数学模型应用问题(一)(含答案)

合集下载

数学模型应用问题(讲义和习题)含答案

数学模型应用问题(讲义和习题)含答案

数学模型应用问题(讲义)➢ 课前预习1. 填写下列表格,并回忆相关概念.2. 解下列方程[](10)38010(12)1750x x ---=10(8)200106400.5x x -⎛⎫--⋅= ⎪⎝⎭➢ 知识点睛应用题的处理思路 1. 理解题意,梳理信息通过列表或画线段图等方式,对信息分类整理.2. 辨识类型,建立模型根据所属类型,围绕关键词、隐含的数学关系,建立数学类型常考虑:①所属的数学模型(方程不等式问题、函数问题、测量问题);②实际生活的背景(工程问题、行程问题、经济问题).常见关键词:①共需、同时、刚好、恰好、相同……,考虑方程;②不超过、不多于、少于、至少……,考虑不等式(组);③最大利润、最省钱、运费最少、尽可能少、最小值……,考虑函数(一次函数、二次函数),根据函数性质求取最值.隐含的数学关系:①原材料供应型(使用量≤供应量)②容器容量型(载重量≥货物量)3.求解验证,回归实际①结果是否符合题目要求;②结果是否符合实际意义.➢精讲精练1.某次地震后,政府为安置灾民,准备从某厂调拨用于搭建帐篷的帆布5 600 m2和撑杆2 210 m.(1)该厂现有帆布4 600 m2和撑杆810 m,不足部分计划安排110人进行生产.若每人每天能生产帆布50 m2或撑杆40 m,则应分别安排多少人生产帆布和撑杆,才能确保同时完成各自的生产任务?(2)计划用这些材料在某安置点搭建甲、乙两种规格的帐篷共100顶,若搭建一顶甲型帐篷和一顶乙型帐篷所需帆布与撑杆的数量及安置人数如下表所示,则这100顶帐篷最多能安置多少灾2.现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(2)如果安排9辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围).(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.3.随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率.(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?4.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1 100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)设每日净收入为w元,请写出w与x之间的函数关系式.(3)若某日的净收入为4 420元,且使游客得到实惠,则当天的观光车的日租金是多少元?5.洛阳某校组织学生、家长代表与部分老师到郑州进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6 175元,都买二等座单程火车票需3 150元;家长代表与老师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.【参考答案】➢课前预习1.二,一,等式,消元,加减消元法;未知数,等式,去分母,检验;一,二,等式,配方法,公式法,因式分解法;不等号,不等式.2. (1)121545x x ==,(2)121612x x ==,➢ 精讲精练1. (1)应安排40人生产帆布,70人生产撑杆,才能确保同时完成各自的生产任务.(2)这100顶帐篷最多能安置760名灾民. 2. (1)大货车8辆,小货车10辆.(2)W =70a +11 550(0≤a ≤8且a 为整数). (3)总运费最少的货车调配方案:4辆,前往乙地的大货车3辆,前往乙地的小货车6辆时,总运费最少,最少总运费为11 900元.3. (1)该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为20%.(2)①t 的值为25.②该养老中心建成后最多提供养老床位260个,最少提供养老床位180个. 4. (1)每辆车的日租金至少应为25元.(2)250110001005170110010035055x x x w x x x x -<⎧⎪=⎨-+-<⎪⎩≤≤(且为的倍数)(且为的倍数).(3)当天的观光车的日租金是120元.5. (1)参加社会实践活动的老师有5人,家长代表有10人,学生有50人.(2)当0<x <50时,最经济的购票方案为:一部分学生买二等座学生票x 张,其余学生、家长代表、老师买一等座火车票(65-x )张;当50≤x <65时,最经济的购票方案为:学生都买二等座学生票50张,(x -50)名成年人买二等座火车票,(65-x )名成年人买一等座火车票.5061750503554255065x x x y x x x -+<<⎧=⎨-+<⎩≤(,且为整数)(,且为整数).(3)当x =30时,购买单程火车票的总费用为4 675元.数学模型应用问题(习题)➢ 例题示范例1:为支持抗震救灾,某市A ,B ,C 三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往重灾地区的D ,E 两县.根据灾区的情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨.(1)求这批赈灾物资运往D ,E 两县的数量各是多少.(2)若要求C 地运往D 县的赈灾物资为60吨,A 地运往D 县的赈灾物资为x 吨(x 为整数),B 地运往D 县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的2倍.其余的赈灾物资全部运往E 县,且B 地运往E 县的赈灾物资数量不超过23吨,则A ,B 两地的赈灾物资运往D ,E 两县的方案有几种?请你写出具体的运送方案.(3)已知A ,B ,C 三地的赈灾物资运往D ,E 两县的费用如下表:2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【解题要点】①理解题意,梳理信息 列表梳理信息,如下:关键词“全部运往”、“小于”、“不超过”,确定属于方程不等式类型. 隐性条件:运送赈灾物资均为正整数. ③求解验证,回归实际根据关键词列等式、不等式,求解.验证结果是否符合实际. 【过程示范】解:(1)设运往E 县的物资为m 吨,则运往D 县的物资为(2m -20)吨.根据题意得,m +2m -20=100+100+80 解得,m =100 2×100-20=180(吨)∴运往E 县的物资为100吨,运往D 县的物资为180吨.(2)根据题意得,12022023x x x -<-⎧⎨⎩≤解得,4043x <≤ ∵x 是正整数 ∴x 可取41,42,43 运送方案如下, 方案一:w=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60 800∵-10<0∴w随x的增大而减小∴当x=41时,w max=60 390(元)∴该公司承担运送物资的总费用最多是60 390元.➢巩固练习1.某服装公司招工广告承诺:熟练工人每月工资至少3 000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B 型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为w元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【列表分析】【解题过程】2.在“绿满河南”行动中,某社区计划对面积为1 800 m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队工作3天,乙队工作2天共可完成400 m2,甲队工作1天,乙队工作4天共可完成300 m2.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用为0.6万元,乙队每天绿化费用为0.25万元,且甲、乙两队施工的总天数不超过26天,则如何安排甲、乙两队施工的天数,才能使施工总费用最低?并求出最低费用.【列表分析】【解题过程】3.某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能维持居民15年的用水量.(1)该镇年降水量以及每人年平均用水量分别是多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米的水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后才能收回成本?(结果精确到个位)【列表分析】【解题过程】➢思考小结应用题中建立数学模型往往要考虑两方面:①题目当中明确指出的数学关系,常和关键词相关;②隐含的数学关系,往往结合实际情况考虑,常见的有非负数、整数等制约条件.【参考答案】1.(1)一名熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)该公司在执行规定后违背了广告承诺,理由略.2.(1)甲队每天能完成绿化的面积是100 m2,乙队每天能完成绿化的面积是50 m2.(2)y=-2x+36(0<x<18且x为整数).(3)安排甲队施工10天,乙队施工16天,施工总费用最低,最低费用为10万元.3.(1)该镇年降水量是200万立方米,每人年平均用水量是50立方米.(2)该镇居民人均每年需节约16立方米的水才能实现目标.(3)该企业至少9年后才能收回成本.。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

数学建模基础问题与答案!(有答案).

数学建模基础问题与答案!(有答案).

‘牡丹江师范学院期末考试试题库科目:数学模型与数学实验年级:2006 学期:2008-2009-2 考核方式:开卷命题教师:数学模型与数学实验课程组一、解答题:(每小题30分)x=[0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';n=length(x)X=[ones(n,1) x];Y=[42 43.5 45 45.5 45 47.5 49 53 50 55 55 60]';[b,bint,r,rint,stats]=regress(Y,X);b,bint,stats% 预测y=b(1)+b(2)*x%E误差平方和E=sum((Y-y).^2)参考结果:回归直线:ˆ28.4928130.8348=+y x误差平方和:17.4096是否重点:重点难易程度:中知识点所在章节:第十六章第一节检查数据中有无异常点、由x的取值对y作出预测。

解:参考程序(t2.m):x=[0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';Y=[42.0 41.5 45.0 45.0 45 47.5 49.0 55.0 50.0 55.0 55.5 60.5]'; scatter(x,Y);n=length(x)X=[ones(n,1) x];b,bint,stats %残差图 rcoplot(r,rint) % 预测y=b(1)+b(2)*x%剔除异常点重新建模 X(8,:)=[]; Y(8)=[];[b,bint,r,rint,stats]=regress(Y,X); b,bint,stats,rcoplot(r,rint) 结果和图:b =27.0269 140.6194 bint =22.3226 31.7313 111.7842 169.4546 stats =0.9219 118.0670 0.0000结果分析:由20.9226,119.2528,P =0.0000R F ==知,2R 接近1,10.5(1,10)F F ->,0.05P <,故x 对y 的影响显著,回归模型可用。

2020年九年级数学中考复习专题专题:函数模型的应用(含答案)

2020年九年级数学中考复习专题专题:函数模型的应用(含答案)

专题:函数模型的应用1.超市以每千克40元的价格购进夏威夷果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种夏威夷果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)超市要想获利2090元,则这种夏威夷果每千克应降价多少元?2.如图①,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图②所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.3.某智能品牌店,在销售某型号运动手环时,以高出进价的50%标价.已知按标价九折销售该型号运动手环8个与将标价直降100元销售7个获利相同.(1)求该型号运动手环的进价和标价分别是多少元?(2)若该型号运动手环的进价不变,按(1)中的标价出售,该店平均每月可售出38个;若每个运动手环每降价20元,每月可多售出2辆,求该型号运动手环降价多少元时,每月获利最大?最大利润是多少?4.一水果店以进价为每千克16元购进万荣苹果,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克,设销售单价为x(元),每天的销售量为y(千克),每天获利为w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;该苹果售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果商家规定这种苹果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?5.挂灯笼成为我国的一种传统文化. 小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?6.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50 kg时,价格为7元/kg;一次购买数量超过50 kg时,其中有50 kg的价格仍为7元/kg,超出50 kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为x kg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为________kg;②若小王在同一个批发店一次购买苹果的数量为120 kg,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.7.某工厂计划生产甲乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元,设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨,受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.8.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可销售出100件,根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每月少销售出2件,设每件商品的售价为x元.每个月的销售为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?9.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x 之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?10. 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价,周销售量,周销售利润w (元)的三组对应值如下表:(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是______元;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值.参考答案1. 解:(1)设一次函数解析式为y =kx +b , ∵当x =2,y =120;当x =4,y =140;∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140, 解得⎩⎪⎨⎪⎧k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100; (2)由题意得(60-40-x )(10x +100)=2090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9. ∵让顾客得到更大的实惠, ∴x =9,答:超市要想获利2090元,则这种夏威夷果每千克应降价9元.2. 解:(1)设y 关于x 的函数解析式为y =kx +b ,把点(0,6)(15,3)代入y =kx +b 得⎩⎪⎨⎪⎧6=b ,3=15k +b ,解得⎩⎪⎨⎪⎧k =-15,b =6,∴y 关于x 的函数解析式为y =-15x +6;(2)甲:当h =0时,得x =20.乙:当y=0时,得x=30.∵20<30,∴甲先到达一楼地面.3.解:(1)设该型号运动手环的进价为x元,根据题意得[(1+50%)x×0.9-x]×8=[(1+50%)x-100-x]×7,∴x=1000,∴(1+50%)x=1500元,∴该型号运动手环的进价为1000元,标价为1500元;(4分) (2)设该型号运动手环降价y元,利润为w元.根据题意得w=(38+y20×2)(1500-1000-y)=(38+0.1y)(500-y)=-0.1(y-60)2+19360,当y=60时,w有最大值19360.∴降价60元,每月获利最大,最大利润为19360元.4.解:(1)根据题意得y=50-5(x-20)=-5x+150;(2)根据题意得w=(x-16)(-5x+150)=-5x2+230x-2400,∴w与x的函数关系式为:w=-5x2+230x-2400=-5(x-23)2+245.∵-5 <0,∴当x=23时,w有最大值,最大值为245.(5分)答:w与x之间的函数关系式为w=-5x2+230x-2400.该苹果售价定为每千克23元时,每天销售利润最大,最大利润是245元;(3)根据题意得-5x+150≥40,解得x≤22.∵w=-5(x-23)2+245.∵-5<0,w≤23时,w随x增大而增大,∴当x=22时w有最大值,其最大值为-5×(22-23)2+245=240(元).答:商家每天销售利润的最大值是240元.5.解:(1)设甲种灯笼进价为x元/对,则乙种灯笼的进价为(x+9)元/对,由题意得3120 x=4200 x+9,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①y=(50+x-35)(98-2x)=-2x2+68x+1470,答:y与x之间的函数解析式为:y=-2x2+68x+1470;②∵a=-2<0,∴函数y有最大值,该二次函数的对称轴为:x=-b2a=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x=15时,y最大=2040.∴15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.6.解:(Ⅰ)180,900,210,850;【解法提示】甲批发店花费:当x=30时,花费为30×6=180;当x=150时,花费为150×6=900.乙批发店花费:当x =30时,花费为30×7=210;当x =150时,花费为50×7+(150-50)×5=850.(Ⅱ)y 1=6x (x >0), 当0<x ≤50时,y 2=7x ;当x >50时,y 2=7×50+5(x -50),即y 2=5x +100;即y 2=⎩⎪⎨⎪⎧7x (0<x ≤50),5x +100(x >50).(Ⅲ)①100;②乙;③甲.【解法提示】①当0<x ≤50时,甲批发店和乙批发店花费不可能相同,则x >50时,令y 1=y 2,则6x =5x +100,解得x =100;②当x =120时,y 1=6×120=720,y 2=5×120+100=700,∵720>700,∴在乙批发店购买花费少;③对甲批发店而言:令y 1=360,则6x =360,解得x =60.对乙批发店而言:当x =50时,花费为350<360,则令5x +100=360,解得x =52,∵60>52,∴小王花费360元时,在甲批发店购买数量多.7. 解:(1)y =x ·0.3+(2500-x )·0.4=-0.1x +1000; (2)由题意得x ·0.25+(2500-x )·0.5≤1000,解得x ≥1000. 又∵x ≤2500, ∴1000≤x ≤2500. 由(1)可知,-0.1<0,∴y 的值随着x 的增加而减小,∴当x =1000时,y 取最大值,此时生产乙种产品2500-1000=1500(吨) 答:工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润. 8. 解:(1)根据题意得y = 100-2(x -60)=-2x +220(60≤x ≤110);(2)由题意可得:(-2x +220)(x -40)=2250. x 2-150x +5525=0, 解得x 1=65,x 2=85.答:当每件商品的售价定为65元或85元时,利润恰好是2250元; (3)设利润为W 元,∴W =(x -40)(-2x +220)=-2x 2+300x -8800=-2(x -75)2+2450. ∵a =-2<0, ∴抛物线开口向下. ∵60≤x ≤110,∴当x =75时,W 有最大值,W 最大=2450(元).答:当售价定为75元时,获得最大利润,最大利润是2450元. 9. 解:(1)设y 关于x 的函数关系式为y =kx +b (k ≠0),由图象可知,将点(1,7000),(5,5000)代入得⎩⎪⎨⎪⎧k +b =7000,5k +b =5000,解得⎩⎪⎨⎪⎧k =-500,b =7500,∴y 关于x 的函数关系式为y =-500x +7500; (2)设销售收入为W ,根据题意得 W =yp =(-500x +7500)·(12x +12),整理得W =-250(x -7)2+16000,∵-250<0,∴W 在x =7时取得最大值,最大值为16000元, 此时该产品每台的销售价格为-500×7+7500=4000元.答:第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元.10. 解:(1)①y =-2x +200; ②40,70,1800;(2)由题意可知w =(-2x +200)×(x -40-m )=-2x 2+(280+2m )x -8000-200m ,对称轴为直线x =140+m2,∵m >0,∴对称轴x =140+m2>70,∵抛物线开口向下,在对称轴左侧,y 随x 的增大而增大, ∴当x =65时,y max =1400,代入表达式解得m =5.。

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用1(含解析)

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用1(含解析)

2020届高考数学命题猜想函数与方程﹑函数模型及其应用1【考向解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【命题热点突破一】函数零点的存在性定理1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.例1 、(2018年全国I卷理数)已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.【变式探究】【2017课标1,理21】已知函数.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【答案】(1)见解析;(2)()0,1.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时, ()f x 取得最小值,最小值为.①当1a =时,由于,故()f x 只有一个零点;②当()1,a ∈+∞时,由于,即,故()f x 没有零点;③当()0,1a ∈时,,即. 又,故()f x 在(),ln a -∞-有一个零点.设正整数n 满足,则.由于,因此()f x 在()ln ,a -+∞有一个零点.综上, a 的取值范围为()0,1.【变式探究】(1)已知偶函数y =f(x),x ∈R 满足f(x)=x2-3x(x ≥0),函数g(x)=⎩⎪⎨⎪⎧log2x ,x>0,-1x,x<0,则函数y =f(x)-g(x)的零点个数为( )A .1B .3C .2D .4(2)已知函数f(x)=⎩⎪⎨⎪⎧x3,x ≤a ,x2,x>a ,若存在实数b ,使函数g(x)=f(x)-b 有两个零点,则a 的取值范围是________.【答案】(1)B (2)(-∞,0)∪(1,+∞)【解析】(1)作出函数f (x )与g (x )的图像如图所示,易知两个函数的图像有3个交点,所以函数y =f (x )-g (x )有3个零点.(2)令φ(x )=x3(x ≤a ),h (x )=x2(x>a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图像与直线y =b 有两个交点.结合图像,当a<0时,存在实数b 使h (x )=x2(x>a )的图像与直线y =b 有两个交点;当a ≥0时,必须满足φ(a )>h (a ),即a3>a2,解得a>1.综上得a ∈(-∞,0)∪(1,+∞).【感悟提升】函数的零点、方程的根的问题都可以转化为函数图像的交点问题,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数问题的有效方法.在解决函数零点问题时,既要利用函数的图像,也要利用函数零点的存在性定理、函数的性质等,把数与形紧密结合起来.【变式探究】已知函数f(x)=|x +a|(a ∈R)在[-1,1]上的最大值为M(a),则函数g(x)=M(x)-|x2-1|的零点的个数为( ) 络的发展,网校教育越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势.假设某网校每日的套题销售量y(单位:万套)与销售价格x(单位:元/套)满足关系式y =m x -2+4(x -6)2,其中2<x<6,m 为常数.已知销售价格为4元/套时,每日可售出套题21万套.(1)求m 的值;(2)假设每套题的成本为2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解析】解:(1)因为x =4时,y =21,代入y =mx -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)·⎣⎢⎢⎡⎦⎥⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x3-56x2+240x -278(2<x<6),从而f ′(x )=12x2-112x +240=4(3x -10)(x -6)(2<x<6).令f ′(x )=0,得x =103(x =6舍去),且在⎝ ⎛⎭⎪⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增,在⎝ ⎛⎭⎪⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值,即当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.【感悟提升】 函数建模首先要会根据题目的要求建立起求解问题需要的函数关系式(数学模型),然后通过求解这个函数模型(求单调性、最值、特殊的函数值等),对实际问题作出合乎要求的解释.需要注意实际问题中函数的定义域要根据实际意义给出,不是单纯根据函数的解析式得出.【变式探究】调查发现,提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是关于车流密度x (单位:辆/千米)的连续函数.当桥上的车流密度达到200辆/千米时,会造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20<x<200时,车流速度v 是关于车流密度x 的一次函数.(1)当0<x<200时,求函数v (x )的解析式;(2)当车流密度x 为多少时,车流量(每小时通过桥上某观测点的车辆数)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)【解析】解:(1)由题意知,当0<x ≤20时,v (x )=60;当20<x<200时,设v (x )=ax +b ,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故所求函数v (x )的解析式为v (x )=⎩⎪⎨⎪⎧60,0<x ≤20,13(200-x ),20<x<200. (2)由(1)可知v (x )=⎩⎪⎨⎪⎧60,0<x ≤20,13(200-x ),20<x<200.当0<x ≤20时,f (x )=60x 为增函数,故当x =20时,其最大值为60×20=1200;当20<x<200时,f (x )=13x (200-x )=-13(x2-200x )=-13(x -100)2+10 0003,当x =100时,f (x )取得最大值10 0003≈3333.综上可知,当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【高考真题解读】1. (2018年全国I 卷理数)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C 【解析】画出函数的图像,在y 轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.2. (2018年浙江卷)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1). (1,4) (2).【解析】由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。

(完整版)数学模型(第四版)课后详细答案

(完整版)数学模型(第四版)课后详细答案

数学模型作业六道题作业一1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数。

解:要求鱼的体重,我们利用质量计算公式:M=ρV。

我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。

至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。

我们假设鱼的体积和鱼身长的立方成正比。

即:V=k 1L 3,因此,模型为:……………………………模型一33111M V k l K L ρρ===利用Eviews 软件,用最小二乘法估计模型中的参数K 1,如下图1所示:图1从图1结果可以得到参数K 1=0.014591,所以模型为:31M 0.014591 L =上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。

因此,有必要改进模型。

如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比,即:V=k 2d 2L ,因此,模型为:身长/cm 36.831.843.836.832.145.135.932.1质量/g 76548211627374821389652454胸围/cm24.821.327.924.821.631.822.921.6t h i ng sin………………………………模型二22222M V k d K d L L ρρ===利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示:图2从图2可以得到参数K 2=0. 032248,所以模型为:22M 0.032248d L=将实际数据与模型结果比较如表1所示:表1实际数据M 76548211627374821389652454模型一M 1727.165469.2141226.061727.165482.6291338.502675.108482.619模型二M 2729.877465.2481099.465729.877482.9601470.719607.106483.9602.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。

初中数学最值问题01专题-将军饮马模型与最值问题(含答案)

初中数学最值问题01专题-将军饮马模型与最值问题(含答案)

初中数学最值问题专题1 将军饮马模型与最值问题【模型导入】 什么是将军饮马?“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【模型描述】如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【模型抽象】如图,在直线上找一点P 使得P A +PB 最小?这个问题的难点在于P A +PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段. 【模型解析】作点A 关于直线的对称点A ’,连接P A ’,则P A ’=P A ,所以P A +PB =P A ’+PB 当A ’、P 、B 三点共线的时候,P A ’+PB =A ’B ,此时为最小值(两点之间线段最短)B 将军军营河P【模型展示】【模型】一、两定一动之点点在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.【例题】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.BBP OBAMNP''A【模型】二、两定两动之点点在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。

考虑PQ 是条定线段,故只需考虑PM +MN +NQ 最小值即可,类似,分别作点P 、Q 关于OA 、OB 对称,化折线段PM +MN +NQ 为P ’M +MN +NQ ’,当P ’、M 、N 、Q ’共线时,四边形PMNQ 的周长最小。

2020年中考数学专题复习:函数模型的应用(含答案)

2020年中考数学专题复习:函数模型的应用(含答案)

2020年中考数学专题复习:函数模型的应用1.超市以每千克40元的价格购进夏威夷果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种夏威夷果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)超市要想获利2090元,则这种夏威夷果每千克应降价多少元?2.如图①,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图②所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.3.某智能品牌店,在销售某型号运动手环时,以高出进价的50%标价.已知按标价九折销售该型号运动手环8个与将标价直降100元销售7个获利相同.(1)求该型号运动手环的进价和标价分别是多少元?(2)若该型号运动手环的进价不变,按(1)中的标价出售,该店平均每月可售出38个;若每个运动手环每降价20元,每月可多售出2辆,求该型号运动手环降价多少元时,每月获利最大?最大利润是多少?4.一水果店以进价为每千克16元购进万荣苹果,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克,设销售单价为x(元),每天的销售量为y(千克),每天获利为w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;该苹果售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果商家规定这种苹果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?5.挂灯笼成为我国的一种传统文化. 小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?6.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50 kg时,价格为7元/kg;一次购买数量超过50 kg时,其中有50 kg的价格仍为7元/kg,超出50 kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为x kg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为________kg;②若小王在同一个批发店一次购买苹果的数量为120 kg,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.7.某工厂计划生产甲乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元,设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨,受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.8. 某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可销售出100件,根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每月少销售出2件,设每件商品的售价为x 元.每个月的销售为y 件.(1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?9. 某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?10. 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价,周销售量,周销售利润w (元)的三组对应值如下表:售价x (元/件) 50 60 80 周销售量y (件) 100 80 40 周销售利润w (元)100016001600(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是______元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.参考答案1. 解:(1)设一次函数解析式为y =kx +b , ∵当x =2,y =120;当x =4,y =140;∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140, 解得⎩⎪⎨⎪⎧k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100;(4分) (2)由题意得(60-40-x )(10x +100)=2090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9. ∵让顾客得到更大的实惠, ∴x =9,答:超市要想获利2090元,则这种夏威夷果每千克应降价9元.(7分)2. 解:(1)设y 关于x 的函数解析式为y =kx +b ,把点(0,6)(15,3)代入y =kx +b 得⎩⎪⎨⎪⎧6=b ,3=15k +b ,解得⎩⎪⎨⎪⎧k =-15,b =6,∴y 关于x 的函数解析式为y =-15x +6;(2)甲:当h=0时,得x=20.乙:当y=0时,得x=30.∵20<30,∴甲先到达一楼地面.3.解:(1)设该型号运动手环的进价为x元,根据题意得[(1+50%)x×0.9-x]×8=[(1+50%)x-100-x]×7,∴x=1000,∴(1+50%)x=1500元,∴该型号运动手环的进价为1000元,标价为1500元;(4分) (2)设该型号运动手环降价y元,利润为w元.根据题意得w=(38+y20×2)(1500-1000-y)=(38+0.1y)(500-y)=-0.1(y-60)2+19360,当y=60时,w有最大值19360.∴降价60元,每月获利最大,最大利润为19360元.(8分)4.解:(1)根据题意得y=50-5(x-20)=-5x+150;(2分)(2)根据题意得w=(x-16)(-5x+150)=-5x2+230x-2400,(4分)∴w与x的函数关系式为:w=-5x2+230x-2400=-5(x-23)2+245.∵-5 <0,∴当x=23时,w有最大值,最大值为245.(5分)答:w与x之间的函数关系式为w=-5x2+230x-2400.该苹果售价定为每千克23元时,每天销售利润最大,最大利润是245元;(6分)(3)根据题意得-5x+150≥40,解得x≤22.∵w=-5(x-23)2+245.∵-5<0,w≤23时,w随x增大而增大,∴当x=22时w有最大值,其最大值为-5×(22-23)2+245=240(元).答:商家每天销售利润的最大值是240元.(10分)5.解:(1)设甲种灯笼进价为x元/对,则乙种灯笼的进价为(x+9)元/对,由题意得3120 x=4200 x+9,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(4分) (2)①y=(50+x-35)(98-2x)=-2x2+68x+1470,答:y与x之间的函数解析式为:y=-2x2+68x+1470;(7分)②∵a=-2<0,∴函数y有最大值,该二次函数的对称轴为:x=-b2a=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x =15时,y 最大=2040. ∴15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.(10分) 6. 解:(Ⅰ)180,900,210,850;【解法提示】甲批发店花费:当x =30时,花费为30×6=180;当x =150时,花费为150×6=900.乙批发店花费:当x =30时,花费为30×7=210;当x =150时,花费为50×7+(150-50)×5=850.(Ⅱ)y 1=6x (x >0), 当0<x ≤50时,y 2=7x ;当x >50时,y 2=7×50+5(x -50),即y 2=5x +100;即y 2=⎩⎪⎨⎪⎧7x (0<x ≤50),5x +100(x >50).(Ⅲ)①100;②乙;③甲.【解法提示】①当0<x ≤50时,甲批发店和乙批发店花费不可能相同,则x >50时,令y 1=y 2,则6x =5x +100,解得x =100;②当x =120时,y 1=6×120=720,y 2=5×120+100=700,∵720>700,∴在乙批发店购买花费少;③对甲批发店而言:令y 1=360,则6x =360,解得x =60.对乙批发店而言:当x =50时,花费为350<360,则令5x +100=360,解得x =52,∵60>52,∴小王花费360元时,在甲批发店购买数量多.7. 解:(1)y =x ·0.3+(2500-x )·0.4=-0.1x +1000; (2)由题意得x ·0.25+(2500-x )·0.5≤1000,解得x ≥1000. 又∵x ≤2500,∴1000≤x ≤2500. 由(1)可知,-0.1<0,∴y 的值随着x 的增加而减小,∴当x =1000时,y 取最大值,此时生产乙种产品2500-1000=1500(吨) 答:工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润. 8. 解:(1)根据题意得y = 100-2(x -60)=-2x +220(60≤x ≤110); (2)由题意可得:(-2x +220)(x -40)=2250. x 2-150x +5525=0, 解得x 1=65,x 2=85.答:当每件商品的售价定为65元或85元时,利润恰好是2250元; (3)设利润为W 元,∴W =(x -40)(-2x +220)=-2x 2+300x -8800=-2(x -75)2+2450. ∵a =-2<0, ∴抛物线开口向下. ∵60≤x ≤110,∴当x =75时,W 有最大值,W 最大=2450(元).答:当售价定为75元时,获得最大利润,最大利润是2450元. 9. 解:(1)设y 关于x 的函数关系式为y =kx +b (k ≠0),由图象可知,将点(1,7000),(5,5000)代入得⎩⎪⎨⎪⎧k +b =7000,5k +b =5000,解得⎩⎪⎨⎪⎧k =-500,b =7500,∴y 关于x 的函数关系式为y =-500x +7500;(2)设销售收入为W ,根据题意得W =yp =(-500x +7500)·(12x +12), 整理得W =-250(x -7)2+16000,∵-250<0,∴W 在x =7时取得最大值,最大值为16000元,此时该产品每台的销售价格为-500×7+7500=4000元.答:第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元.10. 解:(1)①y =-2x +200;②40,70,1800;(2)由题意可知w =(-2x +200)×(x -40-m )=-2x 2+(280+2m )x -8000-200m ,对称轴为直线x =140+m 2, ∵m >0,∴对称轴x =140+m 2>70, ∵抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,∴当x =65时,y max =1400,代入表达式解得m =5.。

数学建模样题及答案

数学建模样题及答案

数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。

(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。

(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

(试解释其道理。

)(4) 试提出其他的方法。

数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+ t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。

解:=r(x m -x),r 为比例系数,x(0)=x 0 解为:x(t)= x m -( x m - x 0),如下图粗线,当t →∞时,它与Logistic 模型相似。

数学建模作业三一容器内盛入盐水100L,含盐50g .然后将含有2g/L的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。

同时,此混合物又以2L/min的流量流出,试求在30min时,容器内所含的盐量。

若以同样流量放进的是淡水,则30min时,容器内还剩下多少盐?要求写出分析过程。

解:设x(t)为t时刻容器内剩余的盐的质量①x(t)=2(100+t)-1.5(100+t)-2X(t=30)=171.24② x(t)=(100+t)-2 X(t=30)=29.59数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i ,它们需要的货物量分别是25,10,20,30,15个单位质量。

数学建模习题及答案课后习题

数学建模习题及答案课后习题

数学建模习题及答案课后习题第⼀部分课后习题1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在B宿舍,432⼈住在C宿舍。

学⽣们要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩数部分较⼤者。

(2)节中的Q值⽅法。

(3)d’Hondt⽅法:将A,B,C各宿舍的⼈数⽤正整数n=1,2,3,…相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种⽅法的道理吗。

如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法再分配名额。

将3种⽅法两次分配的结果列表⽐较。

(4)你能提出其他的⽅法吗。

⽤你的⽅法分配上⾯的名额。

2.在超市购物时你注意到⼤包装商品⽐⼩包装商品便宜这种现象了吗。

⽐如洁银⽛膏50g装的每⽀元,120g装的元,⼆者单位重量的价格⽐是:1。

试⽤⽐例⽅法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由⽣产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正⽐,有的与表⾯积成正⽐,还有与w⽆关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越⼤c越⼩,但是随着w的增加c减少的程度变⼩。

解释实际意义是什么。

3.⼀垂钓俱乐部⿎励垂钓者将调上的鱼放⽣,打算按照放⽣的鱼的重量给予奖励,俱乐部只准备了⼀把软尺⽤于测量,请你设计按照测量的长度估计鱼的重量的⽅法。

假定鱼池中只有⼀种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼⾝的最⼤周长):⾝长(cm)重量76548211627374821389652454(g)胸围(cm)先⽤机理分析建⽴模型,再⽤数据确定参数4.⽤宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹⾓应多⼤(如图)。

若知道管道长度,需⽤多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

初中数学解题模型之一元二次方程的应用(商品销售问题)(含答案)

初中数学解题模型之一元二次方程的应用(商品销售问题)(含答案)

初中数学解题模型之一元二次方程的应用(商品销售问题)一.选择题(共10小题)1.(2018•石家庄模拟)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,即在确保盈利的前提下,尽量增加销售量,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3B.2.5C.2D.52.(2014•鄂城区校级模拟)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低()元.A.0.2或0.3B.0.4C.0.3D.0.23.(2021秋•侯马市期末)祁县是“中国酥梨之乡”,某超市将进价为每千克5元的酥梨按每千克8元卖出,平均一天能卖出50千克,为了尽快减少库存并且让利顾客,决定降价销售,超市发现当售价每千克下降1元时,其日销售量就增加10千克,设售价下降x元,超市每天销售酥梨的利润为120元,则可列方程为()A.(3+x)(50+10x)=120B.(3﹣x)(50+10x)=120C.(3+x)(50﹣10x)=120D.(3﹣x)(50﹣10x)=1204.(2021秋•深圳期末)文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x元,由题意可列方程为()A.(38﹣x)(160+×120)=3640B.(38﹣x﹣22)(160+120x)=3640C.(38﹣x﹣22)(160+3x×120)=3640D.(38﹣x﹣22)(160+×120)=36405.(2021•佳木斯模拟)商场购进一批衬衣,进货单价为30元,按40元出售时,每天能售出500件.若每件涨价1元,则每天销售量就减少10件.为了尽快出手这批衬衣,而且还能每天获取8000元的利润,其售价应该定为()A.50元B.60元C.70元D.50元或70元6.(2020秋•孟村县期末)疫情期间,育才中学为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元.若学校购买洗手液共花费1200元,则购买洗手液的瓶数是()A.200B.150C.150或200D.200或3007.(2020•青山区二模)某电商销售一款时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳平台推广费5元,为尽快回笼资金,该电商计划开展降价促销活动,通过市场调研发现,该时装售价每降1元,每天销量增加4件.问该电商对这款时装的每件售价定为多少元,若该电商每天扣除平台推广费之后的利润达到4500元,则适合的售价应定于()A.70元B.80元C.70元或90元D.90元8.(2011•温岭市模拟)商场服装柜在销售中发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装共盈利1200元,设每件童装降价x元,那么应满足的方程是()A.(40+x)(20﹣2x)=1200B.(40﹣2x)(20+x)=1200C.(40﹣x)(20+2x)=1200D.(40+2x)(20﹣x)=12009.(2008秋•长宁区校级期末)县食品厂生产一种饮料,平均每天销售20箱,每箱盈利32元.为了减少库存,食品厂决定降价销售.如果每箱降价1元,则每天可多销售5箱,若要保证盈利1215元,设每箱降价的价钱为x元,则根据题意可列方程()A.(32﹣x)(20+5x)=1215B.(32+x)(20+5x)=1215C.(32﹣x)(20﹣5x)=1215D.(32+x)(20+5x)=121510.(2021秋•白银期末)香水梨在甘肃白银境内种植历史悠久,明代就有记载.某水果店以每千克10元的进价进了批香水梨,经市场调研发现:售价为每千克20元时,每天可销售40千克,售价每上涨1元,每天的销量将减少3千克.如果该水果店想平均每天获利408元,设这种香水梨的售价上涨了x元,根据题意可列方程为()A.(20+x)(40﹣3x)=408B.(20+x﹣10)(40﹣3x)=408C.(x﹣10)[40﹣3(x﹣20)]=408D.(20+x)(40﹣3x)﹣10×40=408二.填空题(共7小题)11.(2019秋•鄄城县期末)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件.若商场每天要盈利1200元,设每件衬衫应降价x元.请你帮助商场算一算,满足x的方程是..12.(2016秋•亭湖区期中)苏果超市进购某种商品出售,若按每件盈利2元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元其销售量就减少10件,设每件商品提高x元出售,平均每天利润为1210元,根据题意可列方程为:.13.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,那么第二周每个旅游纪念品的销售价格为元.14.某种商品的进价为10元,当售价为x元时,此时能销售该商品(x+10)个,此时获利是1500元,则该商品的售价为元.15.(2021秋•零陵区期末)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件村衫降价x元,由题意列得方程.16.(2009秋•江苏期中)商场服装柜在销售中发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装共盈利1200元,设每件童装降价x元,那么应满足的方程是.17.(2006秋•锦州期末)某种服装,平均每天可销售20件,每件盈利44元,若每件降价1元,则每天可多售5件,如果每天要盈利1600元,设每件降价x,所列的方程为.三.解答题(共8小题)18.(2022•宝安区校级开学)某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个.(1)设每个背包的售价为x元,则月均销量为个.(2)在(1)的条件下,当该种书包销售单价为多少元时,销售利润是3120元?19.(2021秋•长安区期末)为了满足初中学业水平体育与健康考试的需求,某体育用品专卖店从厂家以单价40元进购了一种排球,如果以单价60元出售,那么每月可售出400个,根据销售经验,销售单价每提高1元,销售量相应减少5个.(1)设销售单价提高x元,则每个排球获得的利润是元;这种排球这个月的销售量是个;(2)若该专卖店准备在这种排球销售上一月获利10500元,同时又要使顾客得到实惠,则售价应定为多少元?20.(2022•碑林区校级二模)某超市经销一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少千克?21.(2021秋•开封期末)随着人们购物方式观念的转变,网络购物给人们生活带来了方便.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为30元的小商品进行直播销售,如果按每件40元销售,每月可卖出600件,通过市场调查发现,每件小商品售价每上涨1元,销售件数减少10件.为了实现平均每月10000元的销售利润,每件商品售价应定为多少元?这时电商每月能售出商品多少件?22.(2022•大渡口区模拟)某脐橙种植园的脐橙有线上和线下两种销售方式.已知去年12月份该脐橙种植园在线上、线下的销售价格分别为10元/千克、8元/千克.12月份一共销售了3000千克,总销售额为26000元.(1)去年12月份该脐橙种植园在线上、线下销售脐橙各多少千克?(2)元旦后是脐橙销售旺季.今年1月份,为了促销,该脐橙种植园决定在去年12月份基础上将在线上、线下的销售价格都降低,预计在线上、线下的销售量将在去年12月份的基础上分别增长3m%、25%,要使1月份该脐橙的总销售额达到30000元,求m的值.23.(2021秋•莆田期末)某商场以每千克20元的价格购进某种榴莲,计划以每千克40元的价格销售.为了让顾客得到更大的实惠,现决定降价销售,已知这种榴莲的销售量y (kg)与每千克降价x(元)(0<x<10)之间满足一次函数关系,其图象如图所示.(1)求y关于x的函数解析式.(2)该商场在销售这种榴莲中要想获利1105元,则这种榴莲每千克应降价多少元?24.(2021秋•樊城区期末)某儿童玩具店销售一种玩具,每个进价为60元,现以每个100元销售,每天可售出20个,为了迎接六一儿童节,店长决定采取适当的降价措施,经市场调查发现:若每个玩具每降价1元,则每天多售出2个.为了增加盈利,减少库存,且日销售利润要达到1200元,销售单价应定为多少元?25.(2022•尤溪县开学)2021年是我国脱贫胜利年,我国在扶贫方面取得了巨大的成就,技术扶贫也使得某县的一个电子器件厂扭亏为盈.该电子器件厂生产一种电脑显卡,2019年该类电脑显卡的成本是200元/个,2020年与2021年连续两年在技术扶贫的帮助下改进技术,降低成本,2021年该电脑显卡的成本降低到162元/个.(1)若这两年此类电脑显卡成本下降的百分率相同,求平均每年下降的百分率;(2)2021年某商场以高于成本价10%的价格购进若干个此类电脑显卡,以216.2元/个销售时,平均每天可销售20个,为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10个,如果每天盈利1120元,单价应降低多少元?初中数学解题模型之一元二次方程的应用(商品销售问题)参考答案与试题解析一.选择题(共10小题)1.(2018•石家庄模拟)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,即在确保盈利的前提下,尽量增加销售量,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3B.2.5C.2D.5【考点】一元二次方程的应用.【专题】销售问题.【分析】设售价为x元时,每星期盈利为6120元,那么每件利润为(x﹣40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60﹣x)]件,然后根据盈利为6120元即可列出方程解决问题.【解答】解:设售价为x元时,每星期盈利为6120元,由题意得(x﹣40)[300+20(60﹣x)]=6120,解得:x1=57,x2=58,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=58.∴每件商品应降价60﹣57=3元.故选:A.【点评】本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.2.(2014•鄂城区校级模拟)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低()元.A.0.2或0.3B.0.4C.0.3D.0.2【考点】一元二次方程的应用.【专题】销售问题.【分析】设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x),由于这种小型西瓜每降价0.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:200+千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=200.【解答】解:设应将每千克小型西瓜的售价降低x元.根据题意,得(3﹣2﹣x)(200+)﹣24=200.解这个方程,得x1=0.2,x2=0.3.∵200+>200+,∴应将每千克小型西瓜的售价降低0.3元.故选:C.【点评】本题考查了一元二次方程的应用,通过生活实际较好地考查学生“用数学”的意识.注意题目的要求为了减少库存,舍去不合题意的结果.3.(2021秋•侯马市期末)祁县是“中国酥梨之乡”,某超市将进价为每千克5元的酥梨按每千克8元卖出,平均一天能卖出50千克,为了尽快减少库存并且让利顾客,决定降价销售,超市发现当售价每千克下降1元时,其日销售量就增加10千克,设售价下降x元,超市每天销售酥梨的利润为120元,则可列方程为()A.(3+x)(50+10x)=120B.(3﹣x)(50+10x)=120C.(3+x)(50﹣10x)=120D.(3﹣x)(50﹣10x)=120【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】当售价下降x元时,每千克酥梨的销售利润为(3﹣x)元,平均每天的销售量为(50+10x)千克,利用超市每天销售酥梨获得的利润=每千克的销售利润×平均每天的销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:当售价下降x元时,每千克酥梨的销售利润为8﹣x﹣5=(3﹣x)元,平均每天的销售量为(50+10x)千克,依题意得:(3﹣x)(50+10x)=120.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.(2021秋•深圳期末)文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x元,由题意可列方程为()A.(38﹣x)(160+×120)=3640B.(38﹣x﹣22)(160+120x)=3640C.(38﹣x﹣22)(160+3x×120)=3640D.(38﹣x﹣22)(160+×120)=3640【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38﹣x﹣22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:∵这种工艺品的销售价每个降低x元,∴每个工艺品的销售利润为(38﹣x﹣22)元,销售量为(160+×120)个.依题意得:(38﹣x﹣22)(160+×120)=3640.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(2021•佳木斯模拟)商场购进一批衬衣,进货单价为30元,按40元出售时,每天能售出500件.若每件涨价1元,则每天销售量就减少10件.为了尽快出手这批衬衣,而且还能每天获取8000元的利润,其售价应该定为()A.50元B.60元C.70元D.50元或70元【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设售价应该定为x元,则每件的销售利润为(x﹣30)元,每天的销售量为(900﹣10x)件,利用每天销售该衬衣获得的利润=每件的销售利润×每天的销售量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合要尽快出手这批衬衣,即可得出售价应该定为50元.【解答】解:设售价应该定为x元,则每件的销售利润为(x﹣30)元,每天的销售量为500﹣10(x﹣40)=(900﹣10x)件,依题意得:(x﹣30)(900﹣10x)=8000,整理得:x1=50,x2=70.又∵要尽快出手这批衬衣,∴x=50.故选:A.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.(2020秋•孟村县期末)疫情期间,育才中学为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元.若学校购买洗手液共花费1200元,则购买洗手液的瓶数是()A.200B.150C.150或200D.200或300【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】利用总价=单价×数量求出购买100瓶洗手液所需费用,由该值小于1200元可得出学校购买洗手液的数量超过100瓶,设学校购买x瓶洗手液,则每瓶的价格为(10﹣0.02x)元,利用总价=单价×数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合最低价格不能低于每瓶5元,即可得出学校购买了200瓶洗手液.【解答】解:∵8×100=800(元),800<1200,∴学校购买洗手液的数量超过100瓶.设学校购买x瓶洗手液,则每瓶的价格为8﹣0.2×=(10﹣0.02x)元,依题意得:(10﹣0.02x)•x=1200,整理得:x2﹣500x+60000=0,解得:x1=200,x2=300.当x=200时,10﹣0.02x=10﹣0.02×200=6>5,符合题意;当x=300时,10﹣0.02x=10﹣0.02×300=4<5,不符合题意,舍去.∴学校购买了200瓶洗手液.故选:A.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(2020•青山区二模)某电商销售一款时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳平台推广费5元,为尽快回笼资金,该电商计划开展降价促销活动,通过市场调研发现,该时装售价每降1元,每天销量增加4件.问该电商对这款时装的每件售价定为多少元,若该电商每天扣除平台推广费之后的利润达到4500元,则适合的售价应定于()A.70元B.80元C.70元或90元D.90元【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设这款时装的每件售价应定为x元,则每件的销售利润为(x﹣40)元,每天的销售量为(460﹣4x)件,利用该电商每天扣除平台推广费之后的利润=每件的销售利润×每天的销售量﹣每件的平台推广费×每天的销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合为了尽快回笼资金,即可得出这款时装的每件售价应定为70元.【解答】解:设这款时装的每件售价应定为x元,则每件的销售利润为(x﹣40)元,每天的销售量为20+4(110﹣x)=(460﹣4x)件,依题意得:(x﹣40)(460﹣4x)﹣5(460﹣4x)=4500,整理得:x2﹣160x+6300=0,解得:x1=70,x2=90.又∵为了尽快回笼资金,∴x=70,∴这款时装的每件售价应定为70元.故选:A.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.(2011•温岭市模拟)商场服装柜在销售中发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装共盈利1200元,设每件童装降价x元,那么应满足的方程是()A.(40+x)(20﹣2x)=1200B.(40﹣2x)(20+x)=1200C.(40﹣x)(20+2x)=1200D.(40+2x)(20﹣x)=1200【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】如果设每件童装降价x元,那么采取措施后每件的利润为(40﹣x)元,由于每件童装降价4元,那么平均每天就可多售出8件,所以每天销售的数量为(20+2x)件,根据采取措施后每天盈利1200元,由此列出方程.【解答】解:设每件童装降价x元,那么采取措施后每件的利润为(40﹣x)元,∵每件童装降价4元,那么平均每天就可多售出8件.∴每天销售的数量为(20+2x)件,可得出方程为(40﹣x)(20+2x)=1200.故选:C.【点评】要根据题目中给出的条件判断出采取措施后,利润和销售数量的变化,根据题意来列出方程.9.(2008秋•长宁区校级期末)县食品厂生产一种饮料,平均每天销售20箱,每箱盈利32元.为了减少库存,食品厂决定降价销售.如果每箱降价1元,则每天可多销售5箱,若要保证盈利1215元,设每箱降价的价钱为x元,则根据题意可列方程()A.(32﹣x)(20+5x)=1215B.(32+x)(20+5x)=1215C.(32﹣x)(20﹣5x)=1215D.(32+x)(20+5x)=1215【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】如果设每箱降价的价钱为x元,则每天销售的数量为20+5x箱,根据利润为1215元,可得出方程.【解答】解:设每箱降价的价钱为x元,则每天销售的数量为20+5x箱,所以,可得方程:(32﹣x)(20+5x)=1215;故选:A.【点评】本题要注意降价前后利润和数量的变化,根据题意来列出方程.10.(2021秋•白银期末)香水梨在甘肃白银境内种植历史悠久,明代就有记载.某水果店以每千克10元的进价进了批香水梨,经市场调研发现:售价为每千克20元时,每天可销售40千克,售价每上涨1元,每天的销量将减少3千克.如果该水果店想平均每天获利408元,设这种香水梨的售价上涨了x元,根据题意可列方程为()A.(20+x)(40﹣3x)=408B.(20+x﹣10)(40﹣3x)=408C.(x﹣10)[40﹣3(x﹣20)]=408D.(20+x)(40﹣3x)﹣10×40=408【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】设这种香水梨的售价上涨了x元,则每千克的销售利润为(20+x﹣10)元,每天可销售(40﹣3x)千克,利用每天的销售利润=每千克的销售利润×每天的销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:设这种香水梨的售价上涨了x元,则每千克的销售利润为(20+x﹣10)元,每天可销售(40﹣3x)千克,依题意得:(20+x﹣10)(40﹣3x)=408.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共7小题)11.(2019秋•鄄城县期末)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件.若商场每天要盈利1200元,设每件衬衫应降价x元.请你帮助商场算一算,满足x的方程是(20+2x)(40﹣x)=1200..【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】由于每件衬衫每降价1元,商场平均每天可多售出2件,所以降价x元后每天可以售出:20+2x,此时每件盈利:40﹣x元,每天盈利:(20+2x)(40﹣x)=1200(元),即可得出答案.【解答】解:设每件衬衫应降价x元,根据题意得出:(20+2x)(40﹣x)=1200故答案为:(20+2x)(40﹣x)=1200.【点评】此题主要考查了由实际问题抽象出一元二次方程,根据降价后销量的变化得出等式方程是解题关键.12.(2016秋•亭湖区期中)苏果超市进购某种商品出售,若按每件盈利2元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元其销售量就减少10件,设每件商品提高x元出售,平均每天利润为1210元,根据题意可列方程为:(200﹣10x)(x+2)=1210.【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】审题可知,商品的每天利润=每件盈利的钱数×售出的商品件数,据此列方程求解即可.【解答】解:设每件商品提高x元出售,则每件盈利的钱数为:(x+2)元;售出的商品件数为:(200﹣10x)件.∴(200﹣10x)(x+2)=1210.【点评】要善于在题干中寻找相等关系,有了这个关系,问题往往变得好解决.13.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,那么第二周每个旅游纪念品的销售价格为9元.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】由第二周单价降低x元销售一周,可得出第二周的销售单价、销售数量及最后清仓处理的数量,利用总利润=总售价﹣进货总价,即可得出关于x的一元二次方程,解之即可得出x的值,再将其代入(10﹣x)中即可求出第二周每个旅游纪念品的销售价格.【解答】解:∵第二周单价降低x元销售一周,∴第二周每个旅游纪念品的销售价格为(10﹣x)元,第二周的销售量为(200+50x)个,∴清仓处理了600﹣200﹣(200+50x)=(200﹣50x)(个).依题意得:10×200+(10﹣x)(200+50x)+4(200﹣50x)﹣6×600=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣x=10﹣1=9.故答案为:9.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.某种商品的进价为10元,当售价为x元时,此时能销售该商品(x+10)个,此时获利是1500元,则该商品的售价为40元.【考点】一元二次方程的应用.【专题】销售问题.【分析】直接根据“获利是1500元”,即销售商品的个数×每件的盈利=获利,可得出方程,解方程即可求解.【解答】解:根据题意得(x﹣10)(x+10)=1500解方程得x=40(负值舍去)所以该商品的售价为40元.【点评】找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.15.(2021秋•零陵区期末)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件村衫降价x元,由题意列得方程(40﹣x)(20+2x)=1200.【考点】由实际问题抽象出一元二次方程.。

初中数学解题模型之一元二次方程的应用(单循环问题)(含答案)

初中数学解题模型之一元二次方程的应用(单循环问题)(含答案)

初中数学解题模型之一元二次方程的应用(单循环问题)一.选择题(共9小题)1.(2021秋•包头期末)要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,赛程共7天,每天3场比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=212.(2021秋•南丹县期末)要组织一次篮球联赛,赛制为单循环形式,每两队之间都赛一场,计划安排21场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=213.(2021•南漳县模拟)参加一次绿色有机农产品交易会的每两家公司都签订了一份合同,所有公司共签订了45份合同,参加这次交易会的公司共有()A.9家B.10家C.10家或9家D.19家4.(2021秋•通辽期末)为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x个队参赛,根据题意列方程为()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=155.(2021秋•大同期中)某兴趣学习小组组织一次围棋比赛,参赛选手每两人之间都要比赛一场,按计划需要进行28场比赛,则参赛的人数为()A.7人B.8人C.9人D.10人6.(2021秋•卢龙县期中)教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A.B.C.x(x﹣1)=45D.x(x+1)=457.(2021秋•正定县期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排55场比赛,则参加比赛的球队的个数是()A.8个B.9个C.10个D.11个8.(2021秋•惠安县期末)现有x支球队参加篮球比赛,比赛采用单循环制即每个球队必须和其余球队比赛一场,共比赛了45场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=459.(2021秋•津南区期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请多少个队参加比赛.设应邀请x个队参加比赛,则x的值为()A.7B.8C.9D.10二.填空题(共16小题)10.(2021秋•朝阳县期末)为增强学生身体素质,某校开展篮球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排36场比赛,应安排多少个球队参赛?设安排x个球队参赛,根据题意,可列方程为.11.(2021秋•秀英区校级期中)若干支球队参加一次足球联赛,每两队之间都只打一场比赛,共有比赛55场,总共有支球队参加比赛.12.(2021秋•岷县期中)组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了15场比赛,则这次参加比赛的球队个数为.13.(2021秋•平阴县期中)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为.14.(2020秋•东莞市月考)石龙三中组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则这次参加比赛的球队个数为.15.(2021春•徐汇区校级月考)八年级的一个兴趣小组新成员见面时相互握手表示友好,共握了15次手,则该小组共有成员人.16.(2021秋•蓬江区校级月考)学校组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则有支队伍参加该项比赛.17.(2021•柳南区校级模拟)要组织一次球赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,若参赛球队的个数为x个,则可列方程为.18.(2021秋•镇江月考)某校初三年级组织一次班级篮球赛,赛制为单循环(每两班之间都赛一场),需安排45场比赛,则共有个班级参加比赛.19.(2021秋•龙华区期中)某年级举行篮球比赛,赛制为单循环赛,即每一个球队都和其他的球队进行一场比赛,已知共举行了28场比赛,那么参加比赛的球队数共有个.20.(2021秋•东莞市月考)九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行一场比赛),据统计,比赛共进行了28场,求九年级共有多少个班.若设九年级共有x 个班,根据题意列出的方程是.21.(2021秋•临川区校级月考)要组织一次篮球联赛,赛制为单循环比赛(每两队之间都赛一场),计划安排15场比赛,应邀请多少个队参加比赛?设应邀参加比赛的球队有x 个,则可以列方程为.22.(2020秋•禹州市期中)某市中学生篮球联赛实行单循环制,参加的每两支球队之间都要进行一场比赛,共要比赛45场,设参加比赛的球队有x支,根据题意,可列方程为.23.(2020秋•义马市期中)在某次聚会上,每两人都握了一次手,所有人共握手10次,那么共有多少人参加了这次聚会?设有x人参加这次聚会,则根据题意列出的方程是.24.(2021春•嘉兴期末)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有个班级.25.(2021秋•中山市期中)在某次聚会上每两人都握了一次手,所有的共握手28次,设有x人参加这次聚会,则列出方程正确的是.初中数学解题模型之一元二次方程的应用(单循环问题)参考答案与试题解析一.选择题(共9小题)1.(2021秋•包头期末)要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,赛程共7天,每天3场比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=21【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用比赛的总场次数=参赛队伍数×(参赛队伍数﹣1)÷2,即可得出关于x 的一元二次方程,此题得解.【解答】解:依题意得:x(x﹣1)=3×7,即x(x﹣1)=3×7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2.(2021秋•南丹县期末)要组织一次篮球联赛,赛制为单循环形式,每两队之间都赛一场,计划安排21场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=21【考点】由实际问题抽象出一元二次方程.【专题】一次方程(组)及应用;应用意识.【分析】根据题意可知,这是一道典型的单循环比赛,然后根据计划安排21场比赛,即可得到x(x﹣1)=21,从而可以解答本题.【解答】解:由题意可得,x(x﹣1)=21,故选:B.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题目中的数量关系,列出相应的方程.3.(2021•南漳县模拟)参加一次绿色有机农产品交易会的每两家公司都签订了一份合同,所有公司共签订了45份合同,参加这次交易会的公司共有()A.9家B.10家C.10家或9家D.19家【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设参加这次交易会的公司共有x家,利用签订合同的总数=参加这次交易会的公司数×(参加这次交易会的公司数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加这次交易会的公司共有x家,依题意得:x(x﹣1)=45,整理得:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不合题意,舍去),∴参加这次交易会的公司共有10家.故选:B.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4.(2021秋•通辽期末)为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x个队参赛,根据题意列方程为()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=15【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用安排比赛的场次数=邀请参赛的队伍数×(邀请参赛的队伍数﹣1)÷2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:x(x﹣1)=15.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(2021秋•大同期中)某兴趣学习小组组织一次围棋比赛,参赛选手每两人之间都要比赛一场,按计划需要进行28场比赛,则参赛的人数为()A.7人B.8人C.9人D.10人【考点】一元二次方程的应用.【专题】应用题;一元二次方程及应用;运算能力.【分析】设参赛的人数为x,由参赛的每两人之间都要比赛一场,即可得出关于x的一元二次方程,此题得解.【解答】解:设比赛组织者应邀请x支参赛队参与比赛,依题意,得:x(x﹣1)=28,解得:x1=8,x2=﹣7(不合题意,舍去).故选:B.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.(2021秋•卢龙县期中)教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A.B.C.x(x﹣1)=45D.x(x+1)=45【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选:A.【点评】此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.7.(2021秋•正定县期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排55场比赛,则参加比赛的球队的个数是()A.8个B.9个C.10个D.11个【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设参加比赛的球队有x个,则可表示出所比赛的场数,由条件可列出方程,可求得球队的个数.【解答】解:设参加比赛的球队有x个,根据题意可得x(x﹣1)=55,解得x1=11,x2=﹣10(舍去),即参加比赛的球队有11个,故选:D.【点评】本题主要考查一元二次方程的应用,根据题意,找到等量关系,列出方程是解题的关键.8.(2021秋•惠安县期末)现有x支球队参加篮球比赛,比赛采用单循环制即每个球队必须和其余球队比赛一场,共比赛了45场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1).∴共比赛了45场,∴x(x﹣1)=45,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(2021秋•津南区期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请多少个队参加比赛.设应邀请x个队参加比赛,则x的值为()A.7B.8C.9D.10【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】根据赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛列出方程即可.【解答】解:设应邀请x个队参加比赛,则列方程为x(x﹣1)=21,解这个方程,得x1=7,x2=﹣6(舍去).即x的值为7.故选:A.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共16小题)10.(2021秋•朝阳县期末)为增强学生身体素质,某校开展篮球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排36场比赛,应安排多少个球队参赛?设安排x个球队参赛,根据题意,可列方程为x(x﹣1)=36.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用比赛的总场次数=参赛队伍数×(参赛队伍数﹣1)÷2,即可得出关于x 的一元二次方程,此题得解.【解答】解:依题意得:x(x﹣1)=36.故答案为:x(x﹣1)=36.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.(2021秋•秀英区校级期中)若干支球队参加一次足球联赛,每两队之间都只打一场比赛,共有比赛55场,总共有11支球队参加比赛.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设共有x支球队参加比赛,利用比赛的总场次数=参赛球队数量×(参赛球队数量﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x支球队参加比赛,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).故答案为:11.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12.(2021秋•岷县期中)组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了15场比赛,则这次参加比赛的球队个数为6.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设这次参加比赛的球队个数为x,利用进行比赛的总场次数=参赛球队的个数×(参赛球队的个数﹣1),即可得出关于x的一元二次方程,解之取其正值即可得出这次参加比赛的球队个数.【解答】解:设这次参加比赛的球队个数为x,依题意得:x(x﹣1)=15,整理得:x2﹣x﹣30=0,解得:x1=6,x2=﹣5(不合题意,舍去).故答案为:6.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.(2021秋•平阴县期中)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为6.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设八年级有x个班,利用比赛的总场次数=八年级的班级数×(八年级的班级数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出八年级共有6个班.【解答】解:设八年级有x个班,依题意得:x(x﹣1)=15,整理得:x2﹣x﹣30=0,解得:x1=6,x2=﹣5(不合题意,舍去).故答案为:6.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.(2020秋•东莞市月考)石龙三中组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则这次参加比赛的球队个数为9.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设这次参加比赛的球队个数为x,利用比赛的总场数=参赛球队数量×(参赛球队数量﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出这次共有9支队伍参赛.【解答】解:设这次参加比赛的球队个数为x,依题意得:x(x﹣1)=36,整理得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去).故答案为:9.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.(2021春•徐汇区校级月考)八年级的一个兴趣小组新成员见面时相互握手表示友好,共握了15次手,则该小组共有成员6人.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设该小组共有成员x人,利用握手的总次数=该小组成员人数×(该小组成员人数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该小组共有成员x人,依题意得:x(x﹣1)=15,整理得:x2﹣x﹣30=0,解得:x1=6,x2=﹣5(不合题意,舍去),∴该小组共有成员6人.故答案为:6.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.(2021秋•蓬江区校级月考)学校组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则有9支队伍参加该项比赛.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设这次参加比赛的球队个数为x,利用比赛的总场数=参赛球队数量×(参赛球队数量﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出这次共有9支队伍参赛.【解答】解:设这次参加比赛的球队个数为x,依题意得:x(x﹣1)=36,整理得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去).答:有9支队伍参加该项比赛,故答案为:9.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.(2021•柳南区校级模拟)要组织一次球赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,若参赛球队的个数为x个,则可列方程为x(x﹣1)÷2=21.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=,即可列方程.【解答】解:若参赛球队的个数为x个,则每个队都要赛(x﹣1)场,但两队之间只有一场比赛,根据题意可得x(x﹣1)÷2=21,故答案为:x(x﹣1)÷2=21.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.18.(2021秋•镇江月考)某校初三年级组织一次班级篮球赛,赛制为单循环(每两班之间都赛一场),需安排45场比赛,则共有10个班级参加比赛.【考点】一元二次方程的应用.【分析】设共有x个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【解答】解:设共有x个班级参加比赛,根据题意得:=45,整理得:x2﹣x﹣90=0,即(x﹣10)(x+9)=0,解得:x=10或x=﹣9(舍去).则共有10个班级球队参加比赛.故答案为10.【点评】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排45场比赛”.19.(2021秋•龙华区期中)某年级举行篮球比赛,赛制为单循环赛,即每一个球队都和其他的球队进行一场比赛,已知共举行了28场比赛,那么参加比赛的球队数共有8个.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设参加比赛的球队数共有x个,由比赛共举行了28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加比赛的球队数共有x个,依题意,得:x(x﹣1)=28,解得:x1=8,x2=﹣7(不合题意,舍去).故答案是:8.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.(2021秋•东莞市月考)九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行一场比赛),据统计,比赛共进行了28场,求九年级共有多少个班.若设九年级共有x个班,根据题意列出的方程是x(x﹣1)=28.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】设该中学九年级共有x个班级,赛制为单循环形式(每两班之间都赛一场),则每个队参加(x﹣1)场比赛,则共有x(x﹣1)场比赛,可以列出一元二次方程.【解答】解:设九年级共有x个班,每个班都要赛(x﹣1)场,但两班之间只有一场比赛,故x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题主要考查了一元二次方程的应用,根据比赛场数与参赛队之间的关系为:比赛场数=队数×(队数﹣1)÷2,进而得出方程是解题关键.21.(2021秋•临川区校级月考)要组织一次篮球联赛,赛制为单循环比赛(每两队之间都赛一场),计划安排15场比赛,应邀请多少个队参加比赛?设应邀参加比赛的球队有x个,则可以列方程为=15.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】根据赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛列出方程即可.【解答】解:设应邀请x个队参加比赛?则列方程为=15,故答案为:=15.【点评】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22.(2020秋•禹州市期中)某市中学生篮球联赛实行单循环制,参加的每两支球队之间都要进行一场比赛,共要比赛45场,设参加比赛的球队有x支,根据题意,可列方程为x(x﹣1)=45.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用比赛的总场次数=参赛的队伍数×(参赛的队伍数﹣1),即可得出关于x 的一元二次方程,此题得解.【解答】解:设参加比赛的球队有x支,依题意得:x(x﹣1)=45.故答案为:x(x﹣1)=45.【点评】本题考查了由实际问题抽象出一元二次方程,根据“比赛的总场次数=参赛的队伍数×(参赛的队伍数﹣1)”列出方程是解决问题的关键.23.(2020秋•义马市期中)在某次聚会上,每两人都握了一次手,所有人共握手10次,那么共有多少人参加了这次聚会?设有x人参加这次聚会,则根据题意列出的方程是=10.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:(x﹣1)(次);依题意,可列方程为:=10.故答案为:=10.【点评】考查了由实际问题抽象出一元二次方程.理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.24.(2021春•嘉兴期末)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有8个班级.【考点】一元二次方程的应用.【专题】应用题;一元二次方程及应用;运算能力.【分析】设八年级有x个班,根据“各班均组队参赛,赛制为单循环形式,且共需安排15场比赛”,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设八年级有x个班,依题意得:x(x﹣1)=28,整理得:x2﹣x﹣56=0,解得:x1=8,x2=﹣7(不合题意,舍去).则该校八年级有8个班级.故答案为:8.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(2021秋•中山市期中)在某次聚会上每两人都握了一次手,所有的共握手28次,设有x人参加这次聚会,则列出方程正确的是x(x﹣1)=28.【考点】一元二次方程的应用.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:x(x﹣1)次;已知“所有人共握手28次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:(x﹣1)次,根据题意得:x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】此题主要考查了由实际问题抽象一元二次方程的应用,关键是理清题意,找对等量关系,需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.考点卡片1.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地审清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.2.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.。

《数学模型》试题及参考答案

《数学模型》试题及参考答案

A卷2009-2010学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 2010 年7月题号一二三四五六七八总分得分阅卷人数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。

(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。

二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。

(2)简述数学模型的表现形态,并举例说明。

第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。

(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。

四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k r.在每个生产周期T内,开始的一段时间(0 t T0)一边生产一边销售,后来的一段时间(T0t T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t) 的表示式并画出示意图。

(2)以总费用最小为准则确定最优周期T,讨论kr的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。

六(15分)(1)建立一般的战争模型,分析各项所表示的含义。

(2)在假设x0y0,b 9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。

第三页七(15分)设渔场鱼量的自然增长服从模型x rxln N,又单位时间捕捞量为xh Ex.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度E m 和渔场鱼量水平x0.八(10分)假设商品价格y k和供应量x k满足差分方程y k1 y0(xk1x k x0), 02xk1 x0(y k y0) 0求差分方程的平衡点,推导稳定条件第四页A卷2009-2010学年第2学期《数学模型》试题参考答案与评分标准专业班级开课系室数学与计算科学学院考试日期2010年7月数学建模试卷(1007A)参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。

部编数学八年级上册全等变化模型一8字全等模型(解析版)含答案

部编数学八年级上册全等变化模型一8字全等模型(解析版)含答案

全等变化模型一 8字全等模型【模型展示】【模型条件】如图,直线21l l ∥,OMON =【模型结论】DNO BMO DNO BMO CDO ABO △,△△,△△△≅≅≅ .HGO EFO NHO MEO △,△△△≅≅【模型解析】从变化方式的角度分析,8字全等模型可以看成是两个全等三角形绕三角形的一个顶点旋转180°而得;从图形的结构分析,8字全等模型是由两条平行线和平行线间的中点组成的.【知识链接】三线八角,对顶角相等【模型总结】①当两条平行线间出现中点时,一般都会形成全等;②在运用和求证线段中点时,可以尝试构造8字全等来解决。

③倍长中线是8字全等最常见的运用,在三角形中线问题经常采用此方法处理。

.【模型巩固】【例1-1】如图,BD 是ABC D 的中线,6AB =,4BC =,求中线BD 的取值范围.【解答】解:如图所示,延长BD 到E ,使DE BD =,连接AE ,BD Q 是ABC D 的中线,AD CD \=,在ADE D 和CDB D 中,AD CD ADE CDB BD ED =ìïÐ=Ðíï=î,()ADE CDB SAS \D ≅D ,AE BC \=,在ABE D 中,有AB AE BE AB AE -<<+,即2210BD <<,15BD \<<.【例1-2】如图,在△ABC 中,∠ABC =45°,AM ⊥BC 于点M ,点D 在AM 上,且DM =CM ,F 是BC 的中点,连接FD 并延长,在FD 的延长线上有一点E ,连接CE ,且CE =CA ,∠BDF =36°,求∠E 的度数.【分析】先证明△AMC ≌△BMD ,延长EF 到点G ,使得FG =EF ,连接BG .再证△BFG ≌△CFE 可得BG =CE ,∠G =∠E ,从而得BD =BG =CE ,即可得∠BDG =∠G =∠CEF .【解答】解:∵∠ABM =45°,AM ⊥BM ,∴∠BMD =∠AMC ,BM =AM ,在△BMD 和△AMC中,,∴△BMD≌△AMC(SAS),如图,延长EF到点G,使得FG=EF,连接BG.∵△BMD≌△AMC∴BD=AC,又∵CE=AC,∴BD=CE,在△BFG和△CFE中,,∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDF=∠G=∠CEF.∴∠BDF=∠CEF,∴∠E=36°.【例1-3】如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,AB+CD=AC.(1)求证:CO平分∠ACD;(2)求证:AO平分∠BAC,OA⊥OC.【解答】证明:(1)延长AO交CD的延长线于E.∵∠D=∠ABD=90°,∴∠CDB+∠ABD=90°,∴AB∥CE,∴∠BAO=∠E,在△ABO和△EDO中,,∴△ABO≌△EDO,∴AO=OE,AB=DE,∵AC=AB+CD,CE=CD+DE=CD+AB,∴CA=CE,∵OA=OE,∴OC平分∠ACD.(2)∵CA=CE,∴∠CAE=∠E,∵∠E=∠BAE,∴∠CAO=∠OAB,∴OA平分∠CAB,∵CA=CE,OA=OE,∴CO⊥AO.【例1-4】如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.(1)若∠BAN=15°,求∠N;(2)若AE=CF,求证:2AG=AF.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AC∥BN,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN中,∠N=180°﹣∠ABN﹣∠BAN=180°﹣120°﹣15°=45°;(2)∵AC∥BN,∴∠N=∠GAE,∠NBG=∠AEG,又∵点G是线段BE的中点,∴BG=EG,∴△NBG≌△AEG(AAS),∴AG=NG,AE=BN,∵AE=CF,∴BN=CF,∵∠ACB=60°,∴∠ACF=180°﹣∠ACB=120°,∴∠ABN =∠ACF ,又∵AB =AC ,∴△ABN ≌△ACF (SAS ),∴AF =AN ,∵AG =NG =AN ,∴AF =2AG .【例1-5】如图,在等边三角形ABC 中,点P 为AC 边上一动点(点P 不与A 、C 重合),延长AB 至点N ,使CP BN =,连接PN 交BC 于点D ,PH BC ^于点H .①求证:DP DN =; ②探究DH 与AB 的数量关系,并证明.【解答】(1)证明:过点P 作//PQ AB ,交BC 于点Q ,如图所示:在等边ABC D 中,60A ACB C Ð=Ð=Ð=°,//PQ AB Q ,60CPQ A \Ð=Ð=°,60CQP ABC Ð=Ð=°,QPD N Ð=Ð,CPQ \D 是等边三角形,CP PQ \=,CP BN =Q , PQ BN \=,在QDP D 和BDN D 中,QDP BDN QPD NPQ NB Ð=ÐìïÐ=Ðíï=î,()QDP BDN AAS \D ≅D ,PD DN \=;(2)解:12DH AB =.理由如下:CPQ D Q 是等边三角形,且PH BC ^,CH HQ \=,QDP BDN D ≅D Q ,QD BD \=,12DH HQ QD BC \=+=,BC AB =Q ,12DH AB \=.【模型拓展】【拓展1-1】(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC 中,若AB =13,AC =9,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法,延长AD 至点E ,使DE =AD ,连接BE ,容易证得△ADC ≌△EDB ,再由“三角形的三边关系”可求得AD 的取值范围是 2<AD <11 .解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【初步运用】如图2,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且∠FAE =∠AFE .若AE =4,EC =3,求线段BF 的长.(3)【拓展提升】如图3,在△ABC 中,D 为BC 的中点,DE ⊥DF 分别交AB ,AC 于点E ,F .求证:BE +CF >EF .【分析】(1)先判断出△ADC ≌△EDB (SAS ),得出BE =AC =9,最后用三角形的三边关系计算;(2)延长AD 到M ,使AD =DM ,连接BM ,证明△ADC ≌△MDB ,根据全等三角形的性质解答;(3)延长ED 到点G ,使GD =ED ,连接CG 、GF 、EF ,先证明△CDG ≌△BDE ,得CG =BE ,根据三角形的三边关系得CG +CF >GF ,则BE +CF >GF ,由DF 垂直平分EG 得GF =EF ,所以BE +CF >EF .【解答】(1)解:延长AD 至点E ,使DE =AD ,连接BE ,在△ADC 和△EDB 中,,∴△ADC≌△EDB(SAS),∴BE=AC=9,∵AB﹣BE<AE<AB+BE,∴4<AE<22∴2<AD<11,故答案为:2<AD<11.(2)延长AD到M,使AD=DM,连接BM,如图2,∵AD是△ABC中线,∴BD=DC,在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M,∵∠AFE=∠AEF,∴AE=EF=4,∴AC=AE+CE=7,∴BM=AC=7,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即AC=BF=7;(3)证明:如图3,延长ED到点G,使GD=ED,连接CG、GF,∵D是BC边上的中点,∴CD=BD,在△CDG和△BDE中,,∴△CDG≌△BDE(SAS),∴CG=BE,∵CG+CF>GF,∴BE+CF>GF,∵DE⊥DF,GD=ED,∴DF垂直平分EG,∴GF=EF,∴BE+CF>EF.=,【拓展1-2】如图1,在Rt ABCABCD中,90Ð=°,D、E分别为斜边AC上两点,且AD AB =,连接BD、BE.CE CBÐ的度数;(1)求EBD^于点D,交BE的延长线于点F,在AB上选取一点H,使得(2)如图2,过点D作FD BD=,连接FH、FG,求证:BH BC=,连接CH,在AC上选取一点G,使得GD CD=.FH FG【解答】解:(1)如图1中,AB AD =Q ,CB CE =,ABD ADB \Ð=Ð,CBE CEB Ð=Ð,2180A ADB Ð+Ð=°Q ,2180C CEB Ð+Ð=°,22360A ADB C CEB \Ð+Ð+Ð+Ð=°,90ABC Ð=°Q ,90A C \Ð+Ð=°,135CEB ADB \Ð+Ð=°180()45EBD ADB CEB \Ð=°-Ð+Ð=°.(2)如图2中,延长BD 到M ,使得DM BD =.DG GC =Q ,BDC MDG Ð=Ð,BD DM =,BDC MDG \D ≅D ,BC MG \=,CBD DMG Ð=Ð,BH BC =Q ,BH MG \=,90ABC Ð=°Q ,45DBF Ð=°,45CBD FBH \Ð+Ð=°,DF BD ^Q ,DF BD DM \==,45GMF DMG \Ð+Ð=°,FBH GMF \Ð=Ð,DF BM ^Q ,BD DM =,FB FM \=,,HBF GMF \D ≅D.【拓展1-3】如图1,在△ABC 中,AB =AC ,D 、E 在BC 边上,连接AD 、AE ,AD =AE ;(1)求证:BD =CE ;(2)如图2,F 为AE 上一点,连接DF 、CF ,若DF =CF ,∠DAE =60°,求证:AF =CE .(3)如图3,在(2)的条件下,N 为DE 上一点,连接AN ,∠BAD =2∠DAN ,M 为DF 中点,连接AM ,若AM =6,AF =5,求EN 的长.【解答】(1)证明:如图1中,过点A 作AH ⊥BC 于点H .∵AB =AC ,AD =AE ,AH ⊥BC ,∴BH =CH ,DH =EH ,∴BD =CE ,∴BD +DE =EC +DE ,即BE =CD ;(2)证明:过点F 作FT ∥DE 交AD 于点T .∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴∠ADE =∠AED =60°,∵FT ∥DE ,FH FG \=∴∠ATF=∠ADE=60°,∠AFT=∠AED=60°,∴△AFT是等边三角形,∴AT=AF=FT,∵AD=AE,∴DT=EF,∵FD=FC,∴∠FDC=∠FCD=∠DFT,∵∠DTF=∠CEF=120°,∴△FTD≌△CEF(AAS),∴FT=CE,∴AF=EC;(3)解:如图3中,延长AM到Q,使得MQ=AM,则AQ=2AM=12,设∠DAN=α,则∠BAD =∠CAE=2α.∴∠B=60°﹣2α,∴∠CNA=∠B+∠BAN=60°﹣2α+3α=60°+α,∠CAN=∠CAE+∠EAN=2α+60°﹣α=60°+α,∴∠CNA=∠CAN,∴CN=CA,∵MA=MQ,∠AMF=∠QMD,MF=MD,∴△MAF≌△MQD(SAS),∴AF=DQ,∠MAF=∠Q,∴DQ∥AE,∴∠ADQ=180°﹣∠DAE=120°,∵∠ADE=60°,∴∠ADB=180°﹣∠ADE=120°,∴∠ADB=∠ADQ=120°,∵BD=EC=AF=5,∴DB=DQ,∵AD=AD,∴△ADB≌△ADQ(SAS),∴AB=AQ=12,∴AC=AB=CN=12,∴EN=12﹣5=7.。

数学模型第三版)课后习题答案

数学模型第三版)课后习题答案

《数学模型》作业解答)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车第一章作业解答第 3 页 共 57 页获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++030032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数.16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(21010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y 得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.第一章作业解答第 5 页 共 57 页量纲矩阵为A=)()()()()()()()(12001101000110k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g lt =1π, )(21πϕπ=, 2/12/12mgkl =π ∴)(2/12/1mgkl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ 当无量纲量l l m m '='时, 就有 ll l g g l t t '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.⎩⎨⎧==---22/112/112/12/1ππk g m l g tl解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,第一章作业解答第 7 页 共 57 页r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kT T r k r c 2)(2⋅-= 于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c T c dT dC 2)(221-+-=. 0=dTdC令, 得)(221r k r c kc T -=*易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,T r k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TTt <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β第一章作业解答第 9 页 共 57 页)(2)8322(22022bp a T T t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(max 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天)根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100k k T C 100309302500)(0+⨯+==353.33+100k )(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域.925002+-=TdT dC第一章作业解答第 11 页 共 57 页直线l :20x+30y=c 在可行域内平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 max S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 max x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得第一章作业解答第 13 页 共 57 页⎩⎨⎧==2020y x .max S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s (2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim.0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s,1,10 dtdit s s σσσ从而则若 ()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得第一章作业解答第 15 页 共 57 页()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f ()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt 3种情况下的血药浓度曲线如下:第一章作业解答第 17 页 共 57 页第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e e ba vaw Q v bl a vl β()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ第一章作业解答第 19 页 共 57 页⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;第一章作业解答第 21 页 共 57 页②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dt dx .∴0x 不稳定; ③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f第一章作业解答第 23 页 共 57 页② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β第一章作业解答第 25 页 共 57 页(1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 212,1<⇔<∴αβλ 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则 ,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得第一章作业解答第 27 页 共 57 页,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:第一章作业解答第 29 页 共 57∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()T nk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0= 数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层第一章作业解答第 31 页 共 57 页2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n n npq q m npq m q m 于是带走产品的平均数是 ()122-+-n n npq q m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n n p q q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:第一章作业解答第 33 页 共 57 页由上知:m n E 4≈,226'mn E ≈ ∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:应用题的一般处理思路是什么?
问题2:应用题中建立数学模型常见的关键词和隐含数学关系有哪些?
以下是问题及答案,请对比参考:
问题1:应用题的一般处理思路是什么?
答:
1.理解题意,梳理信息
通过列表或画线段图等方式,对信息分类整理.
2.辨识类型,建立模型
根据所属类型,围绕关键词、隐含的数学关系,建立数学模型.
类型常考虑:
①所属的数学模型(方程不等式问题、函数问题、测量问题);
②实际生活的背景(工程问题、行程问题、经济问题).
3.求解验证,回归实际
①结果是否符合题目要求;
②结果是否符合实际意义.
问题2:应用题中建立数学模型常见的关键词和隐含数学关系有哪些?
答:
常见关键词:
①共需、同时、刚好、恰好、相同……,考虑方程;
②不超过、不多于、少于、至少……,考虑不等式(组);
③最大利润、最省钱、运费最少、尽可能少、最小值……,考虑函数(一次函数、二次函数),根据函数性质求取最值(自变量、因变量的取值范围).
隐含的数学关系:
①原材料供应型(使用量≤供应量)
②容器容量型(载重量≥货物量)
数学模型应用问题(一)
一、单选题(共6道,每道16分)
1.某商场计划购进冰箱、彩电进行销售,相关信息如下表:
已知商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等.
(1)表中a的值为( )
A.1600
B.2000
C.2500
D.2400
答案:B
解题思路:
试题难度:三颗星知识点:分式方程的应用
2.(上接第1题)(2)为满足市场需求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的,则该商场有( )种进货方案.
A.2
B.3
C.4
D.5
答案:B
解题思路:
试题难度:三颗星知识点:一元一次不等式组的应用
3.(上接第1,2题)(3)在(2)的条件下,若该商场将购进的冰箱、彩电全部售出,获得的利润为W元,则W的最大值为( )
A.22300
B.22400
C.22500
D.25000
答案:C
解题思路:
试题难度:三颗星知识点:一次函数的应用
4.某商家经销一种绿茶,用于装修门面已投资3 000元,已知绿茶每千克的成本为50元,在第一个月的试销时间内发现,月销售量w(千克)随销售单价x(元/千克)的变化而变化,具体变化规律如下表所示:
(1)根据上表分析,w与x之间的函数关系式为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:一次函数的应用
5.(上接第4题)(2)设该绿茶的月销售利润为y(元)(销售利润=售价×销售量-成本-投资),则y与x之间的函数关系式为_______,当x=_______时,y的值最大,最大值为_________.( )
A.,85,2450
B.,85,3550
C.,85,550
D.,85,-550
答案:D
解题思路:
试题难度:三颗星知识点:二次函数的应用
6.(上接第4,5题)(3)若在第一个月里,按使销售利润最大的销售单价进行销售,在第二个月里受物价部门干预,销售单价不得高于90元/千克,要想在全部收回投资的基础上使第二个月的利润达到1 700元,那么第二个月里应该确定销售单价为( )元.
A.85
B.75
C.75或95
D.95
答案:B
解题思路:
试题难度:三颗星知识点:二次函数的应用。

相关文档
最新文档