电力系统无功功率平衡与电压调整
电力系统的无功功率平衡和电压调整
任务一 电力系统无功功率平衡
5.1.3无功功率平衡 电力系统无功功率平衡的基本条件:系统无功功率电源可能发出的无功 功率应该大于或至少等于负荷所需的无功功率和网络中的无功损耗,同
时为了保证运行可靠性和适应无功负荷的增长,系统必须配置一定的无 功备用容量。 当系统中某些负荷节点电压低落的原因是系统中无功电源不足时,调压 问题就与无功功率的合理供应和合理使用紧密联系。如果不从解决无功 电力不足的问题着手,而是调节电源,使发电机多发无功,是很不合理 的。因为电源与负荷间距离较远,发电机多发的功率在网络中的无功损 耗也大,不易调高末端电压。
发电机在额定状态下运行时见图5一4所示。
上一页 下一页 返回
任务一 电力系统无功功率平衡
2.同步调相机 同步调相机实质上是只发无功功率的同步发电机,它在过励磁运行时向
系统供给感性无功功率而起无功电源的作用,能提高系统电压;在欠励磁 运行时从系统吸取感性无功功率而起无功负荷作用,可降低系统电压。 由于实际运行的需要和对稳定性的要求,同步调相机在欠励磁状态下运 行时,其容量为过励磁运行时额定容量的50%一60 % }, 装有自动励磁装置的同步调相机,可以平滑地改变输出(或吸取的)无功 功率,从而平滑地调节所在地区的电压。在有强行励磁装置时,在系统 故障情况下也能调节系统电压,有利于系统稳定运行。
由上式可见,调节用户端电压U,可以采用以下措施: (1)调节发电机的端电压,称为发电机调压。 (2)调节变压器的变比k,和左2,称为变压器调压。 (3)在输电线路中串联电容器以减小X,从而减小电压损耗,称为串联补
偿调压。 (4)在负荷端并联无功补偿装置,减小经线路传输的无功功率Q,从而减
小电压损耗,称为并联补偿调压。
电力系统无功功率平衡与电压调整
电力系统无功功率平衡与电压调整由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。
要使各节点电压维持在额定值是不可能的。
所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。
由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。
所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。
这是维持电力系统电压水平的必要条件。
一、无功功率负荷和无功功率损耗1.无功功率负荷无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。
一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。
2.电力系统中的无功损耗(1)变压器的无功损耗。
变压器的无功损耗包括两部分。
一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。
因此励磁损耗为0/100Ty TN Q I S V (Mvar)(5-1-1)另一部分为绕组中的无功损耗。
在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得2(%)()100k TN TL Tz TNU S S Q S V (Mvar)(5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。
由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。
(2)电力线路的无功损耗。
电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。
并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。
电力系统无功功率的平衡和电压的调整
(1)调节发电机励磁电流以改变发电机机端电压UG;
(2)适当选择变压器的变比K;
(3)改变网络参数R和X(主要是X),改变电压损耗 △U (4)改变功率分布P+jQ(主要是Q),使电压损耗△U 变化
22
第三节
电力系统的几种主要调压措施
一.改变发电机端电压调压
• 根据运行情况调节励磁电流来改变机端电压。
20
二、电压调整的基本原理
Ub
略去电力线路的电容功率,变压器的励磁功率和 网络的功率损耗
PR QX U b (U G k1 U ) / k2 U k k G 1 2 U G k1
21
电压调整的措施:
PR QX U b U k k2 G 1 U G k1
A
ห้องสมุดไป่ตู้DF
发电机的P-Q极限
10
2. 同期调相机
•同步调相机相当于只能发出无功功率的发电机。
•在过励磁运行时,它向系统供给感性无功功率而起无功
电源的作用,能提高系统电压; •在欠励磁运行时(欠励磁最大容量只有过励磁容量的
(50% ~65%)),它从系统吸取感性无功功率而起无功
负荷作用,可降低系统电压。 •它能根据装设地点电压的数值平滑改变输出(或吸取) 的无功功率,进行电压调节。因而调节性能较好。
以滞后功率因素运行的用电设备所吸收的无功功率。 • 照明、电热,消耗感性无功QL小。
• 同步电动机,有励磁绕组,通过励磁电流的调节, 可以调节其输出无功的大小。过激运行,发QL ; 欠激运行,吸收QL 。在综合负荷中比例小。 • 异步电动机,消耗QL ,在综合负荷中比例很大。 • 综合负荷功率因素,0.6~0.9,滞后(感性无功)
第五章 电力系统的无功功率平衡与电压调整
u2
u2 N
U U T max S max : U 1max u2 N 1 f max
U1min U T min S min : U1 f min u2 N u2 min
u2 max
后面同降压式,对普通变要记得校验。
三. 改变无功功率分布调压 使用前提:(超)高压网络效果显著 要求:按照用户侧调压要求,选择无功补偿装 置的容量Qb(及变压器变比)。
正常情况下
10 kV : 7%
35kV : 0 ~ 10%
第5章 电力系统的无功功率平衡 与电压调整
§5-2 电力系统的无功电源和 无功平衡
一. 无功功率电源 无功电源 同步发电机、 某些情况的输电线路 : 无功补偿装置: 同步调相机、静电(并联)电容 器、静止补偿器 1. 同步发电机 唯一的有功电源,主要的无功电源。 发电机在正常运行状态下发出无功:
静电(并联)电容器 运行特点: 时,全投; 时,全切。 ① 时,根据变压器低压侧调压要求选择k 已知: 为 时用户侧电压, 为其归算 至高压侧的值
选择与 最接近的分接头电压,确定
②
时,按照调压要求确定Qb
查产品目录,选大于Qb且与其最接近电容器 。 ③ 根据所选 、 校验 和 时低压侧电 压是否满足要求。
u2 (u2C )
k :1
电源电压(恒定 )
(用户所需功率 (U 2C ) )
(无功补偿容量 (归算至高压侧 ) ) 说明:高压侧电压用大写符 k :实际变比 号,低压侧电压用小写符号, u :U 归算到高压侧的值 U u k 补偿后的参数在下标加字母 u :U 归算到高压侧的值 U u k ”c”.
2 2 2 2
2C
2C
第6章 电力系统无功功率的平衡和电压调整
若U1>U2时,Q2>0;U1<U2时,Q2 < 0。 电力网中的感性无功功率总是从电压高的一端流向电压 低的一端,而容性无功功率则总是从电压低的一端流向电压 高的一端。 注意:上述关于电力网中功率的流动方向的结论只适用 于高压电网---要注意使用条件!。
第一节 电力系统中无功功率平衡与电压的关系 二、容性无功与感性无功
U
( < 0 容性)
I ( >0 感性)
(a)
(b)
I
U
(a):
(b):
Q = UIsin > 0 , 感性无功
Q = UIsin < 0 , 容性无功
注意: 消耗容性无功相当于提供感性无功。
第一节 电力系统中无功功率平衡与电压的关系
P jQ1 1
P2 jQ2
Z R jX
呈感性
呈容性,相当 于提供感性无 功
第二节 电力系统中无功功率的平衡
Z R jX P2 jQ2 P jQ1 1
U1
2 P 2 Q12 U12 U 2 QX QB 1 2 X B U1 2
△QX:线路电抗的无功功率 △QB:充电无功功率
φ δ φ
jIX
I
(c) 简单系统
U
正常运行 时,工作 在ab段
(a)系统图;(b)等值电路;(c)相量图
第一节 电力系统中无功功率平衡与电压的关系
(2) 发电机的无功—电压静态特性
所谓发电机的无功—电压静态 特性,是指发电机向系统输送的无 功功率与电压的变化关系曲线。
G T-1 L T-2
电力系统分析第5章 电力系统的无功功率(reactive power)平衡与电压调整(voltage regulation ).
U S%S 2 U N 2 I o % U S %S NT S 2 I o % QT ( ) SN T ( ) S NT 100S NT U 100 100 S NT 100
电力系统分析
5.2.3 无功功率平衡
电力系统的无功平衡表示式为 其中:
QD+ Q Q GC Q G+ Q C
例5.1 求图5.6所示简单系统的无功功率平衡。图中所 示负荷为最大负荷值。 线路参数: r0 0.17 km, x0 0.41 km, b0 2.82 106 S km 变压器试验数据: PS 200KW , U s % 10.5, P0 47 KW , I 0 % 2.7
异步电动机在电力系统无功负 荷中占的比重很大,因此,电 力系统综合负荷的无功电压静 态特性主要取决于异步电动机 的特性。
图5.5 异步电动机的Q—U关系
电力系统分析
5.2.2 无功负荷及无功损耗
无功损耗(active loss) 输电线路的无功损耗
P12 Q12 B 2 2 Ql QlX QB X ( U U ) L 1 2 2 U1 2 P22 Q22 B 2 2 X ( U U ) L 1 2 变压器的无功损耗 2 U2 2
这种方法简单、经济,且不需增加额外设备。
电力系统分析
5.4.2改变变压器变比调压
改变变压器的变比就是通过改变绕组间匝数比(ratio of winding )来实现的,因此,这种调压措施也常叫利 用变压器分接头(tap)调压。
分接头设置在双绕组变压器的高压绕组,三绕组变压 器的高压绕组和中压绕组。 一般与绕组额定电压值对应的分接头为主分接头,其 它分接头为附加分接头。
电力系统的无功功率平衡和电压调整
◆ 利用无功补偿调压—同步调相机 · 最小负荷时,调相机按(0.5~0.65)
额定容量欠励磁运行; · 最大负荷时,调相机按额定容量
过励磁运行
◆ 低压配电线路和电缆线路,R>X,PR/V占电压损耗较大,无功补偿调压效果一般
电力系统的无功功率平衡和电压调整—电压调整的原理和措施
◆ 线路串联电容补偿调压
◆ 改变变压器变比调压 · 降压变压器分接头选择
V1 RT+jXT k:1 V2
P+jQ
· 升压变压器分接头选择
V2 1:k G
RT+jXT V1 P+jQ
· 根据计算得到的分接头电压选择最接近的变压器分接头额定电压;
电力系统的无功功率平衡和电压调整—电压调整的原理和措施
◆ 改变变压器变比调压 · 采用固定分接头的变压器调压,电压损耗不会改变,负荷变化时次级电压
电力系统的无功功率平衡和电压调整—无功功率电源
□ 静电电容器
◆ 输出无功与节点电压平方成正比,无功功率调节性能较差;
◆ 装设容量可大可小,既可集中安装,亦可分散安装;
◆ 单位容量投资费用较小,与总容量无关; ◆ 运行功率损耗小,约为额定容量的0.3%~0.5%;
QC=V 2/XC
◆ 无旋转元件,运行维护方便;
电力系统的无功功率平衡和电压调整—电压调整的原理和措施
□ 电压调整的基本原理 ◆ 调节励磁电流改变VG
◆ 适当选择变压器变比k
VG 1:k1 G
R+jX
k2:1 Vb P+jQ
◆ 改变线路参数
◆ 改变无功功率分布
□ 电压调整的措施 ◆ 发电机调压 ◆ 改变变压器变比 ◆ 无功补偿调压 · 采用静电电容器 · 采用同步调相机
注电考试最新版教材-第63讲 第三十三章:电力系统无功功率平衡和电压调整
第33章电力系统无功功率平衡和电压调整33.1 电力系统的无功功率平衡33.1.1 无功电源和无功负荷33.1.1.1无功电源1、发电机 generator发电机作为无功源即可发出感性无功,又可发出容性无功.在进行无功调整时,首先应充分利用发电机的无功输出能力.2、调相机 synchronous condenser(1)是只发无功功率的同步发电机.过励磁运行时,向系统发出感性无功功率;欠励磁运行时,从系统吸收感性无功。
(2)欠励磁运行时的容量约为过励磁运行时容量的50%。
(3)带励磁调节装置的调相机,可根据其所在点的电压自动平滑的改变出力;有强行励磁装置时,系统故障情况下也可维持该机的出口电压。
(4)特点:a)运行维护复杂。
b)有功损耗大,满载时达额定容量的1.5%∽3%,容量越小,损耗占的比重越大。
故容量小于5Mvar时,不宜用调相机。
c)可平滑调整无功出力,系统故障时也可按要求输出无功。
3、静电电容器 static capacitor(1)按三角形或星形接法并联在线路上。
(2)只能向系统提供感性无功,当端口电压下降时,出力会显著下降。
(3)特点:1)无功输出调节能力差,输出无功受端口电压限制。
2)单位容量成本低,且与总容量大小无关,安装维护方便。
3)有功损耗小,满载时仅为额定容量的0.3%∽0.5%。
4)可集中使用,也可分散就地供应无功,从而减少网络电能损耗。
4、静止补偿器SVC static VAR compensator可控硅控制的电抗器与电容器并联组成的。
(1)吸收或发出感性无功。
(2)快速跟踪负荷,响应速度快。
(3)运行时有功损耗小,满载时不超过额定容量的1%。
(4)可靠性高,维护工作量小。
(5)不增加短路电流。
(6)可控硅控制电抗器时,电网中产生高次谐波。
33.1.1.2 无功负荷和无功损耗无功负荷: 除白炽灯和纯电阻性加热设备外的其它用电设备均需要无功,其中异步电动机占很大比重。
无功功率平衡和的电压调整
U2
X
式中X=A—电容器的容抗;U—电容器所在节点电压。C①C
故当节点电压下降时,它供应给系统的无功功率也将减少。在系统发生故障 或其他原因而使电压下降时,其输出的无功功率反而减少,结果将导致电力网电 压的继续下降。这是静电电容器的缺点。但是它可以分散装设,就地供应无功功 率,减少线路上的功率损耗和电压损耗;在负荷降低时,还可以部分切除电容器 组;它本身的功率损耗小,单位容量的投资费用也较小。特别是近年来采用可控 硅控制及和可调电抗器并联使用组成静止补偿器,改进了它的调节无功功率的性 能。这种静止补偿器可以按负荷变动需要调节无功功率大小及方向,既调整电压 又改善系统稳定。
输电线路上还有电纳,电纳中的无功功率为容性,称为线路的充电功率,可 视为无功电源。这种充电功率,一般按等值冗电路用以下公式计算
B .
AQ=U2—l兆之
LGi i2
式中Bl――线路L段上的电纳(西门);Ui――线路L段所联接的节点i的线 电压(千伏);A。』为线路对某一端点i的充电功率。
线路充电功率是向线路输送的无功功率,如作为无功损耗则原为负值。
3
3.1
无功负荷是以滞后功率因数运行的用电设备所吸取的无功功率。
Q=Ssin^
其中主要是异步电动机的无功功率。在综合负荷中如果同步电动机的比重较 大,则功率因数将有所改进,无功负荷较小。一般综合负荷的功率因数为0.6〜0.9。
3.2
(1)输电线路的无功损耗 输电线路中电抗的无功损耗与线路电流的平方成 正比,这种无功损耗比线路上的有功损耗要大,特别是导线截面大的线路,无功 损耗比有功损耗大得多。
电力系统分析:第06章 电力系统无功功率平衡与电压调整
jB T
励磁支路损耗的百分值基本上等于空载电流I0的百分值,约为1% ~ 2%不随负荷大小的改变而变化,称之为不变损耗;绕组漏抗中损耗
与所带负荷的大小有关,称为可变损耗。在变压器满载时,基本上等于
短路电压Uk的百分值,约为10%。 但对多电压级网络。变压器中的无 功功率损耗就相当可观。变压器的无功损耗是感性的
(三)无功储备
无功平衡的前提是系统的电压水平正常。和有功一样,系统中也应该保 持一定的无功储备。一般取最大负荷的7~8%。
12
例6-1
T-1 110kV
T-2
S% =
G
2 ×100kM
40LD+ j30MVA
某输电系统各元件参数如下:
发电机: 变压器T-1
P每N =台50SMN=W31,.5McVoAs,△= P0.=80358.5kWU,N =
= 42.27 + j37.618(MVA)
若发电机在满足有功需求时按额定功率因数运行,其输出功率
SG = 42.27 + j42.27×tg =42.27+j26.196 (MVA )
此时无功缺额达到
37.618 26.196=11.422(Mvar)
根据以上对无功功率缺额的初步估算,拟在变压器T-2的低压 侧设置10Mvar补偿容量,补偿前负荷功率因数为0.8,补偿后 可提高到0.895.计及补偿后线路和变压器绕组损耗还会减少, 发电机将能在额定功率因数附近运行
(c)饱和电抗器型SR
电容和电感组成滤波电路,滤去高次谐波,以免产生电流和电压的畸变 运行维护简单,损耗较小,对冲击负荷有较强的适应性,可装于枢纽变 电所进行电压控制,也可装于大的冲击负荷侧,如轧钢厂做无功补偿
第5章-电力系统无功功率与电压调整
第五章电力系统无功功率与电压调整①电力系统电压调整概述②电力系统无功功率平衡③电力系统中枢节点电压管理④电力系统电压调整措施⑤电压调整与频率调整的关系一、电力系统电压调整概述1、电压调整的必要性电力系统运行中各种电气设备和用电设备都是按照其额定电压设置制造的只有在额定电压下运行才能取得最佳的运行效果,并保证其使用寿命。
因此,电压是电力系统正常运行的重要性能指标之一,通过电压调整,使得电力系统各节点电压保持在允许的范围是电力系统运行的基本任务。
电压偏移过大给电力系统本身以及用电设备带来不良的影响:(1)工作效率下降,寿命降低;(2)电压过低引起工业产品出现次品;(3)电压过低引起电机发热;(4)电压过低引起电压和功率损耗增加;(5)电压过高引起设备绝缘受损、缩短设备使用寿命(6)可能引起系统电压崩溃。
一、电力系统电压调整概述虽然我们期望电力系统中各节点的电压保持在额定值,但是在实际电力系统运行中是无法做到的。
2、电力系统允许的电压偏移为什么呢?(1)设备及线路压降(2)负荷随机波动(3)系统运行方式改变由此可见,严格保证所有电气设备和用电设备在任何时刻的电压都为额定值几乎是不可能的。
因此,大多数设备都允许有一定的电压偏移。
电力系统一般规定一个电压偏移的最大允许范围,例如:35kV 及以上供电电压正负偏移±5%;10kV及以下在±7%以内。
(不同的电压等级,不同的用户类型,允许的电压偏移范围也不一样)二、电力系统无功功率平衡1、无功功率负载和无功损耗电压是衡量电能质量的重要指标。
电力系统的运行电压水平取决于无功功率的平衡。
系统中各种无功电源的无功出力应能满足系统负荷和网络损耗在额定电压下对无功功率的需求,否则电压就会偏离额定值。
•异步电动机电压下降,转差增大,定子电流增大。
在额定电压附近,电动机的无功功率随电压升降而增减;而当电压明显低于额定值时,无功功率主要由漏抗无功损耗决定,随着电压下降反而上升。
电力系统无功功率平衡与电压调整
电力系统无功功率平衡与电压调整由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。
要使各节点电压维持在额定值是不可能的。
所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。
由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。
所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。
这是维持电力系统电压水平的必要条件。
一、无功功率负荷和无功功率损耗1.无功功率负荷无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。
一般综合负荷的功率因数为0.6 ~0.9,其中,较大的数值对应于采用大容量同步电动机的场合。
2.电力系统中的无功损耗(1)变压器的无功损耗。
变压器的无功损耗包括两部分。
一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数I。
%,约为1 %〜2 %。
因此励磁损耗为VQ Ty I O S TN /100 (Mvar)(5-1-1)另一部分为绕组中的无功损耗。
在变压器满载时,基本上等于短路电压U k的百分值,约为10 %这损耗可用式(6-2)求得VQ Tz Uk(%)STN(鱼)2(Mvar)(5-1-2) 100 S TN式中,S TN为变压器的额定容量(MVA); S TL为变压器的负荷功率(MVA)。
由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%〜100 %左右。
⑵电力线路的无功损耗。
电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。
并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。
串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。
第12章_电力系统的无功功率平衡和电压调整
c
2
Va′
Va
V
12.1
电力系统无功功率平衡
2. 无功功率平衡
① 无功功率平衡计算 系统无功功率平衡关系式: 系统无功功率平衡关系式: QGC-QLD-QL=Qres QGC:电源供应的无功功率之和 QLD:无功负荷之和 QL: 网络无功功率损耗之和 Qres:无功功率备用 Qres>0 表示系统中无功功率可以平衡且有适量的备用 Qres<0 表示系统中无功功率不足,应考虑加设无功补偿装置 表示系统中无功功率不足,
△QL:线路电抗的无功功率 △QB:充电无功功率
35kV及以下输电线的充电功率小,线路消耗无功功率 及以下输电线的充电功率小, 及以下输电线的充电功率小 110kV及以上输电线,重载时是无功负载,轻载时能成为无功源 及以上输电线,重载时是无功负载, 及以上输电线
12.1
电力系统无功功率平衡
4电力系统的无功功率平衡 1212-2: 电压调整的基本概念 1212-3: 电压调整的措施 1212-4: 调压措施的应用
12.1
电力系统无功功率平衡
无功负荷与无功电源失去平衡时, 无功负荷与无功电源失去平衡时,会引起
无功 功率 平衡
系统电压的升高或下降。 系统电压的升高或下降。 实现无功功率在额定电压下的平衡是保证 电压质量的基本条件。 电压质量的基本条件。
12.0
概述
日本东京电力系统1987年7月23日发生电压崩溃造成大 日本东京电力系统1987年 23日发生电压崩溃造成大 1987 停电事故。起因是由于负荷增加过快,电压开始下降, 停电事故。起因是由于负荷增加过快,电压开始下降,最后 发展到继电保护动作跳闸,导致三个变电所全停。 发展到继电保护动作跳闸,导致三个变电所全停。 1982年8月7日,华中电网因220KV联络线A相对支路放 1982年 华中电网因220KV联络线A 220KV联络线 电,继电保护动作跳闸,导致系统稳定破坏,各电厂和变电 继电保护动作跳闸,导致系统稳定破坏, 站电压大幅度下降,系统解环,电网失去大量无功电源, 站电压大幅度下降,系统解环,电网失去大量无功电源,结 果使湖北地区大面积停电,武汉钢铁公司等重要用户受到很 果使湖北地区大面积停电, 大的损害,部分设备损坏。 大的损害,部分设备损坏。
第十二章 电力系统的无功功率平衡和电压调整
• 有强行励磁装置时,系统故障情况下,还能调整系统的电压, 有利于提高系统的稳定性。
缺点:
• 同步调相机是旋转机械,运行维护比较复杂。 • 有功功率损耗较大,在满负荷时约为额定容量的1.5%~5%,
容量越小,百分值越大。
晶闸管投切电容器。 实际上应用的静止补偿器大多是由上述部件组成的混合型静 止补偿器,以下将简单介绍较常见的几种。
(i)饱和电抗器与固定电容器并联组成(带有斜率校正)的静止补偿器: 饱和电抗器SR的特性:当电压大于某值后,随电压的升高,铁芯急剧饱和。 从补偿器的伏安特性可见,在补偿器的工作范围内,电压的少许变化就会引 起电流的大幅度变化。 与SR串联的电容C是用于斜率校正的,改变CS的大小可以调节补偿器外特性 的斜率(见图12-5(b)中的虚线)。
对于具体的发电机一般要通过现场试验来确定其进相运行的 容许范围。
2.同步调相机:相当于空载运行的同步电动机。 过励磁运行时,向系统供给感性无功功率起无功电源的作用;
欠励磁运行时,从系统吸取感性无功功率起无功负荷作用。
由于实际运行的需要和对稳定性的要求,欠励最大容量只有
过励容量的50%~65%。 同步调相机装有自动励磁调节装置时的优点:
• 小容量的调相机每kvA容量的投资费用也较大。 • 同步调相机的响应速度较慢,难以适应动态无功控制的要求。
同步调相机宜于大容量集中使用。20世纪70年代以来已逐渐被 静止无功补偿装置所取代。
3.静电电容器 静电电容器供给的无功功率QC与所在节点的电压V的平方成 正比,即 QC = V 2 / X C
晶闸管投切电容器单独使用:只能作为无功功率电源,发出感性无功, 且不能平滑地调节输出的功率,由于晶闸管对控制信号的响应极为迅速,通 断次数又不受限制,其运行性能可明显优于机械开关投切的电容器。
电力系统无功功率平衡和电压调整
加强电压管理和调
节
通过电压管理和调节措施,如变 压器分接头调节、无功自动投切 等,确保电力系统的电压稳定。
02
电压调整的原理和重要性
电压变化的危害
设备损坏
电压波动可能导致电气设备过 载或欠载,从而损坏设备。
电力损耗
电压不稳定的系统会产生更多 的电力损耗,增加能源成本。
照明质量下降
电压不稳定会影响照明设备的 正常工作,降低照明质量。
功补偿。
电压调整的方法和策略
集中调压
通过调整中枢点的电压 来控制整个系统的电压
水平。
分散调压
针对各负荷点的具体情 况进行电压调整。
自动调压
利用自动装置实现电压 的自动调节和控制。
人工调压
在特殊情况下,通过人 工操作来调整电压。
03
电力系统无功补偿装置
并联电容器
并联电容器是电力系统中最常用的无功补偿装 置之一,通过并联在系统母线上,能够提供或 吸收无功功率,以维持系统的无功平衡。
并联电容器的优点是结构简单、运行维护方便 、可靠性高,且成本较低。
然而,并联电容器只能提供固定的无功功率, 无法根据系统负荷的变化进行动态调整,因此 适用于负荷较为稳定的系统。
静止无功补偿器(SVC)
01
02
03
04
静止无功补偿器是一种基于晶 闸管控制的电抗器和电容器组
合的无功补偿装置。
SVC可以通过改变晶闸管的触 发角来调节电抗器的大小,从 而动态地提供或吸收无功功率
。
SVC的优点是响应速度快、调 节范围广,且能够减小电压波
动和闪变。
然而,SVC的成本较高,且运 行过程中会产生一定的谐波和
损耗。
静止无功发生器(SVG)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统无功功率平衡与电压调整由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。
要使各节点电压维持在额定值是不可能的。
所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。
由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。
所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。
这是维持电力系统电压水平的必要条件。
一、无功功率负荷和无功功率损耗1.无功功率负荷无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。
一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。
2.电力系统中的无功损耗(1)变压器的无功损耗。
变压器的无功损耗包括两部分。
一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。
因此励磁损耗为0/100Ty TN Q I S =V (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。
在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TNU S S Q S =V (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。
由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。
(2)电力线路的无功损耗。
电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。
并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。
串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。
因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。
对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。
对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。
大于300km 时,线路为电容性的。
二、系统综合负荷的电压静态特性电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。
电力系统综合负荷的电压静态特性是指:在系统频率等于额定值且负荷连接容量不变时,综合负荷所消耗的有功功率和无功功率与电压的关系曲线。
电力系统主要负荷的电压静态特性如下。
1.白炽灯负荷白炽灯由于其灯丝电阻随温度而变化,且不消耗无功功率,所消耗的有功功率可用式(3—9)表示1.6P KU = (5-1-3)式中P ——有功功率(w);K ——与温度有关的灯丝系数;U ——端电压(V)。
2.电热负荷电炉和电弧炉均只消耗有功功率,所消耗的有功功率为 2U P R= (5-1-4)式中R ——电热设备电阻(Q)。
3.电抗器负荷电抗器负荷主要消耗无功功率,所消耗的无功功率可用式(3-11)表示2U Q X= (5-1-5) 式中Q ——无功功率(var);x ——电抗器感抗(Ω)。
4.异步电动机负荷异步电动机需要消耗有功功率来转动机器,又要取用感性无功功率来建立磁场。
异步电动机的功率转差率特性曲线如图5-1-1(a)所示。
若电动机所带的机械负荷不变,当外电压从额定电压降低到80%N U 时,电动机的转差率将从1s 增大到2s 。
转差率增大,将使电动机的电流增大,因此,电动机吸收的有功功率可近似地看作不变。
异步电动机的有功功率电压静态特性曲线如图5-1-1(b)所示,近似于一条水平直线。
图5-1-1异步电动机特性曲线(a)功率转差率特性;(b)功率电压静态特性1——U=100%N U ;2——U=90%N U ;3——U=80%N U ;4——U=70%N U 异步电动机吸收的无功功率受端电压的影响很大。
当端电压接近额定电压时,异步电 动机的铁芯磁路接近饱和。
当端电压高于额定电压时,由于磁路饱和,励磁无功将按电压 的高次方比例增加。
当端电压低于额定电压时,由于磁路尚未饱和,励磁无功将按电压的平方比例减少。
若电压低于额定电压很多,电动机的转差率将显著增加,引起定子电流大幅升高,从而使电动机的漏磁无功损耗大幅增加。
综上所述,异步电动机的无功功率电压静态特性曲线如图5-1-1(b)所示。
在电力系统中,异步电动机占综合负荷的绝大多数。
因此,系统综合负荷的电压静态特性曲线近似于异步电动机的电压静态特性曲线,如图5-1-2所示。
图5-1-2系统综合负荷电压静态特性曲线(a)有功负荷; (b)无功负荷由图5-1-2可以看出,电压变化对有功负荷的影响不大,而对无功负荷的影响很大。
当电压升高时,负荷吸收的无功功率显著增加;当电压降低时,负荷吸收的无功功率明显减少。
若电力系统的无功电源不足,为维持系统无功平衡,则不得不降低运行电压,减少负荷吸收的无功功率。
若运行电压过高,则表示电力系统的无功电源过剩,应尽量减少各电源的无功功率。
三、电力系统的无功功率平衡电力系统的无功功率和有功功率一样在运行时也要保持平衡。
电力系统的无功功率平衡方程为G C ceQ Q Q Q Q +=++∆∑∑∑∑∑ 式中G Q ∑——系统各发电厂发出的无功功率总和;C Q ∑——无功补偿设备发出的无功功率总和 (包括同步调相机、并联电容器、静止补偿器及输电线路容纳中电容无功功率等)Q ∑——系统无功负荷的总和;ce Q ∑——各发电厂厂用无功负荷的总和;Q ∆∑——电力网各元件无功损耗的总和 (包括并联电抗器)。
电力系统的无功负荷主要包括异步电动机、电抗器消耗的无功功率,以及变压器和线路的无功功率损耗。
为维持电力系统的无功功率平衡,还应有一定的无功功率备用容量。
无功备用容量一般为无功负荷的7%~8%。
同步发电机在额定功率因数下运行,若发电机留有一定的有功功率备用容量,也就保持了一定的无功功率备用容量。
根据电力系统综合负荷的电压静态特性曲线和系统无功功率平衡方程,可知,系统电压过低的根本原因,就是系统无功电源不足。
当系统电压过低时,首先要增加系统的无功电源,保持系统无功平衡。
关于无功电源的设置,除发电厂里的发电机以外,无功补偿设备的设置则根据无功分层(电压层次)分区(地区、县或站网络)和就地平衡以及便于调整电压的原则来进行设置。
无功补偿设备的容量需要根据调压要求及系统对功率因数的要求来进行计算。
课题二电力系统无功电源教学目标知道电力系统的无功电源。
知识点发电机,调相机,电容器,静止补偿器。
技能点发电机运行极限图。
教学内容电力系统的无功电源包括同步发电机、同期调相机、并联电容器和静止补偿器等。
1.同步发电机发电机是电力系统中唯一的有功功率电源,同时也是基本的无功功率电源。
发电机在正常运行时,其定子电流和转子电流都不应超过额定值。
在额定状态下运行时,发电机容量得到最充分的利用。
设发电机额定视在功率为GN S ,额定有功功率为GN P ,额定功率因数为cos N ϕ,则额定无功功率GN Q 为cos sin N GN GN N GN N Q S P tg ϕϕϕ==(5-2-1)下面讨论发电机可能发出的感性无功功率。
图5-2-1(a)所示一隐极机接在N U 为常数的系统母线上,图5-2-1(b)为其等值电路,图5-2-1(c)为额定运行时的相量图。
电压降相量AC 的长度代表N d I x ,正比于额定视在功率GN S ,它在纵轴上的投影正比于GN P ,在横轴上的投影正比于GN Q ,相量0C 的长度代表空载电动势N E ,它正比于发电机的额定励磁电流。
图5-2-1发电机的运行极限图(a)接线图;(b)等值电路;(c)相量图当改变功率因数时,发电机可能发出的功率P 和Q 受到以下限制。
(1)受额定视在功率(定子额定电流)的限制。
如图5-2-1(c)中,用以A 为圆心、以AC 为半径的圆弧表示。
(2)受转子额定电流的限制。
即用图5-2-1(c)中以O 为圆心、以0C 为半径的圆弧表示。
(3)受原动机出力(额定有功功率)的限制。
即用以图5-2-1(c)中的水平线GN P C 表示。
所以发电机的P —Q 极限曲线如图5-2-1(c)中阴影线所示。
从图中可以看到,发电机只有在额定的电压、电流和功率因数下运行时(即运行点C),视在功率才能抵达额定值,其容量得到最充分的利用。
当系统中无功电源不足,而有功备用容量又较充裕时,可利用靠近负荷中心的发电机降低功率因数运行,多发无功功率以提高电力系统的电压水平。
但是发电机的运行点不应越出P —Q 极限曲线的范围。
2.同期调相机调相机实质上就是只能发无功功率的发电机。
它在过激运行时向电力系统供给感性无功功率,欠激运行时从电力系统吸取感性无功功率。
所以改变同期调相机的励磁,可以平滑地改变它的无功功率大小及方向,因而它可以平滑地调节所在地区的电压。
欠激运行时的容量约为过激运行时容量的50%~60%,这也是作为无功功率电源的调相机的运行极限。
同期调相机可以装设自动调节励磁装置,能自动地在电力系统电压降低时增加输出的无功功率以维持系统的电压。
特别是有强行励磁装置时,在系统故障情况下也能调整系统的电压,这对提高系统的稳定性是有利的。
但是调相机是旋转机械,运行维护比较复杂。
它的有功功率损耗较大,在满载时损失约为额定容量的1.5%~5%。
同期调相机常安装在枢纽变电所,现已很少采用同期调相机,而改用静止补偿器。
3.并联电容器及静止补偿器并联电容器可按三角形和星形接法连接在变电所母线上,只能供给系统无功功率而不能吸收无功功率,它供给的无功功率C Q 值与所在节点的电压U 的平方成正比,即 2C CU Q X = (5-2-2) 式中,1C X Cω=为并联电容器的容抗。
故当节点电压下降时,它供给的无功功率也减少。
因此在系统发生故障或其它原因而使电压下降时,其输出的无功功率反而减少,结果导致电力系统电压的继续下降。
这是并联电容器的缺点。
并联电容器的装设既可集中使用,又可分散装设就地供给无功功率。
并联电容器投资费用少,运行时功率损耗也较小,约为额定容量的0.3%~0.5%,维护也较方便。
为了在运行中调节电容器的功率,可将电容器连接成若干组,根据负荷的变化,采用真空断路器分组投入或切除。
近年来采用将电容器同可控电抗器并联使用的静止补偿器,可以按负荷变化调节输出无功功率的大小和方向,调节性能也好。