ--=即:22()0d g a dt lθθ-+=,令:2()g a l ω-=,单摆的周期变为:022T πω=== 10、(自测提高 10) 分别敲击某待测音叉和标准音叉,使他们同时发音,会听到时强时弱的拍音。

机械振动作业

机械振动作业

1.如图所示,竖立在水平地面上的轻弹簧,下端与地面固定,将一个金属球放置在弹簧顶端(球与弹簧不粘连),并用力向下压球,使弹簧作弹性压缩,稳定后用细线把弹簧拴牢.烧断细线,球将被弹起,脱离弹簧后能继续向上运动.那么该球从细线被烧断到刚脱离弹簧的这一运动过程中( ).(A)球所受合力的最大值不一定大于球的重力值(B)在某一阶段内球的动能减小而它的机械能增加(C)球刚脱离弹簧时的动能最大(D)球刚脱离弹簧时弹簧的弹性势能最小2.如图所示,物体放在轻弹簧上,沿竖直方向在A、B之间作简谐运动,今物体在A、B之间的D点和c点沿DC方向运动(D、C图上未画出)的过程中,弹簧的弹性势能减少了3.0J,物体的重力势能增加了1.0J,则在这段运动过程中( ).(A)物体经过D点时的运动方向是指向平衡位置的(B)物体的动能增加了4.0J(C)D点的位置一定在衡位置以上(D)物体的运动方向可能是向下的3.单摆振动的回复力是( ).(A)摆球所受的重力(B)摆球重力在垂直悬线方向上的分力(C)悬线对摆球的拉力(D)摆球所受重力和悬线对摆球拉力的合力4.如图所示在竖直平面内,有一段光滑圆弧轨道MN,它所对应的圆心角小于5o,P是MN的中点,也是圆弧的最低点,在N、P之间一点Q和P之间搭一光滑斜面,将两个小球(可视为质点)分别同时由Q点和M点静止释放,则两个小球相遇点一定在()A.斜面PQ上一点B.PM弧上的一点C.P点D.条件不足,无法判定5.一弹簧振子做简谐运动,周期为T,下列叙述中正确的是()A、若t时刻和(t+△t)时刻振子运动位移的大小相等,方向相同,则△t一定等于T的整数倍B、若t时刻和(t+△t)时刻振子运动速度的大小相等,方向相反,则△t一定等于T/2的整数倍C、若△t=T,则t时刻和(t+△t)时刻振子运动的加速度一定相等D、若△t=T/2,则t时刻和(t+△t)时刻弹簧的长度一定相等6.如图所示,质量分别为m、M的两物块用轻弹簧相连,其中M放在水平地面上,m处于竖直光滑的导轨内.今将m向下压一段距离后放手,它就在导轨内上下作简谐运动,且m到达最高点时,M对地面的压力刚好为零,试问:(1)m的最大加速度多大?(2)M对地面的最大压力多大?答案:(1)()mgMm+(2)2(m+M)g。

物理学(第五版)下册振动作业答案

物理学(第五版)下册振动作业答案
A. (%)
试题编号:E17549 25719
答案:{
(1)vm=wA∴w=vm/A=1.5 s-1
∴T= 2p/w=4.19 s 3分
(2)am=w2A=vmw= 4.5×10-2m/s22分
(3)
x= 0.02 (SI) 3分
}
题型:计算题
17.{一简谐振动的振动曲如图所示.求振动方程.}
A. (%)
(1)此小物体是停在振动物体上面还是离开它?
(2)如果使放在振动物体上的小物体与振动物体分离,则振幅A需满足何条件?二者在何位置开始分离?
}
A. (%)
试题编号:E17549 25714
答案:{
(1)小物体受力如图.
设小物体随振动物体的加速度为a,按牛顿第二定律有(取向下为正) 1分
1分
当N= 0,即a=g时,小物体开始脱离振动物体,已知
试题编号:E17549 25720
答案:{
(1)设振动方程为
由曲线可知A= 10 cm ,t= 0, ,
解上面两式,可得 = 2 /3 2分
由图可知质点由位移为x0=-5 cm和v0x= 0和v> 0的状态所需时间t= 2 s,代入振动方程得
(SI)
则有 ,∴ = 5 /12 2分
故所求振动方程为 (SI) 1分
A=10 cm,
有 rad·s-12分
系统最大加速度为 m·s-21分
此值小于g,故小物体不会离开.1分
(2)如使a>g,小物体能脱离振动物体,开始分离的位置由N= 0求得
2分
cm 1分
即在平衡位置上方19.6 cm处开始分离,由 ,可得
=19.6 cm.1分
}
题型:计算题

第章振动作业答案_图文

第章振动作业答案_图文

11. 固有频率为ν0的弹簧振子,在阻尼很小的情况下,受 到频率为2ν0的余弦策动力作用,做受迫振动并达到稳 定状态,振幅为A。若在振子经平衡位置时撤去策动力 ,则自由振动的振幅A’与A的关系是 A’= 2A
(1)稳定振动时振子频率即策动力频率,角频率为 ω =2π (2ν 0) ,经平衡位置时速度最大为V=ω A。
5. 一弹簧振子作简谐振动,振幅为A,周期为T ,运动方程用余弦函数表示,若t=0时, (1)振子在负的最大位移处,则初位相为_____ 。 (2)振子在平衡位置向正方向运动,则初位相为
_____。 (3)振子在位移A/2处,向负方向运动,则初位 6. 相将为复_杂__的__周。期性振动分解为一系列的简谐运
Ф-Ф1=π/6.若第一个简谐振动的振幅为
则第二个简谐振动的振幅为
( 10 )cm,第一,二个简谐振动的相位差
Ф1- Ф2为( -π/2 )
9.一简谐振动的旋转矢量如图所示,振幅矢 量长2cm,则该简谐振动的初相位为 π/4 , 振动方程为 2cos(πt+ π/4)cm
10.系统的共振角频率与系统自身性质以及阻 尼大小有关。系统的阻尼越大,共振时振 幅值越低,共振圆频率越小。
13.两个线振动合成为一个圆振动的条件是(1)同 频率;(2)同振幅;(3)两振动相互垂直;(4 )相位差为(2k+1)π /2, k=0, ±1, ±2,……
计算题
3. 一个水平面上的弹簧振子,弹簧劲度系数
为k,所系物体的质量为M,振幅为A。有一 质量为m的小物体从高度为h处自由下落。
(1)当振子在最大位移处,小物体正好落
9.两个振动方向相互垂直、频率相同的
简谐振动的合成运动的轨迹为一正椭圆 ,则这两个分振动的相位差可能为( D )

第十三章 机械振动作业答案(1)

第十三章  机械振动作业答案(1)

一. 选择题:[ C ] 1. (基础训练4) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B)T /8. (C) T /6. (D) T /4.【提示】如图,在旋转矢量图上,从二分之一最大位移处到最大位移处矢量转过的角位移为3π,即 3t πω=,所以对应的时间为()332/6Tt T ππωπ=== .[ B ] 2. (基础训练8) 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π.(C) π21. (D) 0.【提示】如图,用旋转矢量进行合成,可得合振动的振幅为2A,初相位为π.[ B ]3、(自测提高2)两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x .(D) )cos(2π++=αωt A x .【提示】由旋转矢量图可见,x 2的相位比x 1落后π/2。

[ B ] 4、(自测提高3)轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为A/ -·O1A 2A A 合(A) gm xm T 122∆π= . (B) g m x m T 212∆π=.(C) g m x m T 2121∆π=. (D) gm m xm T )(2212+π=∆.【提示】对轻弹簧和m 1构成的弹簧振子,其周期表达式:2T π= 因为加载另一质量为m 2的物体后弹簧再伸长∆x ,显然2m g k x =∆,由此得2m gk x=∆; 代入周期公式,即可求出周期T.[ C ] 5、(自测提高6)如图13-24所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . 【提示】从左到右三个弹簧振子分别记为1,2和3; 第一个:1112 T πωω==; 第二个:2121, 22T T ωω==∴= 第三个:将一根弹簧一分为二,每节的弹性系数变成2k ,然后并联,总的弹性系数为4k ,所以31312, 2T T ωω==∴=; 得:1231::1:2:2T T T =.[ D ]6、(自测提高7)一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1. (D) 2:1. (E) 4:1. 【提示】在t=0时,cos02πx A ==,势能0p E =,动能212K E E kA ==; t=T/8,cos()422πx A A π=+=-,势能221124p E kx kA ==,所以动能为214K p E E E kA =-=.图13-24二 填空题1、(基础训练12)一系统作简谐振动, 周期为T ,以余弦函数表达振动时,初相为零.在0≤t ≤T 41范围内,系统在t =T/8时刻动能和势能相等. 【提示】初相为零,所以()cos x t A t ω=,在0≤t ≤T 41范围内,0A x ≤≤;依题意,动能和势能相等,为总能量的一半,即22111222kx kA ⎛⎫= ⎪⎝⎭,2x A =,所以4t πω=,48Tt πω==.2、(基础训练15)一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的3/4(设平衡位置处势能为零).当这物块在平衡位置时,弹簧的长度比原长长∆l ,这一振动系统的周期为gl∆π2. 【提示】当物体偏离平衡位置为振幅的一半时,2Ax =±,2211284P E E kx kA ===,34k P E E E E E -==; 当物体在平衡位置时,合力为零:mg k l =∆ ,mg k l =∆,222T πω∴===3、(基础训练16)两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x (SI) , )5c o s(10222t x -π⨯=- (SI)它们的合振动的振辐为210()m -,初相为101108.4323tg π-+= 【提示】用旋转矢量图求解。

振动作业答案

振动作业答案

《大学物理(下)》作业 机械振动(电气、计算机、詹班)班级 学号 姓名 成绩一 选择题1. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) .[ C ][参考解答] 开始计时时,位移达到最大值。

2. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x .[ C ][参考解答] A=2 cm ,由旋转矢量法(如下图)可得:3/20πϕ==t ,πϕ21==t ,s rad t /4314/3ππϕω==∆∆=,旋转矢量图:3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A )7/16 (B )9/16(C )11/16 (D )13/16 (E )15/16[ E ][参考解答] 4/)cos(A t A x =+=ϕω,16/15)(sin ,4/1)cos(2=+=+ϕωϕωt t 即,1615)(sin max2max k k k E t E E =+=ϕωtO-1-212-2-1Ot=0t=14.图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为:(A )2π(B )π(C )23π (D )0[ B ][参考解答] t=0时刻的旋转矢量图:二 填空题1.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = g x /20π.[参考解答] 受力分析如右图,以平衡位置为原点,向下为x 轴正方向,有:22/22)/(dtXd m kX k mg x k mg kx dt xd m kmg x X =-=--=+-=-=令 对坐标X ,其运动为简谐运动, 其角频率满足:,mk =2ω g x T /2/20πωπ==2. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为 )()2325cos(2cm t x π+=. [参考解答] s rad cm A A v m /5.2,2,=∴==ωω t =0时,质点通过平衡位置向正方向运动,初相为:230πϕ=πA/2-A A 合mgF kox3.一弹簧简谐振子的振动曲线如图所示,振子处在位移为零,速度为-ωA ,加速度为零和弹性力为零的状态,对应于曲线上的 b, f 点,振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应于曲线上的 a, e 点。

振动力学作业题解

振动力学作业题解

第02章 单自由度系统的振动2.1 一根抗弯刚度72=3610Ncm EI ⨯的简支架,两支承间跨度l 1=2m ,一端伸臂l 2=1m ,略去梁的分布质量,试求悬臂端处重为Q =2548 N 的重物的自由振动频率。

【提示:22123()EJ k l l l =+,2212()3st Ql l l EI δ+=,11.77n ω=L 1/s 】 2.2 梁AB 其抗弯刚度72=910Ncm EI ⨯,A 端与B 端由弹簧支承,弹簧刚性系数均为k =52.92 kN/m ,如图所示。

略去梁的分布质量,试求位于B 端点左边1米处,重为Q =4900 N 的物块自由振动的周期。

【解法1:通过计算静变形求解。

A ,B 弹簧受力为3Q 和23Q ,压缩量为3Q k 和23Q k ,则由弹簧引起的静变形为159Qk δ=;利用材料力学挠度公式求出梁变形引起的静变形222212(321)4619Q QEI EIδ⋅⋅--==⋅。

周期为:22 1.08nT πω===s 。

解法2:通过弹簧刚度的串并联计算总等效刚度求解。

A ,B 弹簧相对Q 处的等效刚度为(产生单位变形需要的力,利用解法1中计算的静变形结果)195k k =;利用材料力学挠度公式求出梁相对Q 处的等效刚度294EI k =;总等效刚度为:12111eq k k k =+。

周期为22 1.08nT πω===s 。

】 2.4 一均质刚杆重为P ,长度为L 。

A 处为光滑铰接,在C 处由刚性系数为k 的弹簧使杆在水平位置时平衡。

弹簧质量不计,求杆在竖直面内旋转振动时的周期。

【解:利用定轴转动微分方程:21()32st P l l P k a a g ϕϕδ=--&&,2st lk a P δ=, 得:22103P l k a gϕϕ+=&&,22n T πω===题 2-1 图BAQ题 2-2 图QkkAB 题 2-4 图2.8一个重为98 N的物体,由刚性系数为k=9.8 kN/m的弹簧支承着(简化为标准m-k-c振动系统),在速度为1 cm/s时其阻力为0.98 N。

机械振动作业答案

机械振动作业答案

7.上面放有物体的平台,以每秒5周的频 率沿竖直方向做简谐振动,若平台振幅 超过(1cm),物体将会脱离平台 .(g=9.8m/s) 8.两个同方向同频率的简谐振动,其合振 动的振幅20cm,与第一个简谐振动的相 位差为Ф - Ф 1= π/6.若第一个简谐振动 的振幅为 则第二个简谐振 10 3cm 17.3cm 动的振幅为( 10 )cm,第一,二个简谐振 动的相位差Ф 1- Ф 2为( -π /2 )
2. 两个近地点各自做简谐振动,它们的 振 幅 相 同。第 一 个 质 点的振动方 程 x1 A cos(t ) ,当第一个质点从相 对平衡位置的正位移回到平衡位置时, 第二个质点在正最大位移处,第二个质 点的振动方程为:( ) A. x2 A cos(t / 2)
B. x2 A cos(t / 2) C. x2 A cos(t 3 / 2) D. x2 A cos(t )
3. 质点作周期为 T ,振幅为 A 的谐振 动,则质点由平衡位置运动到离平 衡位置 A/2 处所需的最短时间是 : ( ) A.T/4 B.T/6 C.T/8 D.T/12 4. 一质点在x轴上作谐振动振幅A=4cm, 周期 T=2s ,其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动,则质点第二次通过 x = - 2 c m , 处 时 刻 为 : [ ] A.1s B.3s/2 C.4s/3 D.2s
(二) 填空题
1 1 1 2 2 2 2 2 m A m A kA ________ 或 _____ ,平均动能为 ______ ,平均势 2 4 2 1 2 2 m A 。 能为______ 4
2. 一简谐振动的表达式为 , x A cos(3t ) 已知t=0时的位移是0.04m,速度是0.09m· s-1。 0.05m 则振幅A=_____ ,初相φ=_____ 。 ห้องสมุดไป่ตู้ 37
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理(下)》作业 机械振动
班级 学号 姓名 成绩
一 选择题
1. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) .
[ C ]
[参考解答] 开始计时时,位移达到最大值。

2. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:
(A) )3
232cos(2π+π=t x . (B) )3
232cos(2π-π=t x .
(C) )3
234cos(2π+π=t x .
(D) )3
234cos(2π-π=t x .
(E)
)4
134cos(2π-π=t x .
[ C ]
[参考解答] A=2 cm ,由旋转矢量法(如下图)可得:3/20πϕ==t ,πϕ21==t , 4/34/13
rad s t φππω∆===∆,旋转矢量图:
3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A )7/16 (B )9/16
(C )11/16 (D )13/16 (E )15/16
[ E ]
[参考解答] 4/)cos(
A t A x =+=ϕω,
2
2211111
22416216
p A E kx k kA E ⎛⎫⎡⎤==== ⎪⎢⎥⎝⎭⎣⎦, 1516k P E E E E =-=
4.图中所画的是两个简谐振动的振动曲线,若这两个简谐振动
可叠加,则合成的余弦振动的初相位为:
(A )

(B )π (C )2
3π (D )0
[ B ]
[参考解答] t=0时刻的旋转矢量图:
二 填空题
1.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = g x /20π. [参考解答] 受力分析如右图,以平衡位置为原点,向下为x 轴正方向,
有:2
2/22)/(dt
X
d m kX k mg x k mg kx dt x
d m k
mg x X =-=--=+-=-=令 对坐标X ,其运动为简谐运动, 其角频率满足:,m
k =
2
ω g x T /2/20πωπ==
2. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为 )()2
325
cos(2cm t x π
+
=. [参考解答] s rad cm A A v m /5.2,2,=∴==ωω t =0时,质点通过平衡位置向正方向运动,初相为:2
30πϕ=
3.一弹簧简谐振子的振动曲线如图所示,振子处在位移为零,速度为-ωA ,加速度为零和弹性力为零的状态,对应于曲线上的 b, f 点,振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应于曲线上的 a, e 点。

4.两个同方向同频率的简谐振动,其振动表达式分别为:
π
A/2
-A A

mg
F k
o
x
x 1=6×10-
2cos(5t+2π) (SI )
x 2=2×10-
2sin(π-5t) (SI )
它们的合振动的振幅为 4×10-
2 m ,初相位为 2
π。

[参考解答] 第二个振动的振动方程可以写为:
)()2
5cos(10222SI t x π
-
⨯=-
两个振动在t=0时刻的旋转矢量图为: 三 计算题
1. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.
[参考解答] 两个振动的旋转矢量图如下:
相位差(如果限定在(ππ,-]之间)为:
2
12π
ϕϕ-
=-
2. 一质点同时参与两个同方向的简谐振动,其振动方程分别为 x 1 =5×10-2cos(4t + /3) (SI) , x 2 =3×10-2sin(4t - /6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.
[参考解答] 第二个振动的振动方程可以写为: x 2 =3×10-2cos(4t - 2/3) (SI)
两个振动初始时刻的旋转矢量图如下:
从旋转矢量图可以看出对于合振动:
A=2×10-2
(SI);
)(4SI =ω;
3
π
ϕ=

所以合振动的振动方程为:
)3
4cos(1022π
+
⨯=-t x m
3. 一简谐振动的振动曲线如图所示.求振动方程.
[参考解答] 分别画出t=0s,t=2s的旋转矢量图:
1A 2A
合A
x
O
1A
2A
x
O
合A
从振动曲线可以看出从t=0s到t=2s没有到一个周期,所以
,/12
5s rad t π
ϕω=∆∆=
从旋转矢量图可知3
20πϕ=。

所以振动方程为:
)3
2125cos(10π
π+=t x cm。

相关文档
最新文档