电力系统暂态分析—电力系统机电暂态过程2)

合集下载

电力系统暂态分析期末复习题答案

电力系统暂态分析期末复习题答案

电力系统暂态分析期末复习题答案第2章同步发电机突然三相短路一、简答题1.电力系统暂态过程的分类暂态过程分为波过程、电磁暂态过程和机电暂态过程。

波过程主要研究与过电压有关的电压波和电流波的传递过程;电磁暂态过程主要研究与各种短路故障和断线故障有关的电压、电流的变化,功率的变化;机电暂态过程主要研究电力系统受到干扰时,发电机转速、功角、功率的变化。

2.为什么说电力系统的稳定运行状态是一种相对稳定的运行状态?由于实际电力系统的参数时时刻刻都在变化,所以电力系统总是处在暂态过程之中,如果其运行参量变化持续在某一平均值附近做微小的变化,我们就认为其运行参量是常数(平均值),系统处于稳定工作状态。

由此可见系统的稳定运行状态实际是一种相对稳定的工作状态。

3.同步发电机突然三相短路时,定子绕组电流中包含哪些电流分量?转子励磁绕组中包含哪些电流分量?阻尼绕组中包含哪些电流分量?它们的对应关系和变化规律是什么?定子电流中包含基频交流分量、直流分量和倍频交流分量;转子励磁绕组中包含强制励磁电流分量、直流分量和基频交流分量;d轴阻尼绕组中包含直流分量和基频交流自由分量;q轴阻尼绕组中仅包含基频交流分量。

定子绕组中直流分量和倍频分量与转子励磁绕组中的基频交流分量相对应,两者共同衰减,最后衰减至零;转子回路直流分量与定子基频交流分量相对应,共同衰减但不会为零4.同步发电机原始磁链方程中哪些电感系数为常数?哪些电感系数是变化的?变化的原因是什么?凸极式同步发电机原始磁链方程中,转子的自感系数、转子各绕组之间的互感系数为常数;定子的自感系数、定子绕组间的互感系数可变可不变,定子与转子间的互感系数是变化,变化的主因是转子旋转,辅因是转子凸级气息中d,q磁路不对称。

隐极式同步发电机原始磁链方程中,转子的自感系数、转子各绕组之间的互感系数为常数、定子的自感系数、定子绕组间的互感系数均为常数;定子与转子间的互感系数是变化的,变化的原因是定子绕组和转子绕组之间存在相对运动。

电力系统暂态分析2

电力系统暂态分析2

• 6、输电线路零序电流的估算 事实上,不仅避雷线对输电线路零序阻抗的影响很难准确计算,双 回路的零序阻抗也难准确计算,工程上对于已建成的输电线路均通过实 测来确定,对于一般输电线路,当线路情况不明时,通常采用下表数值 进行估算。
架空线路零序电抗与正序电抗比值
• 原因解释: ◆ 输电线路零序阻抗大于正序阻抗的原因:正序电流流过情况下,其他 两相电流在另一相导线—大地回路中产生的互感磁通对其自感磁通起去磁 作用,使回路总的磁通减小,感应电动势减小,对电流的阻碍作用减小, 所以正序电抗较小。在输电线路流过零序电流时,其他两相电流在另一相 导线—大地回路中产生的互感磁通对其自感磁通起助磁作用,使回路总的 磁通增大,感应电动势增大,对电流的阻碍作用增大,所以零序电抗要大 于正序电抗。 双回输电线路每回每相零序电抗大于单回输电线路零序电抗的原因同 样是,一回路的的三相零序电流对另一回路的一相—大地回路的互感磁通 起助磁作用。 有架空电线时,输电线路的零序阻抗较没有架空地线时小,是因为架 空电线中电流在输电线路—大地回路中产生的互感磁通起去磁作用。 有良导体架空地线时零序电抗小于有铁磁导体架空地线时的零序电抗, 是因为此时架空地线中的电流较铁磁导体架空地线时大,去磁作用更强的 缘故。顺便说明架空电线对正序电抗、负序电抗无影响,因为此时架空地 线中无电流流过。
对于中性点直接接地的上述变压器其零序等值电路与普通双绕组变压 器和普通三绕组变压器的零序等值电路相同。只是由于两个直接接地绕 组之间存在电的直接联系,所以无法从等值电路求取流过接地线的电 流,只能在求得电流的有名值后,再求取接地线的电流。
(2)中性点经消弧线圈接地的 YN, a(Y0 / Y0 )和YN, a, d (Y0 / Y0 / ) 接线自耦变压器零序等值电路

电力系统暂态分析 ( 第2次 )

电力系统暂态分析 ( 第2次 )

第2次作业一、单项选择题(本大题共15分,共 15 小题,每小题 1 分)1. 短路电流运算曲线编制时,计算电抗仅编制到3.5,其原因是()。

A. 于计算电抗大于3.5的电源可以视为无限大功率电源,其任意时刻的短路电流周期分量有效值,就是短路瞬间短路电流周期分量的起始有效值B. 实际工程上不存在计算电抗大于3.5的情况C. 由于计算电抗大于3.5的电源,其向短路点提供的短路电流很小,实际计算时可以忽略D. 以上均错误2. 输电线路的正序阻抗与负序阻抗相比,其值要( )。

A. 大 B. 小 C. 相等D. 都不是3. 快速切除故障将使得系统的暂态稳定性得到( )。

A. 无变化 B. 提高 C. 降低 D. 微弱的负值变化4. 分析简单系统的暂态稳定性,确定系统的极限切除角依据的原则是()。

A. 正序等效定则 B. 等耗量微增率准则 C. 等力矩原则 D. 等面积定则5. 单相短路中,附加阻抗为( )。

A. B. C. D.6. 在中性点不接地系统中同一地点发生两相短路和两相短路接地时,关于短路点故障相短路电流有效值,下述说法中正确的是()。

A. 两种情况下短路电流大小相等B. 两相接地短路电流大于两相短路电流C. 两相接地短路电流小于两相短路电流D. 无法确定哪种情况下短路电流更大7. 大扰动后,减少原动机出力的主要目的是为了提高系统的( )。

A. 暂态稳定 B. 静态稳定 C. 电压稳定 D. 经济性8. 关于短路冲击电流,下述说法中错误的是()。

A. 短路冲击电流是最恶劣短路条件下发生三相短路时,短路电流的最大瞬时值 B. 短路冲击电流出现在短路发生后约二分之一周期时 C. 短路回路阻抗角越大,则短路冲击系数越大 D. 短路回路阻抗角越小,则短路冲击系数越大9. 为简化同步发电机三相短路的分析计算,采用了一些假设条件,下面各组条件中属于同步发电机三相短路分析假设条件的一组是() A. 发电机绕组阻抗为零、发电机频率保持不变 B. 发电机磁路不饱和、发电机频率保持不变 C. 发电机绕组阻抗为零、发电机磁路不饱和 D. 发电机绕组电阻为零,发电机磁路已饱和10. 在下列各种故障类型中,属于纵向故障的是()。

第二部分电力系统暂态分析

第二部分电力系统暂态分析

第二部分 电力系统暂态分析电力系统的暂态过程,即涉及到电力系统内部的电磁暂态过程,又涉及到电力系统内部的机械运动中的暂态过程,因此研究它有一定的复杂性。

所谓电力系统的暂态过程包括两种:一种是电磁暂态过程(七、八章),一种是机电暂态过程(九、十章)。

电力系统的电磁暂态过程,主要与电力系统中发生短路、断路、自动磁励有关,涉及电流、电压随时间的变化。

电力系统的机电暂态过程,主要与系统受到干扰、稳定性破坏、异步运行有关,涉及功率、功率角、旋转电机的转速随时间的变化。

第七章 电力系统对称故障分析计算主要内容提示本章首先以无限大功率电源供电系统发生三相对称短路为例,讨论发生短路后短路电流的变化(暂态)过程,并进行短路冲击电流、短路电流有效值和短路功率的计算。

其次讨论同步发电机的基本方程,同步发电机突然三相短路物理过程及三相短路电流的计算表达式,电力系统三相短路的实用计算方法。

§7—1无限大功率电源供电系统的三相短路分析所谓无限大功率电源:是指当电力系统的电源距短路点的电气距离较远时,由短路而引起的电源送出功率的变化量)(Q j P S ∆+∆∆远小于电源所具有的功率S ,即S S ∆, 则称该电源为无限大功率电源,记作∞=S 。

无限大功率电源的特点是: ⑴由于P P ∆,所以认为在短路过程中无限大功率电源的频率恒定,即c f =。

⑵由于Q Q ∆,所以认为在短路过程中无限大功率电源的端电压恒定,即c U =。

⑶内电抗等于零,即0=s X 。

实际上,真正无限大功率电源是没有的,一般在S ∆<S %3或s X <∑X %10的情况下,即可认为电源为无限大功率电源。

一、电力系统三相短路电流的周期分量与非周期分量 由无限大功率电源供电系统的等值电路如图7-1所示。

正常运行时,a 相电压、电流的表达式为: ()αω+=t E u m a sin()()()00sin ϕαω-+=t I i m a> > >>u a图 7-1 无限大功率电源供电等值电路(3) > >其中()()()220L L R R E I mm '++'+=ωω—为正常回路电流的幅值;()0ϕ—为正常回路阻抗角。

电力系统分析习题集及答案(杨淑英)

电力系统分析习题集及答案(杨淑英)

电力系统分析习题集华北电力大学前言本书是在高等学校教材《电力系统稳态分析》和《电力系统暂态分析》多次修改之后而编写的与之相适应的习题集。

电力系统课程是各高等院校、电气工程专业的必修专业课,学好这门课程非常重要,但有很大的难度。

根据国家教委关于国家重点教材的编写要求,为更好地满足目前的教学需要,为培养出大量高质量的电力事业的建设人材,我们编写了这本《电力系统分析习题集》。

力求使该书具有较强的系统性、针对性和可操作性,以便能够使学生扎实的掌握电力系统基本理论知识,同时也能够为广大电力工程技术人员提供必要的基础理论、计算方法,从而更准确地掌握电力系统的运行情况,保证电力系统运行的可靠、优质和经济。

全书内容共分十五章,第一至第六章是《电力系统稳态分析》的习题,第七至第十四章是《电力系统暂态分析》的习题,第十五章是研究生入学考试试题。

本书适用于高等院校的师生、广大电力工程技术人员使用,同时也可作为报考研究生的学习资料。

由于编写的时间短,内容较多,书中难免有缺点、错误,诚恳地希望读者提出批评指正。

目录第一部分电力系统稳态分析第一章电力系统的基本概念第二章电力系统的元件参数及等值电路第三章简单电力系统的计算和分析第四章电力系统潮流的计算机算法第五章电力系统的有功功率和频率调整第六章电力系统的无功功率和电压调整第二部分电力系统暂态分析第七章电力系统故障分析的基本知识第八章同步发电机突然三相短路分析第九章电力系统三相短路的实用计算第十章对称分量法及元件的各序参数和等值电路第十一章不对称故障的分析、计算第十二章电力系统各元件的机电特性第十三章电力系统静态稳定第十四章电力系统暂态稳定第十五章研究生入学考试试题附录第一部分电力系统稳态分析电力系统稳态分析,研究的内容分为两类,一类是电力系统稳态运行状况下的分析与潮流分布计算,另一类是电力系统稳态运行状况的优化和调整。

第一章电力系统的基本概念1-1 什么叫电力系统、电力网及动力系统?电力系统为什么要采用高压输电?1-2 为什么要规定额定电压?电力线、发电机、变压器和用电设备的额定电压是如何确定的?1-3 我国电网的电压等级有哪些?1-4 标出图1-4电力系统中各元件的额定电压。

电力系统暂态分析

电力系统暂态分析

电力系统暂态分析概述电力系统暂态分析是电力系统工程中的重要环节,它主要研究电力系统在暂态过程中的运行状态和稳定性。

暂态过程是指系统发生突发故障后,从故障发生到系统恢复正常运行的过程。

电力系统暂态分析的目的是评估系统在故障情况下的电压、电流和功率等参数的变化,以便采取相应的措施来保障系统的平安运行。

暂态分析的方法暂态分析的方法主要有以下几种:1. 数值计算法数值计算法是一种较为常用的暂态分析方法。

它通过建立电力系统的数学模型,采用数值计算的技术来模拟系统在暂态过程中的行为。

数值计算法可以分为直接法和迭代法两种。

直接法是指直接求解系统方程组,得到系统在每个时刻的状态;迭代法是指通过屡次迭代求解,逐步逼近真实解。

数值计算法的优点是适用范围广,可以模拟各种不同类型的暂态过程,但计算量大,耗时较长。

2. 等效方法等效方法是一种简化计算的暂态分析方法。

它通过将电力系统中的各个元件等效为简化的模型,来简化暂态分析的计算过程。

等效方法主要包括等值电路法和等值参数法。

等值电路法是指将电力系统中的元件用等效电路来代替,以简化计算;等值参数法是指将电力系统中的元件用等效参数来代替,以简化计算。

等效方法的优点是计算速度快,但往往精度较低。

3. 软件仿真法软件仿真法是一种基于计算机软件的暂态分析方法。

它利用计算机软件来构建电力系统的模型,并通过仿真计算得到系统在暂态过程中的行为。

常用的电力系统暂态分析软件有PSS/E、EMTP等。

软件仿真法的优点是模型灵巧性高,能够模拟复杂的暂态过程,但需要具备一定的计算机编程和模拟仿真的技术。

暂态分析的应用暂态分析在电力系统工程中有广泛的应用。

以下是几个常见的应用场景:1. 故障分析暂态分析可以用于故障分析,即在系统发生故障后,分析故障对系统的影响。

通过暂态分析,可以评估故障引起的电压暂降、电压暂升和电流过载等情况,以及评估故障后的系统稳定性和可靠性。

2. 保护设备设计暂态分析可以用于保护设备的设计。

电力系统暂态分析(自己总结的)

电力系统暂态分析(自己总结的)

电力系统暂态分析(自己总结的)电力系统暂态分析过程(复习提纲)第一篇电力系统电磁暂态过程分析(电力系统故障分析)1 第一章电力系统故障分析的基本知识1.1故障概述1.2标幺制1.2.1标幺值1.2.2基准值的选取1.2.3基准值改变时标幺值的换算1.2.4变压器联系的不同电压等级电网中各元件参数标幺值的计算一、准确计算法二、近似计算法1.3无限大功率电源供电的三相短路电流分析1.3.1暂态过程分析1.3.2短路冲击电流和短路电流有效值一、短路冲击电流二、短路电流有效值习题2 第二章同步发电机突然三相短路分析2.1同步发电机在空载情况下定子突然三相短路后的电流波形及其分析2.2同步发电机空载下三相短路后内部物理过程以及短路电流分析2.2.1短路后各绕组的此联及电流分量一、定子绕组磁链和短路电流分量1、励磁主磁通交链定子三相绕组的磁链2、短路瞬间三相绕组磁链的瞬时值3、磁链守恒原理的作用4、三相短路电流产生的磁链5、对应的i 的三相短路电流二、励磁绕组磁链和电流分量1、强制励磁电流产生的磁链2、电子三相交流电流的电枢反应3、定子直流电流的磁场对励磁绕组产生的磁链4、按照磁链守恒原理励磁回路感生的电流和磁链三、等效阻尼绕组的电流四、定子和转子回路(励磁和阻尼回路的统称)电流分量的对应关系和衰减2.2.2短路电流极基频交流分量的初始和稳态有效值一、稳态值二、初始值1、不计阻尼回路时基频交流分量初始值2、计及阻尼回路作用的初始值2.2.3 短路电流的近似表达式一、基频交流分量的近似表达式二、全电流的近似表达式2.3 同步发电机负载下三相短路交流电流初始值2.3.1 正常稳态运行时的相量图和电压平衡关系2.3.2 不计阻尼回路时的初始值'I 和暂态电动势'q|0|E 、'|0|E一、交轴方向二、直轴方向2.3.3 计及阻尼回路的''I 和次暂态电动势''|0|E一、交轴方向二、直轴方向2.4 同步发电机的基本方程2.4.1 同步发电机的基本方程和坐标转换一、发电机回路电压方程和磁链方程二、派克变换及d 、q 、0、坐标系统的发电机基本方程1、磁链方程的坐标变换2、电压平衡方程的坐标变换2.4.2 基本方程的拉氏运算形式和运算电抗一、不计阻尼绕组时基本方程的拉氏运算形式,运算电抗和暂态电抗二、计及阻尼绕组时基本方程的拉氏运算形式,运算电抗和暂态电抗2.5 应用同步发电机基本方程分析突然三相短路电流2.5.1 不计阻尼绕组时的短路电流一、忽略所有绕组的电阻以分析d i 、q i 各电流分量的初始值二、dq i 的稳态值三、计及电阻后的dq i 各分量的衰减1、d i 直流分量的衰减时间常数2、dq i 中基频交流分量的衰减时间常数3、计及各分量衰减的dq i四、定子三相短路电流五、交轴暂态电动势2.5.2 计及阻尼绕组时的短路电流一、dq i 各分量的初始值二、dq i 的稳态直流三、计及电阻后的dq i 各分量的衰减1、d i 直流分量的衰减2、q i 直流分量的衰减3、dq i 中基频交流分量的衰减时间常数四、定子三相短路电流五、次暂态电动势1、交轴次暂态电动势''Eq 2、直轴次暂态电动势''Ed2.6自动调节励磁装置对短路电流的影响3 第三章电力系统三相短路电流的实用计算3.1短路电流交流分量初始值计算3.1.1计算的条件和近似3.1.2简单系统''I计算3.1.3复杂系统计算3.2计算机计算复杂系统短路电流交流分量初始值的原理3.2.1等值网络3.2.2用节点阻抗矩阵的计算方法3.2.3用节点导纳矩阵的计算方法一、应用节点导纳矩阵计算短路电流的原理二、三角分解法求导纳型节点方程3.2.4短路点在线路上任意处的计算公式3.3其他时刻短路电流交流分量有效值的计算3.3.1运算曲线法一、方法的基本原理二、运算曲线的制定三、应用运算曲线计算的步骤四、合并电源简化计算五、转移阻抗3.3.2应用计算系数计算一、无限大功率电源二、发电机和异步电动机4 第四章对称分量法及电力系统元件的各序参数和等值电路4.1对称分量法4.2对称分量法在不对称故障分析中的应用4.3同步发电机的负序和零序电抗4.3.1同步电机不对称短路时的高次谐波电流4.3.2同步发电机的负序电抗4.3.3同步发电机的零序电抗4.4异步电动机的负序和零序电抗4.5变压器的零序电抗和等值电路4.5.1双绕组变压器一、YNd接线变压器二、YNy接线变压器三、YNyn接线变压器4.5.2三绕组变压器4.5.3自耦变压器4.6输电线路的零序阻抗和电纳4.6.1输电线路的零序阻抗一、单根导线——大地回路的自阻抗二、双回路架空输电线路的零序阻抗三、架空地线的影响四、电缆线路的零序阻抗4.6.2架空线路的零序电容(电纳)一、分析导线电容的基本公式二、单回线路的零序电容三、同杆双回路的零序电容4.7零序网络的构成5 第五章不对称故障的分析计算5.1各种不对称短路时故障处的短路电流和电压5.1.1单相接地短路[(1)f]5.1.2两相短路[(2)f]5.1.3两相接地短路[(11)f,]5.1.4正序增广网络的应用一、正序增广网络二、应用运算曲线求故障处正序短路电流5.2非故障处电流、电压的计算5.2.1计算各序网中任意处各序电流、电压5.2.2对称分量经变压器后的相位变化5.3非全相运行的分析计算5.3.1三序网络及其电压方程5.3.2一相断线5.3.3两相断线5.4计算机计算程序原理框图第二篇电力系统机电暂态过程分析(电力系统的稳定性)6 第六章电力系统稳定性问题概述和各元件机电特征6.1概述6.2同步发电机组的机电特性6.2.1同步发电机组转子运动方程6.2.2发电机的电磁转矩和功率一、简单系统中发电机的功率二、隐极同步发电机的功-角特性三、凸极式发电机的功-角特性四、发电机功率的一般近似表达式6.2.3电动势变化过程的方程式6.3自动调节励磁系统的作用原理和数学模型6.3.1主励磁系统一、直流励磁机励磁二、交流励磁机励磁三、他励直流励磁机的方程和框图6.3.2自动调节励磁装置及其框图6.3.3自动调节励磁系统的简化模型6.4负荷特性6.4.1恒定阻抗(导纳)6.4.2异步电动机的机电特性——变化阻抗一、异步电动机转子运动方程二、异步电动机转差率的变化——等值阻抗的变化6.5柔性输电装置特性6.5.1静止无功补偿器(SVC)一、晶闸管控制的电抗器二、晶闸管投切的电容器三、SVC的静态特性和动态模型6.5.2晶闸管控制的串联电容器(TCSC)一、基本原理二、导通阶段三、关断阶段7 第七章电力系统静态稳定7.1简单电力系统的静态稳定7.2小干扰法分析简单系统表态稳定7.2.1小干扰法分析简单系统的静态稳定一、列出系统状态变量偏移量的线性状态方程二、根据特征值判断系统的稳定性7.2.2阻尼作用对静态稳定的影响7.3自动调节励磁系统对静态稳定的影响7.3.1按电压偏差比例调节励磁一、列出系统状态方程二、稳态判据的分析三、计及T时系统的状态方程和稳定判据e7.3.2励磁调节器的改进一、电力系统稳定器及强力式调节器二、调节励磁对静态稳定影响的综述7.4多机系统的静态稳定近似分析7.5提高系统静态稳定性的措施7.5.1采用自动调节励磁装置7.5.2减小元件的电抗一、采用分裂导线二、提高线路额定电压等级三、采用串联电容补偿7.5.3改善系统的结构和采用中间补偿设备一、改善系统的结构二、采用中间补偿设备8 第八章电力系统暂态稳定8.1电力系统暂态稳定概述8.2简单系统的暂态稳定性8.2.1物理过程分析一、功率特性的变化二、系统在扰动前的运行方式和扰动后发电机转子的运动情况8.2.2等面积定则8.2.3发电机转子运动方程的求解一、一般过程二、改进欧拉法8.3发电机组自动调节系统对暂态稳定的影响8.3.1自动调节系统对暂态稳定的影响一、自动调节励磁系统的作用二、自动调节系统的作用8.3.2计及自动调节励磁系统作用时的暂态稳定分析8.4复杂电力系统的暂态稳定计算8.4.1假设发电机暂态电动势和机械功率均为常数,负荷为恒定阻抗的近似计算法一、发电机作为电压源时的计算步骤二、发电机作为电流源时的计算步骤8.4.2假设发电机交轴暂态电动势和机械功率为常数一、坐标变换二、发电机电流源与网络方程求解8.4.3等值发电机8.5提高暂态稳定性的措施8.5.1故障的快速切除和自动重合闸装置的应用8.5.2提高发电机输出的电磁功率一、对发电机实行强行励磁二、电气制动三、变压器中性点经小电阻接地8.5.3减少原动机输出的机械功率8.5.4系统失去稳定后的措施一、设置解析点二、短期异步运行和再同步的可能性。

电力系统暂态分析(第二章)

电力系统暂态分析(第二章)

& & & E Q U |0| jI |0| x q
由于Eq|0|
& jI d|0| ( xd xq ) 、
& 均在q轴方向,所以EQ|0|也必在q轴方
向,据此即可确定q轴方向。
d轴和q轴方向的确定
E 3、不计阻尼绕组时初始值 I 和 Eq|0| 、 | | 0
(1)交轴方向 短路前 短路后
& & & Eq|0| U q|0| jI d |0| xd
& & 0 U d |0| jI q|0| xq
(2)隐极机 电压平衡方程
& & & Eq|0| U |0| jI |0| xd
(3)空载电动势的确定 对于隐极机可以从正常运行时的电压和电流以及相角 & & & & U | I 求出 Eq|0| ;对于凸极机需要知道I d |0、|0| 、d |0、q |0才能求出 Eq|0| , | q U | 即需要知道+d、+q轴的方向,为确定+q轴的方向引进 & 虚构电势 EQ|0| 。
电压方程: 2 同步电机的电压方程、磁链方程
ra
rf
Z
rD
Z
rQ
Z
ua
--
uf
u f r f i f f 定子侧: 0 rD i D D 转子侧: 直轴阻尼绕组: 0 rQ iQ Q 交轴阻尼绕组:
a ia r u a
发电机空载情况下突然三相短路定性分析
对于任何无源回路有:
超导体情况下: d 0、 常数
dt
非超导体情况下

电力系统暂态分析复习提纲

电力系统暂态分析复习提纲

第2章一、简答题1.电力系统暂态过程的分类(1)波过程:与操作和雷击的过电压有关,涉及电流、电压波的传播,过程最短暂。

(2)电磁暂态过程:与短路(断线)等故障有关,涉及工频电流、电压幅值随时间的变化,持续时间较波过程长(毫秒~秒)(3)机电暂态过程:与系统振荡、稳定性破坏、异步运行等有关,涉及发电机组功率角、转速、系统频率、电压等随时间的变化,过程持续时间较长(秒~分钟)2.为什么说电力系统的稳定运行状态是一种相对稳定的运行状态?由于实际电力系统的参数时时刻刻都在变化,所以电力系统总是处在暂态过程之中,如果系统参数在某组数值附近作微小的持续变化,我们就认为其运行参量保持平均值不变,即系统处于稳定工作状态。

由此可见系统的稳定运行状态实际是一种相对稳定的工作状态。

3.同步发电机突然三相短路时,定子绕组电流中包含哪些电流分量?转子励磁绕组中包含哪些电流分量?阻尼绕组中包含哪些电流分量?它们的对应关系和变化规律是什么?定子电流中包含基频周期分量、非周期分量和倍频分量。

转子励磁绕组中包含强制直流分量、自由非周期分量和基频交流自由分量。

d轴阻尼绕组中包含非周期自由分量和基频交流自由分量;q轴阻尼绕组中仅包含基频交流分量。

定子绕组中基频周期分量电流与d轴阻尼绕组、励磁绕组中的非周期分量相对应,并随着转子励磁绕组中非周期自由分量和d轴阻尼绕组中非周期分量的衰减而最终达到稳态值(与转子励磁绕组中强制直流分量相对应);定子绕组中非周期分量和倍频分量与转子励磁绕组、阻尼绕组中的基频交流分量相对应,并随着定子绕组非周期分量和倍频分量衰减到零而衰减到零。

4.同步发电机原始磁链方程中哪些电感系数为常数?哪些电感系数是变化的?变化的原因是什么?凸极式同步发电机原始磁链方程中,转子各绕组的自感系数、转子各绕组之间的互感系数为常数;定子绕组的自感系数、定子绕组间的互感系数、定子各绕组与转子各绕组之间的互感系数是变化,变化的原因有二,一是凸极式同步发电机转子在d轴和q轴方向磁路不对称,二是定子绕组和转子绕组之间存在相对运动。

电力系统暂态分析课件ppt

电力系统暂态分析课件ppt
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第四章
电力系统运行稳定性的基本 概念和各元件的机电特性
第一节 电力系统运行稳定性的基本概念
第二节 同步发电机组的机电特性 第三节 发电机励磁系统与原动机系统
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第一节
电力系统运行稳定性 的基本概念
静态稳定:是指电力系统受到小干扰后,不发生非周期性失
步或自发振荡,自动恢复到初始运行状态的能力。
暂态稳定:是指电力系统受到大干扰后,各同步发电机组保
转子运动方程还可以用电角度表示dδ dt Nhomakorabeaω
ω
0
d 2δ

dt 2
dt
TJ ω0
d2δ dt
M*
考虑到发电机惯性较大,一般机械角速度变化不是很大,所
电力系统运行稳定性问题就是当系统在某一正常运行状态下 受到某种干扰后,能否经过一定时间后回到原来的运行状态 或者过渡到一个新的稳态运行状态的问题。如果能够,则认 为系统在该正常运行状态下是稳定的。反之,若系统不能回 到原来的运行状态或者不能建立一个新的稳态运行状态,则 说明系统的状态变量没有一个稳态值,而是随着时间不断增 大或振荡,系统是不稳定的。
电力系统运行稳定性 的基本概念
➢功角稳定问题的原因——转矩不平衡
原动机转矩
电磁转矩
转子
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

电力系统暂态分析

电力系统暂态分析

电力系统暂态分析电力系统暂态分析是指对电力系统在暂态过程中的电压、电流、功率等参数进行研究和分析的过程。

暂态过程是指系统发生突变、故障等原因引起的瞬时变化过程,一般持续时间很短,但对电力系统的稳定运行和设备安全具有重要影响。

本文将介绍电力系统暂态分析的基本原理、方法和应用。

一、电力系统暂态分析的基本原理在电力系统中,暂态过程主要包括大电流暂态和大电压暂态。

大电流暂态一般是由于系统突发故障引起的,如短路故障;大电压暂态则是由于系统发生突变,如开关切换等。

暂态过程中,电力系统的电压、电流和功率等参数会发生瞬时的变化,因此需要进行暂态分析来研究这些变化对系统和设备的影响。

暂态分析的基本原理是根据电力系统的物理特性和传输线路的数学模型,通过求解微分方程组或差分方程组,获得系统在暂态过程中各个时刻的电压、电流和功率等参数。

在电力系统暂态分析中,常用的数学模型包括传输线模型、发电机模型、变压器模型等,这些模型可以描述不同设备在暂态过程中的响应特性。

二、电力系统暂态分析的方法电力系统暂态分析的方法主要包括数值计算方法和仿真计算方法。

数值计算方法是通过数学公式和数值计算技术,求解电力系统暂态过程的物理方程。

常用的数值计算方法包括龙格-库塔法和差分法等。

仿真计算方法是通过建立电力系统的数学模型,利用计算机软件进行模拟计算,得到系统在暂态过程中各个时刻的参数。

常用的仿真计算软件包括PSCAD、EMTP-RV等。

在进行电力系统暂态分析时,需要先确定系统的故障类型、故障位置和故障参数等。

然后,根据故障类型选择适当的暂态分析方法,并进行故障电流和故障电压等参数的计算。

最后,根据计算结果进行参数比较和评估,确定系统在暂态过程中的稳定性和设备的安全性。

三、电力系统暂态分析的应用电力系统暂态分析在电力系统的设计、运行和维护中起着重要的作用。

具体应用包括:1. 设备选择和配置:通过对电力系统暂态过程的分析,可以评估不同设备的暂态稳定性,选择合适的设备并进行合理配置,确保系统在暂态过程中能够正常运行。

电力系统暂态分析

电力系统暂态分析
t 0
t 0
i(0 ) Im sin( ) i(0 ) I pm sin( ) c
由于电感电流不能突变,因此有:
i(0 ) i(0 )
代入通解得到:
c iap.0 Im sin( ) I pm sin( )
第三节 无限大功率电源供电的三相短路分析
从而,短路全电流:
t
i I pm sin(t ) Im sin( ) I pm sin( ) e
绪论
4、本门课程的学习的难度和重要意义 1)与多门课程相关 高等数学 大学物理 电路原理 电机学
绪论
2)重要意义
电力系统运行中基本的概念、表现
稳态运行-
故障分析 设计(设计部门)
保护整定计算(调度,保护)
事故分析 (运行)
绪论
主要参考书目:
1:李光琦主编 社 2006年
《电力系统暂态分析》 中国电力出版
xL
SB
U
2 B
x0
SB
U
2 B
第二节 标幺值
四、由变压器联结的不同电压等级的各 元件参数、标幺值及短路电流的计算
k12 UN1 /UN2
k 23 UN 2 / UN 3
x1 , x2 , x3 ——电抗各值(含变压器电抗 在内)
第二节 标幺值
1、计算步骤(准确计算) 1)选待计算电流段为基本段。
E* X *
6)基本段电流有名值
I1 I1*
SB 3U B1
第二节 标幺值
7)其他段电流
I2 k12 I1 I1*
SB 3UB1 / k12
I1*
I3 I1*I B3
可记为: I1* I*
SB 3U B 2
I1* IB2

电力系统暂态分析—电力系统机电暂态过程2

电力系统暂态分析—电力系统机电暂态过程2

▪ 小干扰法分析静态稳定
✓ 阻尼对静态稳定的影响
• 发电机阻尼包括机械摩擦和风阻导致的机械阻尼
• 发电机转子闭合绕组(包括铁心)所产生的电气
阻尼。
• 阻尼转矩可以近似表达为: PD D
d
dt
0
d
1
D
dPe
dt
TJ
d 0
电力系统机电暂态过程
▪ 小干扰法分析静态稳定
✓ 阻尼对静态稳定的影响
• 静态稳定 dPe 0
d
• 静态失稳 dPe 0
d
• 临界稳定 dPe 0
d
电力系统机电暂态过程
▪ 电力系统静态稳定
✓ 静态稳定储备系数
Kp
PM P0
P0
100 %
• 正常运行方式 下Kp不应小于 15%~20%,事 故后的运行方 式下Kp不应小 于10%。
P0=PT P0=PT
电力系统机电暂态过程
j0.5
电力系统机电暂态过程
▪ 例 试计算图示系统的静态稳定储备系数与振荡频率。
解: Eq U jIxd 10 j0.84.29 1.5 1.5152.8
PM
EqU xd
1.511 1 1.5
Kp
PM P0 P0
1 0.8 0.8
25%
f 1 0 dPe 1 314 1 cos 52.8 0.9Hz 2 TJ d 0 2 6
✓ 正阻尼
电力系统机电暂态过程
▪ 小干扰法分析静态稳定
✓ 负阻尼
电力系统机电暂态过程
▪ 例 试计算图示系统的静态稳定储备系数与振荡频率。
解:
Pe
xT 1
U GU xL
xT 2
sin G

实验二电力系统暂态稳定分析

实验二电力系统暂态稳定分析

实验⼆电⼒系统暂态稳定分析实验⼆电⼒系统暂态稳定分析⼀、实验⽬的1. 通过实验加深对电⼒系统暂态稳定内容的理解,使理论教学与实践结合,提⾼学⽣的感性认识;2. 学⽣通过实际操作,从试验中观察到系统失步现象和掌握正确处理的措施。

⼆、实验原理电⼒系统的暂态稳定问题是指电⼒系统受到较⼤的扰动之后,各发电机能否继续保持同步运⾏的问题,在各种扰动中,以短路故障的扰动最为严重。

在故障发⽣时及故障切除通过强励磁增加发电机的电势,可⽤于提⾼系统的稳定性。

由于电⼒系统发⽣瞬间单相接地故障较多,发⽣瞬间单相故障时采⽤⾃动重合闸,使系统进⼊正常⼯作状态。

这两种⽅法都有利于提⾼系统的稳定性。

暂态稳定是指电⼒系统在某个运⾏情况下突然受到⼤的⼲扰后,能否经过暂态过程达到新的稳态运⾏状态或则恢复到原来的状态。

这⾥所谓的⼤⼲扰是相对⼩⼲扰来说的,⼀般指短路故障,突然断开线路或则发电机等。

如果收到⼲扰后系统能够回到稳态运⾏,就说系统在这种运⾏情况下是暂态稳定。

反之,各发电机组转⼦间⼀直有相对运动,相对⾓不断变化,系统的功率、电流、电压都不断振荡,导致系统不能继续运⾏下去,则称系统在这种运⾏情况下不能保持暂态稳定。

⼀个系统的暂态稳定情况和系统原来的运⾏⽅式及⼲扰⽅式有关,同⼀个系统在某个运⾏⽅式下和某种⼲扰下系统是暂态稳定,⽽在另⼀个运⾏⽅式和另外⼀种⼲扰下它也可能是不稳定的。

⼲扰最严重的是三相短路故障,单相接地故障⽐较多。

系统的暂态时间有些可以在1S内都失去同步,有些可以维持⼏分钟。

模拟电⼒系统暂态稳定性实验接线图⼀般采⽤发电机-变压器-双回线路-⽆穷⼤系统。

以下我们来分析⼀下发电机在正常运⾏-短路故障-故障切除三种状态下功率特性曲线。

如下图:原动机输出的机械功率⽤PT表⽰,发电机向系统送的电磁功率⽤P0表⽰。

正常运⾏的时候PT= P0。

假设不计故障之后⼏秒钟调速器的作⽤,机械功率始终保持P0,图中a表⽰发电机正常运⾏点在曲线PⅠ上,发⽣短路后功率特性降为PⅡ,由于转⼦的惯性,转⼦⾓度不会⽴刻变化,运⾏点有a变⾄b点,电磁功率显著减⼩,⽽原动机PT 不变,三相短路时PⅡ曲线越低,此时将加速,其相对速度和相对⾓度(同步)增加,有b点向c点移动,如果故障⼀直存在,则始终存在过剩功率,发电机⼀直加速,直到系统失去同步。

(完整版)电力系统暂态分析期末复习题答案

(完整版)电力系统暂态分析期末复习题答案

电力系统暂态分析期末复习题答案第2章同步发电机突然三相短路一、简答题1.电力系统暂态过程的分类暂态过程分为波过程、电磁暂态过程和机电暂态过程。

波过程主要研究与过电压有关的电压波和电流波的传递过程;电磁暂态过程主要研究与各种短路故障和断线故障有关的电压、电流的变化,功率的变化;机电暂态过程主要研究电力系统受到干扰时,发电机转速、功角、功率的变化。

2.为什么说电力系统的稳定运行状态是一种相对稳定的运行状态?由于实际电力系统的参数时时刻刻都在变化,所以电力系统总是处在暂态过程之中,如果其运行参量变化持续在某一平均值附近做微小的变化,我们就认为其运行参量是常数(平均值),系统处于稳定工作状态。

由此可见系统的稳定运行状态实际是一种相对稳定的工作状态。

3.同步发电机突然三相短路时,定子绕组电流中包含哪些电流分量?转子励磁绕组中包含哪些电流分量?阻尼绕组中包含哪些电流分量?它们的对应关系和变化规律是什么?定子电流中包含基频交流分量、直流分量和倍频交流分量;转子励磁绕组中包含强制励磁电流分量、直流分量和基频交流分量;d轴阻尼绕组中包含直流分量和基频交流自由分量;q轴阻尼绕组中仅包含基频交流分量。

定子绕组中直流分量和倍频分量与转子励磁绕组中的基频交流分量相对应,两者共同衰减,最后衰减至零;转子回路直流分量与定子基频交流分量相对应,共同衰减但不会为零4.同步发电机原始磁链方程中哪些电感系数为常数?哪些电感系数是变化的?变化的原因是什么?凸极式同步发电机原始磁链方程中,转子的自感系数、转子各绕组之间的互感系数为常数;定子的自感系数、定子绕组间的互感系数可变可不变,定子与转子间的互感系数是变化,变化的主因是转子旋转,辅因是转子凸级气息中d,q磁路不对称。

隐极式同步发电机原始磁链方程中,转子的自感系数、转子各绕组之间的互感系数为常数、定子的自感系数、定子绕组间的互感系数均为常数;定子与转子间的互感系数是变化的,变化的原因是定子绕组和转子绕组之间存在相对运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓ 水轮机数学模型
• 对于水轮机,当导水叶开度关小时,水轮机输 出功率并不立即减小,反而短时间增大,然后 逐渐减小;反之亦然。这种现象称为水锤效应。
0.5Tw
dPT dt
PT
Tw
d
dt
• Tw为水锤时间常数。
电力系统机电暂态过程
▪ 调速系统数学模型
✓ 水轮机离心飞摆式调速系统
电力系统机电暂态过程
s sEd
1 T0
Eq
X
X T0
id
dEd dt
s sEq
1 T0
Ed
dt
s
2H
(Te
Tm )
电力系统机电暂态过程
▪ 负荷模型
✓ 感应电动机的机电特性
Me
2M emax s scr
scr s
• Memax为最大转矩,
scr为临界转差率。
电力系统机电暂态过程
▪ 负荷模型
✓ 感应电动机的机电特性
电力系统机电暂态过程
▪ 负荷模型
✓ 动态负荷模型 • 由于负荷中70%左右都是感应电动机,负荷的动
态特性主要由感应电动机特性决定,因此动态负 荷模型常采用感应电动机模型。
• 感应电机等值电路
X Xs Xm
X
Xs
XmXr Xm Xr
电力系统机电暂态过程
▪ 负荷模型
✓ 三阶感应电动机模型
dEq dt
电力系统暂态分析
电力系统机电暂态过程
▪ 发电机励磁系统
✓ 发电机励磁系统均配有自动励磁调节器,在暂态 过程中调节发电机励磁绕组两端的励磁电压,因 而影响发电机的电动势,并对发电机的电磁功率 和系统的稳定性产生影响。
✓ 自动励磁调节系统包括主励磁系统和自动调节励 磁装置。主励磁系统是从励磁电源到发电机励磁 绕组的主回路;自动励磁调节装置根据发电机运 行参数自动调节主励磁系统的参数。
✓ 晶闸管励磁调节器传递函数框图
电力系统机电暂态过程
▪ 自动调节励磁装置
✓ 晶闸管励磁调节器传递函数框图
U G
Ke 1 Te
p
u f
• 负号表示端电压下降时,励磁电压增加;由于
滤波、综合放大环节时间常数较小,Te≈Tff
xad rf
uf
Eqe
xad rf
u fB
EqeB
U G
Ke 1 Te
p
Eqe
电力系统机电暂态过程
▪ 原动机及调速系统数学模型
✓ 原动机机械功率与运行工况有关,水轮机机械功 率的大小与导叶开度的大小有关;汽轮机机械功 率的大小则与汽门开度大小有关。
✓ 如果发电机的负荷突然增加而使转子轴上的原动 机功率小于电磁功率,则转速下降,调速器测量 到转速下降,就会开大导叶或者汽门开度,增加 机械功率,以达到新的平衡。
电力系统机电暂态过程
▪ 主励磁系统
✓ 直流励磁机励磁系统
电力系统机电暂态过程
▪ 主励磁系统
✓ 交流励磁机励磁系统
电力系统机电暂态过程
▪ 主励磁系统
✓ 交流励磁机励磁系统
u ff
(1 SE )u f
i(f xd xd ) Tff
du f dt
u ff
i(f xd
xd ) (1 SE )u f
• 电动机端电压降低时转差率增大,如果端电压 下降很多导致电磁转矩最大值小于机械转矩时 电动机被迫停转。
电力系统机电暂态过程
▪ 负荷模型
✓ 综合负荷模型
电力系统机电暂态过程
▪ 负荷模型
✓ 频率相关静态负荷模型
P P0 (U /U0 )np [1.0 apf ( f f0 )] Q Q0 (U /U0 )nq [1.0 aqf ( f f0 )]
P P0[ap (U /U0 )2 bp (U /U0 ) cp ][1.0 apf ( f f0 )] Q Q0[aq (U /U0 )2 bq (U /U0 ) cq ][1.0 aqf ( f f0 )]
电力系统机电暂态过程
▪ 负荷模型
✓ 静态负荷模型
• 恒阻抗模型 • 幂函数模型
• 多项式模型
P U 2 / RL Q U2 / XL
P P0 (U / U 0 )np Q Q0 (U / U 0 )nq
P P0[ap (U /U0 )2 bp (U /U0 ) cp ] Q Q0[aq (U /U0 )2 bq (U /U0 ) cq ]
Tff
du f dt
u ff
if kD
(1 SE )u f
Tff
du f dt
• 与直流励磁机相比,交流
励磁机的去磁电枢反应使
电动势有所降低。
电力系统机电暂态过程
▪ 主励磁系统
✓ 静止励磁系统
电力系统机电暂态过程
▪ 自动调节励磁装置
✓ 晶闸管励磁调节器原理框图
电力系统机电暂态过程
▪ 自动调节励磁装置
电力系统机电暂态过程
▪ 原动机数学模型
✓ 汽轮机数学模型 • 由于汽容效应的影响,
汽门开大时机械功率 并不立即增加
(Tch p 1)PT
• Tch为汽轮机汽室时间常数,一般取0.1~0.4s; 大型汽轮机往往采用中间再热式汽轮机,再热 器时间常数大约4~11s。
电力系统机电暂态过程
▪ 原动机数学模型
▪ 调速系统数学模型
✓ 水轮机调速系统传递函数框图
电力系统机电暂态过程
▪ 负荷特性
✓ 定义:负荷功率随节点电压或频率变化而变化的 规律称为负荷特性。
✓ 分类:负荷电压特性与频率特性;负荷静态特性 与动态特性。
✓ 负荷静态特性:是指负荷随电压或频率缓慢变化 而变化的特性;
✓ 负荷动态特性:是指负荷随电压或频率快速变化 而变化的特性;
相关文档
最新文档