第23届华杯赛小学高年级组初赛试题

合集下载

第二十三届华杯赛试题(2018)

第二十三届华杯赛试题(2018)

第二十三届“华罗庚金杯”少年数学邀请赛2018年一、选择题(每小题10分,共60分)1.A、B均为小于1的小数,算式A×B+0.1的结果( )。

A.大于1 B.小于l C.等于1 D.无法确定和l的大小2.小明把6个数分别写在三张卡片的正面和反面,每个面上写一个数,每张卡片上的2个数的和相等。

然后他将卡片放在桌子上,发现正面上写着28、40、49,反面上的数都只能被1和它自己整除。

那么,反面上的三个数的平均数是( )。

A.11 B.12 C.39 D.403.连接正方形ABCD的对角线,并将四个顶点分别染成红色或黄色,将顶点颜色全相同的三角形称为同色三角形,则图中有同色三角形的染色方法共有( )种。

A. 12 B.17 C.22 D.104.在6×6网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个6×6的网格中共有( )枚黑色围棋子。

A. 18 B.14 C.12 D.105.数字和等于218的最小自然数是个n位数,则n=( )。

A. 22 B.23 C.24 D.256.I型和Ⅱ型电子玩具车各一辆,沿相同的两个圆形轨道跑动,I型每5分钟跑1圈,Ⅱ型每3分钟跑1圈。

某同一时刻,I型和Ⅱ型恰好都开始跑第19圈,则I型比Ⅱ型提前( )分钟开始跑动。

A.32 B.36 C.38 D.54二、填空题(每小题10分,共40分)7.题图是某市未来十日的空气质量指数趋势图,空气质量指数小于100为优良。

从图上看,连续两天优良的是____号,____号。

8.如图所示,一个正方形纸片ABCD沿对角线BD剪成两个三角形纸片。

第一步操作,将三角形ABD竖直向下平移了3厘米至三角形EFG;第二步操作,将三角形竖直向下再平移5厘米至三角形HIJ。

第一步操作后两张纸片重叠的面积与第二步操作后两张纸片重叠的面积相等,那么这个正方形纸片ABCD的面积是____平方厘米。

小学组华杯赛试题及答案

小学组华杯赛试题及答案

小学组华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上4等于20,这个数是多少?A. 4B. 5C. 6D. 7答案:B3. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 30B. 50C. 60D. 70答案:B4. 一个数的5倍减去3等于12,这个数是多少?A. 3B. 2C. 1D. 0答案:A二、填空题(每题5分,共20分)5. 一个数加上10等于20,这个数是______。

答案:106. 一个数的4倍是24,这个数是______。

答案:67. 一个数的2倍加上3等于15,这个数是______。

答案:68. 一个数的3倍减去5等于10,这个数是______。

答案:5三、计算题(每题10分,共20分)9. 计算下列算式:(23 + 45) × (12 - 8)答案:68 × 4 = 27210. 计算下列算式:(36 ÷ 4) + (54 ÷ 6)答案:9 + 9 = 18四、解答题(每题15分,共30分)11. 一个班级有48名学生,如果每排坐8名学生,可以坐满几排?答案:48 ÷ 8 = 6(排)12. 一个长方形的长是15厘米,宽是9厘米,求它的周长。

答案:(15 + 9) × 2 = 24 × 2 = 48(厘米)五、应用题(每题20分,共20分)13. 小明有36个苹果,他打算每4个苹果装一袋,可以装几袋?答案:36 ÷ 4 = 9(袋)。

华杯赛初赛试题及答案

华杯赛初赛试题及答案

华杯赛初赛试题及答案华杯赛初赛试题及答案一、选择题1.下列选项中,哪个是所有外国歌曲?A.梅花香自苦寒来B.黄河之水天上来C.Let It GoD.没那么简单答案:C2.中国三大中心城市不包括以下哪个城市?A.北京B.上海C.深圳D.广州答案:D3."世界上最长的河流"指的是哪条河?A.长江B.亚马逊河C.尼罗河D.黄河答案:C4.下面哪个星座是水瓶座?A.1月20日-2月18日B.2月19日-3月20日C.3月21日-4月19日D.4月20日-5月20日答案:A5.以下哪个国家拥有最多的人口?A.印度B.巴西C.美国D.俄罗斯答案:A二、填空题1.请列举五大洲的名称。

答案:______、______、______、______、______。

2.请写出日本首都的名称。

答案:_________。

3.请填写下列成语:一日三秋。

答案:______。

4.下面哪个不是动物的名字?A.猫B.狗C.凳子D.鸟答案:C5.请写出中国古代四大发明中的任意一项。

答案:______。

三、问答题1.请简述中国的国旗和国徽的设计。

答案:中国的国旗背景为红色,中间有五颗黄色的星星,象征着中国共产主义革命的五类人民。

国徽上有天安门的图案以及麦穗和五星。

2.请写出任意一位中国的古代历史人物。

答案:_________。

3.请解释什么是环保。

答案:环保是指保护和改善环境,使人们的生活环境更加美好,并且不对地球造成不可逆转的伤害。

四、判断题判断下列句子的正误,正确的写“对”,错误的写“错”。

1.地球是宇宙中唯一有生命的行星。

答案:错2.北京是中国的首都。

答案:对3.《罗密欧与朱丽叶》是一部古希腊悲剧。

答案:错4."绿水青山就是金山银山"是习近平提出的口号。

答案:对5.手机可以用来打电话和上网。

答案:对五、作文题请根据自己的实际情况,写一篇关于节约用水的作文。

(文章正文内容,请根据个人实际情况进行书写,字数不限)答案:(以下为作文示例)在日常生活中,节约用水对我们每个人都非常重要。

第23届华杯赛小学中年级组初赛试题

第23届华杯赛小学中年级组初赛试题

第二十三届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)(时间:2017年12月9日10:00—11:00)一、选择题(每小题10分,共60分。

以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

)1、A、B均为小于1的小数,算式A×B+0.1的结果是()。

A.大于1 B.小于1 C.等于1 D.无法确定和1的大小2、小明把6个数分别写在三张卡片的正面和反面,每个面上写一个数,每张卡片上的2个数的和相等,然后他将卡片放在桌子上,发现正面上写着28、40、49,反面上的数都只能被1和它自己整除,那么,反面上的三个数的平均数是()。

A.11 B.12 C.39 D.403、连接正方形ABCD的对角线,并将四个顶点分别染成红色或黄色,将顶点颜色全相同的三角形称为同色三角形,则图中有同色三角形的染色方块共有()种。

A.12 B.17 C.22 D.104、在6×6网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中白色棋子的数目都相等,那么这个6×6网格中共有()枚黑色棋子。

A.18 B.14 C.12 D.105、数字和等于218的最小自然数是个n位数,则n=()。

A.22 B.23 C.24 D.256、Ⅰ型和Ⅱ型电子玩具车各一辆,沿相同的两个圆形轨道跑步,Ⅰ型每5分钟跑1圈,Ⅱ型每3分钟跑1圈。

某同一时刻,Ⅰ型和Ⅱ型恰好都开始跑第19圈,则Ⅰ型比Ⅱ型提前()分钟开始跑动。

A.32 B.36 C.38 D.54二、填空题(每小题10分,共40分)7、下图是某市未来十日的空气质量指数趋势图,空气质量指数小于100为优良,从图上看,连续两天优良的是,号。

8、如上图所示,一个正方形纸片ABCD沿对角线BD剪成两个三角形,第一步操作,将三角形ABD竖直向下平移了3厘米至三角形EFG;第二步操作,将三角形EFG竖直向下再平移5厘米至三角形HIJ。

华杯赛试题及答案小学

华杯赛试题及答案小学

华杯赛试题及答案小学一、华杯赛试题1. 语文试题:阅读下面的短文,完成后面的题目。

春天里,鲜花盛开,鸟儿欢歌。

小明和小红在花园里玩耍,忽然看到一只小鸟从树上掉了下来,小鸟似乎受了伤,无法飞翔。

小明和小红连忙上前查看,他们发现小鸟的翅膀受伤了,无法动弹。

小红担心小鸟受冻,便轻轻地将小鸟捧在手心里,走向了家。

小明和小红将小鸟放在温暖的笼子里,又为它准备了一些食物和水。

小鸟很快恢复了元气,它欢快地在笼子里跳跃起来。

小明和小红高兴地看着小鸟,他们知道,只有给小鸟充分的关爱和保护,它才能快乐地生活。

根据短文内容,选择正确的答案。

1) 小明和小红在什么地方玩耍?A. 花园B. 家里C. 学校2) 小鸟为什么无法飞翔?A. 伤了翅膀B. 受了冻C. 懒得飞3) 小明和小红给小鸟做了什么?A. 捧在手心里B. 放在温暖的笼子里C. 骑在肩膀上4) 小鸟恢复了元气后,做了什么?A. 跳跃起来B. 飞向远方C. 睡觉2. 数学试题:小明在超市看到一款玩具汽车,原价是80元,现在打7折,请帮助小明计算打折后的价格。

3. 英语试题:根据所给的图片和提示词,写出合适的单词。

提示词:apple、banana、grapes、pear二、华杯赛试题答案1. 语文试题答案:1) A. 花园2) A. 伤了翅膀3) B. 放在温暖的笼子里4) A. 跳跃起来2. 数学试题答案:打折后的价格 = 原价 ×折扣打折后的价格 = 80 × 0.7 = 56元3. 英语试题答案:apple, banana, grapes, pear以上为华杯赛小学试题及答案。

(文章内容详尽,无过多累赘,各类试题按顺序呈现,语句通顺,排版整洁美观。

)。

小学华杯赛中年级组初赛真题及答案(第十八届-第二十三届)

小学华杯赛中年级组初赛真题及答案(第十八届-第二十三届)

华罗庚金杯少年数学邀请赛(小学中年级组)初赛试卷及答案(第18届-第23届)共9套(内部资料)第十八届华罗庚金杯少年数学邀请赛初赛试卷A(小学中年级组)(时间:2013年3月23日10:00~11:00)一、选择题(每小题10分,满分60分。

以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

)1.45与40的积的数字和是()。

(A)9(B)11(C)13(D)152.在下面的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形。

3.小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对。

他们之中只有一个人说对了,这个人是()。

(A)小东(B)小西(C)小南(D)小北4.2013年的钟声敲响了,小明哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份.己知小明哥哥出生的年份是19的倍数,那么2013年小明哥哥的年龄是()岁。

(A)16(B)18(C)20(D)225.如右图,一张长方形的纸片,长20厘米,宽16厘米,如果从这张纸片上剪下一个长10厘米,宽5厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米。

(A)72(B)82(C)92(D)1026.张老师每周的周一,周六和周日都跑步锻炼20分钟,而其余日期每日都跳绳20分钟,某月他总共跑步5小时,那么这个月的第10天是()(A)周日(B)周六(C)周二(D)周一二、填空题(每小题10分,满分40分)7.如右图,一个正方形被分成了4个相同的长方形,每个长方形的周长都是20厘米,则这个正方形的面积是_______平方厘米。

8.九个同样的直角三角形卡片,拼成了如右图所示的平面图形,这种三角形卡片中的两个锐角较大的一个是_______度。

9.幼儿园的老师给班里的小朋友送来55个苹果,114块饼干,83块巧克力,每样都平均分发完毕后,还剩3个苹果,10块饼干,5块巧克力,这个班最多有_______位小朋友。

历届华杯赛初赛小高真题库

历届华杯赛初赛小高真题库

历届华杯赛初赛小高真题库初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是().(A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ?-?÷+=+ ,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.罗华庚金杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552+?-?+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+??20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是(). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,()得到的糖水最甜.(A )甲(B )乙(C )丙(D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为()分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532??=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么γβα++ 的最小值是().再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999?的结果中含有()个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒()米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是().(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有()种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于().(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于().(A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 3=, M 是AB 的中点, 且2=OM , 那么PM 长为.9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是.10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+?+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

第十九届—第二十三届华杯赛小高年级组初赛试题

第十九届—第二十三届华杯赛小高年级组初赛试题

第十九届“华罗庚金杯”少年数学邀请赛(初赛试题)1.平面上的四条直线将平面分割成八个部分,则这四条直线中至多有()条直线互相平行。

(A)0(B)2(C)3(D)42.某次考试有50道试题,答对一道题得3分,答错一道题扣1分,不答题不得分,小龙得分120分,那么小龙最多答对了()道试题。

(A)40(B)42(C)48(D)503.用左下图的四张含有4个方格的纸板拼成了右下图所示的图形,若在右下图的16个放个分别填入1,3,5,7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A,B,C,D四个方格中数的的平均数是()。

(A)4(B)5(C)6(D)74.小明所在班级的人数不足40人,但比30人多,那么这个班男、女人数的比不可能是()(A)2:3(B)3:4(C)4:5(D)3:75.某学校组织一次远足活动,计划10点10分从甲地出发,13点10分到达乙地,但出发完了5分钟,却早到达了4分钟,甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是()。

(A)11点40分(B)11点50分(C)12点(D)12点10分6.如右图所示,AF=7cm,DH=4cm,BG=5cm,AE=1cm,若正方形ABCD内的四边形EFGH的面积为78cm2,则正方形的边长为()cm2.(A)10(B)11(C)12(D)137.五名选手A,B,C,D,E参加“好声音”比赛,五个人站成一排集体亮相.他们胸前有每人的选手编号牌,5个编号之和等于35.已知站在E右边的选手的编号和为13;站在D右边的选手的编号和为31;站在A右边的选手的编号和为21;站在C右边的选手的编号和为7.那么最左侧与最右侧的选手编号之和是___________.8.甲乙同时出发,他们的速度如下图所示,30分钟后,乙比甲一共多行走了________米.9.四个黑色1×1×1的正方体和四个白色1×1×1的正方体可以组成________种不同的2×2×2的正方体(经过旋转得到相同的正方体视为同一种情况).10.在一个圆周上有70个点,任选其中一个点标上1,按顺时针方向隔一个点的点上标2,隔两个点的点上标3,再隔三个点的点上标4,继续这个操作,直到1,2,3,…,2014都被标记在点上.每个点可能不只标有一个数,那么标记了2014的点上标记的最小整数是________。

华杯赛小学组试题及答案

华杯赛小学组试题及答案

华杯赛小学组试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 一个数的因数一定小于或等于这个数,这个说法正确吗?A. 正确B. 错误3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,它的体积是多少立方厘米?A. 24B. 8C. 12D. 64. 一个数乘以0的结果是多少?A. 0B. 1C. 这个数D. 无法确定二、填空题(每题5分,共20分)1. 一个数的最小倍数是______。

2. 一个数的因数包括1和这个数本身,这个说法______(正确/错误)。

3. 一个长方体的体积是27立方厘米,它的长、宽、高都是整数,可能的长宽高组合是______。

4. 一个数除以1的结果仍然是______。

三、解答题(每题10分,共20分)1. 一个长方体的长是5cm,宽是4cm,高是3cm,求它的表面积和体积。

2. 一个数的因数有1、2、3、6,求这个数,并列出它的所有因数。

四、综合题(每题15分,共30分)1. 一个长方体的长是宽的两倍,高是宽的三倍,如果长方体的体积是216立方厘米,求长方体的长、宽、高各是多少。

2. 一个数是它所有因数之和的两倍,求这个数。

答案:一、选择题1. C2. B3. A4. A二、填空题1. 这个数本身2. 错误3. 1cm、3cm、9cm 或 3cm、3cm、3cm4. 这个数三、解答题1. 表面积:(5*4 + 4*3 + 5*3) * 2 = 62平方厘米;体积:5*4*3 = 60立方厘米。

2. 这个数是6,它的所有因数是1、2、3、6。

四、综合题1. 长:8cm,宽:4cm,高:12cm。

2. 这个数是28,它的所有因数是1、2、4、7、14、28。

2018年-第23届-华杯赛-初赛(小高组)-解析

2018年-第23届-华杯赛-初赛(小高组)-解析
第二十三届华罗庚金杯少年数学邀请赛
初赛试卷(小学高年级组)
(时间:2017 年 12 月 9 日 10:00~11:00)
一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答 案的英文字母写在每题的圆括号内)
1. 两 袋 面 粉同 样 重 ,第 一 袋用 去 1 , 第 二 袋 用 去 1 千 克 ,剩 下 的 面粉 (
长方形之间没有公共边(可以有公共顶点),那么棋盘中的长方形的方格内所有的数之和最大
是(
).
(A)266
(B)304
(C)342
(D)380
【答案】C
【解析】如下图摆放,最多能摆放 9 的小长方形条,(20 18) 9 342 ,故选 B.
4.
在右图的三角形
ABC
中,
EB

ED,
FC

FD, EDF
后一位必须为数字,小李喜欢 18 这个数,希望自己的号码牌中存在相邻两位为 1 和 8.且 1 在 8 的 前面,那么小李的号码牌有__________种不同的选择方式(英文共有 26 个字母). 【答案】345601 【解析】形如: 18 、 18 、 18 的一共有 24 2410 3 17280 种,形如18 的一共 有 C32 24 24 10 17280 种,一共有17280 2 34560 .
F C D O
B F D C O

C F D O
F C B O
下面一次枚举一下即可 O A D F B C O 一共八种情况,总数是 48 32 种.

C F B O
【答案】190

第二十三届华杯赛初赛中年级组模拟试题含答案

第二十三届华杯赛初赛中年级组模拟试题含答案

第二十三届华罗庚金杯少年数学邀请赛初赛模拟卷(小学中年级组)总分:100分时间:60分钟一、选择题.(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.灰太狼告诉喜羊羊:“2017年共有53个星期日.”聪明的喜羊羊立刻告诉灰太狼:2018年的元旦一定是星期( ).(A)星期一 (B)星期二 (C)星期四 (D)星期日2、2017个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河( )次.(A)672 (B)673 (C)1343 (D)13453、如图,在标有*的方格中所填上适当的数( ),可以使得每一行、每一列及每条对角线上的三个数之和都相等.(A)37 (B)26 (C)19 (D)274、如图所示,用长短相同的火柴棍摆成3×2017的方格网,其中每个小方格的边都由一根火柴棍组成,一共需用( )根火柴棍.(A)8071 (B)8068 (C)14122 (D)141195、在2017年的公路越野比赛中,2017名志愿者均匀地分散在一条笔直参赛公路上义务服务,比赛公路的起点、终点及途中的各个服务点都安排了一名志愿者.比赛结束后,他们应该在公路的( )服务点集合,就可以使他们从各自的岗位沿公路走到集合地点的路程总和最短.(A)第1007与1008个服务点之间 (B)第1008个服务点(C)第1009个服务点 (D)第1008与1009个服务点之间6、熊大和熊二两人一共带了80 元钱去商店买东西,熊大用自己的一半的钱买了一副眼镜,熊二花了10 元钱买了一块巧克力。

这时熊大剩下的钱恰好是熊二剩下的钱的3 倍。

那么熊二带了( )元.(A)10 (B)20 (C)30 (D)60二、填空题(每小题 10 分,共40分)7.第23届华杯赛初赛将于2017年12月9日举行,如果我们用一种六位数表示日期的方法,如:171209表示的是17年12月09日,也就是从左往右的第一、二位数表示年代、第三、四位数表示月份、第五、六位数则表示日期.若采用这种方法表示2017年的日期,那么全年中六个数字都不相同的日期共有天.8. 2017年上半年,魔法师有一次连续出差几天的日期数加起来恰好是60.韩老师出差日期有种可能(注:日期数指a月b日中的b,如4月16日的日期数是16).9. 连续写出从1开始的自然数,写到2017时停止,得到一个多位数:1234567891011…20162017.这个多位数除以9的余数是.10、已知数列2、3、4、6、6、9、8、12、…,这个数列中216出现在第项.参考答案解析版一、选择题.(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.灰太狼告诉喜羊羊:“2017年共有53个星期日.”聪明的喜羊羊立刻告诉灰太狼:2018年的元旦一定是星期( ).(A)星期一 (B)星期二 (C)星期四 (D)星期日【解析】选A. 周期问题,最后一天也是周日,2018年1月1日是星期一. 2、2017个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河( )次.(A)672 (B)673 (C)1343 (D)1345【解析】每次过河的人数只有3人,最后一次最多过4人,因为2017=3×672+1,所以前面3人一次过了12次,来回一共划了672×2=1344(次),最后一次是4人过河,还要用1次.所以最终需要渡河的次数是1344-1=1343(次).选C4、如图,在标有*的方格中所填上适当的数( ),可以使得每一行、每一列及每条对角线上的三个数之和都相等.(A )37 (B )26 (C )19 (D )27【解析】选D.幻方问题,利用黄金三角得最后一行中间的数为29,再次利用黄金三角即知*=27.4、如图所示,用长短相同的火柴棍摆成3×2017的方格网,其中每个小方格的边都由一根火柴棍组成,一共需用( )根火柴棍.(A)8071 (B)8068 (C)14122 (D)14119【解析】选C. 找规律,2017×7+3=14122。

华数杯数学竞赛试题 小学

华数杯数学竞赛试题 小学

华杯赛每周一练试题及答案第一期试题一:某公司有一项运动--爬楼上班,公司正好在18楼办公。

一天该公司的箫菲爬楼上班,她从一楼爬到六楼用了90秒,由于爬楼很累每爬一层都要比上一层多用2秒时间,那么她到18楼共需要多少分钟?答案:爬到六楼每一层平均用时间:90÷(6-1)=18(秒)。

爬第一层用时间:18-2×2=14(秒);到18楼共爬楼:18-1=17(层);爬最后一层用时间:14+2×(17-1)=46(秒);总共爬楼用时:(14+46)×17÷2÷60=8.5(分钟)。

华杯赛每周一练试题及答案第二期试题一某公司有一项运动——爬楼上班,该公司正好在xx大厦18楼办公。

一天编辑箫菲爬楼上班,她数了一下楼梯,每段有14级台阶,每层有2段。

她想我每一步走一级或二级。

那么我到公司走楼梯共有多少种走法呢?亲爱的小朋友你能帮萧菲解决这个难题吗?解析:如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:①当n=1时,显然只要1种走法,即a1=1。

②当n=2时,可以一步一级走,也可以一步走二级上楼,因此,共有2种不同的走法,即a2=2。

③当n=3时,如果第一步走一级台阶,那么还剩下二级台阶,由②可知有a2=2(种)走法。

如果第一步走二级台阶,那么还剩下一级台阶,由①可知有a1=1(种)走法。

根据加法原理,有a3=a1+a2=1+2=3(种)类推,有:a4=a2+a3=2+3=5(种)a5=a3+a4=3+5=8(种)a6=a4+a5=5+8=13(种)a7=a5+a6=8+13=21(种)a8=a6+a7=13+21=34(种)a9=a7+a8=21+34=55(种)a10=a8+a9=34+55=89(种)a11=a9+a10=55+89=144(种)a12=a10+a11=89+144=233(种)a13=a11+a12=144+233=377(种)a14=a12+a13=233+377=610(种)一般地,有an=an-1+an-2走一段共有610种走法。

历届华杯赛初赛小高真题

历届华杯赛初赛小高真题

初赛试卷(小学高年级组)(时间: 2016年12月10日10:00—11:00)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.次方, 那么γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有( )个三角形.(A )9 (B )10 (C )11 (D )126. 从1~11这11个整数中任意取出6个数, 则下列结论正确的有( )个.① 其中必有两个数互质;② 其中必有一个数是其中另一个数的倍数; ③ 其中必有一个数的2倍是其中另一个数的倍数. (A )3 (B )2 (C )1 (D )0 二、填空题 (每小题 10 分, 满分40分)7. 有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书. .8. 每天, 小明上学都要经过一段平路AB 、一段上坡路BC和一段下坡路 CD (如右图). 已知AB :BC :CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是 .9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999⨯的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80 (C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

详解第二十三届“华杯赛”小学高年级组初赛试题

详解第二十三届“华杯赛”小学高年级组初赛试题

第二十三届华杯赛初赛试卷(小高组)解析仙桃吴乃华一、选择题(每小题10分,共60分。

以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.两袋面粉同样重,第一袋用去1/3,第二袋用去1/3千克,剩下的面粉( D )。

(A) 第一袋重 (B) 第二袋重 (C)两袋同样重 (D) 无法确定哪袋重【解】:因为题目的条件只告诉了两袋面粉同样重,没有告诉两袋面粉的具体重量。

这样就可能出现三种情况①、如果这两袋面粉的重量都为1千克,第一袋用去1/3,则还剩1×(1-1/3)=2/3(千克),第二袋用去1/3千克,则还剩1-1/3=2/3(千克),剩下的面粉两袋同样重;②、如果这两袋面粉的重量大于1千克,比如1.2千克、2千克、3千克……。

如果是3千克,第一袋用去1/3,则还剩3×(1-1/3)=2(千克),第二袋用去1/3千克,则还剩3-1/3=2又2/3(千克),剩下的面粉第二袋重;③、如果这两袋面粉的重量小于1千克,比如0.2千克、0.2千克、1/3千克……。

如果是1/3千克,第一袋用去1/3,则还剩1/3×(1-1/3)=2/9(千克),第二袋用去1/3千克,则还剩1/3-1/3=0(千克),则剩下的面粉第一袋重。

所以,由于没有告诉两袋面粉的具体重量,无法确定哪袋重。

2.一个3×3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是( D )。

(A)5 (B)4 (C)3 (D)2【解】:本题要求阴影部分的面积最少有两种方法:1是用总面积减去空白部分的面积得阴影部分的面积。

总面积:3×3=9 小正方形的面积1×4=4三角形的面积:1×(3÷2)÷2×4=3所以,阴影部分的面积是:9-4-3=22是连接最中间的小正方形的对角线,把阴影部分平分为面积相等的8个小三角形,每个小三角形的底的1,高的1/2,这样,阴影部分的面积就是:1×1/2×1/2×8=2。

【备战华杯赛】近五年华杯赛小高初赛真题解读

【备战华杯赛】近五年华杯赛小高初赛真题解读

【备战华杯赛】近五年华杯赛小高初赛真题解读为了帮助大家更有效地准备初赛,今天我们针对华杯赛初赛考点和大家进行分享。

1 初赛考什么?初赛一共十道题(六道选择题四道填空题),共100分,都不用写过程,用时60分钟。

大家首先一定要知道华杯赛的所有考点:计算、应用题、行程问题、数论、几何、计数、组合杂题。

而这正好对应于我们小学奥数核心知识体系里面的七大模块。

华杯赛其实就是对学生所学奥数知识的一个测试。

那其中哪些模块是我们的重难点呢?哪些是我们在这段时间里需要重点关注的呢?看下面!2 初赛怎么考?想要通过华杯赛初赛,我们第一步先要了解一下华杯赛初赛的命题规律,在这里我们对近五年的所有华杯赛初赛试题做了一份详细的考点分析。

通过把所有的数据整合到一起,我们发现每年的考点是这样的:通过这个图我们发现:华杯赛涉及的知识点都很全面,七个模块均会考察,只不过每年对模块中的细分知识点有所变化,这就要求我们对各个知识模块的完整体系有所掌握与研究。

然而考试重点在哪里呢?哪些是我们需要关注的重中之重呢?我们通过一个饼图来观察分析一下。

我们可以发现初赛考试侧重点在于:数论、组合杂题、应用题这几个模块。

数论一直最受华杯赛组委会所青睐,小高华杯赛考察数论方面是一个重点!因为2015年华杯赛主试委员会委员陶晓永教授讲过:“华杯赛主要目的是要学习华罗庚先生的精神,而华罗庚先生在数学方面最大的成就就在数论这一块。

” 在数论这一个模块上,考察知识点较多,综合性也比较强,这就要求孩子们对于数论里面的知识点要有一定的了解和灵活运用的能力。

组合杂题一般难度系数比较大点,有的题目需要孩子具有很强的分析、空间、逻辑思维能力。

但不要慌张,大部分学生都做不出来,所以这个不是学生前期备考的重点。

想再冲刺华杯赛一等奖的孩子,组合杂题一定需要被重视起来的。

应用题这个模块,一般考察浓度问题、经济问题、工程问题、比例问题(份数思想、量率对应)、列方程解应用题等,基本上难度系数不高,加把劲,一定可以拿得下来!3 初赛难易度分析上述部分,我们对于模块进行了详细的分析。

华杯赛初赛模拟试题(6)(小高组)-T版

华杯赛初赛模拟试题(6)(小高组)-T版

华杯赛初赛模拟试题(6)(小高组)-T版名师堂学校“阶梯数学”出品2022年第22届华罗庚金杯少年数学邀请赛初赛模拟试题(6)(小学高年级组)一、选择题。

(每小题10分,四个选项仅有一个结论正确,请将正确答案的字母填在括号中)1.欧洲杯小组赛中,A,B,C,D四支足球队分在一个小组.已知最终比赛结果中,A的排名高于B,C的排名高于D,无排名相同的结果,则符合这种情况的小组赛排名有()种。

A.2B.4C.6D.8【考点】计数问题【难度】★【答案】C【解析】用A>B表示A的排名高于B。

那么根据题目条件,C相对于A和B的位置有3种可能:(1)C>A>B,此时,D的位置有3种可能:D >A,A>D>B,B>D;(2)A>C>B,此时,D的位置有2种可能:D>B,B>D(3)A>B>C,此时,D的位置只有1种可能。

总的可能情况有3+2+1=6(种),an,,2.一列数:a1,a2,a3,其中a1=2022,a2=21,an=(an1)+(an2),这里(an-1)表示an1的所有数字之和,那么a2022=()。

A.15B.12C.9D.6【考点】周期问题【难度】★★【答案】B【解析】这列数为2022,21,12,6,9,15,15,12,9,12,12,6,9,15,15,12,9,……,从a3开始每8个数一个循环。

2022=3+8某251+5,所以,a2022=a8=12.3.两个盒子A和B分别装着不同数量的两种小球,两盒中小球的总重量是一样的。

同时从A,B盒子中个拿出一个小球放入C盒子,记为一次操作。

C盒子开始为空,经过40次操作后,C盒子总重量和B盒子一样,又经过10次操作,C盒子总重量与A盒子一样。

那么A,B盒子中单个小球的重量比为()。

A.1:1B.1:2C.1:3D.1:4【考点】方程,比【难度】★★【答案】B【解析】设A盒子中中单个小球重量为1,B盒子中单个小球重量为k,根据题目,可以判断k≥1(A盒子小球比B盒子小球轻)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间:2017年12月9日10:00—11:00)一、选择题(每小题10分,共60分。

以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

)1、两袋面粉同样重,第一袋用去13,第二袋用去13千克,剩下的面粉()。

A.第一袋重 B.第二袋重 C.两袋同样重 D.无法确定哪袋重2、如图,一个3×3的正方形网格,如果小正方形的边长是1,那么阴影部分的是()。

A.5 B.4 C.3 D.23、在6×6的方格中,摆放写有的长方形,每个长方形恰好盖住2个方格,如果任意两个长方形之间没有公共边(可以有公共顶点),那么棋盘中摆放的长方形的方格内所有数之和最大是()。

A.266 B.304 C.342 D.3804、在上图的三角形ABC中,EB=ED,FC=FD,∠EDF=72°,则∠AED+∠AFD=()。

A.200° B.216° C.224° D.240°5、从1—20这20个整数中任意取11个数,其中必有两个数的和等于()。

A.19 B.20 C.21 D.226、小王将一些同样大小的正三角形纸片摆放在桌上,第一次放1张纸片;第二次在这个小正三角形纸片四周再放3张纸片;第三次在第二次摆好的图形四周再摆放纸片;……摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有1条边重合,且纸片之间除边长之外,无重合(见下图),第20次摆放后,该图形共用了正三角形纸片()张。

A.571 B.572 C.573 D.574二、填空题(每小题10分,共40分)7、雷雷买了一本新书,非常喜欢,第一天读了这本数的15还多12页,第二天读了剩余的14还多15页,第三天读了剩余的13还多18页,这时还剩下42页未读,那么这本书的页数是。

8、某五位号码牌由英文字母和数字组成,前四位有且只有两位为英文字母(字母I、O不可用),最后一位必须为数字,小李喜欢18这个数,希望自己的号码牌中存在相邻的两位为1和8,且在1在8的前面,那么小李的号码牌有种选择方式。

(英文共有26个字母)9、在一个自然数的所有因数中,能被3整除的因数比奇因数多5个,那么这个自然数最小是。

10、已知蚂蚁从正方体某个面的中心出发,每次都走到相邻面的中心,每个中心恰好经过一次,最终回到出发点,所有经过的中心排出的序列共有种。

(两条序列不同指沿着行走方向经过的中心点顺序不一样)第二十三届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)答案及解析(时间:2017年12月9日10:00—11:00)一、1、答案:D解析:【知识点】分数应用题。

题目没有给出两袋面粉的具体重量,如果重量大于1千克,则第二袋面粉剩下的重量重;如果重量等于1千克,则两袋面粉剩下的重量相等;如果重量小于1千克,则第一袋面粉剩下的重量重,所以无法确定剩下的面粉哪袋重。

故选:D。

2、答案:D解析:【知识点】组合图形的面积。

图中阴影部分的面积=整体的面积-空白部分的面积,空白部分有4个小正方形和4个三角形,其中上下两个三角形的面积和左右两个三角形的面积相等,都等于长是3,宽是1的长方形面积的一半。

3×3-1×1×4-3×1÷2×2=2故选:D。

3、答案:C解析:【知识点】最大最小问题。

如下图,在每个2×2的正方形中,最多只能有一个这样的长方形,在6×6的方格中,有9个这样的2×2的正方形中,所以棋盘中摆放的长方形的方格内所有数之和最大是:(20+18)×9=342故选:C。

4、答案:B解析:【知识点】多边形的内角和。

在三角形EBD中,因为EB=ED,所以∠B=∠EDB在三角形FDC中,因为FC=FD,所以∠FDC=∠C又因为∠EDF=72°,所以∠B+∠C=∠EDB+∠FDC=180°-72°=108°在三角形ABC中,∠A=180°-(∠B+∠C)=72°在四边形AECF中,∠AED+∠AFD=360°-72°×2=216°故选:B。

5、答案:C解析:【知识点】抽屉原理。

把1—20这20个整数分成10组(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)每组中两个数的和都是21,根据抽屉原理,从这10组中从11个数,至少有2个数在同一组,和是21。

故选:C。

6、答案:A解析:【知识点】图形规律。

由图可知,第一次摆放1张纸片,第2次摆放4张纸片,第3次摆放10张纸片,第4次摆放19张纸片,……依次相差3、6、9、12……,规律如下:第一次:1第二次:1+3=4第三次:1+3+6=10=1+3×(1+2)第四次:1+3+6+9=19=1+3×(1+2+3)第五次:1+3+6+9+12=31=1+3×(1+2+3+4)……第n次:1+3×(1+2+3+4+……+n-1),所以第20次摆放的正三角形纸片有:1+3×(1+2+3+4+……+20-1)=1+3×(1+19)×19÷2=571(张)故选:A。

二、7、答案:190页解析:【知识点】倒推法解应用题。

第二天读完后还剩下:(42+18)÷(1-13)=90(页)第一天读完后还剩下:(90+15)÷(1-14)=140(页)这本书一共有:(140+12)÷(1-15)=190(页)答:这本书的页数是190页。

8、答案:34560种解析:【知识点】排列组合。

按“18”所在位置进行分类:第一种情况,18在前四位中,共有3种选择,此时前四位中,剩下的两位都必须是字母,每位都有26-2=24种选择,最后一位必是数字,有0—9共10种选择,所以一共有:3×24×24×10=17280(种)第二种情况:18在第四位和第五位,则前三位中有2个字母1个数字,数字可能是第一位,第二位,第三位3种情况,一共有:3×10×24×24=17280(种)综上所述,总共有:17280×2=34560(种)答:小李的号码牌有34560种选择方式。

9、答案:72解析:【知识点】因数的个数。

因为被3整除的因数比奇因数多,则这个自然数的质因数中肯定有2。

设这个自然数是n,这个自然数除2、3外的质因数有P1、P2、P3……Pk,则这个自然数可以表示为n=2a×3b×P1x1×P2x2……×Pkxk,根据求因数的个数的公式可知:能被3整除的因数的个数有:(a+1)×b×(x1+1)×……×(xk+1)个奇因数的个数有:(b+1)×(x1+1)×……×(xk+1)个,两者的差是:(a+1)×b×(x1+1)×……×(xk+1)-(b+1)×(x1+1)×……×(xk+1)=5[(a+1)×b-(b+1)]×(x1+1)×……×(xk+1)=5(ab-1)×(x1+1)×……×(xk+1)=5=1×5①ab-1=1,(x1+1)×……×(xk+1)=5此时a=1,b=2或a=2,b=1,x1、x2、x3 (x)k中有一个数是4,其他都是0,这时自然数n最小是:22×31×54=7500②ab-1=5,(x1+1)×……×(xk+1)=1此时a=1,b=6或a=2,b=3,或a=6,b=1或a=3,b=2,x1=x2=x3 (x)k=0,这时自然数最小是:23×32=72综上所述,满足条件的最小的自然数是72。

10、答案:32解析:【知识点】排列组合。

如上图,正方体的六个面分别是①、②、③、④、⑤、⑥,则先从①走到②,下一步可以走到④、⑤、⑥三种走法,不同的序列有:第一种:①②④③⑥⑤;①②④⑥⑤③;①②④⑥③⑤共有3种。

第二种:①②⑤⑥③④;①②⑤⑥④③;①②⑤③⑥④共3种。

第三种:①②⑥⑤③④;①②⑥④③⑤共2种。

综上所述,先从①走到②一共有3+3+2=8(种)同理先从①走到③、从①走到④、从①走到⑤都有8种,因为正方体的六个面是完全一样的所以总共有:8×4=32(种)。

相关文档
最新文档