(完整版)《相似三角形的性质》教案

合集下载

(完整版)相似三角形的性质和判定教案

(完整版)相似三角形的性质和判定教案

个性化教学设计方案教师姓名吴其明学生姓名填写时间5月9 学科年级教材版本第章(单元)第节阶段□观察期□维护期课时计划第( 3 )课时共()课时课程名称相似三角形判定与性质个性化学习教学目标掌握相似三角形的概念、性质及判定方法,能够灵活应用相似三角形的性质和判定方法方法解决实际问题。

教学重点相似三角形的性质及判定方法。

教学难点相似三角形的性质和判定方法方法的应用教学过程一、归纳导入(呈现知识)1、相似三角形的概念(1)对应角相等,对应边成比例的三角形,叫做相似三角形。

相似用符号“∽”表示,读作“相似于”。

(2)相似三角形对应角相等,对应边成比例。

(3)相似三角形对应边的比叫做相似比(或相似系数)。

(4)全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例。

(5)相似三角形的等价关系①反身性:对于任一ABC∆有ABC∆∽ABC∆。

②对称性:若ABC∆∽'''CBA∆,则'''CBA∆∽ABC∆。

③传递性:若ABC∆∽CBA'∆'',且CBA'∆''∽CBA''''''∆,则ABC∆∽CBA''''''∆。

2、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

初中数学初三数学上册《相似三角形的性质》教案、教学设计

初中数学初三数学上册《相似三角形的性质》教案、教学设计
初中数学初三数学上册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及性质,掌握相似三角形的判定方法。
2.能够运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
3.学会使用相似三角形的相关定理进行证明,提高逻辑推理能力。
4.掌握相似变换的概念,了解其在现实生活中的应用。
(二)过程与方法
1.通过观察、实践、探索,引导学生发现相似三角形的性质,培养他们的观察能力和动手操作能力。
2.通过小组合作、讨论交流,培养学生的团队合作意识和解决问题的能力。
3.运用类比、归纳等数学思想,帮助学生建立知识体系,提高他们的逻辑思维能力。
4.设计丰富的例题和练习,巩固所学知识,提高学生的解题技巧。
1.重点:相似三角形的定义、性质及判定方法,相似变换的应用。
2.难点:相似三角形性质的证明过程,以及将相似三角形性质应用于解决实际问题。
(二)教学设想
1.创设情境,导入新课
-通过展示生活中常见的相似图形,如地图、照片等,引发学生对相似三角形的兴趣。
-提问方式引导学生回顾已学的全等三角形知识,为新课的学习做好铺垫。
作业要求:
1.学生应在规定时间内独立完成作业,注重作业质量,提高解题效率。
2.作业完成后,认真检查,确保答案正确、书写规范。
3.积极参与课堂讨论,与同学分享解题思路和心得。
4.遇到问题及时向老师请教,不断提高自己的数学素养。
在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,引导他们主动参与课堂活动。同时,注重培养学生的数学思维和解决问题的能力,为他们的终身学习奠定基础。
二、学情分析
本章节的学习对象为初三学生,经过前两年的数学学习,他们已经掌握了平面几何的基本知识和技能,具备了一定的逻辑推理和问题解决能力。在此基础上,学生对相似三角形的性质这一章节内容的学习将面临以下挑战:

九年级数学下册《相似三角形的性质》教案、教学设计

九年级数学下册《相似三角形的性质》教案、教学设计
-提问:“全等三角形有哪些性质?它们在几何证明中有什么作用?”
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案一、教学目标1.了解相似三角形的定义和性质;2.掌握相似三角形的判定方法;3.能够运用相似三角形的性质解决实际问题。

二、教学内容1. 相似三角形的定义相似三角形是指具有相同形状但大小不同的三角形。

两个相似三角形的对应角度相等,对应边长成比例。

2. 相似三角形的性质1.相似三角形的对应角度相等;2.相似三角形的对应边长成比例;3.相似三角形的周长成比例;4.相似三角形的面积成比例。

3. 相似三角形的判定方法1.AA判定法:如果两个三角形的两个角分别相等,则这两个三角形相似;2.SSS判定法:如果两个三角形的三条边分别成比例,则这两个三角形相似;3.SAS判定法:如果两个三角形的两条边分别成比例,且这两条边夹角相等,则这两个三角形相似。

4. 相似三角形的应用1.求解三角形的边长和角度;2.求解三角形的面积;3.求解三角形的周长;4.求解三角形的高度和中线等。

三、教学过程1. 相似三角形的定义和性质1.引入相似三角形的概念,让学生了解相似三角形的定义;2.通过图示,让学生了解相似三角形的性质,包括对应角度相等、对应边长成比例、周长成比例和面积成比例。

2. 相似三角形的判定方法1.AA判定法:通过图示,让学生了解AA判定法的原理和应用;2.SSS判定法:通过图示,让学生了解SSS判定法的原理和应用;3.SAS判定法:通过图示,让学生了解SAS判定法的原理和应用。

3. 相似三角形的应用1.求解三角形的边长和角度:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的边长和角度;2.求解三角形的面积:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的面积;3.求解三角形的周长:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的周长;4.求解三角形的高度和中线等:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的高度和中线等。

四、教学方法1.讲解法:通过讲解相似三角形的定义、性质、判定方法和应用,让学生掌握相关知识;2.举例法:通过例题,让学生了解如何运用相似三角形的性质解决实际问题;3.练习法:通过练习题,让学生巩固所学知识。

相似三角形教案完美版

相似三角形教案完美版

面积比与边长比关系
1 2
面积比性质
相似三角形的面积比等于对应边长的平方比,即 如果AB/A'B' = k,则S△ABC/S△A'B'C' = k^2。
面积比推论
如果两个三角形的面积比已知,可以通过求边长 比来进一步确定这两个三角形的相似关系。
3
应用
在解决与相似三角形有关的问题时,可以通过面 积比和边长比的关系来建立方程或不等式,从而 找到问题的解决方案。
三角形的边、角、顶点、高、中线、 角平分线等。
三角形全等条件
全等三角形的定义
能够完全重合的两个三角形。
全等三角形的性质
全等三角形的对应边相等,对应角相等。
全等三角形的判定条件
SSS(三边全等)、SAS(两边和夹角全等)、ASA(两角和夹边全等)、AAS(两角和 一非夹边全等)和HL(直角边斜边定理)。
推论
如果两个三角形有两个对 应的角分别相等,则这两 个三角形相似。
对应边成比例性质
定义
当两个三角形的对应边成比例时,这两个三角形 相似。
性质
相似三角形的对应边成比例,即如果AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
推论
如果两个三角形有两边对应成比例,且夹角相等 ,则这两个三角形相似。
相似多边形概念
01
02
03
相似多边形的定义
两个多边形的对应角相等 ,对应边成比例,则这两比值 。
相似多边形的性质
相似多边形的对应角相等 ,对应边成比例,面积比 等于相似比的平方。
03

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案相似三角形的性质教案一、教学目标:1. 理解相似三角形的概念;2. 掌握相似三角形的判定方法;3. 掌握相似三角形的性质;4. 运用相似三角形的知识解决实际问题。

二、教学重点和难点:1. 相似三角形的判定方法;2. 相似三角形的性质。

三、教学内容和教学过程:1. 引入新课教师用两个相似的三角形拼接成一个平行四边形的图形,让学生通过观察推测相似三角形的特点。

2. 概念解释教师向学生解释相似三角形的概念:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。

3. 判定方法让学生尝试找出判定相似三角形的方法,并与同桌分享。

教师引导学生总结出判定相似三角形的方法:考察两个三角形的对应角是否相等以及对应边是否成比例。

4. 性质解释让学生想象两个相似三角形的比例关系,观察和分析两个相似三角形之间的性质差异。

教师引导学生总结出相似三角形的性质:(1)对应角相等性质:相似三角形的三个对应角都相等。

(2)对应边成比例性质:相似三角形的三个对应边都成比例。

(3)相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。

5. 实际应用教师给出一些实际问题,让学生运用相似三角形的知识解决问题,如计算高塔的高度、测量不可直接测量的距离等。

四、课堂练习在黑板上列出一些相似三角形的题目,让学生在课堂上解答,并让他们互相交流讨论解题思路。

五、板书设计相似三角形定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。

性质:1. 对应角相等性质:相似三角形的三个对应角都相等。

2. 对应边成比例性质:相似三角形的三个对应边都成比例。

3. 相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。

六、教学反思通过本节课的教学,学生能够理解并掌握相似三角形的概念、判定方法和性质。

通过实际应用的练习,学生也能够灵活运用相似三角形的知识解决问题。

相似三角形的性质教案

相似三角形的性质教案

4.7 相似三角形的性质(一)一、教学目标:1.经历探索相似三角形性质的过程,进一步体验由特殊到一般的归纳思想和方法,积累数学活动经验.2.了解相似三角形的性质定理:相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。

3.在相似三角形性质的学习过程中,进一步发展勇于探究与合作交流的精神。

二、教学重难点:1、重点:相似三角形的性质及证明2、难点:相似三角形性质的简单应用三、教学过程:一、创设情境,导入新课在生活中,我们经常利用相似的知识解决建筑类问题.如图,小王依据图纸上的△ABC,以1:2的比例建造了模型房梁△A′B′C′,CD和C′D′分别是它们的立柱。

小王在图纸上量出CD的长,就可知道模型房梁的立柱C′D′的长。

你能说出其中的道理吗?意图:以现实的生活问题导入,使学生体验数学来源于生活,又运用于生活,激发学生学习兴趣,从而引出本节课的学习内容。

二、探究:相似三角形的性质问题一:(1)如果CD=1.5cm ,那么模型房的房梁立柱有多高?为什么?(2)若△ABC ∽△A ′B ′C ′,相似比为k , (3)据此,你可以发现相似三角形怎样的性质?意图:通过对问题串的解答,引发学生思维层层递进,从相似三角形的最基本性质展开研究.使学生明确相似比与对应高的比的关系. 问题二:如图:已知△ABC ∽△A ′B ′C ′,相似比为k ,它们对应角平分线的比是多少?对应中线的比是多少?请证明你的结论。

意图:通过学生小组合作探究,类比前面探究过程,引发学生主动探究意识、培养合作交流能力,发展学生的类比的思维能力,与归纳总结能力.相似三角形性质定理:相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。

问题三:(变式拓展)如图:已知△ABC ∽△A ′B ′C ′,相似比为k ;点D,E 在BC 边上,点D ′,E ′在B ′C ′边上。

(1)若∠BAD = ∠BAC ,∠B ′A ′D ′= ∠B ′A ′C ′, (2)若BE = BC , B ′E ′= B ′C ′, (3)你还能提出哪些问题?与同伴交流意图:有了前面探索的基础,学生完全有能力独立完成“变式问1313___________AD A D =''则1313___________AE A E =''则___________AD A D =''则题”的探索,在探索过程中,发展学生类比探究的能力与独立解决问题的能力,培养学生全面思考的思维品质.三、应用举例,巩固提高例1、(口答填空):已知:两个相似三角形一对对应中线长分别是2cm 和5cm ,那么它们的相似比是 ;对应高的比是 ;如果一对对应角平分线中,较短的为3cm ,则较长的为 。

相似三角形的性质优秀教案

相似三角形的性质优秀教案

相似三角形的性质【教学目标】1.探索相似三角形的性质,会运用相似三角形的性质解决有关的问题;2.发展学生合情推理,和有条理的表达能力【教学重点】相似三角形的性质【教学难点】有条理的表达与推理【教学过程】一、情境引入:(1)前面学习了相似三角形、相似多边形的概念,知道如果两个三角形或两个多边形相似,那么它们的对应角、对应边成比例。

相似三角形、相似多边形是否还有其他的一些性质呢?(2)所有的正方形都是相似形(它们的对应角相等,对应边成比例)。

若正方形的边长为1,则周长为4,面积是1;若正方形的边长为2,则周长为8,面积是4;若正方形的边长为3,则周长为12,面积是9;若正方形的边长为a,则周长为4a,面积是a2.这些正方形间周长的比,面积的比与其边长的比之间有怎样的关系呢?二、探究学习:1.若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的周长比等于相似比吗?问题1.为了解决这个问题,不妨设这个相似比为k,只要考虑什么就可以了?问题2.相似比为k,那么哪些线段的比也等于k?问题3.这两个三角形的周长又分别与哪些线段有关?问题4.如何得出这两个三角形的周长比与相似比k的关系?得出:相似三角形的周长的比等于相似比问题5.你能运用类似的方法说明“相似多边形的周长等于相似比吗?”得出:相似多边形的周长等于相似比2.问题1.若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的面积比与相似比又有什么关系1 / 32 / 3呢?已知△ABC ∽△A′B′C′,相似比是k ,AD 和A′D′分别是△ABC 和△A′B′C′的高。

因为∠B=∠B′,∠ADB=∠A′D′B′=90°所以△ABD ∽△A′B′D′所以k B A AB D A AD =''='',即AD=kA′D′,所以221212121k D A C B D A k C B k D A C B AD BC C B A ABC =''⋅''''⋅''=''⋅''⋅='''∆∆的面积的面积得出:相似三角形的面积比等于相似比的平方问题2.你能类似地得出相似多边形的面积比与相似比的关系吗?得出:相似多边形的面积比等于相似比的平方。

相似三角形的性质数学教案

相似三角形的性质数学教案

相似三角形的性质数学教案
标题:相似三角形的性质
一、教学目标:
1. 理解并掌握相似三角形的定义。

2. 掌握相似三角形的基本性质,并能够应用这些性质解决实际问题。

3. 培养学生的空间观念和逻辑推理能力。

二、教学重点与难点:
1. 教学重点:理解相似三角形的定义和性质。

2. 教学难点:运用相似三角形的性质解决实际问题。

三、教学过程:
(一)引入新课
通过一些生活中的实例引出相似的概念,激发学生的学习兴趣。

(二)新课讲解
1. 定义:如果两个三角形的对应角相等,那么这两个三角形就叫做相似三角形。

2. 性质:相似三角形的对应边成比例,对应高的比等于对应边的比,对应中线的比等于对应边的比,对应角平分线的比也等于对应边的比。

(三)例题解析
1. 选择适当的题目进行示范,让学生理解和掌握如何运用相似三角形的性质解决问题。

2. 让学生自己尝试解答一些题目,教师在一旁指导。

(四)课堂练习
设计一些练习题,让学生巩固所学的知识。

(五)小结与作业
1. 小结本节课的主要内容和学习的重点。

2. 分配一些课后作业,让学生在课后继续复习和巩固所学知识。

四、教学反思
在教学结束后,对整个教学过程进行反思,总结成功之处和需要改进的地方。

九年级数学上册《相似三角形的性质》教案、教学设计

九年级数学上册《相似三角形的性质》教案、教学设计
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。

2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。

3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。

二、教学重难点:1.教学重点:相似三角形的性质。

2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。

三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。

例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。

(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。

(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。

记作ΔABC∼ΔDEF。

(2)相似三角形的性质:相似三角形的对应边成比例。

即有如下比例关系:AB/DE=BC/EF=AC/DF。

3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。

例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。

(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。

代入已知条件,得6/9=8/EF=10/DF。

由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。

例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。

(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。

代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。

相似三角形性质教案

相似三角形性质教案

相似三角形的性质(一)一、教学目标1、 理解相似三角形的有关性质:对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比也等于相似比。

2、 会灵活运用相似三角形的性质解决有关问题。

二、教学重、难点重点:掌握相似三角形的相关性质,了解相关性质的证明方法 难点:掌握命题证明方法、步骤,灵活运用性质解决问题。

三、教学方法类比、归纳教学过程:1、课前复习:(1)什么叫相似三角形如何判断两三角形相似(2)如果两个三角形相似,那么它们的边和角各有什么性质①相似三角形的对应边______________ AB CDE F②相似三角形的对应角______________[问题]:两个相似三角形除了以上两条性质外, 它们还有哪些性质呢2、情境教学,讲授新课:一个三角形有三条重要线段:高、中线、角平分线如果两个三角形相似,那么这些对应线段有什么关系呢探究1,。

相似三角形对应边上的高有什么关系呢在图中△ABC 和△A ′B ′C ′是两个相似三角形,相似比为k ,其中AD 、 A ′D ′ 分别为BC 、 B ′C ′边上的高,那么AD 、 A ′D ′关系对应边上的高的比等于:相似三角形的对应高的比等于相似比吗已知:ABC ∽ △A ’B ’C ’, △ABC 与 △A ’B ’C ’的相似比是k,AD 、A ’D ’是对应高。

求证:。

k DA AD '' 结论:相似三角形对应边上的高之比等于相似比。

自主思考---类似结论问题2,△ABC ∽△A ′B ′C ′,相似比为k ,其中AD 、 A ′D ′ 分别为BC 、 B ′C ′边上的中线,那么=''D A AD结论:相似三角形对应中线的比等于相似比.问题3.△ABC ∽△A ′B ′C ′,相似比为k ,其中AD 、 A ′D ′ 分别为BC 、 B ′C ′边上的中线,那么=''D A AD结论:相似三角形对应角的角平分线的比等于相似比.归纳小结:相似三角形的性质:对应高的比对应中线的比 都等于相似比对应角平分线的比练习(见课件)问题4: 两个相似三角形的周长比 会等于相似比吗学生自主探究,互相交流,归纳结论:相似三角形的周长比等于相似比。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案教案标题:相似三角形的性质教学目标:1. 了解相似三角形的定义;2. 掌握相似三角形的判定条件;3. 掌握相似三角形的性质。

教学准备:1. PPT幻灯片;2. 相似三角形的定义和判定条件的示意图。

教学过程:一、导入(5分钟)1. 引导学生回顾三角形的基本概念和性质;2. 引入相似三角形的概念,通过展示相似三角形的定义和示意图,激发学生的兴趣。

二、讲解相似三角形的定义(10分钟)1. 展示相似三角形的定义,并通过示意图解释定义;2. 引导学生通过观察示意图,思考相似三角形的特点和性质。

三、讲解相似三角形的判定条件(15分钟)1. 展示相似三角形的判定条件,并解释条件的含义和推导过程;2. 引导学生通过观察判定条件,思考如何用相似三角形的判定条件判断两个三角形是否相似;3. 通过例题进行讲解和练习,巩固学生对相似三角形判定条件的理解。

四、讲解相似三角形的性质(15分钟)1. 展示相似三角形的性质,包括边比例、角度比例和相关线段的比例;2. 解释相似三角形的性质的原理和推导过程;3. 引导学生通过观察示意图和推理,思考相似三角形的性质在实际问题中的应用。

五、拓展延伸(10分钟)1. 给学生提供一些实际问题,让他们运用相似三角形的性质进行推理和计算;2. 引导学生分组讨论并展示解题过程和结果。

六、总结与评价(5分钟)1. 对本节课所学内容进行总结;2. 引导学生回答相关问题,评价自己在本节课的学习成果。

七、课堂小结与布置作业(5分钟)1. 对本节课所学内容进行小结;2. 布置作业:完成课堂练习题,巩固所学内容。

4.7.1相似三角形的性质(教案)

4.7.1相似三角形的性质(教案)
其次,在讲解相似三角形性质时,我发现有些学生对“比例”这个概念理解得不够深入,导致在解决面积和周长问题时出现错误。为了让学生更好地理解这一概念,我计划在下一节课中增加一些关于比例的讲解和练习,帮助他们巩固知识。
此外,实践活动中的小组讨论环节,我发现有些学生在讨论过程中参与度不高,可能是因为他们对问题不够了解或者缺乏自信。针对这个问题,我将在接下来的教学中,鼓励学生们多发表自己的观点,培养他们的自信心和团队协作能力。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定方法和性质这两个重点。对于难点部分,比如相似比与面积比的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量相似三角形的边长和角度,验证相似性质。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、重要性质和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形性质的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对相似三角形的性质这一部分内容掌握得还算不错。他们在小组讨论和实验操作环节表现出了较高的积极性,能够将所学的理论知识应用到实际问题中。但在教学过程中,我也注意到了几个需要改进和加强的地方。
首先,对于相似三角形的判定方法,部分学生仍然存在一定的困惑,特别是在对应边和对应角的识别上。在今后的教学中,我需要更加注重这一点,通过丰富的实例和练习,帮助学生熟练掌握判定方法。

相似三角形的性质教案(完美版)

相似三角形的性质教案(完美版)

在线分享文档地提升自我By :麦群超相似三角形的性质一、教学目标 知识与技能2. 能熟练运用三角形相似的性质进行量的计算.过程与方法对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度 情感态度与价值观在学习和探讨的过程中,体验特殊到一般的认知规律;通过对生活问题的解决,体会数学知识在实际中的广泛应用 二、重、难点重点:相似三角形性质定理的探索、理解及应用难点:相似三角形性质定理的探索、理解及应用 三、教学过程(一)、课前导学:学生自学课本内容,并完成下列问题 1.相似三角形的对应角______ ,对应边 . 2.相似三角形的判定方法有那些? 三边对应 的两个三角形相似.两边 且夹角 的两个三角形相似.对应 的两个三角形相似. 直角三角形相似的判定定理:两边和它们的夹角对应 的两个三角形相似.3.回顾交流:读图,思考回答如下问题(1)三角形中有哪几条主要线段?(2)全等三角形具有哪些性质?(3)全等三角形对应边上的高、中线、角平分线相等吗?请说明。

2.(1)如果△ABC ∽△A'B'C'的相似比为2,那么△ABC 与'''C B A △的周长比是多少? 面积比呢?1. 掌握相似三角形的相似比与对应高、中线、角平分线、周长,面积的比存在的等量关系,掌握相似三角形周长比、面积比与相似比之间的关系在线分享文档让每个人平等地提升自我:麦群超(2)如果△ABC ∽△A'B'C'的相似比为k ,那么△ABC 与的周长比是多少? 面积比呢?【结论】相似三角形的周长比等于 .相似三角形的面积比等于 . (二)、合作、交流、展示例1、已知:如图,△ABC∽△A′B′C′,相似比为k ,AD 与A′D′分别是△ABC 和△A′B′C′的高, 求证:【结论】:相似三角形对应高的比等于 。

【思考】:如果两个三角形是直角三角形,钝角三角形时结果还成立吗?试试看!2、证明:相似三角形对应中线的比、对应角平分线的比等于相似比【结论】:相似三角形对应中线、对应角平分线的比等于 。

《相似三角形的性质》 教学设计

《相似三角形的性质》 教学设计

《相似三角形的性质》教学设计一、教学目标1、知识与技能目标(1)理解相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

(2)掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方。

(3)能运用相似三角形的性质解决简单的实际问题。

2、过程与方法目标(1)通过观察、测量、推理等活动,经历相似三角形性质的探究过程,培养学生的动手操作能力和逻辑推理能力。

(2)在探究相似三角形性质的过程中,体会从特殊到一般、转化、类比等数学思想方法。

3、情感态度与价值观目标(1)通过小组合作探究,培养学生的合作意识和团队精神。

(2)让学生在探索相似三角形性质的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点(1)相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比与相似比的关系。

(2)相似三角形面积的比与相似比的关系。

2、教学难点相似三角形性质的证明及应用。

三、教学方法讲授法、探究法、讨论法、练习法四、教学过程1、导入新课(1)回顾相似三角形的定义及相似比的概念。

(2)展示两个相似三角形的图片,提问:相似三角形除了对应角相等、对应边成比例外,还有哪些性质呢?2、探究相似三角形对应高的比与相似比的关系(1)画出两个相似三角形 ABC 和 A'B'C',对应边的比为 k,AD和 A'D'分别是 BC 和 B'C'边上的高。

(2)让学生通过测量、计算,得出 AD 和 A'D'的长度,进而发现AD : A'D' = k。

(3)引导学生进行推理证明:因为三角形 ABC 相似于三角形 A'B'C',所以角 B =角 B'。

又因为角 ADB =角 A'D'B' = 90°,所以三角形 ABD 相似于三角形A'B'D'。

《相似三角形的性质》教案

《相似三角形的性质》教案

相似三角形的性质【知识与技能】会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【过程与方法】培养学生演绎推理的能力.【情感态度】感受数学来源于生活,来源于实践.【教学重点】1.相似三角形中的对应线段比值的推导;2.相似多边形的周长比、面积比与相似比关系的推导;3.运用相似三角形的性质解决实际问题.【教学难点】相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境导入,初步认识复习:1.判定两个三角形相似的简便方法有哪些?△ABC 与△A ′B ′C ′中,AB=10cm,AC=6cm,BC=8cm,A ′B ′=5cm,A ′C ′=3cm,B ′C ′=4cm ,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?二、思考探究,获取新知上述两个三角形是相似的,它们对应边的比就是相似比,△ABC ∽△A ′B ′C ′,相似比为C A AC ''=2. 相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢?一个三角形内有三条主要线段——高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学画出上述的两个三角形,作对应边BC 和B ′C ′边上的高,用刻度尺量一量AD 与A ′D ′的长,D A AD ''等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比等于相似比.我们能否用说理的方法来说明这个结论呢?△ABD 和△A ′B ′D ′都是直角三角形,且∠B=∠B ′.∴△ABD ∽△A ′B ′D ′,∴BA AB D A AD ''=''=k 思考:相似三角形面积的比与相似比有什么关系?【教学说明】引导学生通过演绎推理来证明.归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.例1如梯形ABCD 的对角线交于点O ,32=AB DC ,S △DOC =4,求S △AOB 、 S △AOD .【分析】∵DC ∥AB,∴△DOC ∽△BOA ,由相似三角形的性质可求出S △AOB 、S △AOD. 解:∵DC ∥AB ,∴△DOC ∽△BOA ,三、运用新知,深化理解,桌面距离地面为1m,假设灯泡距离地面3m,那么地面上阴影局部的面积为 .【教学说明】运用相似三角形对应高的比等于相似比是解决此题的关键.2.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF∶EH=4∶3,求EF、EH的长.πm22.HG=;EH=【教学说明】充分运用矩形边长的比来建立方程,可使问题得到解决.四、师生互动,课堂小结1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.1.布置作业:从教材相应练习和“习题”中选取.“课时作业〞局部.本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜测出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似三角形的性质》教案
课标要求
了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.
教学目标
知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力.
情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识.
教学重点
相似三角形性质定理的理解与运用.
教学难点
探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题.
教学流程
一、情境引入
三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等.
问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢?
引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系.
二、探究归纳
回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质?
相似三角形的对应角相等,对应边成比例.
问题:相似三角形的其他几何量可能具有哪些性质?
探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.
图1
图2
问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?
追问:对应高在哪两个三角形中,它们相似吗?如何证明?
解:∵△ABC ∽△A ′B ′C ′
∴∠B =∠B ′
∵△ABD 和△A ′B ′D ′都是直角三角形
∴△ABD ∽△A ′B ′D ′ ∴=
=''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ?
结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢?
推广:相似三角形对应线段的比等于相似比.
问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系?
结论:相似三角形的周长比等于相似比.
思考:相似三角形面积比与相似比有什么关系?
如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.
21212
ABC
A B C BC AD S BC AD k k k S B C A D
B C A D ∆'''∆⋅==⋅=⋅=''''''''⋅ 结论:相似三角形面积比等于相似比的平方.
三、应用提高
例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边
BC 上的高是6,面积为125,求△DEF 的边 EF 上的高和面积.
解:在△ABC 和△DEF 中,
∵AB =2DE ,AC =2DF ,
1.2
DE DF AB AC ∴== ∵∠A =∠D ,
∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为1.2
∵△ABC 的边 BC 上的高是6,面积为125,
∴△DEF 的边 EF 上的高为163,2
⨯= 面积为211253 5.2⨯=()
应用:
1.判断
(1)一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍;( )
(2)一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.( )
2.如图,△ABC 与△A ′B ′C ′相似,AD 、BE 是的△ABC 高,A ′D ′、B ′E ′是的△A ′B ′C ′高,求证.AD BE A D B E =''''
3.在一张复印出来的纸上,一个三角形的一条边由原来的2cm 变成了6cm ,放缩比例
是多少?这个三角形的面积发生了怎样的变化?
四、体验收获
说一说你的收获.
相似三角形的性质:
1.对应角相等,对应边成比例(对应边的比等于相似比)
2.对应高线、对应中线、对应角平分线的比等于相似比
3.对应周长比等于相似比
4.对应面积比等于相似比的平方
五、拓展提升
1.两个相似三角形的周长之比是2:3,它们的面积之差是60cm2那么它们的面积之和是多少?
2.如图,这是比例尺为1:1000的一块三角形草坪的图形,则草坪的实际面积是多少?
3cm2cm
3.如图,△ABC 的面积为100,周长为80,AB=20,点D 是AB 上一点,BD=12,过点D 作DE∥BC,交AC于点E.(1)求△ADE 的周长和面积;(2)过点E 作EF∥AB,EF 交BC 于点F,求△EFC 和四边形DBFE 的面积.
六、课内检测
1.用放大镜看一个三角形,一条边由原来的1cm变成5cm,那么看到的图案面积是原来的()
A.5倍B.15倍C.25倍D.30倍
2.两个等腰直角三角形的斜边比为1:2,则它们的周长比为()
A.1:1 B.1:2 C.1:4 D.2
3.两个相似三角形最长边分别是20cm和16cm,它们的周长之和为90cm,则较大三角形的周长为()
A.40cm B.50 cm C.60 cm D.70 cm
4.两个相似三角的对应高分别为6cm和4cm,则这两个三角形的周长比为_____,面积比为_____.
5.已知两个相似三角形面积之比为9:25,其中一个周长为36,则另一个的周长为
_______.
七、布置作业
必做题:教材42页习题27.2第6题.
选做题:教材43页习题27.2第12题.
附:板书设计
教学反思:。

相关文档
最新文档