第6章6.5电流型控制技术
6交流-交流变换电路

第6章 交流变换电路将一种形式的交流电能转换成另一种形式的交流电能,称为交流变换。
交流变换电路是对交流电路的幅值、频率、相数等参数进行变换的电路,它利用电力电子器件的开关功能,实现交流开关和交流调压的功能。
本章主要讲述晶闸管交流调压电路的拓扑结构、控制方式和工作原理及应用;晶闸管调功电路的接线形式、工作原理及应用;交-交变频电路的拓扑结构、工作原理。
本章要求掌握晶闸管交流调压电路的控制方式和调功器的应用,交-交变频电路的工作原理。
6.1 交流变换器类型根据变换参数的不同,可将交流变换电路分为交流调压电路和交-交变频电路两大类。
只改变输出电压的幅值而不改变频率的交流变换电路,称为交流电压控制电路,或通称为交流调压电路。
把工频交流电直接变换成频率可调的交流电的交流变换电路,称为交-交变频电路。
交流电压控制电路包括交流调压、交流调功和交流开关三种类型。
其中,采用相位控制的交流电压控制电路,称为交流调压电路;采用通/断控制的交流电压控制电路,称为交流调功电路;如果令交流调压器中的晶闸管在交流电流自然过零时关断或导通,则称之为晶闸管交流开关。
按照控制方式的不同,可将交流电压控制电路分为相控式电路和斩控式电路。
晶闸管相控式调压与相控式整流电路的控制原理相同,都是利用门极脉冲相位的变化来改变输出端电压的幅值。
而斩控式电路是通过改变器件占空比来改变输出端电压有效值。
按照电网相数的不同,可以将交流电压控制电路分为单相电路、三相三线制电路和三相四线制电路;按照电路结构可以分为星形联结电路、三角形联结电路和其他方式联结电路。
直接变频电路按照输出波形不同可以分为近似正弦波的变频电路(电压型电路)和近似方波的变频电路(电流型电路)。
电压型直接变频电路是利用反并联整流电路的工作原理拓广而成。
其特点是输出频率的上限仅为电网频率的1/3,故只适用于低频电源,如水泥窑的低速回转拖动系统,采用这种方案可实现直接传动。
电流型的电路结构也可看成是桥式整流电路的拓广。
第6章PWM技术

由电机学,三相对称正 弦供电时: 总向量恒幅恒速旋转 (电)角速度:w 2f s 代表空间正弦分布且圆 转磁场,u s、es、is 是引用量
26
• 三相交流的空间向量
n=0:15;x=2*pi*n/16;a=2*pi/3;
v=cos(x)+cos(x+a)*exp(j*a) +cos(x-a)*exp(-j*a); plot(v)
16
除计算法和调制法外,还有 空间向量法 跟踪控制方法
17
6.2.2 异步调制和同步调制
载波比N = fc / fo----模拟uo一个周波的脉冲数 1) 异步调制----fc不变, N随fo变 载波与调制波不同步 N常≠整数 对称性差。 当fo较低时,N大------低频性能好。
当fo增高时,N小------高频差
u
ω1
u2Tc
32
空间矢量磁链控制 SVPWM
其它区域也有相应控制规则
SVPWM用电压向量u控制Ψ 沿折线围线,并走走停停逼近圆 开关频率越高,线元usTc越短 Ψ圆越准
33
空间矢量磁链控制 SVPWM
三电平逆变器 电压向量us更多 按ΔΨ=Ψ* - Ψ --用最佳us控制 Ψ圆更准
34
SVPWM波形特点
31
空间矢量磁链控制 SVPWM
--仿闭环控制算法 控制方程ΔΨs “=” usTc 按Ψ转向超前90度建u参考轴 u2 用u轴前后电压向量控制Ψ 例如图 矢量 作用 应用条件 u1 u1 正转增幅 Ψ滞后欠幅 u2 正转减幅 滞后超幅 u7,8 停转等待 超前 Ψ 例:Ψ滞后欠幅,用u1 u1Tc Ψ滞后超幅,用u2 Ψ超前,用u7,8 注”相邻原则”:u1u8; u2u7;可减少开关动作
电力电子技术(第四版)课后答案

第5章逆变电路5.l.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电阿,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
5.2.换流方式各有那儿种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强追施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
5.3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点?答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要持点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流测电惑起缓冲无功能量的作用。
因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。
精品课件-电路与电子技术(第二版)(路松行)-第6章

第6章 三相交流电路
17
显然,线电压和相电压相等,即
U AB Ua , U BC Ub, UCA Uc从图6.5知,线电Fra bibliotek和相电流的关系为
IA Iab Ica IB Ibc Iab
IC Ica Ibc
(6.7) (6.8)
第6章 三相交流电路
18
图6.7 三角形连接线电流和相电流的相量关系
第6章 三相交流电路
22
6.3.1 单相负载 单相负载主要包括照明负载、生活用电负载及一些单相设备。
单相负载常采用三相中引出一相的供电方式。为保证各个单相负载 电压稳定,各单相负载均以并联形式接入电路。在单相负荷较大时, 如大型居民楼供电,可将所有单相负载平均分为三组,分别接入A、 B、C三相电路,如图6.8所示,以保证三相负载尽可能平衡,提高 安全供电质量及供电效率。
第6章 三相交流电路
1
第6章 三相交流电路
➢6.1 三相交流电的产生 ➢6.2 三相电源的连接 ➢6.3 三相电源和负载的连接 ➢6.4 三相电路的计算 ➢6.5 三相电路的功率 ➢6.6 安全用电知识 ➢习题6
第6章 三相交流电路
2
6.1 三相交流电的产生
目前在工农业生产和民用电力系统中,电能几乎都是由三相电 源提供的,日常生活中所用的单相交流电也取自三相交流电的一相。
三相交流电是由三相发电机产生的,三相发电机主要由定子和 转子组成,如图6.1所示。
第6章 三相交流电路
3
图6.1 三相发电机示意图
第6章 三相交流电路
4
H定子是固定不动的部分,在定子的槽中嵌入三组线圈, 即AX、BY和CZ。三组线圈的首端分别记为A、B、C,末端分别 记为X、Y、Z。每组线圈称为一相,每相线圈的匝数、形状、 参数都相同,在空间上彼此相差120°。转子是一个可以旋转 的磁极,由永久磁铁或电磁铁组成。在发电机工作时,转子在 外部动力带动下以角速度ω旋转,三个定子绕组都会感应出随 时间按正弦规律变化的电势,这三个电势的振幅和频率相同, 且由于三组线圈在空间位置上相差120°,故相位差互为120°。 我们称这组电源为正弦三相对称电压源,将其表示为
第6章光电显示技术

它由晶体基质所决定的价带和导带、制备发 光体掺入的激活剂离子所产生的局部能级 G(一般为基态能级)以及晶体结构缺陷或加 入的协同激活剂而产生的局部能级T(一般 为电子陷阱能级)等几部分组成。其发光 的微观过程包括:
(1) 吸收激发能电离过程
晶体吸收外界激发能,引起基质价带电子 和激活剂G能级上的电子(远少于基质电子) 激发、电离而到达导带,从而在价带中引 入空穴,导带中引入电子。
• 电视彩色图像的获得需经过景物彩色画面的分色、 摄像器件的光电转换、电信号的处理和传输、显 像器件的电光转换等主要过程。
• 彩色显像管利用红、绿、蓝三种荧光粉作为显像 三基色,采用空间相加混色法实现彩色重现。
• 对图像的亮度、色调和饱和度三参量的电信号进 行色度编码,通过矩阵电路使其成为发送端的编 码矩阵。
人眼彩色视觉特性包括:
(1)人眼有三种锥状色感细胞,分别对红、绿、蓝最 敏感;
(2)人眼具有空间混色特性,指同一时刻当空间三种 不同颜色的点靠得足够近,使得人眼不能分辨出 其各自颜色,而只能感觉到其混合色的特性
(3)人眼具有时间混色特性,指同一空间不同颜色的 变换时间小于人眼的视觉惰性时,人眼不能分辨 出其各自颜色,而只能感觉到他们的混合色;
任一彩色光F总可以通过下列配色方程配出:
F R(R) G(G) B(B) mr(R) g(G) b(B)
式中,R(R)、G(G)、B(B)称为F的三色分量, R、G、B称为三色系数,m称为色模,代
表F所含三基色单位的总量,r、g、b称为
色度坐标或相对色系数,分别代表F所用三 基色单位总量为1时所需的各基色量的数 值,且
(2) 电子和空穴的中介运动过程
电离产生的电子和空穴分别在导带和价带中
电工电子技术与技能 第3版 教案第6章 三相正弦交流电路

课题6.1 三相正弦交流电源课型新课授课班级授课时数 1教学目标1.了解三相正弦交流电的产生过程。
2.能理解三相正弦交流电的供电方式。
教学重点1.了解三相正弦交流电的产生过程。
2.能理解三相正弦交流电的供电方式。
教学难点1.了解三相正弦交流电的产生过程。
2.能理解三相正弦交流电的供电方式。
教学方法读书指导法、分析法、演示法、练习法。
学情分析教后记新课A. 话题引入在工厂、实验室或需要安装大功率空调的场所,我们常常见到如图6-1所示的四孔插座。
它与一般两孔、三孔插座不同之处,在于它引入的是三相正弦交流。
三相正弦交流电是三个频率相同、相位互差120、幅度大小相等的电压组成的。
目前,世界各国电力系统普遍采用三相交流电源,如有需要单相供电的地方,可以应用三相交流电中的一相。
B. 新授课6.1.1 三相正弦交流电的产生三相交流发电机有三个绕组,可以产生三相电源。
图6.1b 为三相交流发电机原理示意图,如图所示它主要由定子和转子构成。
定子中嵌有三个完全相同且相互独立的绕组,在空间位置上彼此相隔1200,分别用U1U2、V1V2、W1W2表示。
U1、V1、W1表示各相绕组的首端,; U2、V2、W2表示各相绕组的末端。
每个绕组称为发电机的一相,分别称为U 相、V 相和W 相。
当转子在外加驱动力的作用下顺时针匀速旋转时,就相当于定子每相绕组以角速度ω逆时针旋转,作切割磁感线运动,从而产生感应电动势U e 、V e 、W e 。
由于三个绕组结构相同,在空间相差1200的角度,因此,三个感应电动势U e 、V e 、W e 的频率相同、最大值相等、相位彼此相差1200。
各相电动势的三角函数表达式为: t e e m U ωsin = (6.1))120sin(0-=t e e m V ω (6.2))120sin()240sin(00+=-=t e t e e m m W ωω (6.3)如果以U e 为参考正弦量,则三相电动势波形如图6.2(a )所示,相量如图6.3(b )所示。
有源电力滤波器课件

与有源电力滤波器并联的小容量一阶高通滤波器
(或者二阶),用于滤除APF所生的补偿电流中开关 频率附近的谐 波。
其补偿电流基本上由APF提供,这是有源电力滤 波器中最基本的形式,也是目前应用最多的一种。
图6.3 单独使用的并联型
这种补偿方式可用于:
有源电力滤波器
(1) 只补偿谐波;
(2) 只补偿无功功率,补偿的多少可以根据需要连续调节;
第六章有源电力滤波器
式(6-2)可表示为:
式(6-4)中k为频率系数,如k=0对应直流分量变换项,k=3对应三次 谐波变换项。由此,可以根据对特定次谐波进行补偿的要求,只作相应次 数的傅利叶变换。
此外,根据正余弦项初始相位的不同,还可得到基波无功和基波有功 分量。如,当采样与输入正弦信号同步时,则基波余弦的傅利叶反变换项 就对应于无功补偿电流。若要补偿谐波和无功,可用负载电流信号减去基 波有功分量得到补偿电流指令。
第六章有源电力滤波器
式中, ——神经元的阈值; ——神经元的输入,它由参考输入和其当前时刻以前的值组成
; ——迭代次数。
检测电路的输出为:
和 的调节采用Delta算法来进行。调节公式为:
式中, ——学习率
第六章有源电力滤波器
将上两式两端同除以输入信号的采样周期T,可得:
若T取得足够小,可将离散变量看成连续变量,则可分别变换为 : 积分得:
指令电流运算电路的作用是根据APF的补偿目的得出补偿电流的指令信号,即
期望由APF产生的补偿电流信号。
具体而言,补偿目的大体上可分为以下几种:
(1) 只补偿谐波;
(2) 只补偿无功功率;
(3) 同时补偿谐波和无功功率;
以作为负载的三相桥式全控整流器的触发延迟角
电路与电子技术基础第6章习题参考答案

习题六6-1 (1) A; (2) C; (3) B; (4) C; (5) A6-2,黑表笔插入COM,红表笔插入V/Ω(红笔的极性为“+”),将表笔连接在二极管,其读数为二极管正向压降的近似值。
用模拟万用表测量二极管时,万用表内的电池正极与黑色表笔相连;负极与红表笔相连。
测试二极管时,将万用表拨至R×1k档,将两表笔连接在二极管两端,然后再调换方向,若一个是高阻,一个是低阻,则证明二极管是好的。
当确定了二极管是好的以后就非常容易确定极性,在低阻时,与黑表笔连接的就是二极管正极。
6-3 什么是PN结的击穿现象,击穿有哪两种。
击穿是否意味着PN结坏了?为什么?答:当PN结加反向电压(P极接电源负极,N极接电源正极)超过一定的时候,反向电流突然急剧增加,这种现象叫做PN结的反向击穿。
击穿分为齐纳击穿和雪崩击穿两种,齐纳击穿是由于PN结中的掺杂浓度过高引起的,而雪崩击穿则是由于强电场引起的。
PN 结的击穿并不意味着PN结坏了,只要能够控制流过PN结的电流在PN结的允许范围内,不会使PN结过热而烧坏,则PN结的性能是可以恢复正常的,稳压二极管正式利用了二极管的反向特性,才能保证输出电压的稳定。
对于图(a)假定D1、D2、D3截止,输出端的电位为-18V,而D1、D2、D3的阳极电位分别是-6V、0V、-6V,因此,理论上D1、D2、D3都能导通,假定D1导通,则输出点的电位为-6V,由于该点电位也是D2的阴极电位,因此D2会导通,一旦D2导通,u O点的电位就为0V,因此,D1、D3的阴极电位为0V,而阳极端为-6V,这样D1、D3必定截止,所以输出电压u o=0V(这就是脉冲数字电路中的或门,0V为高电平,-6V为低电平,只要输入端有一个高电平,输出就为高电平)。
对于图(b)依同样的道理可知:D1、D2、D3的阳极电位都低于+18V,所以三个二极管均截止,流过R的电流为0,故输出电位u o=18V试分析图(b)中的三个二极管极性都反过来,输出电压u o=?6-5 现有两只稳压二极管,它们的稳定电压分别为5V和9V,正向导通电压为0.7V。
电磁电流的控制原理及应用

电磁电流的控制原理及应用1. 电磁电流控制简介在工业和科技领域中,电磁电流的控制是非常重要的。
通过控制电磁电流,可以实现各种功能,如电磁驱动、电磁刹车、电磁悬浮等。
本文将介绍电磁电流控制的原理和应用。
2. 电磁电流控制原理2.1 电磁电流概述电磁电流是指通过导体中的电子在外加电场或磁场的作用下流动产生的电流。
电磁电流的大小、方向和分布可以通过控制电场、磁场和导体参数来实现。
2.2 电磁电流控制的原理和方法1.电磁电流控制可以通过改变电场和磁场来实现。
增大或减小电场和磁场的强度可以改变电磁力的大小和方向,从而实现对电磁电流的控制。
2.控制电场可以通过改变电压来实现。
通过改变电压的大小和方向,可以控制电场的强度和方向,从而实现对电磁电流的控制。
3.控制磁场可以通过改变电流来实现。
通过改变电流的大小和方向,可以控制磁场的强度和方向,从而实现对电磁电流的控制。
4.电磁电流控制的方法包括电压调节、电流调节、电磁铁控制电流等。
这些方法可以根据具体的应用需求进行选择。
2.3 电磁电流控制的应用场景1.电磁驱动:电磁电流控制可以用于驱动电机和执行器。
通过控制电磁电流,可以实现电机和执行器的运动控制。
2.电磁刹车:电磁电流控制可以用于实现刹车功能。
通过改变磁场的强度,可以实现刹车的效果。
3.电磁悬浮:电磁电流控制可以用于实现悬浮效果。
通过控制电磁力的大小和方向,可以使物体悬浮在磁场中。
3. 电磁电流控制案例分析3.1 电磁驱动案例分析以电动汽车为例,电磁电流控制可以用于控制电动汽车的驱动系统。
通过控制电机的电磁电流,可以调节电动汽车的速度和加速度。
3.2 电磁刹车案例分析以电梯为例,电磁电流控制可以用于实现电梯的刹车功能。
通过控制电梯的电磁刹车系统,可以实现电梯的安全停止。
3.3 电磁悬浮案例分析以磁浮列车为例,电磁电流控制可以用于实现磁浮列车的悬浮效果。
通过控制磁场的强度和方向,可以使磁浮列车悬浮在磁轨上。
4. 总结电磁电流的控制在工业和科技领域中有着广泛的应用。
开关电源设计.ppt

第6章 开关电源设计
2) 开关管、 整流二极管和续流二极管的选择
由于开关管断开时原边线圈N1两端的感应电动势限制到 eL≈300 V,交流输入电压经全波整流、 电容滤波后,直流 输入电压的最大值
Uimax 240
N2 N1
339 V
所以整流二极管所承受的最高反向电压为
(6-10)
UD
e
N2 N1
60 V
续流二极管所承受的最高反向电压为
UP
Uimax
N2 N1
68 V
(6-11) (6-12)
第6章 开关电源设计
流过整流二极管和续流二极管的最大电流为
ID=I2P=Io+0.5 A
(6-13)
得ID=2.75 A。根据以上计算选择肖特基半桥MBR25120CT,
Uo
TON
式中, U2为副边线圈最小ቤተ መጻሕፍቲ ባይዱ压。 计算得
(6-8)
U2
Uo
U DF D
UL
25.4 V
(6-9)
第6章 开关电源设计
取UDF=0.5 V,Uo=3 V,代入式(6-8)可得L=140 μH。 根据输出电感上的电流IL=Io,所需绕组导线截面积应为 2.5/4=0.625 mm2,故选择截面积为0.6362 mm2导线
第6章 开关电源设计
第6章 开关电源设计
6.1 小功率开关电源设计 6.2 大功率高稳定度开关电源设计 6.3 模块化逆变电源设计 6.4 便携式开关电源设计 6.5 多输出高精度直流稳压电源系统 6.6 通信系统电源设计 6.7 基于交错并联技术的励磁电源 6.8 多重变换技术 6.9 电磁兼容技术与噪声
第6章PWM控制技术概要

第6章PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。
重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。
难点:PWM波形的生成方法,PWM逆变电路的谐波分析。
基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。
PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。
本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。
本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。
效果基本相同,是指环节的输出响应波形基本相同。
低频段非常接近,仅在高频段略有差异。
图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。
其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。
从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。
脉冲越窄,各i(t)响应波形的差异也越小。
如果周期性地施加上述脉冲,则响应i(t)也是周期性的。
用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。
0电力电子技术-目录

第6章 PWM控制技术
6.2 PWM逆变电路及其控制方法
6.3 PWM跟踪控制技术
6.4 PWM整流电路及其控制方法
第7章 第8章
第7章 软开关技术
电 力 电 子 技 术
7.1 软开关的基本概念
7.2 软开关电路的分类
7.3 典型的软开关电路
第8章 组合变流电路
8.1 间接交流变流电路
4.1 交流调压电路
4.4 矩阵式变频电路
第5章 第6章
第5章 逆变电路
电 力 电 子 技 术
5.1 换流方式
5.2 电压型逆变电路
5.3 电流型逆变电路 5.4 多重逆变电路和多电平逆变电路 6.1 PWM控制的基本原理
电 力 电 子 技 术
1.5 其他新型电力电子器件
1.6 电力电子器件的驱动 1.7 电力电子器件的保护 1.8 电力电子器件的串联和并联使用
第2章 整流电路
2.1 单相可控整流电路 2.2 三相可控整流电路 2.3 变压器漏感对整流电路的影响 2.4 电容滤波的不可控整流电路
第8章 组合变流电路
绪论
电 力 电 子 技 术
1. 什么是电力电子技术 2. 电力电子技术的发展史 3. 电力电子技术的应用 4. 电力电子技术的主要内容
第1章 电力电子器件
1.1 电力电子器件概述 1.2 不可控器件-电力二极管 1.3 半控型器件-晶闸管 1.4 典型全控型器件
电力电子技术
教材:《电力电子技术》(第4版)
西安交通大学 王兆安 黄 俊
主讲:物理与机电工程学院自动化系
chap6电器控制技术

文字符号:KV
电流继电器
电流继电器是根据电流 信号工作的,根据线圈 电流的大小来决定触点 动作。电流继电器的线 圈的匝数少而线径粗, 使用时其线圈与负载串 联。按线圈电流的种类 可分为交流电流继电器 和直流电流继电器;按 动作电流的大小又可分 为过电流继电器和欠电 流继电器。
文字符号:KA
时间继电器
熔断器
RT18型圆筒型帽熔断器
HIGH VOLTAGE FUSE 高压熔断器
MINI FUSE 微型保险丝 直流STL RT14型圆筒型帽熔断器 SEMI-FUSE 快速熔断器
熔断器的符号
文字符号:FU
熔断器的安秒特性
热继电器
JRS系列热过载继电器
热继电器结构原理
热继电器符号
文字符号:FR
SB漫反射型
SU对射型
WSG光纤型
反射式光电开关工作原理
接近开关和光电开关的符号
文字符号:SQ
3 固态继电器
固体(态)继电器(简称SSR)是采用固体半导体元件组 装而成的一种新颖的无触点开关。固体继电器通常 为封装结构,它采用绝缘防水材料浇铸,如塑料封 装、环氧树脂灌封等。由于固体继电器的接通和断 开没有机械接触部件,因而具有控制功率小、开关 速度快、工作频率高、使用寿命长、很强的耐振动 和抗冲击能力、动作可靠性高、抗干扰能力强、对 电源电压的适应范围广、耐压水平高、噪声低等一 系列优点。
SB1 SB2 KM1 KM2 R R R KM2 FR M 3~ (a) KM1 KS (b) KM2 KM1
KM1
n
KS
M
异步电动机能耗制动
以PLC为核心的控制柜
绘制电气原理图的基本规则
1) 电路图一般包含主电路和控制、信号电路两部分。为了 区别主电路与控制电路,在绘制电路图时主电路(电机、 电器及连接线等),用粗线表示,而控制、信号电路(电 器及连接线等)用细线表示。通常习惯将主电路放在电路 图的左边(或上部),而将控制电路放在右边(或下部)。 2) 主电路(动力电路)中电源电路绘水平线;受电的动力 设备(如电动机等)及其它保护电器支路,应垂直于电 源电路绘制。 3) 控制和信号电路应垂直地绘于两条水平电源线之间,耗能 元件(如接触器线圈、电磁铁线圈,信号灯等)应直接 连接在接地或下方的水平电源线上,各种控制触头连接 在上方水平线与耗能元件之间。
第6章6.5电流型控制技术

6.5.2恒定导通时间谷值电流控制技术
恒定导通时间谷值电流控制原理如图所示。
电感电流的反馈信号iLf与电压误差放大器输出的电流给定信号ir(ue)比较, 当iLf下降到ir时,功率开关就开通, iLf上升。功率开关的导通时间,并不是 由电感电流的上升量ΔiLf决定的,而是由单稳态触发器设置的恒定高电平时 间决定的。 在每个开关周期内,功率开关的导通时间恒定,截止时间和开关周期(开关 频率)均变化。 4
2
6.5.1恒定截止时间峰值电流控制技术
恒定截止时间峰值电流控制原理如图所示
电感电流的反馈信号iLf与电压误差放大器输出的电流给定信号 ir(ue)比较,当iLf上升到ir时,功率开关就关断, iLf下降。功率 开关的截止时间,并不是由电感电流的下降量ΔiLf决定的,而 是由单稳态触发器设置的恒定低电平时间决定的。 在每个开关周期内,功率开关的截止时间恒定,导通时间和 开关周期(开关频率)均变化。 3
13
6.5.7平均值电流型控制技术
平均值电流型控制系统框图与原理波形如图示
将电感电流检测电阻R。上的电压作为电流内环的反馈信号 与电压外环的输出信号(电流给定)比较,经电流误差放大器 放大后,并在PWM比较器的输入端与振荡器产生的幅值较 大的锯齿波进行比较,去控制功率开关的占空比。 14
平均值电流型控制技术的特点:
(4)具有内在的对功率开关的电流控制及限流能力,过载及短路 能力强;
(5)并联的各个逆变器共用一个电压误差放大器时,可自动均流; (6)强的参数鲁棒性和对各种电路的广泛适应性。
12
2.缺点
(1)双环控制增加了电路分析和设计的难度; (2)占空比大于0.5时,由于电流上升率不够 大,在没有斜坡补偿时,控制环路变得不稳定, 抗干扰性能差,因此需要斜坡补偿; (3)由于控制信号来自输出电流,功率电路的 谐振会给控制环带来噪声,噪声免疫能力差; (4)存在较大的电感电流峰值/平均值误差; (5)因控制环控制电流,负载调整率变差,变 换器多路输出时需要耦合电感实现交叉调节。
电力系统中的电流控制技术

电力系统中的电流控制技术电力系统是支撑现代社会正常运行的重要组成部分,而电流作为电力系统中的基本物理量,其控制和稳定对于电力系统的正常运行至关重要。
为了实现电流的有效控制,电力系统中应用了各种电流控制技术,本文将对其中的一些重要技术进行介绍。
一、电流控制的重要性电流作为电力系统的主要传输量,在供电过程中扮演着重要角色。
电力系统中,电流的大小和稳定性直接影响着电气设备的运行安全性和电网的稳定性。
如果电流过大或不稳定,会导致线路过载,电气设备损坏甚至火灾等严重后果。
因此,电流的控制必不可少。
二、电流控制技术的分类电力系统中的电流控制技术可以按照不同的分类标准划分,这里我们按照控制手段的不同,将其分为主动控制和被动控制两大类。
1. 主动控制技术主动控制技术是通过对电流进行主动干预来实现控制的手段。
其中,最常用的技术之一是采用可调控硅(thyristor)器件来实现电流的精确控制。
可调控硅器件具有可开关的特性,通过控制其通态和关态,可以实现对电流的精确调节。
这种技术在直流电力传输以及大功率变流器等领域得到了广泛应用,能够有效地控制电流的大小和稳定性。
另一个主动控制技术是采用电流控制器进行电流的闭环控制。
电流控制器是一种用来控制电流大小和稳定性的电子设备。
当电流达到设定值时,电流控制器会自动调节系统的参数,使电流保持在设定范围内。
这种技术在电力系统中广泛应用,能够有效地控制电流的稳定性,提高系统的稳定性和可靠性。
2. 被动控制技术被动控制技术是通过对电流传输线路和设备进行设计和优化,使其自动限制电流的大小和稳定性。
其中,最常用的被动控制技术是采用超导材料传输电流。
超导材料具有零电阻和完全排斥磁场的特性,在其低温状态下,电流可以无阻抗地传输。
利用超导材料传输电流可以有效地提高电力系统的传输能力和稳定性。
另一个被动控制技术是采用电流限制器。
电流限制器是一种用来限制电流大小的设备,通过在传输线路上添加电流限制器,可以在电流超过一定阈值时限制其传输。