高效液相色谱法的分类及原理
高效液相色谱简介及操作
HPLC和经典液相色谱法的比较
3.高效液相色谱法的分类
• 通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色 谱法和凝胶色谱法四大类。
4.如何阅读色谱图??
tR:保留时间;tM:死时间; :调整保留时间; W:峰宽
• 定性分析:在同一色谱系统中相同物质具 有相同的保留值 • 定量分析:组分含量与其响应值(峰高或 面积)成正比
2 色谱柱使用的注意事项
• 色谱柱在任何情况下不能碰撞、弯曲或强烈震动。 • 当分析柱长期不使用,应用适当有机溶剂保存(一般 为甲醇)。 • 每天工作结束后用适当的溶剂来清洗柱。
3 其他注意事项
• 未经提取净化的蛋白样品、血样、生物样品绝对禁 止直接进样分析。 • 要注意流动相的脱气。 • 避免使用高粘度的溶剂作为流动相。 • 使用新鲜配制的流动相,特别是水溶剂或缓冲液建 议不超过两天,最好每天更换。
(5)色谱柱平衡后,打开检测器(开灯) (6)测定样品 (7)清洗仪器
色谱柱及流路清洗 进样阀清洗 进样针清洗
四、主要注意事项
1 泵使用的注意事项
•
• •
• •
防止任何固体微粒进入泵体(用0.22 um或0.45 um 的微孔滤膜过滤) 流动相不应含有任何腐蚀性物质,含有缓冲盐的流 动相不应保留在泵内更不允许留在柱内。 泵工作时防止溶剂瓶内的流动相用完,否则空泵运 转一是会使大量空气进入柱内柱床崩塌、也会磨损柱塞、 密封圈,最终产生漏液。 输液泵的工作压力决不要超过规定的最高压力。 流动相应先脱气,以免在泵内产生气泡,影响流量 的稳定性和分析结果。
c. 荧光检测器 (FLD) 只适用于具有荧光的有机化合物(如多环芳烃、氨基 酸、胺类、维生素和某些蛋白质等)的测定。
高效液相色谱法
2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;
高效液相色谱法的分离原理
高效液相色谱法的分离原理(原创版)目录一、高效液相色谱法的基本概念二、高效液相色谱法的分离原理1.流动相与固定相的相互作用2.溶质在两相间的分配3.平衡时的计算公式三、高效液相色谱法的应用领域四、高效液相色谱法的常见故障及其排除方法正文高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种以液体为流动相的色谱分析方法,广泛应用于医药卫生、食品安全、环境化学等各个领域。
其分离原理主要基于溶质在固定相和流动相之间的分配,达到平衡时,服从于高效液相色谱计算公式。
在高效液相色谱法中,流动相与固定相之间应互不相溶,且具有明显的分界面。
当试样进入色谱柱后,溶质会在两相间进行分配。
在达到平衡时,溶质在固定相和流动相中的浓度会达到一定的比例关系。
通过计算公式,我们可以得到溶质在固定相和流动相中的浓度。
高效液相色谱法的应用领域十分广泛,包括但不限于医药卫生、食品安全、环境化学等各个领域。
在医药卫生领域,高效液相色谱法可以用于药物分析、药物研发和药品质量控制等;在食品安全领域,可以用于食品成分分析、添加剂检测和农药残留检测等;在环境化学领域,可以用于水质分析、土壤污染检测和空气污染监测等。
在使用高效液相色谱法过程中,可能会遇到一些常见故障,如流动相泄漏、检测器信号不稳定、色谱柱分离效果差等。
对于这些故障,我们可以采取相应的排除和解决方法。
例如,对于流动相泄漏,可以检查流动相输送管路是否破损、接头是否松动等;对于检测器信号不稳定,可以检查检测器是否受到外界干扰、信号线是否接触良好等;对于色谱柱分离效果差,可以检查色谱柱是否损坏、固定相是否流失等。
综上所述,高效液相色谱法是一种分离效果高、速度快、应用广泛的色谱分析方法。
第1页共1页。
第二十章高效液相色谱(第五版)
(2)L2 = 30cm:
R1 2 L1 ( ) R2 L2
L2 30 R 2 R1 1.33 1.88 L1 15
56
紫外检测器的重要进展; 光电二极管阵列检测器:1024个二极管阵列,各检测特 定波长,计算机快速处理,三维立体谱图,如图所示。
48
光电二极管阵列检测器
49
(二) 荧光检测器 fluorophotometric detector 特点: • 灵敏度高(高于紫外检测器)
• 只适用于能产生荧光或其衍生物能发
荧光的物质。
50
(三) 蒸发光散色检测器 evaporative light scattering detector
流动相 (样品)
流动相蒸发除去
加热
组分形成气溶胶
强光
特点: 测定散射光强 • 灵敏度低 I = k mb • 通用型:如糖类、 氨基酸等分析
51
(四) 化学发光检测器
组分 + 发光试剂 激发态产物 光辐射
n1/2 -1 k2 R = —— (——) (——) 4 1+k2
:主要受溶剂种类的影响
k :主要受溶剂配比的影响
29
选择流动相时应注意的几个问题
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积损坏色谱柱和使检测器噪声增加。 (2)避免流动相与固定相发生作用而使柱效下降或损坏 柱子。如使固定液溶解流失; (3)试样在流动相中应有适宜的溶解度,防止产生沉 淀并在柱中沉积。
24
第二节 HPLC的固定相和流动相及其选择
一、化学键合固定相:目前应用最广、性能最佳的固定相;
a. 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 稳定,耐水、耐光、耐有机溶剂,应用最广; c. 硅碳键型: ≡Si—C d. 硅氮键型: ≡Si—N
高效液相色谱原理
高效液相色谱法(HPLC)一、方法原理1、液相色谱法概述高效液相色谱分析法其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。
HPLC仪器的基本结构2、高效液相色谱法的特点(HPLC)与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分配系数、离子交换作用或分子尺寸大小的差异来进行分离。
由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。
特点是选择性高、分离效能高、分析速度快的特点。
高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。
高效液相色谱法与气相色谱法相比,各有所长,互相补充。
如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。
3、高效液相色谱法的固定相和流动相(1)固定相表面多孔型和全多孔型两大类。
(2)流动相(淋洗液)流动相的选择对改善分离效果产生重要的辅助效应。
从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求:①与固定相互不相溶,并能保持色谱柱的稳定性。
②高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。
③与所用的检测器相匹配。
④应对样品有足够的溶解能力,以提高测定的灵敏度。
⑤具有低的黏度(可减少溶质的传质阻力,提高柱效)和适当低的沸点。
⑥应避免使用具有显著毒性的溶剂,以保证工作人员的安全。
液相色谱法中常用的流动相有正己烷、正庚烷、甲醇、乙腈等。
4、高效液相色谱法的主要类型(1)液—固吸附色谱法①分离原理:基于各组分吸附能力的差异来进行混合物分离的。
②固定相:极性和非极性两种。
极性固定相:硅胶、氧化镁。
高效液相色谱法教学【全】精选全文
例: 流动相极性变化对组分k’的影响
②更换色谱柱(改变N)
措施: a.选择长柱子(N=L/H) b.填料颗粒尽量小 c.低流速(溶质传质阻力小,峰扩展小) d.低的溶剂粘度(提高柱效)
高效液相色谱法
High Performance Liquid
Chromatography (HPLC)
前言:
HPLC是70年代以后发展最 快的一个分析化学分支,现 已成为生化、医学、药物、 化学化工、食品卫生、环保 检测等领域最常用的分离分 析手段。
我国:
开始仅为少数研究实验室拥有, 现很多的生产、研究、质检部门都拥有。 广泛应用于: 质量控制、分析化验、制备分离。 讲课目的:入门 教材:《实用色谱法》(詹益兴 编著) 学习要求:记好笔记,
ⅰ大分子,扩散系数小 ⅱ小分子,扩散系数大
5. 影响分离的因素与提高柱效的途径
• 液体的扩散系数仅为气体的万分之一,在高效液
相色谱中,速率方程中的分子扩散项B/u较小,可忽略 不计,即 H = A + C u
• 降低传质阻力是提高 柱效主要途径。 •气相和液相H-u区别
§1-4 分离度 (Rs)
于世林编著)
第一章 高效液相色谱法基本原理 §1-1 概述 一、色谱法
混合物最有效的分离、分析方法。 是一种分离技术。 混合物分离过程:试样中各组分在 固液两相间不断进行着的分配。 一相固定不动,称为固定相。 另一相是携带试样混合物流过固定 相的液体,称为流动相。
液相色谱仪
高效液相色谱仪流程图
(1) 存在着浓度差,产生纵向扩散;
(2) 扩散导致色谱峰变宽,H↑(N↓),分离变差; (3) B/u与流速有关:流速↓→ 滞留时间↑→ 扩散↑
高效液相色谱法分离原理
高效液相色谱法分离原理高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。
1(液固色谱法使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。
分离过程是一个吸附,解吸附的平衡过程。
常用的吸附剂为硅胶或氧化铝,粒度5~10μm。
适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。
常用于分离同分异构体。
2(液液色谱法使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。
分离过程是一个分配平衡过程。
涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。
由于涂布式固定相很难避免固定液流失,现在已很少采用。
现在多采用的是化学键合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。
正相色谱法采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。
常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。
反相色谱法一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。
适用于分离非极性和极性较弱的化合物。
RPC在现代液相色谱中应用最为广泛,据统计,它占整个HPLC应用的80%左右。
随着柱填料的快速发展,反相色谱法的应用范围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。
为控制样品在分析过程的解离,常用缓冲液控制流动相的pH值。
高效液相色谱分析法的基本原理和基本组成
高效液相色谱分析法的基本原理和基本组成高效液相色谱(HighPerformanceLiquidChromatography,缩写为HPLC)是一种在分析和细胞分离化学领域中最重要的技术手段之一。
在这项技术中,溶剂通过精密的柱型容器内部流动,而溶质则被不同的空气动力学条件(例如压力和温度)穿越柱的表面,进而实现其分离。
高效液相色谱分析法不仅可用于单一物质的分离,也可以用于实现混合物的全分析。
本文将深入介绍高效液相色谱分析法的基本原理和基本组成。
首先,高效液相色谱分析法的基本原理是通过将混合物加入适当溶剂中并在高压动力学条件下推进,而溶质会根据其在柱中的溶解度而被分离出来,实现其分离。
当混合物经过分离处理时,每一种溶质会形成一个独立的峰,最终可以根据峰的位置,形状和大小来对混合物中的溶质进行识别和测定。
此外,实现混合物分离和测定所需要的基本组成也是非常重要的。
首先,必须有一个溶剂,用来混合溶质以及推动它们到HPLC系统中。
其次,柱是HPLC系统中的基本元件,由于其表面状态的不同,可以介导溶质的转移。
最后,还必须有一个泵,通过它可以驱动溶液从柱的入口到出口的流动,以推进混合物的分离。
在开始实验测试之前,必须先根据每一种溶质的特性,设计出适当的HPLC系统,才能得到满意的分离效果。
其中,准备柱是必不可少的,而且也是最重要的一步。
柱的特性取决于其黏度、孔径和长度等参数,而且这些参数取决于柱内吸附体的种类、形状和大小。
因此,在确定柱参数之前,必须先研究柱中添加的吸附体。
除了以上介绍的基本组成,HPLC系统中还必须具备多种检测设备,以及一个控制系统和一个数据处理系统,以便对HPLC系统的运行情况进行实时监测,确保实验的结果可靠可信。
基于以上说明,可以看出,高效液相色谱分析法不仅可用于单一物质的分离,也可以用于实现混合物的测定,其基本原理和基本组成也是至关重要的。
高效液相色谱分析法由于其准确性和灵敏度而备受赞誉,它可以用于医药、食品和环境分析以及其他行业的应用,为科学研究和实践发挥着重要的作用。
高效液相色谱分类及工作原理
水
硅胶
Good transport between sample and sorbent Conditioned sorbent
分配色谱 (L-L,G-L)
1.分离原理
液液分配色谱的分离原理基本与液液萃取相同, 都是根据物质在两种互不相溶的液体中溶解度的不同, 具有不同的分配系数。所不同的是液液色谱的分配是在 柱中进行的,使这种分配平衡可反复多次进行,造成各 组分的差速迁移,提高了分离效率,从而能分离各种复 杂组分。
2.固定相
液液色谱的固定相由载体和固定液组成。常用 的载体有下列几类: (1)全多孔型载体:由硅胶、硅藻土等材料制成, 直径约100 m的全多孔型颗粒。
这类固定相由于颗粒很细,孔仍然较浅,传质速 率快,易实现高效、高速。特别适合复杂混合物分离 及痕量分析。
(2)表面多孔型载体(薄壳型微珠载体):由直径为 30 ~ 40m的实心玻璃球和厚度约为1 ~ 2 m的多孔性 外层所组成。目前,这种载体粒度为5 ~ 10 m。
式样种类 键合基团 流动相
色谱类型
实例
低极性,溶 解于烃类
—C18
中等极性, 可溶于醇
—CN —NH2
—C18 —C8 —CN
—C8 —CN
高极性,可 溶于水
—C18 —SO3-
+
甲醇-水 乙腈-水 乙腈-四氢呋喃
反相
多环芳烃、甘油三酯、类脂、脂溶 性维生素、甾族化合物、氢醌
乙腈、正己烷 氯仿 正己烷 异丙醇
液相传质过程
液相传质过程是指待测组分从气液界面移动到液相内部,发生 质量交换以达到分配平衡,然后又返回气液界面的传质过程。
速率理论方程
公式说明影响n或H的因素 ①填料性质:填料颗粒均匀程度、填料颗粒大小 ②填充情况:填料在色谱柱中填充均匀程度 ③流动相:流动相种类和流速 ④固定相:固定液厚度 结论:范弟姆特方程对色谱分离条件的选择具有指导意义
高效液相色谱的原理和应用
高效液相色谱的原理和应用高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种常用的分离技术,广泛应用于化学、制药、食品科学、环境监测等领域。
本文将介绍高效液相色谱的原理、仪器组成、常见模式、样品制备及其应用。
一、高效液相色谱原理高效液相色谱的原理是利用液相在不同固相填料上的吸附和分配现象,将化合物在不同填充柱中发生分离和纯化。
通常,HPLC 固定相含有一些化学基团,如反相和离子交换基团,可与样品中的化合物进行吸附和分配。
液相进样、柱温及流动相的组成等因素均会影响HPLC分离效果。
二、高效液相色谱仪器组成高效液相色谱仪的组成一般包括进样器、色谱柱、泵、检测器和处理系统等部分。
进样器将样品喷射到柱口,色谱柱用于灌流梳理样品,其中固定填料用于分离和分析所需的化合物。
泵用于将流动相推动柱中的样品,检测器观察所需分析的化合物是否沿着柱流动。
高效液相色谱不仅提供精确且迅速的色谱分离,而且对各种检测器兼容,可选择性地检测各种目标物。
三、高效液相色谱常见模式高效液相色谱常见的模式有反相、离子交换、正相等。
其中,反相色谱在所有柱中应用最广,其固定相通常是羟基烷基硅胶(C18)。
反相色谱的原理在于样品溶解于亲水性较低的溶剂中排出;在色谱柱中遇到亲水性较高的固定相时,由于样品亲水性性质,样品在固定相上发生反相互相作用来获得分离。
离子交换色谱是通过离子交换基团分离化合物中的阴阳离子的;正相色谱固定相仅仅地与正离子发生斥力作用,使分离物在某些环境下进行发生分离和净化,通常情况下正相色谱的相相反色谱。
不过在实际操作过程中,某些离子需要离子交换色谱柱才能实现的很好地分离。
四、样品制备高效液相色谱之前样品制备可能是个需要重视的选项,由于HPLC是在溶液环境中进行的,所以所需的样品必须适合在液相中溶解。
当涉及到样品之前显微技巧之后有必要进行物质氨基酸或肽的酸性或碱性水解,用于小分子化合物的样品溶剂通常为方法文献所标示的洗涤剂和/或过滤剂; 在使用纯度高的离子液体进行样品溶解和/或抑制和保护剂。
高效液相色谱原理
高效液相色谱法(HPLC)一、方法原理1、液相色谱法概述高效液相色谱分析法其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。
HPLC仪器的基本结构2、高效液相色谱法的特点(HPLC)与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分配系数、离子交换作用或分子尺寸大小的差异来进行分离。
由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。
特点是选择性高、分离效能高、分析速度快的特点。
高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。
高效液相色谱法与气相色谱法相比,各有所长,互相补充。
如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。
3、高效液相色谱法的固定相和流动相(1)固定相表面多孔型和全多孔型两大类。
(2)流动相(淋洗液)流动相的选择对改善分离效果产生重要的辅助效应。
从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求:①与固定相互不相溶,并能保持色谱柱的稳定性。
②高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。
③与所用的检测器相匹配。
④应对样品有足够的溶解能力,以提高测定的灵敏度。
⑤具有低的黏度(可减少溶质的传质阻力,提高柱效)和适当低的沸点。
⑥应避免使用具有显著毒性的溶剂,以保证工作人员的安全。
液相色谱法中常用的流动相有正己烷、正庚烷、甲醇、乙腈等。
4、高效液相色谱法的主要类型(1)液—固吸附色谱法①分离原理:基于各组分吸附能力的差异来进行混合物分离的。
②固定相:极性和非极性两种。
极性固定相:硅胶、氧化镁。
高效液相色谱方法及应用
高速、高效、高灵敏度、高自动化。
1.1.2 与气相色谱法比较
应用范围广、更利于选择最佳分离条件且可在常 温下操作。
1.1.3 高效液相色谱法的特点
(1)分离效能高 (2)选择性高 (3)检测灵敏度高 (4)分析速度快 适合于高沸点、热不稳定有机及生化试样的高效分离 分析方法。
1.2 高效液相色谱法的分类
按溶质在两相分离过程中的物理化学原理分类 1.2.1 吸附色谱(Adsorption
Chromatography) 1.2.2 分配色谱(Partition Chromatography) 1.2.3 离子色谱(Ion Chromatography) 1.2.4 体积排阻色谱(Size Exclusion
2.3.3 柱温箱的温度控制要求比较精确,因 为流体的粘度受温度的影响较大。
2.4 检测器
2.4.1 检测器的性能指标 (1)噪声 (2)基线漂移 (3)灵敏度 (4)线性范围 (5)检测器的池体积
2.4.2 检测器的种类
2.4.2.1 紫外吸收检测器
(ultraviolet-visible detector,UVD )
• 进样系统:进样器,进样阀。 • 分离系统:色谱柱,恒温箱。 • 检测系统记录系统:检测器、记录装置
2.1 高压输液系统
2.1.1 贮液罐 2.1.2 流动相脱气
(1)吹氦脱气法 (2)加热回流法 (3)抽真空脱气法 (4)超声波脱气法 (5)在线真空脱气法
2.1.3 高压输液泵
(1)恒流泵:输出恒定体积流量的流动相 (2)恒压泵:又称气动放大泵,输出恒定压力的泵。
Chromatography) 1.2.5 亲和色谱(Affinity Chromatography)
高效液相色谱法的原理
高效液相色谱法的原理高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种分离和分析化学物质的常用技术。
它基于样品在流动相中的相互作用,利用不同化学物质在固定相上的差异来实现分离。
HPLC的原理可以分为以下几个步骤:1. 流动相选择:HPLC中的流动相由溶剂组成,根据分析物性质的不同,可以选择不同的流动相。
溶剂的选择应使得分析物在流动相中有适当的溶解度,并且不与固定相发生显著的反应。
2. 固定相选择:HPLC中的固定相通常是一种多孔的固体材料,它具有较大的比表面积以增加分离效果。
常用的固定相有疏水性相、亲水性相、离子交换相等。
固定相的选择应根据分析物的化学特性和分离要求进行。
3. 样品处理:样品需要经过预处理,通常包括提取、浓缩、净化等步骤。
样品处理的目的是去除杂质和提高分离效果。
4. 进样:样品通过进样器引入色谱柱。
进样时要保证样品量的准确控制,以确保分析结果的准确性。
5. 色谱柱:样品在色谱柱中进行分离。
色谱柱是由固定相填充的管状结构,样品在固定相中的相互作用与时间有关,这将导致样品分离。
分离的准确性和效率取决于固定相的性能和色谱柱的尺寸。
6. 检测器:色谱柱输出的混合物被送入检测器进行检测。
常见的检测器包括紫外可见光检测器、荧光检测器、质谱检测器等。
检测器将染料信号转化为电信号,通过数据处理系统得到分析结果。
7. 数据处理:色谱仪将检测到的信号传输到计算机上进行数据处理和结果分析。
数据处理的步骤包括峰面积和峰高计算,峰的定性和定量分析等。
通过以上步骤,HPLC可以实现对复杂混合物的高效分离和定量分析。
它在制药、环境监测、食品分析等领域被广泛应用。
高效液相色谱法的主要类型及其分离原理
高效液相色谱法的主要类型及其分离原理高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。
特点1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。
一般可达150~350×105Pa。
2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。
高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。
3. 高效:近来研究出许多新型固定相,使分离效率大大提高。
4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。
如荧光检测器灵敏度可达10-11g。
另外,用样量小,一般几个微升。
5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。
而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。
对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。
据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。
高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。
用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。
高效液相色谱HPLC基本原理
Take peak spectrum
Match: 998
Compare with library
250 300 250 300 W a v e l e n g t h (nm)
W a v e l e n g t h (nm)
*Library Searching may be performed in an automated fashion.
自动进样和数据处理装置。
其工作过程如图所示。
He
出口检查
高压泵
脉流消除
储液瓶
入口检查
分布器 过滤 2m
抽气
到检测器
分离柱
压力计
反压调节
过滤器
注样阀
1. 高压输液系统
1)贮液器:1-2L的玻璃瓶,配有溶剂过滤器(Ni合
金),其孔径约2 m,可防止颗粒物进行泵内。
2)溶剂脱气系统:
为什么需要脱气
3) 应用 由于 HPLC 分离分析的高灵 敏度、定量的准确性、适于非 挥发性和热不稳定组分的分析, 因此,在工业、科学研究,尤 其是在生物学和医学等方面应 用极为广泛。如氨基酸、蛋白
吸附
极性增加 不溶于水 非极性 非离子极性 分配 反向分配 正向分配 离子交换 溶于水 离子
质、核酸、烃、碳水化合物、
极性增加不溶于水溶于水非极性离子非离子极性吸附反向分配分配正向分配离子交换分极性增加不溶于水溶于水非极性离子非离子极性吸附反向分配分配正向分配离子交换分子3应用由于应用由于hplc分离分析的高灵敏度定量的准确性适于非挥发性和热不稳定组分的分析因此在工业科学研究尤其是在生物学和医学等方面应用极为广泛
一、 概述 高效液相色谱 (HPLC) 是以溶剂液体为流动相的色谱方法。按照固定相 不同可分为:液液分配色谱;吸附色谱(液固色谱);离子交换色谱;尺寸排
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱法的分类及其分离原理
高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。
1.液-固色谱法(液-固吸附色谱法)
固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。
①液-固色谱法的作用机制
吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。
流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应:
X(液相)+nS(吸附)<==>X(吸附)+nS(液相)
其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。
吸附反应的平衡常数K为:
K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。
K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。
发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。
②液-固色谱法的吸附剂和流动相
常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。
一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。
对流动相的基本要求:
试样要能够溶于流动相中
流动相粘度较小
流动相不能影响试样的检测
常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。
③液-固色谱法的应用
常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。
2.液-液色谱法(液-液分配色谱法)
将液体固定液涂渍在担体上作为固定相。
①液-液色谱法的作用机制
溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。
液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液
K值大的组分,保留时间长,后流出色谱柱。
②正相色谱和反相色谱
正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。
反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。
一般地,正相色谱是固定液的极性大于流动相的极性,而反相色谱是固定相的极性小于流动相的极性。
正相色谱适宜于分离极性化合物,反相色谱则适宜于分离非极性或弱极性化合物。
③液-液色谱法的固定相
常用的固定液为有机液体,如极性的β,β′氧二丙腈(ODPN),非极性的十八烷(ODS)和异二十烷(SQ)等。
缺点:涂渍固定液容易被流动相冲掉。
采用化学键合固定相则可以避免上述缺点。
使固定浓与担体之间形成化学键,例如在硅胶表面利用硅烷化反应:形成Si-O-Si-C
型键,把固定液的分子结合到担体表面上。
优点:
化学键合固定相无液坑,液层薄,传质速度快,无固定液的流失。
固定液上可以结合不同的官能团,改善分离效能。
固定液不会溶于流动相,有利于进行梯度洗提。
④液-液色谱法的应用
液-液色谱法既能分离极性化合物,又能分离非极性化合物,如烷烃、烯烃、芳烃、稠环、染料、留族等化合物。
化合物中取代基的数目或性质不同,或化合物的相对分子质量不同,均可以用液-液色谱进行分离。
3.离子交换色谱法
原理:离子交换色谱法是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的被测离子进行可逆交换,由于被测离子在交换剂上具有不同的亲和力(作用力)而被分离。
①离子交换色谱法的作用机制
聚合物的分子骨架上连接着活性基团,如:-SO3-,-N(CH3)3+等。
为了保持离子交换树脂的电中性,活性基团上带有电荷数相同但正、负号相反的离子X,称为反离子。
活性基团上的反离子可以与流动相中具有相同电荷的被测离子发生交换:
离子交换色谱的分配过程是交换与洗脱过程。
交换达到平衡时:
K值越大,保留时间越长。
②溶剂和固定相
两种类型:多孔性树脂与薄壳型树脂。
多孔性树脂:极小的球型离子交换树脂,能分离复杂样品,进样量较大;缺点是机械强度不高,不能耐受压力。
薄壳型离子交换树脂:在玻璃微球上涂以薄层的离子交换树脂,这种树脂柱效高,当流动相成分发生变化时,不会膨胀或压缩;缺点是但柱子容量小,进样量不宜太多。
③离子交换色谱法的应用
主要用来分离离子或可离解的化合物,凡是在流动相中能够电离的物质都可以用离子交换色谱法进行分离。
广泛地应用于:无机离子、有机化合物和生物物质(如氨基酸、核酸、蛋白质等)的分离。
4.凝肤色谱法(空间排阻色谱法)
凝胶是一种多孔性的高分子聚合体,表面布满孔隙,能被流动相浸润,吸附性很小。
凝胶色谱法的分离机制是根据分子的体积大小和形状不同而达到分离目的。
①凝胶色谱法的作用机制
体积大于凝胶孔隙的分子,由于不能进入孔隙而被排阻,直接从表面流过,先流出色谱柱;小分子可以渗入大大小小的凝胶孔隙中而完全不受排阻,然后又从孔隙中出来随载液流动,后流出色谱柱;中等体积的分子可以渗入较大的孔隙中,但受到较小孔隙的排阻,介乎上述两种情况之间。
凝胶色谱法是一种按分子尺寸大小的顺序进行分离的一种色谱分析方法。
②凝胶色谱法的固定相
软质凝胶、半硬质凝胶和硬质凝胶三种。
③凝胶色谱法的应用特点
保留时间是分子尺寸的函数,适宜于分离相对分子质量大的化合物,相对分子质量在400~8×105的任何类型的化合物。
保留时间短,色谱峰窄,容易检测。
固定相与溶质分子间的作用力极弱,趁于零,柱的寿命长。
不能分辨分子大小相近的化合物,分子量相差需在10%以上时才能得到分离。