幂函数及函数综合(人教A版)(含答案)
3.3幂函数(课件)人教A版必修第一册
(2)
1
,
−1.5
1
−1)3<(-1.4)3;
1
(2)
−1.5
>
1
−1.4
3.3 幂函数
思维篇
知识篇
素养篇
1.已知y=(m2+2m-2)
2−2
+3n-6(m,n∈N)是幂函数,
求m,n的值.
逻
辑
推
理
解:由m2+2m-2=1 得 m=-3(舍), 或m=1 ;
这里V是b的函数;
y=x3
(4)如果一个正方形场地的面积为S,那么这个正方形
的边长c= ,这里c是S的函数;
y=
1
2
(5)如果某人t s内骑车行进了1 km,那么他骑车的平
1
均速度v=
km/s,即v=t-1,这里v是t的函数.
观察(1)~(5)中的函数解析式,它们有什么共同特征?
y=x-1
1 幂函数
第三章 函数的概念与性质
3.3 幂函数
高中数学/人教A版/必修一
3.3 幂函数
思维篇
素养篇
知识篇
先看几个实例.
(1)如果张红以1元/kg的价格购买了某种蔬菜w kg,
那么她需要支付p=w元,这里p是w的函数;
y=x
(2)如果正方形的边长为a,那么正方形的面积S=a2,
这里S是a的函数;
y=x2
(3)如果立方体的棱长为b,那么立方体的体积V=b3,
逻
辑
推
理
所以 f(x)= ,且定义域[0,+∞)上为增函数.
由f(2-a)>f(a) 得:2-a > a≥0,
3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件
D . p 为 偶 数 , q为奇 数且 < 0
)
典型例题
题型四:幂函数的图象、定点问题
【对点训练8】(2023·全国·高一假期作业)已知 ( ) = (2 − 1) + 1,则函数 = ( )的图象恒过的定点
的坐标为
.
【答案】 (1,2)
【解析】令 2 − 1 = 1 ,得 = 1, = 2 ,
故选:C.
2 ;⑤
= ,其中幂函
典型例题
题型二:求函数解析式
【例2】若 = 2 − 4 + 5 − + + 1 是幂函数,则 2 =
【答案】
1
4
2
− 4 + 5 = 1 ,解得 ቊ = 2 ,
【解析】由题意得 ቊ
= −1
+1=0
故 = −2 ,所以 2 = 2 −2 =
典型例题
题型二:求函数解析式
1
2
【对点训练3】已知 ∈ −2, −1, − , 2 ,若幂函数 = 为偶函数,且在(0,+∞)上单调递减,则
=
.
【答案】 -2
【解析】因为函数在 0, +∞ 上单调递减,所以 < 0 ,
当 = −2 时, = −2 是偶函数,成立
当 = −1 时, = −1 是奇函数,不成立,
1
1
当 = − 时, = − 2 的定义域是 0, +∞ ,不是偶
2
函数,故不成立,
综上, = −2.
故答案为:−2
典型例题
题型三:定义域、值域问题
4
【例3】(1)函数 = 5 的定义域是
高中数学人教A版(2019)必修一 第三章 第三节 幂函数的性质及图像
高中数学人教A版(2019)必修一第三章第三节幂函数的性质及图像一、单选题(共11题;共55分)1.(5分)幂函数y=x23的大致图像是()A.B.C.D.2.(5分)如图是幂函数y=x n的部分图像,已知n取12,2,−2,−12这四个值,则于曲线C1,C2,C3,C4相对应的n依次为()A.2,12,−12,−2B.−2,−12,12,2C.−12,−2,2,12D.2,12,−2,−123.(5分)若幂函数f(x)=(m2+m−5)x m2−2m−3的图像不经过原点,则m的值为()A.2B.-3C.3D.-3或24.(5分)如图的曲线是幂函数y=x n在第一象限内的图像.已知n分别取±2,±12四个值,与曲线c1、c2、c3、c4相应的n依次为()A.2,12,−12,−2B.2,12,−2,−12C.−12,−2,2,12D.−2,−12,12,25.(5分)下图给出4个幂函数的图象,则图像与函数的大致对应是()A.①y=x13,②y=x2,③y=x12,④y=x−1B.①y=x3,②y=x2,③y=x12,④y=x−1C.①y=x2,②y=x3,③y=x12,④y=x−1D.①y=x13,②y=x12,③y=x2,④y=x−16.(5分)函数y=x53的图象大致是()A.B.C.D.7.(5分)在下列四个图形中,y=x−12的图像大致是()A.B.C.D.8.(5分)幂函数y=f(x)的图象经过点(8,2√2),则f(x)的图象是()A.B.C.D.9.(5分)函数f(x)=x−12的大致图象是()A.B.C.D.10.(5分)函数y=x23的图象是()A.B.C.D.11.(5分)函数y=x a,y=x b,y=x c的图像如图所示,则实数a、b、c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b 二、多选题(共2题;共10分)12.(5分)若函数f(x)=(3m2−10m+4)x m是幂函数,则f(x)一定()A.是偶函数B.是奇函数C.在x∈(−∞,0)上单调递减D.在x∈(−∞,0)上单调递增13.(5分)已知幂函数y=xα的图像如图所示,则a值可能为()A.13B.12C.15D.3三、填空题(共6题;共35分)14.(5分)已知幂函数f(x)=(m2−2m−2)x m2−2在(0,+∞)为减函数,则f(2)=. 15.(5分)若幂函数y=(m2−m−1)x m为偶函数,则m= .16.(5分)已知幂函数f(x)=mx n的图像过点(14,116),则mn=.17.(5分)函数y=(m2−m−1)x m2−2m−1是幂函数,且在x∈(0,+∞)上是减函数,则实数m=.18.(5分)已知幂函数f(x)=(m2+m−1)x m的图像如图所示,那么实数m的值是.19.(10分)已知幂函数y=x n的图像过点(3,19),则n=,由此,请比较下列两个数的大小:(x2−2x+5)n(−3)n.四、解答题(共1题;共10分)20.(10分)已知幂函数f(x)=xα的图像过点(2,4).(1)(5分)求函数f(x)的解析式;(2)(5分)设函数ℎ(x)=2f(x)−kx−1在[−1,1]是单调函数,求实数k的取值范围.答案解析部分1.【答案】B【解析】【解答】解:∵23>0,∴幂函数在第一象限内的图象为增函数,排除A,C,D,故答案为:B.【分析】利用幂函数的单调性进行判断,可得答案。
新教材人教A版数学必修第一册第3章 3.3 幂函数
层
)作
业
疑
难
返 首 页
13
课
情
堂
景
小
导 学
(4)当幂指数 α=-1 时,幂函数 y=xα 在定义域上是减函数.
结 提
探
新 知
素
( )养
课
合
[答案] (1)× (2)√ (3)√ (4)×
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
14
课
情
堂
景
小
导 学
2.下列函数中不是幂函数的是( )
结 提
探
新
A.y= x
B.y=x3
1.幂函数的图象过点(2, 2),则该幂函数的解析式是(
)
堂 小
导
学
探
A.y=x-1
课
合 以是“0”或“1”.
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
35
课
情
堂
景
小
导
结
学
提
探
新 知
课堂
小结
提素
养
素 养
课
合
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
36
情
1.理解 1 个概念——幂函数的概念
课 堂
景
小
导
判断一个函数是否为幂函数,其关键是判断其是否符合 y=xα(α 结
学
提
探 新
为常数)的形式.
3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;
或
m=0.
当
m=2
时,f(x)=
x
1 2
,图象过点(4,2);
当
m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).
高中数学 2.3.1幂函数的图像、性质及应用课件 新人教A版必修1
点评:比较两个幂的大小的关键是搞清楚底数与指数是否相同,若
底数相同,利用指数函数的性质比较大小;若指数相同,利用幂函
栏 目
链
数的性质比较大小;若底数指数均不同,考虑利用中间值来比较大 接
小.
►跟踪训练
2.比较下列各组数的大小:
11 (1)1.53,1.73,1;
(2)-
22-32,-17023,1.1-43;
例1
函数f(x)=(m2-m-1)xm2+m-3是幂函数,且当
x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.
解析:根据幂函数定义得
m2-m-1=1,解得m=2或m=-1,
栏
当m=2时,f(x)=x3在(0,+∞)上是增函数,
目 链
当m=-1时,f(x)=x-3在(0,+∞)上是减函数,不合要求,故接
解析:∵f(x)为幂函数,∴2m2+m=1,得m=21或m=-1.
栏
当m=12时,f(x)=x-41=
1 4
,
目 链 接
x
定义域为x>0,显然不具有奇偶性;
当m=-1时,f(x)=x-1=x1是奇函数.
答案:-1
题型2 利用你幂函数的性质比较大小
例2 比较下列各组中两个数的大小:
6
6
(1)0.611与0.711;
f(x)=x3.
点评:幂函数y=xα(α∈R)其中α为常数,其本质特征是以幂的
底x为自变量,指数α为常数(也可以为0).这是判断一个函数是否为
幂函数的重要依据和唯一标准.对例1来说,还要根据单调性验
根,以免增根.
►跟踪训练
1.已知函数f(x)=(2m2+m)xm2+m-1为幂函数且是奇函数,
第12讲 幂函数的图象和性质(人教A版2019必修第一册)(解析版)初升高暑假预习讲义
第12讲幂函数的图象和性质【人教A版2019】·模块一幂函数的概念·模块二幂函数的图象与性质·模块三课后作业1.幂函数的概念(1)幂函数的概念:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.(2)幂函数的特征:①xα的系数为1;②xα的底数是自变量;③xα的指数为常数.只有同时满足这三个条件,才是幂函数.【考点1对幂函数的概念的理解】【例1.1】(2023·全国·高一假期作业)下列函数为幂函数的是()A.=22B.=22−1C.=2D.J2【解题思路】根据幂函数的定义即可求解.【解答过程】由幂函数的定义可知:J2是幂函数,=22,=22−1和=2的系数不为1,故不是幂函数,故选:D.【例1.2】(2023·全国·高一假期作业)下列函数中不是幂函数的是()A.=B.=3C.=3D.=−1【解题思路】根据幂函数的定义逐个分析选项即可.【解答过程】对于选项A,==12,故它是幂函数.故A项正确;对于选项B,=3是幂函数,故B项正确;对于选项C,选项的系数为3,所以它不是幂函数.故C项不成立;对于选项D,=−1是幂函数,故D项正确.故选:C.【变式1.1】(2023·全国·高一假期作业)现有下列函数:①=3;②=;③=42;④=5+1;⑤=−12;⑥=;⑦=(>1),其中幂函数的个数为()A.1B.2C.3D.4【解题思路】根据幂函数的定义逐个辨析即可【解答过程】幂函数满足=形式,故=3,=满足条件,共2个故选:B.【变式1.2】(2023秋·云南德宏·高一统考期末)下列函数既是幂函数又是奇函数的是()A.=3B.=12C.=22D.=+1【解题思路】利用幂函数及函数的奇偶性的定义,结合各选项进行判断即可.【解答过程】对于A,由幂函数的定义知=3=13是幂函数,由题意可知op的定义域为R,o−p= 3−=−3=−op,所以op是奇函数,符合题意;故A正确;对于B,由幂函数的定义知=12=−2是幂函数,由题意可知op的定义域为−∞,0∪0,+∞,o−p==12=op,所以op是偶函数,不符合题意;故B错误;对于C,由幂函数的定义知=22不是幂函数,不符合题意;故C错误;对于D,由幂函数的定义知=+1不是幂函数,不符合题意;故D错误;故选:A.【考点2求幂函数的函数值、解析式】【例2.1】(2023·全国·高一假期作业)已知幂函数f(x)=xα(α为常数)的图象经过点(2,2),则f(9)=()A.−3B.−13C.3D.13【解题思路】代点的坐标求出α的值,得到函数op的解析式,即得解.【解答过程】由题意f(2)=2α=2=212,所以α=12,所以f(x)=,所以f(9)=9=3.故选:C.【例2.2】(2023秋·山东临沂·高一校考期末)已知幂函数的图象过点4,=()A.−12B.−2C.12D.2【解题思路】设幂函数=,将4,,即得答案.【解答过程】设幂函数=,由于的图象过点4,故4=12,∴=−12,即=−12,故选:A.【变式2.1】(2023秋·河北邯郸·高三统考期末)已知幂函数满足o6)o2)=4,则)A.2B.14C.−14D.−2【解题思路】设出幂函数的解析式,根据已知,求出参数的关系式,即可计算作答.【解答过程】依题意,设=,则o6)o2)=62=3=4,所以o13)=(13)=13=14.故选:B.【变式2.2】(2023春·湖北宜昌·高一校联考期中)已知点3,2在幂函数=−1的图象上,则()A.=−1B.=212C.=3D.=13【解题思路】根据幂函数的定义求出a,将已知点的坐标代入解析式即可求解.【解答过程】∵函数=−1是幂函数,∴−1=1,即=2,∴点8,2在幂函数=的图象上,∴8=2,即=13,故=13.故选:D.1.常见幂函数的图象与性质幂函数图象定义域R R R 值域R R奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上为增函数,增函数,减函数在R 上为增函数在上为增函数,减函数,增函数定点(1,1)温馨提示:幂函数在区间(0,+∞)上,当a >0时,y =x α是增函数;当α<0时,y =x α是减函数.2.一般幂函数的图象与性质(1)一般幂函数的图象:①当α=1时,y =x 的图象是一条直线.②当α=0时,y ==1(x ≠0)的图象是一条不包括点(0,1)的直线.③当α为其他值时,相应幂函数的图象如下表:(p 、q 互质)p ,q 都是奇数p是偶数,q是奇数p是奇数,q是偶数(2)一般幂函数的性质:通过分析幂函数的图象特征,可以得到幂函数的以下性质:①所有的幂函数在(0,+)上都有定义,并且图象都过点(1,1).②α>0时,幂函数的图象过原点,并且在区间[0,+)上是增函数.③α<0时,幂函数在区间(0,+)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+时,图象在x轴上方无限地逼近x轴正半轴.④任何幂函数的图象与坐标轴仅相交于原点,或不相交,任何幂函数的图象都不过第四象限.⑤任何两个幂函数的图象最多有三个公共点.除(1,1),(0,0),(-1,1),(-1,-1)外,其他任何一点都不是两个幂函数的公共点.3.对勾函数的图象与性质参考幂函数的性质,探究函数的性质.(1)图象如图:与直线y=x,y轴无限接近.(2)(3)的值域为(-,-2]∪[2,+).(4)奇偶性:函数为奇函数.(5)单调性:由函数在(-,-1),(1,+)上单调递增,在(-1,0),(0,1)上单调递减.【考点1幂函数的定义域、值域】【例1.1】(2023·全国·高一假期作业)给出5个幂函数:①=−2;②=45;③=14;④=23;⑤=−45,其中定义域为R的是()A.①②B.②③C.②④D.③④【解题思路】根据幂函数的定义域求得正确答案.【解答过程】①=−2=12的定义域为U≠0,不符合.②=45=54的定义域为R,符合.③=14=4的定义域为U≥0,不符合.④=23=32的定义域为R,符合.⑤=−45=的定义域为U≠0,不符合.所以符合的是②④.故选:C.【例1.2】(2023·全国·高三专题练习)已知幂函数op=的图像过点(8,4),则op=的值域是()A.−∞,0B.−∞,0∪0,+∞C.0,+∞D.0,+∞【解题思路】先求出幂函数解析式,根据解析式即可求出值域.【解答过程】∵幂函数op=的图像过点(8,4),∴8=4,解得=23,∴op=23=32≥0,∴op的值域是0,+∞.故选:D.【变式1.1】(2023·全国·高一假期作业)函数=−1+12的定义域为()A.−∞,+∞B.−∞,0∪0,+∞C.0,+∞D.0,+∞【解题思路】化简函数解析式,根据函数解析式有意义可得出关于的不等式组,由此可解得原函数的定义域.【解答过程】因为=−1+12=1+,则≠0≥0,可得>0,故函数的定义域为0,+∞.故选:D.【变式1.2】(2023秋·北京·高一校考期末)下列函数中,其定义域和值域不同的函数是()A.=13B.=−12C.=53D.=23【解题思路】由幂函数性质可得解.【解答过程】A中定义域和值域都是;,定义域和值域都是(0,+∞);B中=−12=C中定义域和值域都是;D中=23=(13)2定义域为R,值域为[0,+∞)故选:D.【考点2幂函数的图象】【例2.1】(2023·全国·高一假期作业)如图,下列3个幂函数的图象,则其图象对应的函数可能是()A.①=−1,②=12,③=13B.①=−1,②=13,③=12C.①=13,②=12,③=−1D.①=13,②=−1,③=12【解题思路】根据幂函数的图象与性质,逐个判定,即可求解.【解答过程】由函数=−1=1是反比例函数,其对应图象为①;函数=12=的定义域为(0,+∞),应为图②;因为=13的定义域为R且为奇函数,故应为图③.故选:A.【例2.2】(2023秋·黑龙江哈尔滨·高一统考期末)若点4,2在幂函数的图象上,则的图象大致是()A.B.C.D.【解题思路】利用待定系数法求出幂函数的解析式,再进行判断即可得出答案.【解答过程】设幂函数op=,将点4,2代入,得4=2,解得=12,所以op=12,定义域为[0,+∞),且在定义域内单调递增,大致图像为B,故选:B.【变式2.1】(2023·全国·高三对口高考)已知幂函数=(s∈且p与q互质)的图像如图所示,则()A.p、q均为奇数且<0B.p为奇数,q为偶数且<0C.p为奇数,q为偶数且>0D.p为偶数,q为奇数且<0【解题思路】根据图像的对称性及形状结合幂函数的图像特征可直接解答.【解答过程】由图像知函数为偶函数,所以p为偶数,且由图像的形状判定<0,又因为p与q互质,所以q为奇数,故选:D.【变式2.2】(2023·全国·高一假期作业)如图所示,图中的曲线是幂函数=在第一象限的图象,已知取±2,±12四个值,则相应于1,2,3,4的依次为()A.−2,−12,12,2B.2,12,−12,−2C.−12,−2,2,12D.2,12,−2,−12【解题思路】根据幂函数的图象在第一象限内的特征即可得答案.【解答过程】解:根据幂函数=的性质,在第一象限内的图象:当>0时,越大,=递增速度越快,故1的=2,2的=12;当<0时,越大,曲线越陡峭,所以曲线3的=−12,曲线4的=−2.故选:B.【考点3由幂函数的图象与性质求参数】【例3.1】(2023·全国·高一假期作业)幂函数=2−3在第一象限内是减函数,则=()A.2B.2C.−2D.−2【解题思路】先根据幂函数定义求出m的可能值,再结合函数的单调性即可得解.【解答过程】由幂函数的定义可知2−3=1,解得=±2,由幂函数的单调性可知<0,所以=−2.故选:D.【例3.2】(2023秋·陕西榆林·高一统考期末)已知幂函数op=2−2−2K2的图象经过原点,则=()A.-1B.1C.3D.2【解题思路】令2−2−2=1求解,再根据函数图象经过原点判断.【解答过程】解:令2−2−2=1,解得=−1或=3.当=−1时,=−3的图象不经过原点.当=3时,=的图象经过原点.故选:C.【变式3.1】(2023秋·浙江杭州·高一校考期末)已知幂函数=2+2−2⋅2−2在0,+∞上是减函数,则n的值为()A.−3B.1C.3D.1或−3【解题思路】先由函数是幂函数,得到=−3或=1,再分别讨论,是否符合在0,+∞上是减函数的条件.【解答过程】因为函数是幂函数,则2+2−2=1,所以=−3或=1.当=−3时,=15在0,+∞上是增函数,不合题意.当=1时=−1在0,+∞上是减函数,成立.故选:B.【变式3.2】(2023秋·广西贵港·高一统考期末)若幂函数=−2+2r259的图象关于y轴对称,解析式的幂的指数为整数,在−∞,0上单调递减,则=()A.19B.19或499C.−13D.−13或73【解题思路】由题意知是偶函数,在−∞,0上单调递减,可得−2+2+259为正偶数,再根据−2+2+259的范围可得答案.【解答过程】由题意知是偶函数,因为在−∞,0上单调递减,所以−2+2+259为正偶数,又−2+2+259=−(−1)2+349≤349,∴−(−1)2+349=2,解得=73或−13.故选:D.【考点4比较幂值的大小】【例4.1】(2023春·浙江·高一校联考期中)记=0.20.1,=0.10.2,=(2)−0.5,则()A.>>B.>>C.>>D.>>。
2020-2021高中数学人教版第一册学案:3.3 幂函数含解析
2020-2021学年高中数学新教材人教A版必修第一册学案:3.3 幂函数含解析3。
3 幂函数【素养目标】1.通过具体实例,理解幂的概念.(数学抽象)2.会画简单幂函数的图象,并能根据图象得出这些函数的性质.(直观想象)3.理解常见幂函数的基本性质.(逻辑推理)【学法解读】以五种常见的幂函数为载体,学生应自己动手在同一个平面直角坐标系下画出这五种幂函数的图象,通过观察比较研究其图象和性质,进而研究一般幂函数的图象和性质.必备知识·探新知基础知识知识点1幂函数的概念函数__y=xα__叫做幂函数,其中x是自变量,α是常数.思考1:幂函数的解析式有什么特征?提示:①系数为1;②底数x为自变量;③幂指数为常数.知识点2幂函数的图象及性质(1)五个幂函数的图象:(2)幂函数的性质:幂函数y=x y=x2y=x3y=x错误!y=x-1定义域R R R[0,+∞)(-∞,0)∪(0,+∞)值域R[0,+∞)R [0,+∞){y|y∈R且y≠0}奇偶性奇偶奇非奇非偶奇单调性__增__x∈(0,+∞)增;x∈(-∞,0) 减__增____增__x∈(0,+∞)减;x∈(-∞,0)减公共点都经过点(1,1)α同特征?提示:图象都是从左向右逐渐上升.基础自测1.下列函数为幂函数的是(D)A.y=2x4B.y=2x3-1C.y=错误!D.y=x2[解析]y=2x4中,x4的系数为2,故A不是幂函数;y=2x3-1不是xα的形式,故B不是幂函数;y=错误!=2x-1,x-1的系数为2,故C不是幂函数,故只有D是幂函数.2.(2019·安徽太和中学高一期中测试)已知幂函数f(x)的图象过点(2,22),则f(4)的值为(B)A.4 B.8C.2错误!D.错误![解析]设f(x)=xα,∴2错误!=2α,∴α=错误!。
∴f(x)=x错误!.∴f(4)=4错误!=(22)错误!=23=8.3.若f(x)=mxα+(2n-4)是幂函数,则m+n等于(C)A.1 B.2C.3 D.4[解析]由题意,得错误!,∴错误!∴m+n=3。
第12讲 幂函数-人教A版高中数学必修一讲义(解析版)
知识点1 幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.知识点2 幂函数的图象和性质 (1)五个幂函数的图象:(2)幂函数的性质: 幂函数y =xy =x 2y =x 321x yy =x -1教材要点学科素养学考高考考法指津高考考向1.幂函数的概念数学抽象水平1水平11.了解幂函数的定义,能区别幂函数与指数函数。
2.能够使用幂函数的简单性质实行实数大小比较。
3.通过作出一些简单幂函数的图像,能根据图像描述出这些简单幂函数的基本性质。
【考查内容】幂函数的图像与性质、指数幂的大小比较。
【考查题型】选择题、填空题、解答题【分值情况】选择、填空题5分,解答题4分2.幂函数的图像与性质 直观想象 水平1 水平23.幂指数对图像的影响 数学运算 水平1 水平14.幂函数的凸凹性 数学运算 水平1 水平1第十二讲 幂函数知识通关{y|y∈R,且y≠0}奇x∈(0,+∞),减x∈(-∞,0),减题型一幂函数的概念规律方法判断函数为幂函数的方法例1、(1)在函数y=x-2,y=2x2,y=(x+1)2,y=3x中,幂函数的个数为( )A.0 B.1 C.2 D.3(2)若f(x)=(m2-4m-4)x m是幂函数,则m=________.解析:(1)根据幂函数定义可知,只有y=x-2是幂函数,所以选B.(2)因为f(x)是幂函数,所以m2-4m-4=1,即m2-4m-5=0,解得m=5或m=-1.答案(1)B (2)5或-1【变式训练1】(1)幂函数)(xf的图像过点)9,3(3,则)()8(=fA. 8B. 6C. 4D. 2(2)设}1,21,3,2,1{-∈α,则使函数αxy=的定义域为R且函数αxy=为奇函数的所有α的值为()A .3,1- B. 1,1- C. 1,3 D. 3,1,1-2、(1)如图所示,图中的曲线是幂函数y =x n 在n 取±2,±12四个值,则相对C 1,C 2,C 3,C 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12(2)点(2,2)与点)21,2(--分别在幂函数f(x),的图象上,问当x 为何值时,分别有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).(1)根据幂函数y =x n 的性质,在第一象限内的图象当n>0时,n 越大,y =x n 递增速度越快,故(1)依据图象高低判断幂指数大小,相关结论为:①幂函数图像在定义域(0,1)上的部分,指数越大,幂函数图象越靠近x 轴 (简记为指大图低); ②幂函数图像在定义域(1,+∞)上的部分,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系, 即根据幂函数在第一象限内的图象(类似于y =x -1或21x y =或y =x 3)来判断.(当0<α时,在第一象限内为双曲线型;当10<<α时,在第一象限内为抛物线型,且开口向右;当1>α时,在第一象限C 1的n =2,C 2的n =12;当n<0时,|n|越大,曲线越陡峭,所以曲线C 3的n =-12,曲线C 4的n =-2,故选B . (2)设f(x)=x α,g(x)=x β.∵(2)α=2,(-2)β=-12,∴α=2,β=-1,∴f(x)=x 2,g(x)=x -1.分别作出它们的图象,如图所示.由图象知:①当x ∈(-∞,0)∪(1,+∞)时,f(x)>g(x); ②当x =1时,f(x)=g(x); ③当x ∈(0,1)时,f(x)<g(x). 答案 B【变式训练2】如图是函数nm x y = (m ,n ∈N *,m ,n 互质)的图象,则( )A .m ,n 是奇数,且mn <1B .m 是偶数,n 是奇数,且mn>1C .m 是偶数,n 是奇数,且mn <1D .m 是奇数,n 是偶数,且mn >1解析:由图象可知y =x mn 是偶函数,而m ,n 是互质的,故m 是偶数,n 是奇数,又当x ∈(1,+∞)时,nm x y =的图象在y =x 的图象下方,故mn <1.答案 C题型三 利用幂函数的性质比较大小规律方法 比较幂值大小的三种基本方法例3、比较下列各组数中两个数的大小:(1)3.0)52(与3.0)31(;(2)1)32(--与1)53(--解析:(1)因为幂函数y =x 0.3在(0,+∞)上是单调递增的,又3152>,所以3.03.0)31()52(>. (2)因为幂函数y =x-1在(-∞,0)上是单调递减的,又5332-<-,所以11)53()32(--->-. 【探究1】 (变换条件)若将例1(1)中的两数换为")31()52("3.03.0-与,则二者的大小关系如何? 解析:因为3.03.03)31(=-,而y =x 0.3在(0,+∞)上是单调递增的,又352<,所以3.03.03)52(<.即3.03.0)31()52(-<. 【探究2】 (变换条件)若将例1(1)中的两数换为"3.0)52("523.0与,则二者的大小关系如何? 解析:因为x y )52(1=在(0,+∞)为上减函数,又0.3<25,所以523.0)52()52(>,又因为函数522x y =在(0,+∞)上为增函数,且3.052>,所以52523.0)52(>,所以523.03.0)52(>.【变式训练3】 比较下列各组数的大小:(1)33)5.2()2(----与;(2)8787)91(8---与;(3)533252)9.1()8.3()1.4(--与与.解析:(1)∵幂函数3-=x y 在)0,(-∞上为减函数, 又5.22->- ∴33)5.2()2(---<-(2)∵87x y =在),0(+∞上为增函数,9181,)81(88787>-=--,∴8787)91()81(-<-,∴8787)91(8-<--(3)∵11)1.4(5252=>,11)8.3(03232=<<--,0)9.1(53<-,533252)9.1()8.3()1.4(->>-∴考向一 幂函数的凸凹性 (1)上凸函数、下凸函数的定义设函数)(x f 在],[b a 上有定义,若对于],[b a 中任意不同两点21,x x ,2)()()2(2121x f x f x x f +≥+都成立,则称)(x f 在],[b a 上是上凸的函数,即上凸函数。
3.3幂函数-高一数学(人教A版必修第一册)课件
,这里是的函数;
1
(5)如果某人 内骑车行进了1,那么他骑车的平均速度 = /,
即 = −1 ,这里是的函数.
问题1 概括出它们的解析式,观察出它们有什么异同点?
(1) = ;(2) = ;
y f ( x) | x | 为偶函数.
y
x 的图象如图所示,
f ( x) | x | | x | f ( x) ,
课本P95 习题3.3
当 x [0, ) 时, y | x | 为增函数,证明如下:
设任意的 x1 , x2 [0, ) ,且 x1 x2 ,则 y1 y2
概念2:
结合函数图象并结合解析式,将结论填写如下表所示:
定义域
值域
奇偶性
奇函数
偶函数
ቤተ መጻሕፍቲ ባይዱ奇函数
单调性
定点
(1,1)
非奇非偶函数
奇函数
(1)定点:所有的幂函数在(0, + ∞)
都有定义,并且图象都过点(1,1);
当α >0时,幂函数的图象都通过原点
(2)单调性:当α >0时,在区间[0, +
∞)上是增函数;当α<0时,幂函数在区
章节:第三章 函数的概念与性质
标题:3.3幂函数
课时:1课时
目
录
1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
素养目标
2.结合这几个幂函数的图象,理解幂函数图象的变化情况
和性质;
数学抽象
数学运算
逻辑推理
直观想象
3.通过观察、总结幂函数的性质,培养学生概括抽象和识
高中数学 第三章函数的概念与性质幂函数讲义 新人教A版必修一第一册
3.3 幂函数最新课程标准:通过具体实例,结合y =x ,y =1x,y =x 2,y =x ,y =x 3的图象,理解它们的变化规律,了解幂函数.知识点一 幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 状元随笔 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图象与性质状元随笔 幂函数在区间(0,+∞)上,当α>0时,y =x α是增函数;当α<0时,y =x α是减函数.[教材解难]教材P 90思考通常可以先根据函数解析式求出函数的定义域,画出函数的图象;再利用图象和解析式,讨论函数的值域、单调性、奇偶性等问题. [基础自测]1.在函数y =1x4,y =3x 2,y =x 2+2x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3解析:函数y =1x4=x -4为幂函数;函数y =3x 2中x 2的系数不是1,所以它不是幂函数;函数y =x 2+2x 不是y =x α(α是常数)的形式,所以它不是幂函数; 函数y =1与y =x 0=1(x ≠0)不相等,所以y =1不是幂函数. 答案:B2.幂函数f (x )的图象过点(3,39),则f (8)=( ) A .8 B .6 C .4 D .2解析:设幂函数f (x )=x α(α为常数),由函数的图象过点(3,39),可得39=3α,∴α=23,则幂函数f (x )=x 23,∴f (8)=823=4. 答案:C3.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( )A .1B .2C .1或2D .3解析:∵幂函数f (x )=(m 2-3m +3)xm +1为偶函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件.当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.答案:A4.判断大小:0.20.2________0.30.2. 解析:因为函数y =x 0.2是增函数,又0.2<0.3, ∴0.20.2<0.30.2. 答案:<题型一 幂函数的概念[经典例题]例1 (1)下列函数:①y =x 3;②y =⎝ ⎛⎭⎪⎫12x ;③y =4x 2;④y =x 5+1;⑤y =(x -1)2;⑥y=x ;⑦y =a x(a >1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4(2)若函数y =(m 2+2m -2)x m为幂函数且在第一象限为增函数,则m 的值为( ) A.1 B .-3 C .-1 D .3(3)已知幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫3,19,则f (4)=_____. 【解析】 (1)②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.(2)因为函数y =(m 2+2m -2)x m为幂函数且在第一象限为增函数,所以⎩⎪⎨⎪⎧m 2+2m -2=1,m >0,所以m =1.(3)设f (x )=x α,所以19=3α,α=-2,所以f (4)=4-2=116.【答案】 (1)B (2)A (3)116(1)依据幂函数的定义逐个判断. (2)依据幂函数的定义列方程求m.(3)先设f(x)=x α,再将点(3,19)代入求α.方法归纳(1)幂函数的判断方法①幂函数同指数函数、对数函数一样,是一种“形式定义”的函数,也就是说必须完全具备形如y=xα(α∈R)的函数才是幂函数.②如果函数解析式以根式的形式给出,则要注意把根式化为分数指数幂的形式进行化简整理,再对照幂函数的定义进行判断.(2)求幂函数解析式的依据及常用方法①依据.若一个函数为幂函数,则该函数应具备幂函数解析式所具备的特征,这是解决与幂函数有关问题的隐含条件.②常用方法.设幂函数解析式为f(x)=xα,根据条件求出α.跟踪训练1 (1)给出下列函数:①y=1x3;②y=3x-2;③y=x4+x2;④y=3x5;⑤y=(x-1)2;⑥y=0.3x.其中是幂函数的有( )A.1个 B.2个C.3个 D.4个(2)函数f(x)=(m2-m-1)·x23m m+-是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.解析:(1)可以对照幂函数的定义进行判断.在所给出的六个函数中,只有y=1x3=x-3和y=3x5=x53符合幂函数的定义,是幂函数,其余四个都不是幂函数.(2)根据幂函数定义得m2-m-1=1,解得m=2或m=-1,当m=2时,f(x)=x3在(0,+∞)上是增函数,当m=-1时,f(x)=x-3在(0,+∞)上是减函数,不合要求.故f(x)=x3.答案:(1)B (2)f(x)=x3(1)利用幂函数定义判断.(2)由幂函数的系数为1,求m的值,然后逐一验证.题型二幂函数的图象及应用[经典例题]例2 幂函数y =x m ,y =x n ,y =x p ,y =x q的图象如图,则将m ,n ,p ,q 的大小关系用“<”连接起来结果是________.【解析】 过原点的指数α>0,不过原点的α<0,所以n <0,当x >1时,在直线y =x 上方的α>1,下方的α<1,所以p >1,0<m <1,0<q <1;x >1时,指数越大,图象越高,所以m >q ,综上所述n <q <m <p .【答案】 n <q <m <p依据α<0,0<α<1和α>1的幂函数图象的特征判断. 方法归纳解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x -1或y =x 12或y =x 3)来判断.跟踪训练 2 当α∈⎩⎨⎧⎭⎬⎫-1,12,1,2,3时,幂函数y =x α的图象不可能经过第__________象限.解析:幂函数y =x -1,y =x ,y =x 3的图象经过第一、三象限;y =x 12的图象经过第一象限;y =x 2的图象经过第一、二象限.所以幂函数y =x α⎝ ⎛⎭⎪⎫α=-1,12,1,2,3的图象不可能经过第四象限. 答案:四要先回忆幂函数的五种常见类型的图象与性质特点. 题型三 幂函数的单调性质及应用[教材P 91例1] 例3 证明幂函数f (x )=x 是增函数. 【证明】 函数的定义域是[0,+∞). ∀x 1,x 2∈[0,+∞),且x 1<x 2,有f (x 1)-f (x 2)=x 1-x 2=(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2.因为x 1-x 2<0,x 1+x 2>0,所以f (x 1)<f (x 2),即幂函数f (x )=x 是增函数. 利用定义法证明幂函数的单调性. 教材反思幂函数当α>0时在第一象限单调递增,当α<0时在第一象限单调递减.比较幂值的大小,关键在于构造适当的函数,若指数相同而底数不同,则考虑幂函数;若指数不同底数相同,则考虑指数函数;若底数不同,指数也不同,需引入中间量,利用幂函数与指数函数的单调性,也可以借助幂函数与指数函数的图象.跟踪训练3 比较下列各题中两个幂值的大小. (1)3.11.3与2.91.3;(2)⎝ ⎛⎭⎪⎫14 32-与⎝ ⎛⎭⎪⎫1332-; (3)⎝ ⎛⎭⎪⎫1213与⎝ ⎛⎭⎪⎫3214.解析:(1)函数y =x 1.3在(0,+∞)上为增函数,又因为3.1>2.9,所以3.11.3>2.91.3.(2)方法一 函数y =x32-在(0,+∞)上为减函数,又因为14<13,所以⎝ ⎛⎭⎪⎫1432->⎝ ⎛⎭⎪⎫1332-.方法二 ⎝ ⎛⎭⎪⎫1432-=432,⎝ ⎛⎭⎪⎫1332-=332.而函数y =x 32在(0,+∞)上单调递增,且4>3,所以432>332,即⎝ ⎛⎭⎪⎫1432->⎝ ⎛⎭⎪⎫1332-. (3)因为⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭⎪⎫120=1;而⎝ ⎛⎭⎪⎫3214>⎝ ⎛⎭⎪⎫320=1; 所以⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭⎪⎫3214.(1)利用函数y =x 1.3的单调性来判断.(2)利用函数y =x32-的单调性来判断.(3)找中间量判断.一、选择题1.下列结论正确的是( ) A .幂函数图象一定过原点B .当α<0时,幂函数y =x α是减函数 C .当α>1时,幂函数y =x α是增函数 D .函数y =x 2既是二次函数,也是幂函数解析:函数y =x -1的图象不过原点,故A 不正确;y =x -1在(-∞,0)及(0,+∞)上是减函数,故B 不正确;函数y =x 2在(-∞,0)上是减函数,在(0,+∞)上是增函数,故C 不正确.答案:D2.设α∈⎩⎨⎧⎭⎬⎫1,2,3,12,-1,则使函数y =x α的定义域为R 且函数y =x α为奇函数的所有α的值为( )A .-1,3B .-1,1C .1,3D .-1,1,3解析:y =x ,y =x 2,y =x 3,y =x 12,y =x -1是常见的五个幂函数,显然y =x α为奇函数时,α=-1,1,3,又函数的定义域为R ,所以α≠-1,故α=1,3.答案:C3.在下列四个图形中,y =x12-的图象大致是( )解析:函数y =x 12的定义域为(0,+∞),是减函数.故选D.答案:D4.函数y =x 35在[-1,1]上是( ) A .增函数且是奇函数 B .增函数且是偶函数 C .减函数且是奇函数 D .减函数且是偶函数解析:由幂函数的性质知,当α>0时,y =x α在第一象限内是增函数,所以y =x 35在(0,1]上是增函数.设f (x )=x 35,x ∈[-1,1],则f (-x )=(-x ) 35=-x 35=-f (x ),所以f (x )=x 35是奇函数.因为奇函数的图象关于原点对称,所以x ∈[-1,0)时,y =x 35也是增函数. 当x =0时,y =0,故y =x 35在[-1,1]上是增函数且是奇函数. 答案:A 二、填空题5.已知幂函数f (x )=x21m - (m ∈Z )的图象与x 轴,y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________.解析:∵函数的图象与x 轴,y 轴都无交点, ∴m 2-1<0,解得-1<m <1; ∵图象关于原点对称,且m ∈Z , ∴m =0,∴f (x )=x -1. 答案:f (x )=x -16.已知2.4α>2.5α,则α的取值范围是________. 解析:∵0<2.4<2.5,而2.4α>2.5α, ∴y =x α在(0,+∞)上为减函数,故α<0. 答案:α<07.已知幂函数f (x )=x α的部分对应值如下表:则不等式f (|x |)≤2解析:由表中数据知22=⎝ ⎛⎭⎪⎫12α,∴α=12, ∴f (x )=x 12,∴|x |12≤2,即|x |≤4,故-4≤x ≤4. 答案:{x |-4≤x ≤4} 三、解答题8.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x ):(1)是幂函数; (2)是正比例函数; (3)是反比例函数; (4)是二次函数.解析:(1)∵f (x )是幂函数, 故m 2-m -1=1,即m 2-m -2=0, 解得m =2或m =-1. (2)若f (x )是正比例函数, 则-5m -3=1,解得m =-45.此时m 2-m -1≠0,故m =-45.(3)若f (x )是反比例函数, 则-5m -3=-1,则m =-25,此时m 2-m -1≠0,故m =-25.(4)若f (x )是二次函数,则-5m -3=2, 即m =-1,此时m 2-m -1≠0,故m =-1. 9.比较下列各题中两个值的大小;(1)2.334,2.434;(2)(2)32-,(3)32-;(3)(-0.31)65,0.3565.解析:(1)∵y=x 34为[0,+∞)上的增函数,且2.3<2.4,∴2.334<2.434.(2)∵y=x32-为(0,+∞)上的减函数,且2<3,∴(2)32->(3)32-.(3)∵y=x 65为R上的偶函数,∴(-0.31)65=0.3165.又函数y=x 65为[0,+∞)上的增函数,且0.31<0.35,∴0.3165<0.3565,即(-0.31)65<0.3565.[尖子生题库]10.已知幂函数f(x)=x21()m m-+(m∈N*)经过点(2,2),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.解析:∵幂函数f(x)经过点(2,2),∴2=221()m m-+,即212=221()m m-+.∴m2+m=2.解得m=1或m=-2. 又∵m∈N*,∴m=1.∴f(x)=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f(2-a)>f(a-1),11 得⎩⎪⎨⎪⎧ 2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32. ∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.。
2019-2020学年高中数学(人教A版必修一)教师用书:第2章 2.3 幂函数 Word版含解析
2.3 幂函数1.通过实例了解幂函数的概念,能区别幂函数与指数函数.(易混点)2.结合函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1的图象,了解它们的变化情况.(难点) 3.能够运用幂函数的简单性质进行实数大小的比较.(重点)[基础·初探]教材整理1 幂函数的概念阅读教材P 77至倒数第二自然段,完成下列问题.幂函数:一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.判断(正确的打“√”,错误的打“×”) (1)函数y =x-45是幂函数.()(2)函数y =2-x 是幂函数.( ) (3)函数y =-x 12是幂函数.( ) 【解析】 (1)√.函数y =x -45符合幂函数的定义,所以是幂函数;(2)×.幂函数中自变量x 是底数,而不是指数,所以y =2-x 不是幂函数; (3)×.幂函数中x α的系数必须为1,所以y =-x 12不是幂函数. 【答案】 (1)√ (2)× (3)× 教材整理2 幂函数的图象与性质阅读教材P 77倒数第二自然段至P 78“例1”以上部分,完成下列问题.幂函数的图象与性质:幂函数的图象过点(3, 3),则它的单调递增区间是( ) A .[-1,+∞) B .[0,+∞) C .(-∞,+∞)D .(-∞,0)【解析】 设幂函数为f (x )=x α,因为幂函数的图象过点(3, 3),所以f (3)=3α=3=312,解得α=12,所以f (x )=x 12,所以幂函数的单调递增区间为[0,+∞),故选B.【答案】 B[小组合作型](1)在函数y =x -( ) A .0B .1C .2D .3(2)已知幂函数y =f (x )的图象过点(2, 2),则f (9)=________.(3)幂函数f (x )=(m 2-2m -2)xm +12m 2在(0,+∞)上是减函数,则m =________. 【精彩点拨】 (1)结合幂函数y =x α的定义判断.(2)由幂函数的定义设出解析式,代入点的坐标,求出幂函数的解析式,再求f (9)的值. (3)利用幂函数的概念可得到关于m 的关系式,解之即可.【自主解答】 (1)根据幂函数定义可知,只有y =x -2是幂函数,所以选B .(2)由题意,令y =f (x )=x α,由于图象过点(2,2),得2=2α,α=12,∴y =f (x )=x 12,∴f (9)=3.(3)∵f (x )=(m 2-2m -2)xm +12m 2在(0,+∞)上是减函数, ∴⎩⎪⎨⎪⎧m2-2m -2=1,12m2+m<0,∴m =-1.【答案】 (1)B (2)3 (3)-1判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即:(1)指数为常数,(2)底数为自变量,(3)底数系数为1.[再练一题]1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值等于________.【导学号:97030116】【解析】 设f (x )=x α,因为f (4)=3f (2),∴4α=3×2α,解得α=log 23,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log 23=13.【答案】 13(1)如图2-3-1所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于C 1,C 2,C 3,C 4的n 依次为( )图2-3-1A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-12(2)已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上单调递减,求满足(a +3)-m 5<(5-2a )-m5的a 的取值范围.【精彩点拨】 (1)根据幂函数的图象特征与性质确定相应的函数图象;(2)先利用幂函数的定义、奇偶性、单调性确定m 的值,再利用幂函数的单调性求解关于a 的不等式.【自主解答】 (1)根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故C 1的n =2,C 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线C 3的n =-12,曲线C 4的n =-2,故选B.【答案】 B(2)因为函数在(0,+∞)上单调递减,所以3m -9<0,解得m<3,又m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称,所以3m -9为偶数,故m =1,则原不等式可化为(a +3)-15<(5-2a )-15.因为y =x -15在(-∞,0),(0,+∞)上单调递减,所以a +3>5-2a >0或5-2a <a +3<0或a +3<0<5-2a ,解得23<a <52或a <-3.解决幂函数图象问题应把握的两个原则1.依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).2.依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x -1或y =x 12或y =x 3)来判断.[再练一题]2.点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有:(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).【解】 设f (x )=x α,g (x )=x β.∵(2)α=2,(-2)β=-12,∴α=2,β=-1. ∴f (x )=x 2,g (x )=x -1.分别作出它们的图象,如图所示.由图象知, (1)当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x ); (2)当x =1时,f (x )=g (x ); (3)当x ∈(0,1)时,f (x )<g (x ). [探究共研型]探究1 幂函数y =x 【提示】 当α>0时,幂函数y =x α在(0,+∞)上单调递增;当α<0时,幂函数y =x α在(0,+∞)上单调递减.探究2 23.1和23.2可以看作哪一个函数的两个函数值?二者的大小关系如何?【提示】 23.1和23.2可以看作函数f (x )=2x 的两个函数值,因为函数f (x )=2x 单调递增,所以23.1<23.2.探究3 2.3-0.2和2.2-0.2可以看作哪一个函数的两个函数值?二者的大小关系如何? 【提示】 2.3-0.2和2.2-0.2可以看作幂函数f (x )=x -0.2的两个函数值,因为函数f (x )=x -0.2在(0,+∞)上单调递减,所以2.3-0.2<2.2-0.2.比较下列各组中幂值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)212,1.813;(4)1.212,0.9-12,1.1.【精彩点拨】 构造幂函数或指数函数,借助其单调性求解. 【自主解答】 (1)∵函数y =3x 是增函数,且0.8>0.7,∴30.8>30.7. (2)∵函数y =x 3是增函数,且0.21<0.23,∴0.213<0.233. (3)∵函数y =x 12是增函数,且2>1.8,∴212>1.812. 又∵y =1.8x 是增函数,且12>13, ∴1.812>1.813,∴212>1.813.(4)0.9-12=⎝ ⎛⎭⎪⎫10912,1.1=1.112.∵1.2>109>1.1,且y =x 12在[0,+∞)上单调递增, ∴1.212>⎝ ⎛⎭⎪⎫10912>1.112,即1.212>0.9-12> 1.1.比较幂的大小的关键是弄清底数与指数是否相同.若底数相同,则利用指数函数的单调性比较大小;若指数相同,则利用幂函数的单调性比较大小;若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”,也可以是如例3(3)中的1.812.[再练一题]3.比较下列各组数的大小. 【导学号:97030117】【解】 (1)因为函数y =x -52在(0,+∞)上为减函数.又3<3.1,所以3-52>3.1-52.1.已知幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f (2)=( ) A.14 B .4 C.22D. 2【解析】 设幂函数为y =x α.∵幂函数的图象经过点⎝ ⎛⎭⎪⎫4,12,∴12=4α,∴α=-12,∴y =x -12,∴f (2)=2-12=22,故选C.【答案】 C2.下列函数中,其定义域和值域不同的函数是( )【导学号:97030118】A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23【解析】 A 中定义域和值域都是R ;B 中定义域和值域都是(0,+∞);C 中定义域和值域都是R ;D 中定义域为R ,值域为[0,+∞).【答案】 D3.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域是R ,且为奇函数的所有a 的值是( )A .1,3B .-1,1C .-1,3D .-1,1,3【解析】 当a =-1时,y =x -1的定义域是{x |x ≠0},且为奇函数;当a =1时,函数y =x 的定义域是R ,且为奇函数;当a =12时,函数y =x 12的定义域是{x |x ≥0},且为非奇非偶函数;当a =3时,函数y =x 3的定义域是R 且为奇函数.故选A.【答案】 A4.函数y =x 13的图象是( )【解析】 显然函数y =x 13是奇函数.同时当0<x <1时,x 13>x ,当x >1时,x 13<x . 【答案】 B5.比较下列各组数的大小:【解】 (1) ,函数y =在(0,+∞)上为增函数,又18>19,则从而因为函数在(0,+∞)上为减函数,又46>π6,所以。
高中数学第二章基本初等函数(Ⅰ)2.3幂函数课件新人教A版必修14
幂函数的图象及应用
(1)如图,图中曲线是幂函数 y=xα在第一象限的大致图 象,已知 α 取-2,-12,12,2 四个值,则相应于曲线 C1,C2, C3,C4 的 α 的值依次为( )
A.-2,-12,12,2 C.-12,-2,2,12
B.2,12,-12,-2 D.2,12,-2,-12
(2)已知幂函数 f(x)=xα 的图象过点 P2,14,试画出 f(x)的图象 并指出该函数的定义域与单调区间.
下列函数为幂函数的是( )
A.y=2x3
B.y=2x2-1
C.y=1x
D.y=x32
解析:选 C.y=2x3 中,x3 的系数不等于 1,故 A 不是幂函数;y
=2x2-1 不是 xα的形式
数;y=x32=3x-2 中 x-2 的系数不等于 1,故 D 不是幂函数.
y=x2
y=x3
y=x12
y=x-1
奇偶性 _奇___
__偶__
_奇___
_非__奇___ _非__偶___
_奇___
单调性
_增___
x∈[0,+∞), _增___ x∈(-∞,0], _减___
_增___
x∈(0,+ _增___ ∞),_减___
x∈(-∞, 0),_减___
公共点
都经过点__(1_,__1_)__
2.比较下列各组数的大小: (1)3-52和 3.1-52; (2)-8-78和-1978; (3)4.125,3.8-23和(-1.9)35.
解:(1)函数 y=x-52在(0,+∞)上为减函数,又 3<3.1,所以 3-52 >3.1-52. (2)-8-78=-1878,函数 y=x78在(0,+∞)上为增函数,又18>19, 则1878>1978,从而-8-78<-1978. (3)4.125>125=1;0<3.8-23<1-32=1;(-1.9)35<0, 所以(-1.9)35<3.8-23<4.125.
高中数学(人教A版)必修一课后习题:幂函数(课后习题)【含答案及解析】
幂函数课后篇巩固提升合格考达标练1.(2021山西运城高一期中)下列函数既是幂函数又是偶函数的是( )A.f (x )=3x 2B.f (x )=√xC.f (x )=1x 4 D.f (x )=x -3f (x )=3x 2,不是幂函数;函数f (x )=√x ,定义域是[0,+∞),是幂函数,但不是偶函数;函数f (x )=1x4=x -4是幂函数,也是定义域(-∞,0)∪(0,+∞)上的偶函数;函数f (x )=x -3是幂函数,但不是偶函数.故选C .2.(2021河北唐山高一期末)已知幂函数y=f (x )的图象过点(2,√2),则下列关于f (x )的说法正确的是( ) A.奇函数 B.偶函数C.定义域为(0,+∞)D.在(0,+∞)上单调递增f (x )=x α(α为常数),∵幂函数y=f (x )图象过点(2,√2),∴2α=√2,∴α=12,∴幂函数f (x )=x 12.∵12>0,∴幂函数f (x )在(0,+∞)上单调递增,所以选项D 正确;∵幂函数f (x )=x 12的定义域为[0,+∞),不关于原点对称,∴幂函数f (x )既不是奇函数也不是偶函数,所以选项A,B,C 错误,故选D . 3.已知a=1.212,b=0.9-12,c=√1.1,则()A.c<b<aB.c<a<bC.b<a<cD.a<c<b0.9-12=(910)-12=(109)12,c=√1.1=1.112,∵12>0,且1.2>109>1.1,∴1.212>(109)12>1.112,即a>b>c.4.若(a+1)13<(3-2a )13,则a 的取值范围是 .-∞,23)f (x )=x 13的定义域为R ,且为增函数,所以由不等式可得a+1<3-2a ,解得a<23.5.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是 .y=x α(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y=x 12.由x 12=3,得x=9,即明文是9. 6.已知幂函数f (x )=(2m 2-6m+5)x m+1为偶函数. (1)求f (x )的解析式;(2)若函数y=f (x )-2(a-1)x+1在区间(2,3)上为单调函数,求实数a 的取值范围.由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2,是偶函数,符合题意;当m=2时,f (x )=x 3,为奇函数,不合题意,舍去.故f (x )=x 2.(2)由(1)得y=x 2-2(a-1)x+1,函数的对称轴为x=a-1,由题意知函数在区间(2,3)上为单调函数, ∴a-1≤2或a-1≥3,相应解得a ≤3或a ≥4. 故实数a 的取值范围为(-∞,3]∪[4,+∞).等级考提升练7.(2021四川成都七中高一期中)若幂函数f (x )=(m 2-2m-2)·x m 在(0,+∞)上单调递减,则f (2)=( )A.8B.3C.-1D.12f (x )=(m 2-2m-2)x m 为幂函数,则m 2-2m-2=1,解得m=-1或m=3.当m=-1时,f (x )=x -1,在(0,+∞)上单调递减,满足题意,当m=3时,f (x )=x 3,在(0,+∞)上单调递增,不满足题意,所以m=-1,所以f (x )=1x ,所以f (2)=12,故选D .8.(2021吉林延边高一期末)已知幂函数f (x )=x 12,若f (a-1)<f (14-2a ),则a 的取值范围是( ) A.[-1,3) B.(-∞,5) C.[1,5) D.(5,+∞)f (x )=x 12,若f (a-1)<f (14-2a ),可得√a -1<√14-2a ,即{a -1≥0,14-2a ≥0,a -1<14-2a ,得1≤a<5.所以a 的取值范围为[1,5).9.已知幂函数g (x )=(2a-1)x a+2的图象过函数f (x )=32x+b 的图象所经过的定点,则b 的值等于( ) A.-2 B.1 C.2 D.4g (x )=(2a-1)x a+2为幂函数,则2a-1=1,∴a=1,函数的解析式为g (x )=x 3,幂函数过定点(1,1),在函数f (x )=32x+b 中,当2x+b=0时,函数过定点(-b 2,1),据此可得-b2=1,故b=-2.故选A . 10.函数f (x )=(m 2-m-1)x m2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值 ( )A.恒大于0B.恒小于0C.等于0D.无法判断f (x )=(m 2-m-1)x m2+m -3是幂函数,可得m 2-m-1=1,解得m=2或m=-1,当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,函数在(0,+∞)上单调递增,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .11.(多选题)(2020江苏常州高级中学高一期末)下列说法正确的是( ) A.若幂函数的图象经过点(18,2),则解析式为y=x -3B.若函数f (x )=x -45,则f (x )在区间(-∞,0)上单调递减C.幂函数y=x α(α>0)始终经过点(0,0)和(1,1)D.若函数f (x )=√x ,则对于任意的x 1,x 2∈[0,+∞)有f (x 1)+f (x 2)2≤f (x 1+x22)(18,2),则解析式为y=x-13,故A 错误;函数f (x )=x-45是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y=x α(α>0)始终经过点(0,0)和(1,1),故C 正确;任意的x 1,x 2∈[0,+∞),要证f (x 1)+f (x 2)2≤f (x 1+x 22),即√x 1+√x 22≤√x 1+x22,即x 1+x 2+2√x 1x 24≤x 1+x 22,即(√x 1−√x 2)2≥0,易知成立,故D 正确.12.(多选题)(2021广东佛山南海高一期中)已知幂函数y=x α(α∈R )的图象过点(3,27),下列说法正确的是( )A.函数y=x α的图象过原点B.函数y=x α是偶函数C.函数y=x α是减函数D.函数y=x α的值域为R(3,27),则有27=3α,所以α=3,即y=x 3.故函数是奇函数,图象过原点,函数在R 上单调递增,值域是R ,故A,D 正确,B,C 错误.故选AD . 13.(2021广东深圳宝安高一期末)幂函数f (x )=x m 2-5m+4(m ∈Z )为偶函数且在区间(0,+∞)上单调递减,则m= ,f 12= .或3 4y=x m2-5m+4为偶函数,且在(0,+∞)上单调递减,∴m 2-5m+4<0,且m 2-5m+4是偶数,由m 2-5m+4<0得1<m<4. 由题知m 是整数,故m 的值可能为2或3,验证知m=2或3时,均符合题意,故m=2或3,此时f (x )=x -2,则f 12=4. 14.已知幂函数f (x )=(m-1)2x m 2-4m+2在区间(0,+∞)上单调递增,函数g (x )=2x -k.(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.当m=0时,f (x )=x 2,符合题设,故m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ]. ∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].新情境创新练15.(2020青海高一期末)已知函数f (x )=(m 2-2m+2)x 1-3m 是幂函数. (1)求函数f (x )的解析式;(2)判断函数f (x )的奇偶性,并证明你的结论;(3)判断函数f (x )在区间(0,+∞)上的单调性,并证明你的结论.提示:若m ∈N *,则x -m =1x m.∵函数f (x )=(m 2-2m+2)x 1-3m 是幂函数,∴m 2-2m+2=1,解得m=1, 故f (x )=x -2(x ≠0).(2)函数f (x )=x -2为偶函数.证明如下:由(1)知f (x )=x -2,其定义域为{x|x ≠0},关于原点对称,∵对于定义域内的任意x ,都有f (-x )=(-x )-2=1(-x )2=1x2=x -2=f (x ),故函数f (x )=x -2为偶函数.(3)f (x )在区间(0,+∞)上单调递减.证明如下:在区间(0,+∞)上任取x 1,x 2,不妨设0<x 1<x 2,则f (x 1)-f (x 2)=x 1-2−x 2-2=1x 12−1x 22 =x 22-x 12x 12x 22=(x 2-x 1)(x 2+x 1)x 12x 22, ∵x 1,x 2∈(0,+∞)且x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,x 12x 22>0,∴f (x 1)>f (x 2).∴f (x )在区间(0,+∞)上单调递减.。
人教A版数学必修第一册3_3幂函数课件
f(x)的图象
题型探究
一
题
多
变
思
维
发
散
例3
α
已知幂函数 f(x)=x 的图象过点 P
1
2,4,试画出
f(x)的图象
并指出该函数的定义域与单调区间.
➢ 本例条件不变,试判断f(x)的奇偶性.
由本例知,f(x)=x-2
f(-x)=(-x)-2=f(x)
f(x)为偶函数
定义域关于原点对称
0.5
.
题型探究
例2
比较下列各组数中两个数的大小.
2
3
(2)-3-1 与-5-1
∵幂函数 y=x-1 在(-∞,0)上是单调递减的
2
3
又- <-
3
5
∴-
2-1 3-1
>-
.
3 5
归纳总结
比较幂值大小的方法
(1)若指数相同,底数不同,则考虑用幂函数的单调性比较;
α3,α2,α4,α1
α3,α4 按由小到大的顺序排列为__________________.
方法
总结
对于不同幂函数在(0,+∞)的图象,在直线x=1右侧,从上向下,
指数幂逐渐减小,在直线x=1左侧,从上向下,指数幂逐渐增大.
本课小结
1、幂函数的解析式具有什么特点?
2、常见幂函数的图象是什么?它具有哪些性质?
2
(2)1.2 ,1.4 ,1.4 ;
题型探究
题
型
三
例3
α
已知幂函数 f(x)=x 的图象过点 P
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数及函数综合(人教A版)
一、单选题(共14道,每道7分)
1.下列函数是幂函数的是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:幂函数的概念、解析式、定义域、值域
2.若是幂函数,则m的值为( )
A.2
B.1
C. D.-1
答案:C
解题思路:
试题难度:三颗星知识点:幂函数的概念、解析式、定义域、值域
3.函数的单调递减区间是( )
A.(-∞,0)
B.[2,+∞)
C.(-∞,1]
D.[1,+∞)
答案:A
解题思路:
试题难度:三颗星知识点:幂函数的单调性、奇偶性及其应用
4.已知,,下列不等式(1);(2);(3);
(4);(5)中恒成立的有( )
A.1个
B.2个
C.3个
D.4个
答案:C
解题思路:
试题难度:三颗星知识点:幂函数的单调性、奇偶性及其应用
5.下列函数中既是偶函数,又在(-∞,0)上是增函数的是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:幂函数的单调性、奇偶性及其应用
6.下列命题中正确的是( )
A.幂函数在第一象限都是增函数
B.幂函数的图象都经过(0,0)和(1,1)点
C.若幂函数是奇函数,则是定义域上的增函数
D.幂函数的图象不可能出现在第四象限
答案:D
解题思路:
试题难度:三颗星知识点:幂函数的图像
7.设函数,则的值为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:对数函数图象与性质的综合应用
8.函数的图象( )
A.关于原点对称
B.关于直线y=-x对称
C.关于y轴对称
D.关于直线y=x对称
答案:A
解题思路:
试题难度:三颗星知识点:对数函数图象与性质的综合应用
9.设函数定义在实数集上,它的图象关于直线x=1对称,且当时,,则( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:指数函数单调性的应用
10.设,,,则( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:对数值大小的比较
11.已知函数在[1,2]上的最大值与最小值之和为
,则a的值为( )
A. B.
C. D.4
答案:C
解题思路:
试题难度:三颗星知识点:对数函数的值域与最值
12.函数,若,则x的取值范围是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:幂函数的单调性、奇偶性及其应用
13.设,函数,则使的x的取值范围是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:对数函数的值域与最值
14.若函数的定义域为M,则在M上( )
A.无最小值,有最大值
B.有最小值0,无最大值
C.有最小值-160,有最大值
D.无最小值,无最大值
答案:A
解题思路:
试题难度:三颗星知识点:对数函数的值域与最值。