材料力学习题课(第章)

合集下载

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E弹性模量G切变模量r规定残余伸长应力0.2屈服强度gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数P153、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

材料力学习题册_参考答案(1-9章)

材料力学习题册_参考答案(1-9章)

第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。

A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。

A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。

A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。

A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。

A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。

A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。

二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。

2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。

3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。

4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。

三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。

( × )2.外力就是构件所承受的载荷。

(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

材料力学第四版课后习题答案

材料力学第四版课后习题答案

材料力学第四版课后习题答案1. 引言。

材料力学是材料科学与工程中的重要基础课程,通过学习材料力学,可以帮助我们更好地理解材料的性能和行为。

本文档将针对材料力学第四版的课后习题进行答案解析,帮助学习者更好地掌握课程内容。

2. 第一章。

2.1 课后习题1。

答,根据受力分析,可以得到杆件的受力情况。

然后利用杆件的受力平衡条件,可以得到杆件的应力状态。

最后,根据应力状态计算应变和变形。

2.2 课后习题2。

答,利用受力分析,可以得到杆件的受力情况。

然后利用杆件的受力平衡条件,可以得到杆件的应力状态。

最后,根据应力状态计算应变和变形。

3. 第二章。

3.1 课后习题1。

答,利用受力分析,可以得到梁的受力情况。

然后利用梁的受力平衡条件,可以得到梁的应力状态。

最后,根据应力状态计算应变和变形。

3.2 课后习题2。

答,利用受力分析,可以得到梁的受力情况。

然后利用梁的受力平衡条件,可以得到梁的应力状态。

最后,根据应力状态计算应变和变形。

4. 第三章。

4.1 课后习题1。

答,利用受力分析,可以得到薄壁压力容器的受力情况。

然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。

最后,根据应力状态计算应变和变形。

4.2 课后习题2。

答,利用受力分析,可以得到薄壁压力容器的受力情况。

然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。

最后,根据应力状态计算应变和变形。

5. 结论。

通过对材料力学第四版课后习题的答案解析,我们可以更好地掌握材料力学的基本原理和方法。

希望本文档能够对学习者有所帮助,促进大家对材料力学的深入理解和应用。

材料力学习题册参考答案

材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。

材料力学习题册1-14概念答案

材料力学习题册1-14概念答案

第一章绪论之迟辟智美创作一、是非判断题1.1 资料力学的研究方法与理论力学的研究方法完全相同.( ×)1.2 内力只作用在杆件截面的形心处. ( × )1.3 杆件某截面上的内力是该截面上应力的代数和.( × )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况. ( ∨)1.5 根据各向同性假设,可认为资料的弹性常数在各方向都相同. ( ∨ )1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同. ( ∨ )1.7 同一截面上正应力σ与切应力τ必相互垂直. ( ∨)1.8 同一截面上各点的正应力σ肯定年夜小相等,方向相同. (×)1.9 同一截面上各点的切应力τ必相互平行.(×)1.10 应变分为正应变ε和切应变γ. ( ∨)1.11 应酿成无量纲量. ( ∨)1.12 若物体各部份均无变形,则物体内各点的应变均为零.( ∨)1.13 若物体内各点的应变均为零,则物体无位移.(×)1.14 平衡状态弹性体的任意部份的内力都与外力坚持平衡. ( ∨ )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形.( ∨)1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形.(×)二、. 1.2 1.3 剪切的受力特征是,变形特征是.1.4 扭转的受力特征是,变形特征是. 1.5 弯曲的受力特征是,变形特征是. 1.6 组合受力与变形是指. 1.7 构件的承载能力包括,和三个方面. 所谓,是指资料或构件抵当破坏的能力.所谓,是指构件抵当变形的能力.所谓,是指资料或构件坚持其原有平衡形B题5图 题6图 外力的合力作用线通过杆轴线 杆件 应力应变 沿杆轴线伸长或缩短 受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动外力偶作用面垂直杆轴线 任意二横截面发生绕杆轴线的相对转动 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 梁轴线由直线酿成曲线 包括两种或两种以上基本变形的组合 强度 刚度 稳定性强度 刚度 稳定性式的能力.1.9 根据固体资料的性能作如下三个基本假设,,.认为固体在其整个几何空间内无间隙地布满了组成该物体的物质,这样的假设称为.根据这一假设构件的、和就可以用坐标的连续函数来暗示.填题 1.11图所示结构中,杆1发生变形,杆2发生变形,杆3发生变形. 1.12 下图 (a)、(b)、(c)分别为构件内某点处取出的单位体,变形后情况如虚线所示,则单位体(a)的切应变γ=;单位体(b)的切应变γ=;单位体(c)的切应变γ=.三、选择题 ABC ,作用力P 后移至AB ’C ’,但右半段BCDE 的形状不发生变动.试分析哪一种谜底正确.1、AB 、BC 两段都发生位移.2、AB 、BC 两段都发生变形. α>βα αα α α β (a)(b)(c) 填题1.11图 ’ 连续性 均匀性 各向同性连续性假设 应力 应变 变形拉伸 压缩 弯曲2α α-β 0正确谜底是1.1.2 选题1.2图所示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致.关于杆中点处截面A —A在杆变形后的位置(对左端,由 A’—A’暗示;对右端,由A”—A”暗示),有四种谜底,试判断哪一种谜底是正确的.正确谜底是C.1.3 等截面直杆其支承和受力如图所示.关于其轴线在变形后的位置(图中虚线所示),有四种谜底,根据弹性体的特点,试分析哪一种是合理的.正确谜底是C .第二章拉伸、压缩与剪切一、是非判断题因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致. (×)2.2 轴向拉压杆的任意截面上都只有均匀分布的正应力.( × ) 2.3 强度条件是针对杆的危险截面而建立的.( ×)2.4. 位移是变形的量度.( × )2.5 甲、乙两杆几何尺寸相同,轴向拉力相同,资料分歧,2.6 空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增年夜且壁厚也同时增年夜. ( × )已知低碳钢的σp =200MPa ,E =200GPa ,现测得试件上的应变ε=0.002,则其应力能用胡克定律计算为:σ=Eε=200×103×0.002=400MPa. ( × )2.9 图示三种情况下的轴力图是不相同的. ( × )的三个等分点.在杆件变形过程中,此三点的位移相等. ( × )2.11考虑. ( × )连接件发生的挤压应力与轴向压杆发生的压应力是不相同的.( ∨ )二、填空题2.1 轴力的正负规定为.2.2 受轴向拉伸或压缩的直杆,其最年夜正应力位于横截面,计算公式为,最年夜切应力位于450截面,计算公式拉力为正,压力为负 maxmax )(A F N =σmax max max )(A F N 22==στ为.2.3 拉压杆强度条件中的不等号的物理意义是最年夜工作应力σmax不超越许用应力[σ],强度条件主要解决三个方面的问题是(1)强度校核;(2)截面设计;(3)确定许可载荷.2.4 轴向拉压胡克定理的暗示形式有2种,其应用条件是σmax≤σp.2.5 由于平安系数是一个__年夜于1_____数,因此许用应力总是比极限应力要___小___.2.6 两拉杆中,A1=A2=A;E1=2E2;υ1=2υ2;若ε1′=ε2′(横向应变),则二杆轴力F N1_=__F N2.2.7 低碳钢在拉伸过程中依次暗示为弹性、屈服、强化、局部变形四个阶段,其特征点分别是σp,σe,σs,σb.衡量资料的塑性性质的主要指标是延伸率δ、断面收缩率ψ.2.9 延伸率δ=(L1-L)/L×100%中L1指的是拉断后试件的标距长度.2.10 塑性资料与脆性资料的判别标准是塑性资料:δ≥5%,脆性资料:δ<5%.图示销钉连接中,2t2>t1,销钉的切应力τ=2F/πd2,销钉的最年夜挤压应力σbs =F/dt1.螺栓受拉力F 作用,尺寸如图.若螺栓资料的拉伸许用应力为[σ],许用切应力为[τ],按拉伸与剪切等强度设计,螺栓杆直径d 与螺栓头高度h 的比值应取d/h =4[τ]/[σ].木榫接头尺寸如图示,受轴向拉力F 作用.接头的剪切面积A =hb ,切应力τ=F/hb ;挤压面积A bs =cb ,挤压应力σbs =F/cb .两矩形截面木杆通过钢连接器连接(如图示),在轴向力F 作用下,木杆上下两侧的剪切面积A =2lb ,切应力τ=F/2lb ;挤压面积A bs =2δb ,挤压应力σbs =F/2δb . 挤压应力作用在构件的外概况,一般不是均匀分布;压杆中的压应力作用在杆的横截面上且均匀分布.2.16图示两钢板钢号相同,通过铆钉连接,钉与板的钢号分歧.对铆接头的强度计算应包括:铆钉的剪切、挤压计算;钢板的挤压和拉伸强度计算. 若将钉的排列由(a )改为(b ),上述计算中发生改变的是.对(a )、(b )两种排列,铆接头能接受较年夜拉力的是(a ).(建议画板的轴力图分析)三、选择题钢板的拉伸强度计算为提高某种钢制拉(压)杆件的刚度,有以下四种办法:(A) 将杆件资料改为高强度合金钢; (B) 将杆件的概况进行强化处置(如淬火等);(C) 增年夜杆件的横截面面积; (D) 将杆件横截面改为合理的形状.正确谜底是C甲、乙两杆,几何尺寸相同,轴向拉力F 相同,资料分歧,它们的应力和变形有四种可能:(Al 都相同;(B) l 相同;(C l 分歧;(D) △l 分歧.正确谜底是C长度和横截面面积均相同的两杆,一为钢杆,另一为铝杆,在相同的轴向拉力作用下,两杆的应力与变形有四种情况;(A )铝杆的应力和钢杆相同,变形年夜于钢杆; (B) 铝杆的应力和钢杆相同,变形小于钢杆;(C )铝杆的应力和变形均年夜于钢杆; (D) 铝杆的应力和变形均小于钢杆.正确谜底是A∵ E s > E a在弹性范围内尺寸相同的低碳钢和铸铁拉伸试件,在同样载(A;(B(C(D)不能确定.正确谜底是B2.5 等直杆在轴向拉伸或压缩时,横截面上正应力均匀分布是根据何种条件得出的.(A)静力平衡条件;(B)连续条件;(C)小变形假设;(D平面假设及资料均匀连续性假设.正确谜底是D第三章扭转一、是非判断题3.1 单位体上同时存在正应力和切应力时,切应力互等定理不成立. (×)3.2 空心圆轴的外径为D、内径为d,其极惯性矩和扭转截面系数分别为×)∵E ms > E ci3.3 资料分歧而截面和长度相同的二圆轴,在相同外力偶作用下,其扭矩图、切应力及相对扭转角都是相同的. ( ×)3.4 连接件接受剪切时发生的切应力与杆接受轴向拉伸时在斜截面上发生的切应力是相同的. ( ×)二、填空题3.1 图示微元体,已知右侧截面上存在与z 方向成θ 角的切应力τ,试根据切应力互等定理画出另外五个面上的切应力.3.2 试绘出圆轴横截面和纵截面上的扭转切应力分布图.3.3 坚持扭矩不变,长度不变,圆轴的直径增年夜一倍,则最年夜切应力τmax 是原来的1/ 8倍,单位长度扭转角是原来的1/ 16倍.两根分歧资料制成的圆轴直径和长度均相同,所受扭矩也相同,两者的最年夜切应力_________相等 __,单位长度扭转_分歧___ _______. 3.5 的适用范围是等直圆轴; τmax ≤τp .y对实心轴和空心轴,如果二者的资料、长度及横截面的面积相同,则它们的抗扭能力空心轴年夜于实心轴;抗拉(压)能力相同.3.7 当轴传递的功率一按时,轴的转速愈小,则轴受到的外力偶距愈__年夜__,当外力偶距一按时,传递的功率愈年夜,则轴的转速愈 年夜.3.8两根圆轴,一根为实心轴,直径为D 1,另一根为空心轴,内径为d 2,外径为D 2,.3.9 等截面圆轴上装有四个皮带轮,合理安插应为D 、C 轮位置对换.3.10 图中T3.1145º螺旋面断裂;图(c ),发生非常年夜的扭角后沿横截面断开;图(d ),概况呈现纵向裂纹.据此判断试件的资840134.-=α料为,图(b ):灰铸铁;图(c ):低碳钢,图(d ):木材.若将一支粉笔扭断,其断口形式应同图(b ).三、选择题3.1 图示圆轴,已知GI p ,当m 为何值时,自由真个扭转角为零. (B )A. 30 N ·m ;B. 20 N ·m ;C. 15 N ·m ;D. 10 N ·m .3.2 三根圆轴受扭,已知资料、直径、扭矩均相同,而长度分别为L ;2L ;4L ,则单位扭转角θ必为 D .A.第一根最年夜;B.第三根最年夜;C.第二根为第一和第三之和的一半; D.相同.3.3 实心圆轴和空心圆轴,它们的横截面面积均相同,受相同扭转作用,则其最年夜切应力 是 C .AD. 无法比力.α= d /D 的空心圆轴,扭转时横截面上的最年夜切应力为τ,则内圆周处的切应力为 B .实空)()(t t W W >A. τ;B. ατ;C. (1-α3)τ;D. (1-α4)τ;3.5 满足平衡条件,但切应力超越比例极限时,下列说法正确的是D.A B C D切应力互等定理:成立不成立不成立成立剪切虎克定律:成立不成立成立不成立3.6 在圆轴扭转横截面的应力分析中,资料力学研究横截面变形几何关系时作出的假设是C.A.资料均匀性假设; B.应力与应酿成线性关系假设;C.平面假设.3.7 图示受扭圆轴,若直径d不变;长度l不变,所受外力偶矩M不变,仅将资料由钢酿成铝,则轴的最年夜切应力(E),轴的强度(B),轴的扭转角(C),轴的刚度(B).A.提高 B.降低 C.增年夜 D.减小 E.不变第四章弯曲内力一、是非判断题4.1 杆件整体平衡时局部纷歧定平衡. (×)4.2 不论梁上作用的载荷如何,其上的内力都按同一规律变动. (×)4.3 任意横截面上的剪力在数值上即是其右侧梁段上所有荷载的代数和,向上的荷载在该截面发生正剪力,向下的荷载在该截面发生负剪力. (×)4.4 若梁在某一段内无载荷作用,则该段内的弯矩图肯定是一直线段. (∨)简支梁及其载荷如图所示,假想沿截面 m-m将梁截分为二,若取梁的左段为研究对象,则该截面上的剪力和弯矩与q、M无关;若取梁的右段为研究对象,则该截面上的剪力和弯矩与F无关.(×)二、填空题4.1 外伸梁ABC接受一可移动的载荷如图所示.设F、l均为已知,为减小梁的最年夜弯矩值则外伸段的合理长度∵Fa = F(l - a) / 4a=l/5.4.2 图示三个简支梁接受的总载荷相同,但载荷的分布情况分歧.在这些梁中,最年夜剪力F Qmax=F/2;发生在三个梁的支座截面处;最年夜弯矩M max=F l/4;发生在(a)梁的C 截面处.三、选择题4.1 梁受力如图,在B 截面处D .A. F s 图有突变,M 图连续光滑; B . F s 图有折角(或尖角),M 图连续光滑;C . F s 图有折角,M 图有尖角;D . F s 图有突变,M 图有尖角.4.2 图示梁,剪力即是零截面位置的x 之值为D .A. 5a /6;B. 5a /6;C. 6a /7;D. 7a /6.在图示四种情况中,截面上弯矩 M 为正,剪力F s 为负的是(B).在图示梁中,集中力F 作用在固定于截面B 的倒 L 刚臂上.梁上最年夜弯矩 M max 与 C 截面上弯矩M C 之间的关系是B .题图 BFCAqxqa BaC3a 题图qAF sMF sMF sF s M(A)(B) (C) (D)4.5 在上题图中,如果使力 F 直接作用在梁的C 截面上,则梁上maxM与max s F 为C .A .前者不变,后者改变B .两者都改变C .前者改变,后者不变D .两者都不变附录I 平面图形的几何性质一、是非判断题 I.1静矩即是零的轴为对称轴.(× )I.2 在正交坐标系中,设平面图形对y 轴和z 轴的惯性矩分别为I y 和I z ,则图形对坐标原点的极惯性矩为I p = I y 2+ I z 2. ( × )I.3 若一对正交坐标轴中,其中有一轴为图形的对称轴,则图形对这对轴的惯性积一定为零.∵M C =F D a = 2 a F/ 3 M max = F D 2a = 4 a F/32F /3F /3(∨)二、填空题I.1 任意横截面对形心轴的静矩即是___0________.I.2 在一组相互平行的轴中,图形对__形心_____轴的惯性矩最小.三、选择题I.1 矩形截面,C 为形心,阴影面积对z C其余部份面积对z C 轴的静矩为(S z )B ,(S z )间的关系正确的是D .A. (S z )A >(S z )B ;B. (S z )A <(S z )B ;C.(S z )A =(S z )B ;D. (S z )A =-(S z )B .I.2 图示截面对形心轴z C 的W Zc A. bH 2/6-bh 2/6;B. (bH 2/6)〔1-(h /H )3〕;C. (bh 2/6)〔1-(H /h )3〕;D. (bh 2/6)〔1-(H /h )4〕.I.3 已知平面图形的形心为C ,面积为 A ,对z 轴的 惯性矩为I z ,则图形对在z 1轴的惯性矩正确的是D .选题图C选题图yA. I z+b2A;B. I z+(a+b)2A;C. I z+(a2-b2) A;D. I z+( b2-a2) A.第五章弯曲应力一、是非判断题5.1 平面弯曲变形的特征是,梁在弯曲变形后的轴线与载荷作用面同在一个平面内. (∨)5.2 在等截面梁中,正应力绝对值的最年夜值│σ│max必呈现在弯矩值│M│ma最年x夜的截面上.(∨)静定对称截面梁,无论何种约束形式,其弯曲正应力均与资料的性质无关. (∨)二、填空题5.1 直径为d 的钢丝绕在直径为D 的圆筒上,若钢丝仍处于弹性范围内,此时钢丝的最年夜弯曲正应力σmax =;为了减小弯曲正应力,应减小___钢丝___的直径或增年夜 圆筒的直径.5.2 圆截面梁,坚持弯矩不变,若直径增加一倍,则其最年夜正应力是原来的1/8倍.5.3 横力弯曲时,梁横截面上的最年夜正应力发生在截面的上下边缘处,梁横截面上的最年夜切应力发生在中性轴处.矩形截面的最年夜切应力是平均切应力的3/2倍.5.4 矩形截面梁,若高度增年夜一倍(宽度不变),其抗弯能力为原来的4倍;若宽度增年夜一倍(高度不变),其抗弯能力为原来的2倍;若截面面积增年夜一倍(高宽比不变),其抗弯能力为原来的倍.5.5 从弯曲正应力强度的角度考虑,梁的合理截面应使其资料分布远离中性轴.5.6 两梁的几何尺寸和资料相同,按正应力强度条件,(B )AB(a )dD Ed dD E +=⨯+12222(b)第六章 弯曲变形一、是非判断题6.1正弯矩发生正转角,负弯矩发生负转角. ( ×)6.2 弯矩最年夜的截面转角最年夜,弯矩为零的截面上转角为零. ( × )6.3 弯矩突变的处所转角也有突变. ( × )6.4 弯矩为零处,挠曲线曲率必为零. ( ∨ )6.5 梁的最年夜挠度必发生于最年夜弯矩处. ( × )二、填空题6.1 梁的转角和挠度之间的关系是 .6.2 梁的挠曲线近似微分方程的应用条件是 等直梁、线弹性范围内和小变形.6.3 画出挠曲线的年夜致形状的根据是 约束和弯矩图.判断挠曲线的凹凸性与拐点位置的根据是 弯矩的正负;正负弯矩的分界处.6.4 用积分法求梁的变形时,梁的位移鸿沟条件及连续性条)()(,x w x =θ件起确定积分常数的作用.6.5 梁在纯弯时的挠曲线是圆弧曲线,但用积分法求得的挠曲线却是抛物线,其原因是用积分法求挠曲线时,用的是挠曲线近似方程.6.6 两悬臂梁,其横截面和资料均相同,在梁的自由端作用有年夜小相等的集中力,但一梁的长度为另一梁的2倍,则长梁自由真个挠度是短梁的8倍,转角又是短梁的4倍.6.7 应用叠加原理的条件是线弹性范围内和小变形.6.8 试根据填题6.8图所示载荷及支座情况,写出由积分法求解时,积分常数的数目及确定积分常数的条件.积分常数6个;支承条件w A = 0,θA = 0,w B = 0.连续条件是w CL = w CR ,w BL = w BR,θBL = θBR.6.9试根据填题6.9图用积分法求图示挠曲线方程时,需应用的支承条件是w A = 0,w B = 0,w D = 0;连续条件是w CL = w CR ,w BL = w BR,θBL = θBR.填题图填题图一、是非判断题7.1纯剪应力状态是二向应力状态. (∨)7.2 一点的应力状态是指物体内一点沿某个方向的应力情况.(×)轴向拉(压)杆内各点均为单向应力状态. (∨)7.4单位体最年夜正应力面上的切应力恒即是零. (∨)7.5 单位体最年夜切应力面上的正应力恒即是零. (×)7.6 等圆截面杆受扭转时,杆内任一点处沿任意方向只有切应力,无正应力. (×)7.7 单位体切应力为零的截面上,正应力必有最年夜值或最小值. (×)7.8 主方向是主应力所在截面的法线方向. (∨)7.9 单位体最年夜和最小切应力所在截面上的正应力,总是年夜小相等,正负号相反.(×)一点沿某方向的正应力为零,则该点在该方向上线应变也必为零. (×) 二、填空题7.1 一点的应力状态是指过一点所有截面上的应力集合,一点的应力状态可以用单位体和应力圆暗示,研究一点应力状态的目的是解释构件的破坏现象;建立复杂应力状态的强度条件.7.2 主应力是指主平面上的正应力;主平面是指τ=0的平面三对相互垂直的平面上τ= 0的单位体.7.3 对任意单位体的应力,那时是单向应力状态;当时是二向应力状态;那时是三向应力状态;那时是纯剪切应力状态.7.4 在二个主应力相等的情况下,平面应力状态下的应力圆退化为一个点圆;在纯剪切情况下,平面应力状态下的应力圆的圆心位于原点;在单向应力状态情况下,平面应力状态下的应力圆与τ轴相切.7.5 应力单位体与应力圆的对应关系是:点面对应;转向相同;转角二倍.三个主应力中有二个不为0三个主应力都不为0单位体各正面上只有切应力7.6 对图示受力构件,试画出暗示A 点应力状态的单位体.C .A. 15 MPaB. 65 MPaC. 40 MPaD. 25 MPa图示各单位体中(d )为单向应力状态, (a )为纯剪应力状态.(a) (b) (c) (d)7.3 单位体斜截面上的正应力与切应力的关系中A . A. 正应力最小的面上切应力必为零; B. 最年夜切应力面上的正应力必为零; C. 正应力最年夜的面上切应力也最年夜; D. 最年夜切应力面上的正应力却最小.第八章组合变形一、是非判断题8.1 资料在静荷作用下的失效形式主要有脆性断裂和塑性屈服两种. (∨)8.2 砖、石等脆性资料的试样在压缩时沿横截面断裂.(×)8.3 在近乎等值的三向拉应力作用下,钢等塑性资料只可能发生断裂. (∨)8.4 分歧的强度理论适用于分歧的资料和分歧的应力状态.(∨)8.5 矩形截面杆接受拉弯组合变形时,因其危险点的应力状态是单向应力,所以不用根据强度理论建立相应的强度条件. ( ∨ )8.6 圆形截面杆接受拉弯组合变形时,其上任一点的应力状态都是单向拉伸应力状态.( ×)8.7拉(压)弯组合变形的杆件,横截面上有正应力,其中性轴过形心. (×)8.8设计受弯扭组合变形的圆轴时,应采纳分别按弯曲正应力强度条件及扭转切应力强度条件进行轴径设计计算,然后取二者中较年夜的计算结果值为设计轴的直径.(×)8.9 弯扭组合圆轴的危险点为二向应力状态.(∨)8.10立柱接受纵向压力作用时,横截面上只有压应力.偏心压缩呢?(×)二、填空题8.1铸铁制的水管在冬季常有冻裂现象,这是因为σ1>0且远远年夜于σ2,σ3;σbt 较小.8.2 将沸水倒入厚玻璃杯中,如果发生破坏,则必是先从外侧开裂,这是因为外侧有较年夜拉应力发生且σbt 较小.8.3 弯扭组合构件杆件资料应为8.4塑性资料制的圆截面折杆及其受力如图所示,杆的横截面面积为A ,抗弯截面模量为W ,则图(a)的危险点在A (b)的危险点在AB 段内任意截面的后边缘点,对应的强度条件为;试分别画出两图危险点的应力状态.所有受( × )[]σ≤+Z W Fa Fl 22)()([]σ≤Z[]σ≤ F(b)(a)C上下在临界载荷作用下,压杆既可以在直线状态坚持平衡,也可引起压杆失稳的主要原因是外界的干扰力. (×)所有两端受集中轴向力作用的压杆都可以采纳欧拉公式计算其临界压力. ( × )两根压杆,只要其资料和柔度都相同,则他们的临界力和临界应力也相同. ( × )临界压力是压杆丧失稳定平衡时的最小压力值.( ∨ )用同一资料制成的压杆,其柔度(长细比)愈年夜,就愈容易失稳.( ∨ )9.8 只有在压杆横截面上的工作应力不超越资料比例极限的前提下,才华用欧拉公式计算其临界压力. ( × )9.9 满足强度条件的压杆纷歧定满足稳定性条件;满足稳定性条件的压杆也纷歧定满足强度条件.( ∨ )低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成的细长压杆的临界压力. ( ×)二、填空题 压杆的柔度λ综合地反映了压杆的对临界应力的影响. 柔度越年夜的压杆,其临界应力越小,越容易失稳.长度(l ),约束(μ),横截面的形状和年夜小(i )有应力集中时22)(l EI F cr μπ=影响细长压杆临界力年夜小的主要因素有E ,I ,μ,l . 如果以柔度λ的年夜小对压杆进行分类,则当λ≥λ1的杆称为年夜柔度杆,当λ2 <λ<λ1的杆称为中柔度杆,当λ≤λ2的杆称为短粗杆.年夜柔度杆的临界应力用欧拉公式计算,中柔度杆的临界应力用经验公式计算,短粗杆的临界应力用强度公式计算.两端为球铰支承的压杆,其横截面形状分别如图所示,试画出压杆失稳时横截面绕其转动的轴. 两根细长压杆的资料、长度、横截面面积、杆端约束均相同,一杆的截面形状为正方(矩)形,另一杆的为圆形,则先丧失稳定的是圆截面的杆. 三、选择题9.1 图示a ,b ,c,d 四桁架的几何尺寸、圆杆的横截面直径、资料、加力点及加力方向均相同.关于四行架所能接受的最年夜外力F Pmax 有如下四种结论,则正确谜底是A .(a)(c)(e)22λπσE cr =λσb a cr -=)(cr σσσ=I min 的轴34144126412222244πππππ=⨯⨯⨯⨯==d d a a d a I I R S / RS I I >∴(A(B(C(D9.2同样资料、同样截面尺寸和长度的两根管状细长压杆两端由球铰链支承,接受轴向压缩载荷,其中,管a内无内压作用,管b内有内压作用.关于二者横截面上的真实应力σ(a)与σ(b)、临界应力σcr(a)与σcr(b)之间的关系,有如下结论.则正确结论是.(A)σ(a)>σ(b),σcr(a)=σcr(b);(B)σ(a)=σ(b),σcr(a)<σcr(b)(C)σ(a)<σ(b),σcr(a)<σcr(b); (D)σ(a)<σ(b),σcr(a)=σcr(b)9.3 提高钢制细长压杆承载能力有如下方法.试判断哪一种是最正确的.(A)减小杆长,减小长度系数,使压杆沿横截面两形心主轴方向的长细比相等;(B)增加横截面面积,减小杆长;(C)增加惯性矩,减小杆长;(D)采纳高强度钢.A正确谜底是A .9.4 圆截面细长压杆的资料及支领情况坚持不变,将其横向及轴向尺寸同时增年夜1倍,压杆的A .(A )临界应力不变,临界力增年夜;(B )临界应力增年夜,临界力不变;(C )临界应力和临界力都增年夜; (D )临界应力和临界力都不变.第十章 动载荷一、是非题只要应力不超越比例极限,冲击时的应力和应变仍满足虎克定律. (∨)凡是运动的构件都存在动载荷问题. (×) 能量法是种分析冲击问题的精确方法. (× ) 不论是否满足强度条件,只要能增加杆件的静位移,就能提高其抵当冲击的能力.(×) 二、填空题10.1 图示各梁的资料和尺寸相同,但支承分歧,受相同的冲击载荷,则梁内最年夜冲击应力由年夜到小的排列顺序是(a)、(c)、(b).应在弹性范围内22λπσE cr =dlil ⋅=⋅=μμλ4夜一倍时,梁内的最年夜动应力增年夜倍?当H 增年夜一倍时,梁内的最年夜动应力增年夜倍?当L 增年夜一倍时,梁内的最年夜动应力增年夜倍?当b 增年夜一倍时,梁内的最年夜动应力增年夜倍?11.1 构件在交变应力下的疲劳破坏与静应力下的失效实质是相同的. ( ×)11.2 通常将资料的耐久极限与条件疲劳极限统称为资料的疲劳极限. ( ∨)11.3 资料的疲劳极限与强度极限相同. ( × )11.4 资料的疲劳极限与构件的疲劳极限相同. ( ×)(a)(b)(c)P121-lHEPb b Pl Pl HEb WPl EI Pl H H K st stst d d 32343223343===∆==max max max σσσ 1)P 增年夜一倍时: 2)H 增年夜一倍时:3)l 增年夜一倍时:4)b 增年夜一倍时: maxmax'd d σσ21=。

材料力学全部习题解答

材料力学全部习题解答

弹性模量
b
E 2 2 0 M P a 2 2 0 1 0 9P a 2 2 0 G P a 0 .1 0 0 0
s
屈服极限 s 240MPa
强度极限 b 445MPa
伸长率 ll010000m ax2800
由于 280;故0该50 材0料属于塑性材料;
13
解:1由图得
弹性模量 E0 3.550110063700GPa
A x l10.938m m
节点A铅直位移
A ytan 4 l150co sl4 2503.589m m
23
解:1 建立平衡方程 由平衡方程
MB 0 FN1aFN22aF2a
FN 2 FN1
得: FN12F1N22F
l1
l2
2.建立补充方程
3 强度计算 联立方程1和方
程(2);得
从变形图中可以看出;变形几何关
l
l0
断面收缩率
AAA110000d22d22d2121000065.1900
由于 2故.4 属6 % 于 塑5 性% 材料;
15
解:杆件上的正应力为
F A
4F D2 -d2
材料的许用应力为
要求
s
ns
由此得
D 4Fns d2 19.87mm
s
取杆的外径为
D19.87m m
16
FN1 FN 2
Iz= I( za) I( zR ) =1 a2 4
2R4 a4 R 4 =
64 12 4
27
Z
解 a沿截面顶端建立坐标轴z;,y轴不变; 图示截面对z,轴的形心及惯性矩为
0 .1
0 .5
y d A 0 .3 5 y d y2 0 .0 5 y d y

材料力学练习题

材料力学练习题

第一章绪论一、是非题材料力学主要研究杆件受力后变形与破坏的规律。

()内力只能是力。

()若物体各点均无位移,则该物体必定无变形。

()截面法是分析应力的基本方法。

()二、选择题构件的强度是指(),刚度是指(),稳定性是指()。

A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力根据均匀性假设,可认为构件的()在各点处相同。

A. 应力B. 应变C. 材料的弹性常数D. 位移下列结论中正确的是()A. 内力是应力的代数和B. 应力是内力的平均值C. 应力是内力的集度D. 内力必大于应力三、计算题试求图示结构m-m 和n-n 两截面上的内力,并指出AB 和BC 两杆的变形属于何类基本变形。

图示三角形薄板因受外力作用而变形,角点 B 垂直向上的位移为,但AB 和BC 仍保持为直线。

试求沿OB 的平均应变,并求AB ,BC 两边在 B 点的角度改变。

答案第一章√ × √ × C,A,B C C一、是非题使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的集中力。

()轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

()内力是指物体受力后其内部产生的相互作用力。

()同一截面上,σ 必定大小相等,方向相同。

()杆件某个横截面上,若轴力不为零,则各点的正应力均不为零。

()δ、y 值越大,说明材料的塑性越大。

()研究杆件的应力与变形时,力可按力线平移定理进行移动。

()杆件伸长后,横向会缩短,这是因为杆有横向应力存在。

()线应变e 的单位是长度。

()轴向拉伸时,横截面上正应力与纵向线应变成正比。

()只有静不定结构才可能有温度应力和装配应力。

()在工程中,通常取截面上的平均剪应力作为联接件的名义剪应力。

()剪切工程计算中,剪切强度极限是真实应力。

()二、选择题变形与位移关系描述正确的是()A. 变形是绝对的,位移是相对的B. 变形是相对的,位移是绝对的C. 两者都是绝对的D. 两者都是相对的轴向拉压中的平面假设适用于()A. 整根杆件长度的各处B. 除杆件两端外的各处C. 距杆件加力端稍远的各处长度和横截面面积均相同的两杆,一为钢杆,一为铝杆,在相同的拉力作用下()A. 铝杆的应力和钢杆相同,而变形大于钢杆B. 铝杆的应力和钢杆相同,而变形小于钢杆C. 铝杆的应力和变形都大于钢杆D. 铝杆的应力和变形都小于钢杆一般情况下,剪切面与外力的关系是()。

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学习题(1)2-6章

材料力学习题(1)2-6章

材料力学习题(1)2-6章材料力学习题第2章2-1 试求出图示各杆Ⅰ—Ⅰ截面上的内力。

2-2图示矩形截面杆,横截面上正应力沿截面高度线性分布,截面顶边各点处的正应力均为MPa100max=σ,底边各点处的正应力均为零。

杆件横截面上存在何种内力分量,并确定其大小(C点为截面形心)。

2-3 试指出图示各单元体表示哪种应力状态。

2-4 已知应力状态如图所示(应力单位为MPa),试用解析法计算图中指定截面的应力。

2-5 试作应力圆来确定习题2-4图中指定截面的应力。

2-6已知应力状态如图所示(应力单位为MPa ),试用解析法求:(1)主应力及主方向;(2)主切应力及主切平面;(3)最大切应力。

2-7 已知应力状态如习题2-6图所示,试作应力圆来确定:(1)主应力及主方向; (2)主切应力及主切平面;(3)最大切应力。

2-8已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后所得 应力状态的主应力、主切应力。

2-9图示双向拉应力状态,σσσ==y x 。

试证明任一斜截面上的正应力均等于σ,而切应力为零。

2-10 已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。

试分别用解析法与图解法确定该点的主应力。

2-11 一点处的应力状态在两种坐标系中的表示方法分别如图 a)和b)所示。

试确定未知的应力分量y y x xy '''σττ、、的大小与方向。

2-12 图示受力板件,试证明尖角A 处各截面的正应力与切应力均为零。

2-13 已知应力状态如图所示(单位为MPa ),试求其主应力及第一、第二、第三不变量321I I I 、、。

2-14 已知应力状态如图所示(单位为MPa ),试画三向应力圆,并求主应力、最大正应力与最大切应力。

第3章3-1 已知某点的位移分量u = A , v = Bx +Cy +Dz , w = Ex 2+Fy 2+Gz 2+Ixy +Jyz +Kzx 。

材料力学习题大全及答案

材料力学习题大全及答案

习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。

关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。

正确答案是 C 。

1-2 图示带缺口的直杆在两端承受拉力F P 作用。

关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。

正确答案是 D 。

1-3 图示直杆ACB 在两端A 、B 处固定。

关于其两端的约束力有四种答案。

试分析哪一种答案最合理。

正确答案是 D 。

1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。

关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。

正确答案是 D 。

1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。

关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。

正确答案是 C 。

习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。

关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。

正确答案是 C 。

第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。

试分析下列平衡微分方程中哪一个是正确的。

(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。

材料力学习题

材料力学习题

材料力学习题09683(总54页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章习题1-1 试求图1-18所示杆件指定截面上的内力。

图1-18 求杆件指定截面上的内力1-2 如图1-19所示的圆轴在皮带力作用下等速转动,两皮带轮直径均为d。

试说明圆轴将发生何种变形,并求B轮左侧截面和右侧截面上的内力分量。

图1-19 求皮带轮轴的内力1-3 已知镗刀杆刀头C上受切削力P x=750N,P y=,P z=5kN,刀尖C点位于x-y平面内(见图1-20)。

试求镗刀杆根部A面的内力(镗刀杆自重不计)。

图1-20 求镗刀杆根部的内力1-4 横截面为等边三角形的杆,已知该截面上的正应力σ0为均匀分布(见图1-21)。

试求截面上的内力分量及其作用点。

1-5 图1-22拉伸试样上A、B两点的距离l称为标距。

受拉力作用后,用变形仪量出两点距离的增量为Δl=5×10-2mm。

若原长为l=100mm,试求A、B 两点间的平均应变εm。

图1-21 三角形截面的杆图1-22拉伸试样1-6 图1-23所示三角形薄板受外力作用而变形,角点B垂直向上的位移为,但AB和BC仍保持为直线。

试求沿OB的平均应变,并求AB、BC两边在B点的角度改变。

图1-23 三角形薄板第2章习题2-1 试求图2-38所示各杆在指定的横截面上的轴力,并作轴力图。

图2-38 求杆指定截面上的轴力并绘轴力图2-2 正方形截面钢杆,杆长为2l,截面边长为a,在中段铣去长为l、宽为a/2的槽。

受力如图2-39所示。

设P =15kN,l =1m,a =20mm,E =200GPa。

求杆内最大正应力及总伸长。

图2-39 局部削弱杆件的应力及变形2-3 在图2-40所示结构中,若钢拉杆BC的横截面直径为10mm,试求拉杆内的应力。

设由BC联接的1和2两部分均为刚体。

图2-40 求拉杆BC的应力2-4 图2-41所示为一夹紧装置,已知螺栓为M20(其螺纹部分内径d= mm),许用应力[σ]=50MPa,若工件所受夹紧力为25kN。

【2019年整理】习题课材料力学

【2019年整理】习题课材料力学

p.28
例题
例题
解:(1) 3杆装入后,三杆的铰接点为A1,此时3杆将缩短,而1杆和 2杆将伸长,A1受力分析 (2) 平衡方程
(3)由变形谐调条件
(4)物理关系
由此得 (5) 联立求解得
p.29
例题
例题
20.车床的传动光杆装有安全联轴 器,过载时安全销将先被剪断。 已知安全销的平均直径为5mm, 材料为45钢,其剪切极限应力为 u=370MPa,求联轴器所能传递的 最大力偶矩M。 解:剪断时
(2)计算抗扭截面模量
(3)强度校核
p.40
例题
例题
26.图示AB轴的转速n=120 r/min,从B轮输入功率N=60马力,此功 率的一半通过锥形齿轮传给垂直轴 C,另一半由水平轴 H输出。已 知D1=60cm,D2=24cm,d1=10cm,d2=8cm,d3=6cm,[τ]=20MPa 。试对各轴进行强度校核。
p.21
例题
例题
(3)如图,A点受力后将位移至A’,所以A点的垂直位移为 AA’’
15.受预拉力10kN拉紧的缆索如 图所示。若在C点再作用向下15 kN的力,并设缆索不能承受压 力。试求在h=l/5和h=4l/5两种 情况下,AC和BC两段内的内力。
p.22
例题
例题
解:设铰链A、B的约束反力为YA、YB 则有 AC段和BC段的轴力 变形协调条件为 当h=l/5时
(3)以杆BD为研究对象
(4)杆的应力为
p.13
例题
例题
8. 某拉伸试验机的示意图如图所示。设试验机的CD杆与试样AB同 为低碳钢制成,p=200MPa,s=240MPa,b=400MPa。试验机的 最大拉力为100kN。 (1)用这试验机作拉断试验时试样最大直径可达多少? (2)设计时若取安全系数n=2,则CD杆的截面面积为多少? (3)若试样的直径d=10mm,今欲测弹性模量E则所加拉力最大不 应超过多少? 解:(1)试样拉断时

材料力学习题课(第1-第3章)

材料力学习题课(第1-第3章)

习题2.1
计算给定材料的轴向应力。
习题2.2
确定材料的泊松比。
习题2.3
计算材料的体积变化。
第Байду номын сангаас章:传输性质
在这一章节中,您将学习:
1
热导率
了解热传导和热导率的概念。
2
电导率
学习电流传导和电导率的基本原理。
3
热膨胀系数
探究温度变化对材料体积的影响。
第3章习题
通过解决以下习题,加强您对传输性质的理解:
3 提升学习效果
通过练习,加深对材料力学概念的理解,提高学习成果。
第1章:应力与应变
在这一章节中,您将学习:
应力的定义
理解应力是材料内部力的表现形式。
应变的测量
掌握测量应变的方法和工具。
应力-应变关系
探索应力与应变之间的数学关系。
第1章习题
通过解决以下习题,巩固您对应力与应变的理解:
1 习题1.1
计算给定材料的应力。
2 习题1.2
测量给定材料的应变。
3 习题1.3
确定应力-应变曲线的斜率。
第2章:轴向应变与轴向应力
在这一章节中,您将学习:
1
热膨胀
了解温度变化对材料引起的轴向应力和轴向应变。
2
杨氏模量
学习如何计算杨氏模量并理解其重要性。
3
泊松比
探究泊松比与轴向应变之间的关系。
第2章习题
通过解决以下习题,加深您对轴向应变与轴向应力的理解:
习题3.1 习题3.2 习题3.3
计算给定材料的热传导率。 确定材料的电导率。 计算材料的热膨胀系数。
材料力学习题课(第1-第3 章)
欢迎参加材料力学习题课!本课程将帮助您深入了解应力与应变、轴向应变 与轴向应力以及传输性质的重要概念。让我们开始吧!

材料力学第一章复习题

材料力学第一章复习题

第一章 拉伸与压缩1. 根据均匀性假设,可认为构件的下列各量中的某个量在各点处都相同:(A ) 应力; (B )应变;(C ) 材料的弹性常数; (D )位移;正确答案是 。

2.根据各向同性假设,可认为构件的下列各量中的某一种量在各方向都相同:(A ) 应力; (B )应变;(C ) 材料的弹性常数; (D )位移;正确答案是 。

3.关于确定截面内力的截面法的适用范围,有下列四种说法:(A )仅适用于等截面直杆;(B )仅适用于直杆承受基本变形;(C )仅适用于不论基本变形还是组合变形,但限于直杆的横截面;(D )适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况;正确答案是 。

4.变截面杆受集中力P 作用,如图。

设1F 、2F 和3F 分别表示杆中截面1—1,2—2和3—3上沿轴线方向的内力值,则下列结论中哪个是正确的?(A )321F F F ==; (B )321F F F ≠=;(C )321F F F =≠; (D )321F F F ≠≠;正确答案是 。

5.判断下列结论的正确性:(A ) 杆件某截面上的内力是该截面上应力的代数和;(B ) 杆件某截面上的应力是该截面上内力的平均值;(C ) 应力是内力的集度;(D ) 内力必大于应力;正确答案是 。

P6.甲、乙两杆,几何尺寸相同,轴向拉力P 相同,材料不同,它们的应力和变形有四种可能:(A )应力σ和变形l ∆相同;(B )应力σ不同和变形l ∆相同;(C )应力σ相同和变形l ∆不同;(D )应力σ不同和变形l ∆不同;正确答案是 。

7.关于下列结论:1) 应变分为正应变和切应变 ;2) 应变为无量纲量;3) 若物体的各部分均无变形,则物体内各点的应变均为零;4) 若物体内各点的应变均为零,则物体无位移;现有四种答案:(A )仅1、2对; (B )仅3、4对;(C )1、2、3对; (D )全对;正确答案是 。

材料力学性能课后习题

材料力学性能课后习题

弯强度) ; (3)τs(材料的扭转屈服点) ; (4) τs (抗扭强度) ; (5) τp (扭转比例极限) ; (6) σbn(抗拉强度) ; (7)HBS(压头为淬火钢球的 材料的布氏硬度) ; (8)HBW:压头为硬质合金 球的材料的布氏硬度; (9)HRA(材料的洛氏硬 度) ;HRB(材料的洛氏硬度) ;HRC(材料的洛 氏硬度) ; (10)HV(材料的维氏硬度) ; ( 11 ) HK(材料的努氏硬度) ; ( 12)HS(材料的肖氏 硬度) ; (13)K(理论应力集中系数) ; (14)NSR (缺口敏感度) 3.今有如下零件和材料等需测定硬度,试说明选 用何种硬度试验方法为宜: (1)渗碳层的硬度分布----HK 或-显微 HV(2) 淬火钢-----HRC(3)灰铸铁-----HB(4)鉴别钢中 的隐晶马氏体和残余奥氏体-----显微 HV 或者 HK (5)仪表小黄铜齿轮-----HV(6)龙门刨床导轨 -----HS(肖氏硬度)或 HL(里氏硬度)(7)渗氮层 -----HV(8)高速钢刀具-----HRC(9)退火态低碳 钢-----HB(10)硬质合金-----HRA 4.说明几何强化现象的成因,并说明其本质与形 变强化有何不同 5.试综合比较单向拉伸、压缩、弯曲及扭转试验 的特点和应用范围。 试 验 特点 应用范围 方 法 温度、应力状态和加 塑性变形抗力 载速率确定,采用光 拉 和切断强度较 滑圆柱试样,试验简 伸 低的塑性材 单,应力状态软性系 料。 数较硬。 应力状态软,一般都 脆性材料,以 能产生塑性变形,试 观察脆性材料 压 样常沿与轴线呈 45º 在韧性状态下 缩 方向产生断裂,具有 所表现的力学 切断特征。 行为。 测定铸铁、铸 弯曲试样形状简单, 造合金、工具 操作方便;不存在拉 钢及硬质合金 伸试验时试样轴线与 等脆性与低塑 力偏斜问题,没有附 性材料的强度 加应 弯 和显示塑性的 力影响试验结果,可 曲 差别。也常用 用试样弯曲挠度显示 于比较和鉴别 材料的塑性;弯曲试 渗碳和表面淬 样表面应力最大,可 火等化学热处 灵敏地反映材料表面 理机件的质量 缺陷。 和性能。 用来研究金属 应力状态软性系数为 在热加工条件 0.8,比拉伸时大,易 下的流变性能 于显示金属的塑性行 和断裂性能, 为;试样在整个长度 评定材料的热 上的 压力加工型, 塑性变形时均匀,没 并未确定生产 扭 有紧缩现象,能实现 条件下的热加 转 大塑性变形量下的试 工工艺参数提 验;较能敏感地反映 供依据;研究 出金属表面缺陷和及 或检验热处理 表面硬化层的性能; 工件的表面质 试样所承受的最大正 量和各种表面 应力与最大切应力大 强化工艺的效 体相等。 果。 第三章 1.缺口会引起哪些力学响应? 答:材料截面上缺口的存在,使得在缺口的根部 产生应力集中、双向或三向应力、应力集中和应 变集中,并试样的屈服强度升高,塑性降低。 2.比较平面应力和平面应变的概念。 答:平面应力:只在平面内有应力,与该面垂直 方向的应力可忽略,例如薄板拉压问题。平面应 变:只在平面内有应变,与该面垂直方向的应变 可忽略,例如水坝侧向水压问题。具体说来:平 面应力是指所有的应力都在一个平面内, 如果平 面是 OXY 平面,那么只有正应力 σx,σy,剪应 力 τxy(它们都在一个平面内), 没有 σz, τyz, τzx。 平面应变是指所有的应变都在一个平面内, 同样 如果平面是 OXY 平面,则只有正应变 εx,εy 和 剪应变 γxy,而没有 εz,γyz,γzx。 3.如何评定材料的缺口敏感性: 答:材料的缺口敏感性,可通过缺口静拉伸、偏 斜拉伸、静弯曲、冲击等方法加以评定。 7. 何谓低温脆性?哪些材料易表现出低温脆性? 工程上,有哪些方法评定材料低温脆性? 答:在低温下,材料由韧性状态转变为脆性状态 的现象称为低温脆性。 只有以体心立方金属为基 的冷脆金属才具有明显的低温脆性, 如中低强度 钢和锌等。而面心立方金属,如铝等,没有明显 的低温脆性。 工程上常采用低温脆性通常用脆性 转变温度,能量准则,断口形貌准则,断口变形 特征准则评定。 8. 说明为什么焊接船只比铆接船只易发生脆性 破坏? 答:焊接容易在焊缝处形成粗大金相组织气孔、 夹渣、未熔合、未焊透、错边、咬边等缺陷,增 加裂纹敏感度,增加材料的脆性,容易发生脆性 断裂。 10.细化晶粒尺寸可以降低脆性转变温度或者说 改善材料低温韧性,为什么? 答:晶界是裂纹扩展的阻力;晶界增多有利于降 低应力集中,降低晶界上杂质度,避免产生沿晶 界脆性断裂。所以可以提高材料的韧性。 第四章 1.解释下列名词: 低应力脆断:高强度、超高强度钢的机件,中低 强度钢的大型、 重型机件在屈服应力以下发生的 断裂; (2)I 型裂纹:拉应力垂直作用于裂纹扩 展面,裂纹沿作用力方向张开,沿裂纹面扩展的 裂纹。 (3)应力强度因子 KI:在裂纹尖端区域各 点的应力分量除了决定于位置外, 尚与强度因子 有关,对于某一确定的点,其应力分量由确定, 越大,则应力场各点应力分量也越大,这样就可 以表示应力场的强弱程度, 称为应力场强度因子。 “I”表示 I 型裂纹。 (4)裂纹扩展 K 判据:裂纹在

工程力学材料力学第四版习题答案解析

工程力学材料力学第四版习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

材料力学习题册答案第章弯曲变形

材料力学习题册答案第章弯曲变形

第六章弯曲变形是非判断题1. 梁的挠曲线近似微分方程为Ely'' (x) 。

(V) 2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。

(X) 3. 两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。

(X) 4. 等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。

(X) 5. 若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。

(V) 6. 简支梁的抗弯刚度El 相同,在梁中间受载荷F 相同,当梁的跨度增大一倍后,其最大挠度增加四倍。

(X) 7. 当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。

(V)8. 弯矩突变的截面转角也有突变。

(X)二、选择题1. 梁的挠度是( D)A 横截面上任一点沿梁轴线方向的位移B 横截面形心沿梁轴方向的位移C 横截面形心沿梁轴方向的线位移D 横截面形心的位移2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。

A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关C 转角和挠度的正负号均与坐标系有关D 转角和挠度的正负号均与坐标系无关3. 挠曲线近似微分方程在(D)条件下成立。

A 梁的变形属于小变形B 材料服从胡克定律C 挠曲线在xoy 平面内D 同时满足A、B、C4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。

A 挠度最大B 转角最大C 剪力最大D 弯矩最大5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。

跨中作用有相同的力F,二者的(B)不同。

A 支反力B 最大正应力C 最大挠度D 最大转角6. 某悬臂梁其刚度为EI,跨度为I,自由端作用有力F。

为减小最大挠度,则下列方案中最佳方案是(B)A 梁长改为I /2 ,惯性矩改为I/8B 梁长改为 3 I /4,惯性矩改为I/2C 梁长改为 5 I /4,惯性矩改为3I/2D 梁长改为 3 I /2,惯性矩改为I/47. 已知等截面直梁在某一段上的挠曲线方程为:y(x)=Ax 2(4Ix - 6I 2-x 2),则该段梁上(B)A无分布载荷作用B有均布载荷作用C分布载荷是x的一次函数D分布载荷是x的二次函数8.图1所示结构的变形谐条件为:(D)A f A=fB B f + △匚fA BCf A +f B= △1D f -f = △ lA B 图1三、填空题1. 用积分法求简支梁的挠曲线方程时,若积分需分成两段,则会出现土个积分常数,这些积分常数需要用梁的边界条件和光滑连续条件来确定。

材料力学习题

材料力学习题

第一章轴向拉伸与压缩一、填空题1-1杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相________。

1-2轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面________。

1-3当杆件受到轴向拉力时,其横截面轴力的方向总是________截面指向的。

1-4杆件轴向拉伸或压缩时,其横截面上的正应力是________分布的。

1-5在轴向拉伸或压缩杆件的横截面上的正应力相等过是由平面假设认为杆件各纵向纤维的变形大小都________而推断的。

1-6一铸铁直杆受轴向压缩时,其斜截面上的应力是________分布的。

1-7在轴向拉,压斜截面上,有正应力也有剪应力,在正应力为最大的截面上剪应力为________。

1-8杆件轴向拉伸或压缩时,其斜截面上剪应力随截面方位不同而不同,而剪应力的最大值发生在与轴线间的夹角为________的斜截面上。

1-9杆件轴向拉伸或压缩时,在平行于杆件轴线的纵向截面上,其应力值为________。

1-10胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________极限。

1-11杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越________。

1-12在国际单位制中,弹性模量E的单位为________。

1-13在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越小。

1-14金属材料圆截面试样上中间等直部分试验段的长度L称为________,按它与直径d的关系l=5d者称短度样,而l=________d者称长试样。

1-15低碳钢试样据拉伸时,在初始阶段应力和应变成________关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为________极限的时候。

1-16在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为α,由此可知其正切tgα在数值上相当于低碳钢________的值。

材料力学(单辉祖)课后习题答案

材料力学(单辉祖)课后习题答案

2-5 .........................................................................................................................................................2
(也可通过左侧题号书签直接查找题目与解)
2-1 试画图示各杆的轴力图。
题 2-1 图 解:各杆的轴力图如图 2-1 所示。
图 2-1
1
2-3 图示轴向受拉等截面杆,横截面面积 A=500mm2,载荷 F=50kN。试求图示斜截
面 m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
解:该拉杆横截面上的正应力为
= 152.8MPa
查题 2-6 图 σ − ε 曲线,知该杆的轴向应变为 ε = 0.0022 = 0.22%
拉力作用时,有
∆l = lε = (0.200m) × 0.0022 = 4.4 ×10−4 m = 0.44mm
拉力卸去后, ∆l = 0 2. F = 20kN 时
σ
=
F A
=
4 × 20 ×103 N π × 0.0102 m2
=
0.090m 0.060m
= 1.5
R d
=
R b2
=
0.012m 0.060m
=
0.2
查圆角应力集中因素曲线,得
K 2 ≈ 1.74
故有
σ max
= K2σn2
=
K2F b2 δ
=
1.74 × 36 ×103 N 0.060 × 0.010m2
= 1.04 ×108 Pa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秦飞 编著 《材料力学》
习题9.2-10
解:假设σ1=26.1MPa,则
26.1MPa x y
2
(
x
2
y
)2
2 xy
y 9.856MPa
故σ1=26.1MPa
2
x
y
2
(
x
y )2
2
xy2
84.74M Pa
秦飞 编著《材料力学》
习题9.2-10
主单元体
t an2 0
2 xy x y
秦飞 编著 《材料力学》
习题11.3-1
解:将q进行分解,则
qy q cos 30
3q 2
qz
q sin 30
1 2
q
由qy引起的最大正应力为
qz qy
1
M1 Wz1
6qyl 2 8hb2
3 3ql 2 8hb2
秦飞 编著 《材料力学》
习题11.3-1
由qz引起的最大正应力为
2
M2 Wz 2
作出扭矩和弯矩图
T
3kN·m
+ 0
x
5.85kN·m 7.65kN·m
M +
0
x
秦飞 编著 《材料力学》
习题11.4-2
故最大扭转切应力为
max
T Wp
3 106
d 3 /16
最大弯曲正应力为 由第三强度理论得
max
M Wz
7.65 106
d 3 / 32
r3
m
2 ax
4
m
2 ax
[ ]

( 4Mg )2 4(16T )2 [ ] 2
d 2
d 3
( 4Mg )2 4(Gd ) 2 [ ] 2
d 2
2L
2L
Gd
1 4
[
]
2
4Mg (
d 2
)2
0.218rad

max 0.218rad
秦飞 编著 《材料力学》
习题11.3-1
如图所示矩形截面檀条梁长l=3m,受集度为q=800N/m的均布 载荷作用,檀条材料为杉木,[σ]=12MPa。试选择其截面尺寸 (设宽高比h/b=1.5)。
90
σy
x 48M Pa y 150M Pa
θ
σx
xy 0
秦飞 编著《材料力学》
习题9.2-2
求得
( x
y)
2
x
y
2
cos 2
xy sin 2
2M Pa
( x
y)
2
( x
y )cos 2
2
xy sin 2
30MPa
秦飞 编著《材料力学》
习题9.2-3
如图所示,圆筒内直径D=1m,壁厚δ=10mm,内受气体压 力p=3MPa。试求:(1)壁内A处主应力σ1、σ2及最大切应 力τmax;(2)A点处斜面ab上的正应力及切应力。
秦飞 编著 《材料力学》
习题11.1-7
解:分析可知任一截面处都
MB
有内力F与弯矩M,其中
P
e
F
P
FP
M Pe
可以看出,B点M最大,即
M B P(r
2 r) 2
秦飞 编著 《材料力学》
习题11.1-7

max
P A
MBy Iz
P th
P(r 2 2
1 th2
r)
[ ]
6
t m in
P
右半段中性轴为y轴
秦飞 编著 《材料力学》
θ
z
y
习题11.4-2
如图所示轴上安装有两个轮子,两轮上分别作用有F=3kN 及Q,该轴处于平衡状态。若[σ]=60MPa,试分别按第三 和第四强度理论选定轴的直径。
弯扭组合问题
秦飞 编著 《材料力学》
习题11.4-2
解:由题意可知
0.5 Q 1 F Q 2F 6kN
r3 1 3 100MPa [ ] 安全
(2)由第三强度理论得
r3 1 3 94MPa [ ] 安全
秦飞 编著《材料力学》
习题10.3-3
低碳钢构件危险点处的单元体如图所示。已知τα=20MPa, σx+σy=100MPa,材料的许用应力[σ]=100MPa。试分别用第 三和第四强度理论校核危险点的强度。
秦飞 编著 《材料力学》
习题11.4-6
如图所示用钢管支撑的指示牌,承受风压p=1.8kPa。已知 钢管外径d1=100mm,内径d2=80mm,其余尺寸如图所示。 试计算钢管根部外表面点A、B和C处的最大切应力。
弯扭组合问题
秦飞 编著 《材料力学》
习题11.4-6
解:由题意可知 钢管所受力和扭矩分别为
F 1.8 103 2.0 0.75 2700N T 1.8103 2.0 0.75 2.0 N m 2700N m
2
算得钢管根部的扭矩和剪力分别为
M 2700 (3.2 0.75/ 2) 9652.5N m FS 2700N T 2700N m
秦飞 编著 《材料力学》
h[
]
6P(r 2 2
h2[ ]
r)
1600
6 1600 300 (1 mm
2) 2 mm
30 80
302 80
12.38mm
秦飞 编著 《材料力学》
习题11.1-9
如图所示杆件AB,上端固定, 在下端截面形心作用拉力P。在 杆的中间部位挖去一半,试确 定一下两种情况下截面mn上的 最大拉应力和最大压应力:(1) 杆横截面为边长b的正方形; (2)杆横截面为直径b的圆形。
6qzl 2 8bh2
3ql 2 8bh2

max 1 2
3 3ql 2 8hb2
3ql 2 8bh2
[ ]

h/ b 1.5
解得
b 75mm h 112mm
秦飞 编著 《材料力学》
习题11.3-1
矩形截面的悬臂梁承受载荷如图所示。已知材料的许用应力 [σ]=10MPa。试求:(1)矩形截面的尺寸b,h(设h/b); (2)左半段和右半段梁的中性轴位置。
习题11.1-2
解:取包含AB截面的隔离体,由题意得
M Fe 128 103 20N mm
A
2.56 106 N mm
故最大应力为
F M
F M B
max
F A
My Iz
128 103 10 320
M Pa
2.56 106 1 10 3202
MPa
55M Pa
6
若两侧都切去40mm,则
习题10.3-3
根据第四强度理论得
r4
1 2
[(
1
2
)2
(
2
3)2
( 3
1)2 ]
106M Pa
[
]
不安全
秦飞 编著 《材料力学》
习题11.1-2
如图所示钢板,在一侧切去宽40mm的缺口,试求AB截 面的最大正应力。若两侧都切去宽40mm的缺口,此时 σmax是多少?
偏心拉伸问题
秦飞 编著 《材料力学》
P
m
M n
M P
习题11.1-9
解:(2)由题意得 查得半圆形心坐标为

M Pe
e 4R 2b
3 3 M 2Pb
3
秦飞 编著 《材料力学》
习题11.1-9
故最大拉应力为
2Pb 2b
tmax
P My1 A Iz
8P
b2
3 3
0.1098b4
9.11P / b2
最大压应力为
16
cmax
解:由题意可知
x
y
2
sin(2 135) xy cos(2 135)
20M Pa
x y 100M Pa
秦飞 编著《材料力学》
习题10.3-3
解得
x 30M Pa y 70M Pa

( x
y)
2
( x
y ) cos(2 135)
2
xy sin(2 135)
0
解得
xy 50M Pa
1
0 67.5
y σ1
σ2
o
22.5° x
秦飞 编著《材料力学》
习题10.3-1
试对低碳钢构件进行强度校核。已知[σ]=100MPa,危险点 主应力分别为
(1)1 80M Pa, 2 45M Pa, 3 20 M Pa;(2)1 26M Pa, 2 50M Pa, 3 120M Pa 解:(1)由第三强度理论得
解得
b 90mm h 180mm
秦飞 编著 《材料力学》
习题11.3-2
(2)左半段距离固定端x的任一截面其弯矩为
M1 F1(2 x) (1.6 0.8x)kN m M 2 F2 (1 x) (1.6 1.6x)kN m
则 由题意令
1 12M1z / hb2 2 12M 2 y / bh2
拉扭组合问题
秦飞 编著 《材料力学》
习题11.2-3
解:对钢丝进行受力分析,由题意得
F Mg
由第三强度理论得
F T
r3 2 4 2 [ ]
T
2 4 2 [ ]2
F

F A
4Mg
d 2
Td / 2 Ip
16T
d 3
TL GIp
32TL
Gd 4
秦飞 编著 《材料力学》
习题11.2-3
秦飞 编著《材料力学》
习题9.2-3
由α=60°可得
相关文档
最新文档