第31练 椭圆问题中最值得关注的基本题型
高中数学椭圆题型归纳(K12教育文档)

(完整word版)高中数学椭圆题型归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高中数学椭圆题型归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)高中数学椭圆题型归纳(word版可编辑修改)的全部内容。
高中数学椭圆题型归纳一.椭圆の标准方程及定义1.已知椭圆+=1上一点P到椭圆の一个焦点の距离为3,则点P到另一个焦点の距离为( )A.2 B.3 C.5 D.72、已知椭圆の标准方程为,并且焦距为6,则实数mの值为.3.求满足下列条件の椭圆の标准方程(1)焦点分别为(0,﹣2),(0,2),经过点(4,)(2)经过两点(2,),()4.求满足下列条件の椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆の一个焦点到长轴两端点の距离分别为10和4.5.设F1,F2分别是椭圆+=1の左,右焦点,P为椭圆上任一点,点M の坐标为(6,4),则|PM|+|PF1|の最大值为.二、离心率1、已知F1、F2是椭圆の两个焦点,P是椭圆上一点,∠F1PF2=90°,则椭圆离心率の取值范围是.2.设F1、F2是椭圆E:+=1(a>b>0)の左右焦点,P是直线x=a上一点,△F2PF1是底角为30°の等腰三角形,则椭圆Eの离心率为() A. B. C. D.3.已知点F1、F2是双曲线C:﹣=1(a>0,b>0)の左、右焦点,O为坐标原点,点P在双曲线Cの右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线Cの离心率の取值范围为()A.(1,+∞) B.[,+∞)C.(1,] D.(1,]三、焦点三角形1、已知椭圆+=1左,右焦点分别为F1,F2,点P是椭圆上一点,且∠F1PF2=60°.①求△PF1F2の周长②求△PF1F2の面积.2.已知点(0,﹣)是中心在原点,长轴在x轴上の椭圆の一个顶点,离心率为,椭圆の左右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积の最大值;(3)试探究椭圆上是否存在一点P,使•=0,若存在,请求出点Pの坐标;若不存在,请说明理由.四、弦长问题1、已知椭圆4x2+y2=1及直线y=x+m.(1)当直线与椭圆有公共点时,求实数mの取值范围.(2)求被椭圆截得の最长弦の长度.2、设F1,F2分别是椭圆の左、右焦点,过F1斜率为1の直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求Eの离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求Eの方程.五、中点弦问题1、已知椭圆+=1の弦ABの中点Mの坐标为(2,1),求直线ABの方程,并求ABの长.六、定值、定点问题1、已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段ABの中点为M.(1)证明:直线OMの斜率与lの斜率の乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时lの斜率;若不能,说明理由.七、对称问题1.已知椭圆方程为,试确定mの范围,使得椭圆上有不同の两点关于直线y=4x+m对称.高中数学椭圆题型归纳参考答案与试题解析一.选择题(共3小题)1.(2016春•马山县期末)已知椭圆+=1上一点P到椭圆の一个焦点の距离为3,则点P到另一个焦点の距离为( )A.2 B.3 C.5 D.7【分析】先根据条件求出a=5;再根据椭圆定义得到关于所求距离dの等式即可得到结论.【解答】解:设所求距离为d,由题得:a=5.根据椭圆の定义得:2a=3+d⇒d=2a﹣3=7.故选D.【点评】本题主要考查椭圆の定义.在解决涉及到圆锥曲线上の点与焦点之间の关系の问题中,圆锥曲线の定义往往是解题の突破口.2.(2015秋•友谊县校级期末)设F1、F2是椭圆E:+=1(a>b>0)の左右焦点,P是直线x=a上一点,△F2PF1是底角为30°の等腰三角形,则椭圆Eの离心率为()A. B. C. D.【分析】利用△F2PF1是底角为30°の等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=a上一点,可建立方程,由此可求椭圆の离心率.【解答】解:∵△F2PF1是底角为30°の等腰三角形,∴|PF2|=|F2F1|∵P为直线x=a上一点∴2(a﹣c)=2c∴e==故选:B.【点评】本题考查椭圆の几何性质,解题の关键是确定几何量之间の关系,属于基础题.3.(2016•衡水模拟)已知点F1、F2是双曲线C:﹣=1(a>0,b>0)の左、右焦点,O为坐标原点,点P在双曲线Cの右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线Cの离心率の取值范围为()A.(1,+∞) B.[,+∞) C.(1,] D.(1,]【分析】由直角三角形の判定定理可得△PF1F2为直角三角形,且PF1⊥PF2,运用双曲线の定义,可得|PF1|﹣|PF2|=2a,又|PF1|≥3|PF2|,可得|PF2|≤a,再由勾股定理,即可得到c≤a,运用离心率公式,即可得到所求范围.【解答】解:由|F1F2|=2|OP|,可得|OP|=c,即有△PF1F2为直角三角形,且PF1⊥PF2,可得|PF1|2+|PF2|2=|F1F2|2,由双曲线定义可得|PF1|﹣|PF2|=2a,又|PF1|≥3|PF2|,可得|PF2|≤a,即有(|PF2|+2a)2+|PF2|2=4c2,化为(|PF2|+a)2=2c2﹣a2,即有2c2﹣a2≤4a2,可得c≤a,由e=可得1<e≤,故选:C.【点评】本题考查双曲线の离心率の范围,注意运用双曲线の定义和直角三角形の性质,考查运算能力,属于中档题.二.填空题(共3小题)4.已知椭圆の标准方程为,并且焦距为6,则实数mの值为4或.【分析】由题设条件,分椭圆の焦点在x轴上和椭圆の焦点在y轴上两种情况进行讨论,结合椭圆中a2﹣b2=c2进行求解.【解答】解:∵椭圆の标准方程为,椭圆の焦距为2c=6,c=3,∴当椭圆の焦点在x轴上时,25﹣m2=9,解得m=4;当椭圆の焦点在y轴上时,m2﹣25=9,解得m=.综上所述,mの取值是4或.故答案为:4或【点评】本题考查椭圆の简单性质,是基础题.解题时要认真审题,仔细解答,注意分类讨论思想の合理运用.5.(2016•漳州一模)设F1,F2分别是椭圆+=1の左,右焦点,P为椭圆上任一点,点Mの坐标为(6,4),则|PM|+|PF1|の最大值为15 .【分析】由椭圆の定义可得,|PM|+|PF1|=2a+|PM|﹣|PF2|≤2a+|MF2|,由此可得结论.【解答】解:由题意F2(3,0),|MF2|=5,由椭圆の定义可得,|PM|+|PF1|=2a+|PM|﹣|PF2|=10+|PM|﹣|PF2|≤10+|MF2|=15,当且仅当P,F2,M三点共线时取等号,故答案为:15.【点评】本题考查椭圆の定义,考查学生分析解决问题の能力,属于基础题.6.已知F1、F2是椭圆の两个焦点,P是椭圆上一点,∠F1PF2=90°,则椭圆离心率の取值范围是.【分析】根据题意,点P即在已知椭圆上,又在以F1F2为直径の圆上.因此以F1F2为直径の圆与椭圆有公式点,所以该圆の半径c大于或等于短半轴b の长度,由此建立关于a、cの不等式,即可求得椭圆离心率の取值范围.【解答】解∵P点满足∠F1PF2=90°,∴点P在以F1F2为直径の圆上又∵P是椭圆上一点,∴以F1F2为直径の圆与椭圆有公共点,∵F1、F2是椭圆の焦点∴以F1F2为直径の圆の半径r满足:r=c≥b,两边平方,得c2≥b2即c2≥a2﹣c2⇒2c2≥a2两边都除以a2,得2e2≥1,∴e≥,结合0<e<1,∴≤e<1,即椭圆离心率の取值范围是[,1).故答案为:[,1).【点评】本题在已知椭圆上一点对两个焦点张角等于90度の情况下,求椭圆の离心率,着重考查了椭圆の基本概念和解不等式の基本知识,属于中档题.三.解答题(共9小题)7.(2013秋•琼海校级月考)已知椭圆+=1左,右焦点分别为F1,F2,点P是椭圆上一点,且∠F1PF2=60°.①求△PF1F2の周长②求△PF1F2の面积.【分析】①根据椭圆の方程求得c,利用△PF1F2の周长L=2a+2c,即可得出结论;②设出|PF1|=t1,|PF2|=t2,利用余弦定理可求得t1t2の值,最后利用三角形面积公式求解.【解答】解:①∵a=5,b=3,∴c=4∴△PF1F2の周长L=2a+2c=18;②设|PF1|=t1,|PF2|=t2,则由椭圆の定义可得:t1+t2=10在△F1PF2中∠F1PF2=60°,∴t12+t22﹣2t1t2•cos60°=28,可得t1t2=12,∴==3.【点评】解决此类问题の关键是熟练掌握椭圆の标准方程、椭圆の定义,熟练利用解三角形の一个知识求解问题.8.(2015秋•揭阳月考)已知点(0,﹣)是中心在原点,长轴在x轴上の椭圆の一个顶点,离心率为,椭圆の左右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积の最大值;(3)试探究椭圆上是否存在一点P,使•=0,若存在,请求出点P の坐标;若不存在,请说明理由.【分析】(1)由题意设出椭圆标准方程,根据顶点の坐标和离心率得b=,根据a2=b2+c2求出aの值,即求出椭圆标准方程;(2)根据(1)求出の椭圆标准方程,求出点M纵坐标の范围,即求出三角形面积の最大值;(3)先假设存在点P满足条件,根据向量の数量积得•,根据椭圆の焦距和椭圆の定义列出两个方程,求出Sの值,结合(2)中三角形面积の最大值,判断出是否存在点P.【解答】解:(1)由题意设椭圆标准方程为+=1,由已知得,b=.(2分)则e2===1﹣=,解得a2=6(4分)∴所求椭圆方程为+=1(5分)(2)令M(x1,y1),则S=|F 1F2|•|y1|=•2•|y1|=|y1|(7分)∵点M在椭圆上,∴﹣≤y 1≤,故|y 1|の最大值为,(8分)∴当y 1=±时,Sの最大值为.(9分)(3)假设存在一点P,使•=0,∵≠,≠,∴⊥,(10分)∴△PF1F2为直角三角形,∴|PF1|2+|PF2|2=|F1F2|2=4 ①(11分)又∵|PF 1|+|PF2|=2a=2②(12分)∴②2﹣①,得2|PF1|•|PF2|=20,∴|PF1|•|PF2|=5,(13分)即S=5,由(1)得S最大值为,故矛盾,∴不存在一点P,使•=0.(14分)【点评】本题考查了椭圆方程の求法以及椭圆の性质、向量数量积の几何意义,利用a、b、c、e几何意义和a2=b2+c2求出a和bの值,根据椭圆上点の坐标范围求出相应三角形の面积最值,即根据此范围判断点P是否存在,此题综合性强,涉及の知识多,考查了分析问题和解决问题の能力.9.(2015秋•葫芦岛校级月考)求满足下列条件の椭圆の标准方程(1)焦点分别为(0,﹣2),(0,2),经过点(4,)(2)经过两点(2,),()【分析】(1)设出椭圆の标准方程,代入点の坐标,结合c=2,即可求得椭圆の标准方程;(2)设出椭圆の标准方程,代入点の坐标,即可求得椭圆の标准方程.【解答】解:(1)依题意,设所求椭圆方程为=1(a>b>0)因为点(4,3),在椭圆上,又c=2,得,解得a=6,b=4…(10分)故所求の椭圆方程是=1;(2)设椭圆方程为mx2+ny2=1,则∵经过两点(2,),(),∴,∴,n=,∴椭圆方程为=1.【点评】本题考查椭圆の标准方程,考查学生の计算能力,属于基础题.10.(2012秋•西安期末)求满足下列条件の椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆の一个焦点到长轴两端点の距离分别为10和4.【分析】(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,cの关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆の焦点の位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,cの关系解得b,即可得到椭圆方程.【解答】解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.【点评】本题考查椭圆の方程和性质,主要考查椭圆の方程の求法,注意运用椭圆の方程の正确设法,以及椭圆性质の运用,属于基础题.11.(2010•宁夏)设F1,F2分别是椭圆の左、右焦点,过F1斜率为1の直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求Eの离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求Eの方程.【分析】(I)根据椭圆の定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线lの方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和bの关系,进而求得a和cの关系,离心率可得.(II)设ABの中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PNの斜率,根据求得c,进而求得a和b,椭圆の方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,lの方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简の(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以Eの离心率(II)设ABの中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆Eの方程为.【点评】本题主要考查圆锥曲线中の椭圆性质以及直线与椭圆の位置关系,涉及等差数列知识,考查利用方程思想解决几何问题の能力及运算能力12.(2014春•广水市校级月考)已知椭圆+=1の弦ABの中点Mの坐标为(2,1),求直线ABの方程,并求ABの长.【分析】首先,根据椭圆の对称轴,得到该直线の斜率存在,设其方程为y﹣1=k(x﹣2),然后联立方程组,利用一元二次方程根与系数の关系,并且借助于中点坐标公式,确定斜率kの值,然后,利用两点间の距离公式或弦长公式,求解ABの长.【解答】解:当直线ABの斜率不存在时,不成立,故直线ABの斜率存在,设其方程为y﹣1=k(x﹣2),联立方程组,消去y并整理,得(1+4k2)x2+8k(1﹣2k)x+4(1﹣2k)2﹣16=0,∴x1+x2=﹣,∵,∴2k(2k﹣1)=1+4k2,∴k=﹣,∴直线ABの方程:x+2y﹣4=0.将k=﹣代人(1+4k2)x2+8k(1﹣2k)x+4(1﹣2k)2﹣16=0,得x2﹣4x=0,解得x=0,x=4,∴A(0,),B(4,﹣),∴|AB|=.∴ABの长2.【点评】本题属于中档题,重点考查了椭圆の简单几何性质、直线与椭圆の位置关系、弦长公式、两点间の距离公式等知识,属于高考の热点和重点问题.13.(2015•新课标Ⅱ)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O 且不平行于坐标轴,l与C有两个交点A,B,线段ABの中点为M.(1)证明:直线OMの斜率与lの斜率の乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时lの斜率;若不能,说明理由.【分析】(1)联立直线方程和椭圆方程,求出对应の直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OMの斜率k OM==,即k OM•k=﹣9,∴直线OMの斜率与lの斜率の乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,则k>0,∴l不过原点且与C有两个交点の充要条件是k>0,k≠3,由(1)知OMの方程为y=x,设Pの横坐标为x P,由得,即x P=,将点(,m)の坐标代入lの方程得b=,即lの方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k 1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当lの斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线の相交问题,联立方程组转化为一元二次方程,利用根与系数之间の关系是解决本题の关键.综合性较强,难度较大.14.(2013秋•阜城县校级月考)已知椭圆4x2+y2=1及直线y=x+m.(1)当直线与椭圆有公共点时,求实数mの取值范围.(2)求被椭圆截得の最长弦の长度.【分析】(1)当直线与椭圆有公共点时,直线方程与椭圆方程构成の方程组有解,等价于消掉y后得到xの二次方程有解,故△≥0,解出即可;(2)设所截弦の两端点为A(x1,y1),B(x2,y2),由(1)及韦达定理可把弦长|AB|表示为关于mの函数,根据函数表达式易求弦长最大值;【解答】解:(1)由得:5x2+2mx+m2﹣1=0,当直线与椭圆有公共点时,△=4m2﹣4×5(m2﹣1)≥0,即﹣4m2+5≥0,解得﹣≤m≤,所以实数mの取值范围是﹣≤m≤;(2)设所截弦の两端点为A(x1,y1),B(x2,y2),由(1)知,x1+x2=﹣,x1x2=,所以弦长|AB|=|x 1﹣x2|=•=•=2×,当m=0时|AB|最大,最大值为:.【点评】本题考查直线与圆锥曲线の位置关系,考查函数与方程思想,弦长公式、韦达定理是解决该类题目の基础知识,应熟练掌握.15.(2012秋•裕华区校级期中)已知椭圆方程为,试确定mの范围,使得椭圆上有不同の两点关于直线y=4x+m对称.【分析】根据对称性可知线段AB被直线y=4x+m垂直平分,从而可得直线ABの斜率k=﹣,直线AB与椭圆有两个交点,且ABの中点M在直线y=4x+m,可设直线AB の方程为y=,联立方程整理可得13x2﹣8bx+16(b2﹣3)=0可求中点M,由△=64b2﹣4×13×16(b2﹣3)>0可求bの范围,由中点M在直线y=4x+m可得m,b の关系,从而可求mの范围【解答】解:设椭圆上关于直线y=4x+m对称の点A(x1,y1),B(x2,y2),则根据对称性可知线段AB被直线y=4x+m垂直平分.可得直线ABの斜率k=﹣,直线AB与椭圆有两个交点,且ABの中点M(x0,y0)在直线y=4x+m,故可设直线AB の方程为y=,整理可得13x2﹣8bx+16(b2﹣3)=0,所以,,由△=64b2﹣4×13×16(b2﹣3)>0可得,所以代入直线y=4x+m可得m=所以,.【点评】本题主要考查了直线与椭圆の位置关系の应用,解题の关键是灵活应用已知中の对称性设出直线方程,且由中点在y=4x+m上建立m,b之间の关系,还要注意方程の根与系数の关系の应用.。
椭圆大题定值定点、取值范围、最值问题总结

椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在)121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+=u u u r u u u r②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔u u u r u u u r数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x x y y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩ 所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()432000000320004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为2,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=u u u r u u u r,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点. (1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---u u u r u u u u r,,,,.所以()22120021PF PF x y ⋅=--=u u u r u u u r ,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x -,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k ++-+--=,设()B B B x y ,,则1B x -同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -==-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅u u u r u u u r为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++u u u r u u u r,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+.4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k -+=+,即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k =,所以222212m k k k+=+…,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y x x y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E D n y y m k==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k=,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B,,且3AP PB =u u u r u u u r , 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=u u u r u u u r Q ,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-…,所以112m -<-„或112m <„, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-„或112m <„.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=u u u u r u u u r u u u r. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-u u u r u u u r 剟,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--u u u r u u u u r u u u r,,,,,.由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=. (2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>.所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--u u u r u u u r()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k -+--+剟,解得213k 剟.(3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅u u u r u u u r 的取值范围. 解:(13)AP =u u u r,,设()(31)Q x y AQ x y =--u u u r ,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-u u u r u u u r因为221182y x +=,即22(3)18x y +=, 而22(3)2|||3|x y x y +⋅…,所以18618xy -剟.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-u u u r u u u r取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x轴上.若右焦点到直线0x y -+=的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m 的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=.(2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+, 所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=u u u u r u u u r u u u r u u u u r,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=u u u r u u u r,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=u u u u r u u u r u u u r u u u u r,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y +=(2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=u u u r u u u r,所以()()112222x y x y λ-=-,,,所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,, 所以()22121221x x x x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭, 因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===u u u r u u u r ,,, 所以113λ<…,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=u u u r u u u r u u u r(O 为坐标原点),当||PA PB -<u u u r u u u r时,求实数t 取值范围.解:(1)由题意知c e a ==,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=.(2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=u u u r u u u r u u u r ,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为||PA PB -<u u u r u u u r12x -()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为()22-U ,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=u u u r u u u r,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x a b+=,由题意可得2a b c ===,故椭圆方程为22142y x +=设AB 的直线方程:2y x m =+.由222124y x m y x ⎧=+⎪⎨+=⎪⎩,,得2242240x mx m ++-=,由()22(22)1640m m ∆=-->,得2222m -<<,P 到AB 的距离为3d =, 则()2111||432223PAB S AB d m ∆=⋅=-⋅⋅, ()()2222211882882m m m m -+=-+=„.当且仅当2(2222)m =±∈-,取等号,所以三角形PAB 面积的最大值为2. (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t ….当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()3311-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=1=,即221t k =+. 所以||AB ==因为||23||||ABt t ==+,且当t = 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯„, 当且仅当t =AOB∆面积S 的最大值为1,相应的T的坐标为(0-,或(0.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m 的函数,并求AB 的最大值.解:由题意知,||1m ….当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB= 当1m =-时,同理可得AB =当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB ,23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a b a b+=>>上的三点,其中点A 的坐标为(230),,BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==u u u r u u u r u u u r u u u r ,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =u u u r u u u r ,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=u u u r u u u r u u u r u u u r ,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点1(2)M ,,平行于OM 的直线l 在y 轴上的截距为(0)m m ≠,l交椭圆于A B ,两个不同点.(1)求椭圆的方程;(2)求m 的取值范围;(3)求证直线MA MB ,与x 轴始终围成一个等腰三角形.。
椭圆最值问题常考题型分析

椭圆最值问题常考题型分析在遇到椭圆中线段或三角形周长最值问题时用函数思想有时很复杂,解题时常利用椭圆上点的性质(122MF MF a +=)及三角形三边关系.◆典例剖析例1、已知点)3,2(-P ,2F 为椭圆1162522=+y x 的右焦点,点M 在椭圆上移动,求2MF MP +的最大值和最小值。
解:设椭圆左焦点为1F ,∴︱MP ︱+︱MF 2︱=︱MP ︱+a 2-︱MF 1︱, 连接PF 1,延长PF 1交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知–︱PF 1︱≤︱MP ︱-︱MF 1︱≤︱PF 1︱当且仅当M 与M 1重合时取右等号、M 与M 2重合时取左等号。
∵a 2=10, ︱PF 1︱=2所以(︱MP ︱+︱MF 2︱)max =12, (︱MP ︱+︱MF 2︱)min =8 结论:设椭圆12222=+by a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x ,y)为椭圆上任意一点,则 ︱MP ︱+︱MF 2︱的最大值为a 2+︱PF 1︱,最小值为a 2–︱PF 1︱。
例2、已知点P(-2,6),F 2为椭圆1162522=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最大值和最小值。
解:由题可知点P 在椭圆外,PF 2交椭圆于M ,此点使︱MP ︱+︱MF 2︱值最小(求最大值方法同例1)。
︱MP ︱+︱MF 2︱=︱MP ︱+a 2-︱MF 1︱连接PF 1并延长交椭圆于点M 1,则M 在M 1处时︱MP ︱-︱MF 1︱取最大值︱PF 1︱。
∴︱MP ︱+︱MF 2︱最大值是10+37,最小值是41。
结论:设椭圆12222=+by a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点,则 ︱MP ︱+︱MF 2︱的最大值为a 2+︱PF 1︱,最小值为PF 2。
椭圆27种常考经典题型及方法

椭圆27种常考经典题型及方法
很多学生都说,青颜整理的63套高中数学解题方法很实用,特别针对了解答题类。
很多学生很期待,青颜能出一套关于高中数学选择填空破题方面的方法。
今天开始,我们就开始更新一系列高中数学选择填空破题微方法大全,而椭圆是常见常考的一个考点!下面是
椭圆27种常考经典题型及方法!
今天我们研究椭圆的定义(第一定义),“平面内与两个定点的距离之和等于定长的动点轨迹” (定长大于两定点之间的距离)是椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
椭圆问题中最值得关注的基本题型

椭圆问题中最值得关注的基本题型[题型分析•高考展望]椭圆问题在高考中占有比较重要的地位,并且占的分值也较多•分析历年的高考试题,在填空题、解答题中都涉及到椭圆的题,所以我们对椭圆知识必须系统的掌握•对各种题型,基本的解题方法也要有一定的了解常考题型精析问题、最值问题,利用a、b、c之间的关系和椭圆的对称性可构造方程•2 2x y变式训练1 (2014 •课标全国I )已知点A(0,- 2),椭圆Er + 2= 1(a>b>0)的离心率为a b-2-, F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.2 3(1)求E的方程;点评熟练掌握椭圆的几何性质是解决此类问题的根本, 利用离心率和椭圆的围可以求解围题型一利用椭圆的几何性质解题⑵设过点A的动直线I与E相交于P, Q两点,当△ OPQ勺面积最大时,求I的方程•题型二 直线与椭圆相交问题左,右焦点分别是 F , F 2.以F i 为圆心、以3为半径的圆与以 F 2为圆心、以1为半径的圆相 交,且交点在椭圆 C 上. (1)求椭圆C 的方程;2 2⑵ 设椭圆E :右+和=1, P 为椭圆C 上任意一点,过点 P 的直线y = kx + m 交椭圆E 于A, B 两点,射线PO 交椭圆E 于点QOQ(i )求 Op 的值;(ii )求厶ABC 面积的最大值•点评解决直线与椭圆相交问题的一般思路: 将直线方程与椭圆方程联立,转化为一元二次 方程,由判别式围或根与系数的关系解决 •求围或最值问题,也可考虑求“交点”,由“交点”在椭圆(外),得出不等式,解不等式•2 2变式训练2(2014・)已知椭圆C : X2+ y2= 1 ( a >b >0)的焦距为4,其短轴的两个端点与长a b轴的一个端点构成正三角形 . (1)求椭圆C 的标准方程;⑵ 设F 为椭圆C 的左焦点,T 为直线x =- 3上任意一点,过F 作TF 的垂线交椭圆C 于点P, Q ①证明OT 平分线段PQ 其中O 为坐标原点);②当吾最小时,求点T 的坐标•例2 (2015 •)在平面直角坐标系 xOy 中,已知椭圆C:2 2分b 2=1( a > b > 0) 的离心率为题型三利用“点差法,设而不求思想”解题x o例3已知椭圆2- + y2= 1求斜率为2的平行弦的中点轨迹方程点评当涉及平行弦的中点轨迹,过定点的弦的中点轨迹,过定点且被定点平分的弦所在直线方程时,用“点差法”来求解 .x2 y2>f5 变式训练3 (2015 -模拟)已知椭圆孑+含=1(a>b>0)的一个顶点为B(0,4),离心率直线I交椭圆于M N两点•(1)若直线I的方程为y = x — 4,求弦MN的长•⑵如果△ BMN勺重心恰好为椭圆的右焦点F,求直线I方程的一般式•高考题型精练1.( 2015 •课标全国I改编)已知椭圆E的中心在坐标原点,离心率为£ E的右焦点与抛物线C: y2= 8x的焦点重合,A, B是C的准线与E的两个交点,贝U AB= _________ .2 2x y2.( 2014 •大纲全国改编)已知椭圆C: ' 2+ 2= 1(a>b>0)的左、右焦点分别为F1、F2,离心率a b为彳,过F2的直线I交C于AB两点.汇AFB的周长为 4.3,则C的方程为2 . . 2 2 . . x 23.( 2014 •改编)设P, Q分别为圆x + (y— 6) = 2和椭圆石+ y = 1上的点,贝U P, Q两点间2的最大距离是4.若椭圆和双曲线具有相同的焦点F i, F2,离心率分别为e i, e2, P是两曲线的一个公共点,1 1且满足戸斤丄PR ,则云+ &的值为2 25.椭圆C : ? + b 2 = 1 (a >b >0)的两个焦点为 F 1, F 2, M 为椭圆上一点,且 MF • MF 的最大值的 取值围是[C 2,2C 2],其中c 是椭圆的半焦距,则椭圆的离心率取值围是 ___________________ .2 2x y6.( 2014 •)已知椭圆C:二+夕=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分9 4 别为A B,线段MN 的中点在C 上,则AW BN=1 x2 y 27.( 2014 •)过点M 1,1)作斜率为一空的直线与椭圆 C 尹萨1(a >b >0)相交于 A B 两点, 若M 是线段AB 的中点,则椭圆 C 的离心率等于 __________ .28.( 2014 •)设F , F 2分别是椭圆E : x 2+右=1(0<b <1)的左,右焦点,过点 R 的直线交椭圆E 于A, B 两点•若AF = 3F i B, AF 2丄x 轴,则椭圆 E的方程为9.( 2014 •)如图,在平面直角坐标系 xOy 中,F i , =1( a >b >0)的左,右焦点,顶点 B 的坐标为(0 , 4 1(1)若点C 的坐标为3, 3,且B^= .2,求椭圆的方程;⑵ 若FQ 丄AB 求椭圆离心率 e 的值•2 2x y10.( 2015 -)如图,椭圆孑+ 卧1( a > b > 0)的左,右焦点分别为过F 2的直线交椭圆于 P 、Q 两点,且PC 丄PF .交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另 F1,巨y (XJ(1)若PF1= 2+ 2, PF z= 2 — .2,求椭圆的标准方程;3,⑵若PF = PQ 求椭圆的离心率 e .1 b )的直线的距离为?c . (1)求椭圆E 的离心率;5⑵如图,AB 是圆M (x + 2)2+ (y — 1)2 =勺的一条直径,若椭圆 过A B 两点,求椭圆E 的方程.2 2x y12.( 2015 •模拟)已知椭圆 G 二+ 2= 1(a >b >0)的离心率为11.( 2015 -)已知椭圆 E :2b 2= 1(a >b >0)的半焦距为c ,原点0到经过两点(c, 0) , (0 ,右焦点为(2 2, 0).斜率为a b1的直线I与椭圆G交于A, B两点,以AB为底边作等腰三角形,顶点为P( — 3,2).(1)求椭圆G的方程;⑵求△ PAB的面积.3,从而 PQ= . k 2+ 1| X 1 — X 2|4、k 2+ 1 - , 4k 2— 3 2答案精析第29练 椭圆问题中最值得关注的基本题型常考题型典例剖析例1解设P 点坐标为(x o , y 。
椭圆考点中的定值与最值问题

第1练 椭圆问题中最值得关注的几类基本题型题型一 利用椭圆的几何性质解题例1 如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,求PF →·P A →的最大值和最小值.破题切入点 本题主要考查椭圆的几何性质及其应用,解题的关键是表示出PF →·P A →,根据椭圆的性质确定变量的取值范围.解 设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3. 所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0),∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.当x 0=2时,PF →·P A →取得最小值0, 当x 0=-2时,PF →·P A →取得最大值4. 题型二 直线与椭圆相交问题例2 已知直线l 过椭圆8x 2+9y 2=72的一个焦点,斜率为2,l 与椭圆相交于M 、N 两点,求弦|MN |的长. 破题切入点 根据条件写出直线l 的方程与椭圆方程联立,用弦长公式求出.解 由⎩⎪⎨⎪⎧y =2(x -1),8x 2+9y 2=72,得11x 2-18x -9=0. 由根与系数的关系,得x M +x N =1811,x M ·x N =-911.由弦长公式|MN |=1+k 2|x M -x N |=5·(1811)2+4×911=3 600112=6011. 题型三 点差法解题,设而不求思想例3 已知椭圆x 22+y 2=1,求斜率为2的平行弦的中点轨迹方程.破题切入点 设出弦的两端点,利用点差法求解.解 设弦的两端点分别为M (x 1,y 1),N (x 2,y 2),MN 的中点为R (x ,y ),则x 21+2y 21=2,x 22+2y 22=2,两式相减并整理可得,y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)=-x2y ,①将y 1-y 2x 1-x 2=2代入式①,得所求的轨迹方程为x +4y =0(-2<x <2). 题型四 轨迹问题例4 △ABC 的一边的顶点是B (0,6)和C (0,-6),另两边斜率的乘积是-49,求顶点A 的轨迹方程.破题切入点 直接设出A 点坐标,根据条件求出轨迹,注意挖点.解 设A (x ,y ),由题设得y -6x ·y +6x =-49(x ≠0).化简得x 281+y 236=1(x ≠0).即顶点A 的轨迹方程为x 281+y236=1(x ≠0).总结提高 (1)关于线段长的最值问题一般有两个方法:一是借助图形,由几何图形中量的关系求最值,二是建立函数关系求最值或用不等式来求最值.(2)直线和椭圆相交问题:①常用分析一元二次方程解的情况,仅有“Δ”还不够,还要用数形结合思想.②弦的中点、弦长等,利用根与系数关系式,注意验证“Δ”.(3)当涉及平行弦的中点轨迹,过定点的弦的中点轨迹,过定点且被定点平分的弦所在直线方程,用“点差法”来求解.(4)求轨迹(方程)的方法大致有直接法、代入法、定义法、参数法等,根据条件选择恰当的方法.1.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的________条件.2.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是________.3.已知椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列,则椭圆方程为________.4.(2014·大纲全国改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为________.5.(2014·福建改编)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是________.6.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.7.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2.若AF 1,F 1F 2,F 1B 成等比数列,则此椭圆的离心率为________.8.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则AN +BN =________.9.(2014·江西)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率为________.10.(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若AF 1=3F 1B ,AF 2⊥x 轴,则椭圆E 的方程为________.1答案 必要不充分解析 若x 2m -2+y26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,所以2<m <6且m ≠4,故“2<m <6”是“方程x 2m -2+y 26-m =1表示椭圆”的必要不充分条件.2答案 椭圆解析 点P 在线段AN 的垂直平分线上,故P A =PN .又AM 是圆的半径, 所以PM +PN =PM +P A =AM =6>MN ,由椭圆定义知,P 的轨迹是椭圆.3答案 x 28+y 26=1解析 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由点(2,3)在椭圆上知4a 2+3b2=1.又PF 1,F 1F 2,PF 2成等差数列,则PF 1+PF 2=2F 1F 2,即2a =2·2c ,c a =12. 又c 2=a 2-b 2,联立得a 2=8,b 2=6.4答案 x 23+y 22=1解析 由e =33,得c a =33.①又△AF 1B 的周长为43,由椭圆定义,得4a =43,得a =3,代入①得c =1,所以b 2=a 2-c 2=2,故C 的方程为x 23+y 22=1.5答案 62解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0,解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=6 2.6答案 62解析 设AF 1=m ,AF 2=n ,则有m +n =4,m 2+n 2=12,因此12+2mn =16,所以mn =2,而(m -n )2=(2a )2=(m +n )2-4mn =16-8=8,因此双曲线的a =2,c =3,则有e =32=62.7答案55解析 由椭圆的性质可知:AF 1=a -c ,F 1F 2=2c ,F 1B =a +c ,又AF 1,F 1F 2,F 1B 成等比数列,故(a -c )(a +c )=(2c )2,可得c a =55.8答案 12解析 椭圆x 29+y24=1中,a =3.如图,设MN 的中点为D ,则DF 1+DF 2=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴BN =2DF 2, AN =2DF 1,∴AN +BN =2(DF 1+DF 2)=12.9答案 22解析 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.10答案 x 2+32y 2=1解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵AF 1=3F 1B ,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b 23.将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.11.(2014·课标全国Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且MN =5F 1N ,求a ,b .11解 (1)根据c =a 2-b 2及题设知M (c ,b 2a ),b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由MN =5F 1N ,得DF 1=2F 1N .设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28,故a =7,b =27. 12.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,顶点B 的坐标为(0,b ),连结BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.12解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0).(1)因为B (0,b ),所以BF 2=b 2+c 2=a .又BF 2=2,故a = 2.因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1.故所求椭圆的方程为x 22+y 2=1. (2)因为B (0,b ),F 2(c,0)在直线AB 上,所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c 2-a 2)a 2+c 2. 又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (a 2-c 2)a 2+c 2.因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15,因此e =55.第37练 圆锥曲线中的探索性问题题型一 定值、定点问题例1 已知椭圆C :x 2a 2+y 2b 2=1经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B两点.(1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,请说明理由.破题切入点 (1)待定系数法.(2)通过直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点A ,B 的横坐标的关系式,然后根据向量关系式MA →=λAF →,MB →=μBF →.把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值.解 (1)依题意得b =3,e =c a =12,a 2=b 2+c 2,∴a =2,c =1,∴椭圆C 的方程为x 24+y 23=1.(2)因直线l 与y 轴相交于点M ,故斜率存在,又F 坐标为(1,0),设直线l 方程为 y =k (x -1),求得l 与y 轴交于M (0,-k ),设l 交椭圆A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),x 24+y23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,又由MA →=λAF →,∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 21-x 2,∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 21-(x 1+x 2)+x 1x 2=8k 23+4k 2-2(4k 2-12)3+4k 21-8k23+4k 2+4k 2-123+4k 2=-83.所以当直线l 的倾斜角变化时,直线λ+μ的值为定值-83. 题型二 定直线问题例2 在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2py (p >0)相交于A ,B 两点. (1)若点N 是点C 关于坐标原点O 的对称点,求△ANB 面积的最小值;(2)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.破题切入点 假设符合条件的直线存在,求出弦长,利用变量的系数恒为零求解. 解 方法一 (1)依题意,点N 的坐标为N (0,-p ),可设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +p ,与x 2=2py 联立得⎩⎪⎨⎪⎧x 2=2py ,y =kx +p .消去y 得x 2-2pkx -2p 2=0.由根与系数的关系得x 1+x 2=2pk ,x 1x 2=-2p 2.于是S △ABN =S △BCN +S △ACN =12·2p |x 1-x 2|=p |x 1-x 2|=p (x 1+x 2)2-4x 1x 2=p 4p 2k 2+8p 2=2p 2k 2+2,∴当k =0时,(S △ABN )min =22p 2.(2)假设满足条件的直线l 存在,其方程为y =a ,AC 的中点为O ′,l 与以AC 为直径的圆相交于点P ,Q ,PQ 的中点为H ,则O ′H ⊥PQ ,Q ′点的坐标为(x 12,y 1+p2).∵O ′P =12AC =12x 21+(y 1-p )2=12y 21+p 2,O ′H =⎪⎪⎪⎪a -y 1+p 2=12|2a -y 1-p |,∴PH 2=O ′P 2-O ′H 2 =14(y 21+p 2)-14(2a -y 1-p )2=(a -p 2)y 1+a (p -a ),∴PQ 2=(2PH )2=4[(a -p 2)y 1+a (p -a )].令a -p 2=0,得a =p2,此时PQ =p 为定值,故满足条件的直线l 存在,其方程为y =p2,即抛物线的通径所在的直线.方法二 (1)前同方法一,再由弦长公式得AB =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·4p 2k 2+8p 2=2p 1+k 2·k 2+2,又由点到直线的距离公式得d =2p 1+k 2.从而S △ABN=12·d ·AB =12·2p 1+k 2·k 2+2· 2p 1+k 2=2p 2k 2+2.∴当k =0时,(S △ABN )min =22p 2. (2)假设满足条件的直线l 存在,其方程为y =a ,则以AC 为直径的圆的方程为 (x -0)(x -x 1)-(y -p )(y -y 1)=0,将直线方程y =a 代入得x 2-x 1x +(a -p )(a -y 1)=0,则Δ=x 21-4(a -p )(a -y 1)=4[(a -p 2)y 1+a (p -a )]. 设直线l 与以AC 为直径的圆的交点为P (x 3,y 3),Q (x 4,y 4),则有PQ =|x 3-x 4|= 4[(a -p 2)y 1+a (p -a )]=2(a -p2)y 1+a (p -a ).令a -p 2=0,得a =p2,此时PQ =p 为定值,故满足条件的直线l 存在,其方程为y =p2,即抛物线的通径所在的直线.题型三 定圆问题例3 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,两个焦点分别为F 1和F 2,椭圆G 上一点到F 1和F 2的距离之和为12,圆C k :x 2+y 2+2kx -4y -21=0(k ∈R )的圆心为点A k . (1)求椭圆G 的方程;(2)求△A k F 1F 2的面积; (3)问是否存在圆C k 包围椭圆G ?请说明理由.破题切入点 (1)根据定义,待定系数法求方程.(2)直接求.(3)关键看长轴两端点.解 (1)设椭圆G 的方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c ,则⎩⎪⎨⎪⎧2a =12,c a =32,解得⎩⎨⎧a =6,c =33, 所以b 2=a 2-c 2=36-27=9.所以所求椭圆G 的方程为x 236+y 29=1.(2)点A k 的坐标为(-k,2),S △A k F 1F 2=12×|F 1F 2|×2=12×63×2=6 3.(3)若k ≥0,由62+02+12k -0-21=15+12k >0,可知点(6,0)在圆C k 外; 若k <0,由(-6)2+02-12k -0-21=15-12k >0,可知点(-6,0)在圆C k 外. 所以不论k 为何值,圆C k 都不能包围椭圆G .即不存在圆C k 包围椭圆G .总结提高 (1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ). (3)定直线问题一般都为特殊直线x =x 0或y =y 0型.1.在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →共线?如果存在,求k 值;如果不存在,请说明理由.解 (1)由已知条件,得直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1.整理得(12+k 2)x 2+22kx +1=0.①直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4(12+k 2)=4k 2-2>0,解得k <-22或k >22.即k 的取值范围为(-∞,-22)∪(22,+∞).(2)设P (x 1,y 1),Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2),由方程①,得x 1+x 2=-42k1+2k 2.②又y 1+y 2=k (x 1+x 2)+2 2.③而A (2,0),B (0,1),AB →=(-2,1).所以OP →+OQ →与AB →共线等价于x 1+x 2=-2(y 1+y 2),将②③代入上式,解得k =22.由(1)知k <-22或k >22,故不存在符合题意的常数k .2.已知双曲线方程为x 2-y22=1,问:是否存在过点M (1,1)的直线l ,使得直线与双曲线交于P 、Q 两点,且M 是线段PQ 的中点?如果存在,求出直线的方程,如果不存在,请说明理由.解 显然x =1不满足条件,设l :y -1=k (x -1).联立y -1=k (x -1)和x 2-y 22=1,消去y 得(2-k 2)x 2+(2k 2-2k )x -k 2+2k -3=0,由Δ>0,得k <32,x 1+x 2=2(k -k 2)2-k 2,由M (1,1)为PQ 的中点,得x 1+x 22=k -k 22-k 2=1,解得k =2,这与k <32矛盾, 所以不存在满足条件的直线l .3.设椭圆E :x 2a 2+y2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA →⊥OB →?若存在,写出该圆的方程,并求AB 的取值范围;若不存在,请说明理由.解 (1)因为椭圆E :x 2a 2+y 2b2=1(a ,b >0)过M (2,2),N (6,1)两点,所以⎩⎨⎧4a 2+2b 2=1,6a 2+1b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14,所以⎩⎪⎨⎪⎧a 2=8,b 2=4,椭圆E 的方程为x 28+y 24=1.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA →⊥OB →,设该圆的切线方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),解方程组⎩⎪⎨⎪⎧y =kx +m ,x 28+y 24=1得x 2+2(kx +m )2=8,即(1+2k 2)x 2+4kmx +2m 2-8=0,则Δ=16k 2m 2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0,即8k 2-m 2+4>0.故⎩⎪⎨⎪⎧x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(2m 2-8)1+2k 2-4k 2m 21+2k 2+m 2=m 2-8k 21+2k 2. 要使OA →⊥OB →,需使x 1x 2+y 1y 2=0,即2m 2-81+2k 2+m 2-8k 21+2k 2=0,所以3m 2-8k 2-8=0,所以k 2=3m 2-88≥0.又8k 2-m 2+4>0,所以⎩⎪⎨⎪⎧m 2>2,3m 2≥8,所以m 2≥83,即m ≥263或m ≤-263,因为直线y =kx +m 为圆心在原点的圆的一条切线,所以圆的半径为r =|m |1+k 2,r 2=m 21+k 2=m 21+3m 2-88=83,r =263,所求的圆为x 2+y 2=83, 此时圆的切线y =kx +m 都满足m ≥263或m ≤-263,而当切线的斜率不存在时切线为x =±263与椭圆x 28+y 24=1的两个交点为(263,±263)或(-263,±263)满足OA →⊥OB →,综上,存在圆心在原点的圆x 2+y 2=83,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA →⊥OB →.4.(2014·重庆)如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,点D 在椭圆上,DF 1⊥F 1F 2,F 1F 2DF 1=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.解 (1)设F 1(-c,0),F 2(c,0),其中c 2=a 2-b 2. 由F 1F 2DF 1=22,得DF 1=F 1F 222=22c , 从而S △DF 1F 2=12DF 1·F 1F 2=22c 2=22,故c =1,从而DF 1=22.由DF 1⊥F 1F 2,得DF 22=DF 21+F 1F 22=92,因此DF 2=322. 所以2a =DF 1+DF 2=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2. 由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1→=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1),再由F 1P 1⊥F 2P 2,得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而求得y 1=13,故y 0=53.圆C 的半径CP 1= (-43)2+(13-53)2=423.综上,存在满足题设条件的圆,其方程为x 2+(y -53)2=329.5.(2014·江西)如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:MN 22-MN 21为定值,并求此定值.(1)证明 依题意可设AB 方程为y =kx +2,代入x 2=4y , 得x 2=4(kx +2),即x 2-4kx -8=0.设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8.直线AO 的方程为y =y 1x 1x ;BD 的方程为x =x 2. 解得交点D 的坐标为⎩⎪⎨⎪⎧ x =x 2,y =y 1x 2x 1,注意到x 1x 2=-8及x 21=4y 1,则有y =y 1x 1x 2x 21=-8y 14y 1=-2. 因此动点D 在定直线y =-2上(x ≠0).(2)解 依题设,切线l 的斜率存在且不等于0,设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y 得x 2=4(ax +b ),即x 2-4ax -4b =0.由Δ=0得(4a )2+16b =0,化简整理得b =-a 2.故切线l 的方程可写为y =ax -a 2.分别令y =2,y =-2得N 1,N 2的坐标为N 1(2a +a,2),N 2(-2a+a ,-2), 则MN 22-MN 21=(2a -a )2+42-(2a+a )2=8,即MN 22-MN 21为定值8. 6.(2014·福建)已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.解 方法一 (1)设S (x ,y )为曲线Γ上任意一点,依题意,点S 到F (0,1)的距离与它到直线y =-1的距离相等,所以曲线Γ是以点F (0,1)为焦点、直线y =-1为准线的抛物线,所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为y =14x 2,设P (x 0,y 0)(x 0≠0),则y 0=14x 20, 由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0, 所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A (12x 0,0).由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M (12x 0+6x 0,3). 又N (0,3),所以圆心C (14x 0+3x 0,3),半径r =12MN =|14x 0+3x 0|, AB =AC 2-r 2= [12x 0-(14x 0+3x 0)]2+32-(14x 0+3x 0)2= 6. 所以点P 在曲线Γ上运动时,线段AB 的长度不变.方法二 (1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2,依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简,得曲线Γ的方程为x 2=4y .(2)同方法一.。
椭圆的五种基本题型

椭圆专题训练(一)题型1、给出曲线方程,求相应量的值1、求椭圆400251622=+y x 的长轴长为 、短半轴长为 、离心率为 、焦点坐标为 、顶点坐标为 。
2、(练习)求下列各椭圆的长轴和短轴的长,离心率、焦点坐标、顶点坐标、准线方程: ①=+3610022y x 1 ②8222=+y x方法提练:①转化为相应的标准方程;②直接求出a 、b 、c 。
③判断焦点在哪一坐标轴上④将a 、b 、c 的值代入相应量公式(接第2题)③16422=+y x ④81922=+y x3、椭圆)0(022<<=++n m mn ny mx 的焦点为 。
4、曲线=+92522y x 1与=+--ky kx 925221(k<0)有相同的( )A 、长轴长;B 、离心率;C 、准线;D 、焦点题型2、给出相应量的值,求曲线方程1、焦点在x 轴上,焦距等于4,并且经过点P (3,-62)的椭圆方程为: 。
解:依题设椭圆的方程为)0(12222>>=+b a b y a x2、准线方程为x=±4,离心率为1/2的椭圆方程为: 3、两焦点为(±3,0),椭圆上一点P 到两焦点距离的和为10,椭圆方程为:3、两焦点为(±2,0)且过点(2325,-)的椭圆方程为: 方法提练:①判断焦点在哪一坐标轴上;②设出相应的椭圆方程③联立方程组求出a 、b 、c 。
(注意别忘记隐藏的公式)④将a 、b 、c 的值代入相应量公式4、写出适合下列条件的椭圆的标准方程: ①a=4,b=1,焦点在x 轴上。
②a=4,c=15,焦点在y 轴上③a+b=10 c=25.④a=6,c=1/3, 焦点在x 轴上。
⑤过点(-22,0)(0,5)⑥长轴是短轴的3倍,且过点(3,0)⑦离心率e=0.8,焦距为8的椭圆⑧若椭圆的焦点在x 轴上,焦点到短轴顶点的距离为2,到相应准线的距离为3,则椭圆的方程为:椭圆专题训练(二)题型3、给出某曲线方程,表达的是椭圆求所给方程中含的字母的范围。
干货椭圆、双曲线、抛物线重点知识总结常考题型技巧讲解

干货椭圆、双曲线、抛物线重点知识总结常考题型技巧讲解基础知识总结圆锥曲线常见题型+解题技巧1.直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2.圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
3.圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4.定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5.最值、参数范围问题这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.6.轨迹问题轨迹问题一般方法有三种:定义法,相关点法和参数法。
定义法:(1)判断动点的运动轨迹是否满足某种曲线的定义;(2)设标准方程,求方程中的基本量(3)求轨迹方程相关点法:(1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上;(2)寻求关系式,x0=f(x,y),y0=g(x,y);(3)将x0,y0代入已知曲线方程;(4)整理关于x,y的关系式得到M的轨迹方程。
高中数学椭圆专题

学霸专题31:椭圆好题1.已知点P 是圆()2221x y +-=上的动点,点Q 是椭圆2219x y +=上的动点,则PQ 的最大值为( ) A1+ B1 C.1 D .42.已知直线l 与椭圆221:184x y C +=切于点P ,与圆222:16C x y +=交于点AB ,圆2C 在点AB 处的切线交于点Q ,O 为坐标原点,则OPQ ∆的面积的最大值为( ) A.B .2CD .13.已知椭圆r :()222210x ya b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=() A .43-B .-3C .1813-D .32-4.已知椭圆C :22143x y +=的右焦点为F ,过点F 的两条互相垂直的直线1l ,2l ,1l 与椭圆C 相交于点A ,B ,2l 与椭圆C 相交于点C ,D ,则下列叙述不正确的是( ) A .存在直线1l ,2l 使得||||AB CD +值为7 B .存在直线1l ,2l 使得||||AB CD +值为487C .弦长||AB 存在最大值,且最大值为4D .弦长||AB 不存在最小值5.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上不与左右顶点重合的任意一点,I ,G 分别为12PF F ∆的内心和重心,当IG x ⊥轴时,椭圆的离心率为( )A .13B .12C D 6.如图,焦点在x 轴上的椭圆22213x ya +=(0a >)的左、右焦点分别为1F ,2F ,P 是椭圆上位于第一象限内的一点,且直线2F P 与y 轴的正半轴交于A 点,1APF ∆的内切圆在边1PF 上的切点为Q ,若14FQ =,则该椭圆的离心率为( )A .14B .12C .4D .47.已知椭圆2212x y +=上存在相异两点关于直线y x t =+对称,请写出两个符合条件的实数t 的值______.8.已知M ,N 为椭圆2214x y +=上的两个动点且OM ON ⊥(O 为坐标原点),则三角形OMN 的面积的最小值为________.9.已知点()0,2P ,椭圆221168x y +=上两点()11,A x y ,()22,B x y 满足AP PB λ=(R λ∈),则112312x y +-+222312x y +-的最大值为__________.10.已知点M 在离心率为12的椭圆22221(0)x y a b a b+=>>上,则该椭圆的内接八边形面积的最大值为_____.11.如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.12.如图,从椭圆22221x y a b+=(0a b >>)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且AB //OP ,1F A =其中F 2为椭圆的右焦点.(1)求椭圆的方程E ;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点C ,D 且OC ⊥OD ?若存在,写出该圆方程,并求CD 的取值范围;若不存在,说明理由.13.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且直线1x y a b +=与圆222x y +=相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且OP =,求ABO 的面积.14.已知椭圆()2222:10x y C a b a b +=>>经过点1,2M ⎛⎫ ⎪ ⎪⎝⎭,其离心率为2,设直线:l y kx m =+与椭圆C 相交于A 、B 两点. (1)求椭圆C 的方程;(2)已知直线l 与圆2223x y +=相切,求证:OA OB ⊥(O 为坐标原点).15.如图,椭圆2222:1(0,0)x y C a b a b+=>>中,长半轴的长度与短轴的长度相等,点(2,1)M -是椭圆内一点,过点M 作两条斜率存在且互相垂直的动直线12,l l ,设1l 与椭圆C 相交于点,A B ,2l 与椭圆相交于点,D E .当点M 恰好为线段AB 的中点时,AB =(1)求椭圆C 的方程;(2)若2MB AM =,试求直线AB 的方程; (3)求AD EB ⋅的最小值.16.如图,点()0,1P -是椭圆1C :()222210x y a b a b+=>>的一个顶点,1C 的长轴是圆2C :224x y +=的直径,1l 、2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A 、B 两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程;(2)求ABD △的面积取最大值时直线1l 的方程.17.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,且12F F =A 是C 上一点,且1173b AF =,23bAF =. (1)求椭圆C 的方程;(2)若不与y 轴垂直的直线l 过点()10B ,,交椭圆C 于E ,F 两点,试判断在x 轴的负半轴上是否存在一点T ,使得直线TE 与TF 斜率之积为定值?若存在,求出点T 的坐标;若不存在,请说明理由.18.已知椭圆()2222:10x y C a b a b +=>>的左焦点()1F ,点Q ⎛ ⎝⎭为椭圆C 上一点,如图,经过圆22:5O x y +=上一动点P 作椭圆C 的两条切线分别切于点A ,B ,切线分别与圆O 相交于异于点P 的点M ,N .(1)求椭圆C 的方程;(2)记sin ,a b a b a b →→→→→→⨯=⋅⋅<>. (i )证明:0OM ON →→⨯=;(ii )求OA OB →→⨯的取值范围.19.已知椭圆C :()222210=>>+x y a b a b ,短轴长为4.(1)求椭圆C 的标准方程;(2)设直线l 过点()2,0且与椭圆C 相交于不同的两点A ,B ,直线6x =与x 轴交于点D ,E 是直线6x =上异于D 的任意一点,当0AE DE ⋅=时,直线BE 是否恒过x 轴上的定点?若过,求出定点坐标;若不过,请说明理由.20.如图所示,已知椭圆C :22221x y a b+=,其中0a b >>,1F ,2F 分别为其左,右焦点,点P 是椭圆C 上一点,2PO F M ⊥,且1FM MP λ=.(1)当a =2b =,且212PF F F ⊥时,求λ的值; (2)若2λ=,试求椭圆C 离心率e 的范围.21.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以原点为圆心,120+=相切.(1)求椭圆C 的方程;(2)设(4,0)A -,过点(3,0)R 作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线163x =于M ,N 两点,若直线MR 、NR 的斜率分别为1k 、2k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由.22.已知椭圆22142x y +=的两焦点分别为1F ,2F ,P 是椭圆在第一象限内的一点,并满足121PF PF ⋅=,过P 作倾斜角互补的两直线PA 、PB 分别交椭圆于A 、B 两点. (1)求P 点坐标;(2)当直线PA 经过点(时,求直线AB 的方程; (3)求证直线AB 的斜率为定值.23.如图,已知椭圆22:12x C y +=的左顶点为A ,过右焦点F的直线交椭圆于B ,D 两点,直线AB ,AD 分别交直线:2l x =于点M ,N .(1)试判断以线段MN 为直径的圆是否过点F ,并说明理由; (2)记MB ,MF ,MD 的斜率分别为1k ,2k ,3k ,证明:1k ,2k ,3k 成等差数列.24.如图,已知过点2D -⎭的椭圆()222210x y a b a b +=>>的离心率为A ,B .(1)求椭圆的标准方程;(2)若P 为线段OD 延长线上一点,直线P A 交椭圆于另一点E ,直线PB 交椭圆于另一点Q . ①求直线P A 与PB 的斜率之积;②判断直线AB 与EQ 是否平行?并说明理由.25.过椭圆2212x y +=的左焦点F作斜率为()110k k ≠的直线交椭圆于A ,B 两点,M 为弦AB 的中点,直线OM 交椭圆于C ,D 两点.(1)设直线OM 的斜率为2k ,求12k k 的值;(2)若F ,B 分别在直线CD 的两侧,2MB MC MD =⋅,求FCD 的面积.26.在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P ,直线l 与椭圆C 交于,A B 两点.若OAB 的面积为7,求直线l 的方程.27.设椭圆()2222:10x y C a b a b +=>>的离心率为2,且椭圆过点2⎭.过点()1,0作两条相互垂直的直线12,l l 分别与椭圆C 交于,P Q 和,M N 四点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若,MS SN PT TQ ==,探究:直线ST 是否过定点?若是,请求出定点坐标;若不是,请说明理由.28.如图,已知椭圆C :()222210x y a b a b+=>>的离心率为12,右准线方程为4x =,A ,B 分别是椭圆C 的左,右顶点,过右焦点F 且斜率为k(k >0)的直线l 与椭圆C 相交于M ,N 两点.(1)求椭圆C 的标准方程;(2)记△AFM ,△BFN 的面积分别为S 1,S 2,若1232S S =,求k 的值;(3)设线段MN 的中点为D ,直线OD 与右准线相交于点E ,记直线AM ,BN ,FE 的斜率分别为k 1,k 2,3k ,求k 2·(k 1-3k ) 的值.29.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,左、右焦点分别为1F 、2F ,A 为椭圆C 上一点,1AF 与y 轴相交于B ,2AB F B =,43OB =. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 的左、右顶点为1A 、2A ,过1A 、2A 分别作x 轴的垂线1l 、2l ,椭圆C 的一条切线:(0)=+≠l y kx m k 与1l 、2l 交于M 、N 两点,求证:12MF N MF N ∠=∠.30.如图,椭圆()222210x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点,AF 的最大值为M ,BF 的最小值为m ,满足23•4M m a =.(1)若线段AB 垂直于轴时,32AB =,求椭圆的方程;(2)设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于D ,E 两点,O 是坐标原点,记GFD ∆的面积为1S ,OED ∆的面积为2S ,求12S S 的取值范围.31.已知椭圆C :22221(0)x y a b a b +=>>,离心率为12,并过点1,2⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆方程;(2)若直线l y kx m =+:与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l过定点,并求出该定点的坐标.32.已知12,F F 分别为椭圆C :()222210x y a b a b+=>> 的左、右焦点,点()()001,0P y y > 在椭圆上,且2PF x ⊥ 轴,12PF F ∆的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E ,F 是椭圆C 上异于点P 的两个动点,如果直线PE 与直线PF 的倾斜角互补,证明:直线EF 的斜率为定值,并求出这个定值.33.已知中心在坐标原点O 的椭圆C 经过点A 12),且点F ,0)为其右焦点. (1)求椭圆C 的方程;(2)是否存在直线l 与椭圆C 交于B ,D 两点,满足22·5OB OD =,且原点到直线l ?若存在,求出直线l 的方程;若不存在,请说明理由.34.已知椭圆2222x y a b +=1(a>b>0)的左、右焦点分别为F 1,F 2,过左焦点F 1(-2,0)作x 轴的垂线交椭圆于P,Q 两点,PF 2与y 轴交于E 30,2⎛⎫⎪⎝⎭,A,B是椭圆上位于PQ 两侧的动点. (1)求椭圆的离心率e 和标准方程;(2)当∠APQ=∠BPQ 时,直线AB 的斜率k AB 是否为定值?若是,求出该定值;若不是,请说明理由.35.已知椭圆M :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过2F 且垂直于x 轴的焦点弦的弦长为1F 的直线l 交椭圆M 于G ,H 两点,且2GHF ∆的周长为(1)求椭圆M 的方程;(2)已知直线1l ,2l 互相垂直,直线1l 过1F 且与椭圆M 交于点A ,B 两点,直线2l 过2F 且与椭圆M 交于C ,D 两点.求11AB CD +的值.36.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,直线y x =被椭圆C 截得的线段长为5. (1)求椭圆C 的标准方程;(2)过椭圆C 的右顶点作互相垂直的两条直线12,l l 分别交椭圆C 于,M N 两点(点,M N 不同于椭圆C 的右顶点),证明:直线MN 过定点6(,0)5.37.已知椭圆C :22221x y a b+= (0)a b >>的左顶点为M ,上顶点为N ,直线20x y +-=与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点.(I )求椭圆C 的方程;(II )如图,若直线l :y kx m =+与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.38.已知椭圆2222:1(0)x y C a b a b+=>>上的点到它的两个焦的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程.(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN ∠为定值.39.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()3,0F ,其左顶点在圆22:12O x y +=上. (1)求椭圆C 的方程;(2)直线():30l x my m =+≠交椭圆C 于,M N 两点,设点N 关于x 轴的对称点为1N (点1N 与点M 不重合),证明:直线1N M 过x 轴上的一定点,并求出定点坐标.40.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为F ,过原点O 的直线l 与椭圆C 交于,A B 两点,线段AF 的中点为M ,线段BF 的中点为N ,且1•4OM ON =. (1)求弦AB 的长;(2)当直线l 的斜率12k =,且直线'//l l 时,'l 交椭圆于,P Q ,若点A 在第一象限,求证:直线,AP AQ 与x 轴围成一个等腰三角形.41.已知椭圆:C 22221(0)x y a b a b+=>>,O 是坐标原点,12,F F 分别为其左右焦点,12F F =M 是椭圆上一点,12F MF ∠的最大值为23π (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 与椭圆C 交于,P Q 两点,且OP OQ ⊥ (i )求证:2211OPOQ+为定值;(ii )求OPQ ∆面积的取值范围.42.已知椭圆2222:1x y C a b +=(0a b >>)的左、右焦点分别为1(1,0)F -,2(1,0)F ,点22A 在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点,M N 时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ =?若存在,求出直线l 的方程;若不存在,说明理由.43.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的离心率为32,直线被椭圆截得的线段长为4105. (Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点),点D 在椭圆C 上,且AD AB ⊥.直线BD 与x 轴、y 轴分别交于,M N 两点.设直线,BD AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值.44.已知椭圆()2222:10x y E a b a b +=>>的离心率为2,且过点⎛ ⎝⎭. (1)求E 的方程;(2)是否存在直线:l y kx m =+与E 相交于,P Q 两点,且满足:①OP 与OQ (O 为坐标原点)的斜率之和为2;②直线l 与圆221x y +=相切,若存在,求出l 的方程;若不存在,请说明理由.45.在平面直角坐标系xOy 内,动点(),M x y 与两定点()2,0-,()2,0连线的斜率之积为14-.(1)求动点M 的轨迹C 的方程;(2)设点()11,A x y ,()22,B x y 是轨迹C 上相异的两点.(Ⅰ)过点A ,B 分别作抛物线2y =的切线1l ,2l ,1l 与2l 两条切线相交于点()N t ,证明:0NA NB ⋅=;(Ⅱ)若直线OA 与直线OB 的斜率之积为14-,证明:AOBS 为定值,并求出这个定值.46.如图,已知椭圆C :2222 1 (0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,上顶点为A ,左顶点为B ,且12AB F .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设点P 是椭圆C 上任意一点,且124PF PF +=,在直线3x =上是否存在点Q ,使以PQ 为直径的圆经过坐标原点O ,若存在,求出线段PQ 的长的最小值,若不存在,请说明理由.47.椭圆()2222:10x y C a b a b+=>>的右焦点)F,过点F 且与x 轴垂直的直线被椭圆截得的弦长为(1)求椭圆C 的方程;(2)过点()2,0且斜率不为0的直线与椭圆C 交于M ,N 两点.O 为坐标原点,A 为椭圆C 的右顶点,求四边形OMAN 面积的最大值.48.已知椭圆2222:1(0)x y C a b a b+=>>,焦距为2,离心率e 为12.(1)求椭圆C 的标准方程;(2)过点1,12P ⎛⎫⎪⎝⎭作圆221:2O x y +=的切线,切点分别为M N 、,直线MN与x 轴交于点E ,过点E 的直线l 交椭圆C 于A B 、两点,点E 关于y 轴的对称点为G ,求ABG ∆的面积的最大值.49.如图所示,椭圆M :22x a +22y b =1(a >b >0)的离心率为2,右准线方程为x =4,过点P (0,4)作关于y 轴对称的两条直线l 1,l 2,且l 1与椭圆交于不同两点A ,B ,l 2与椭圆交于不同两点D ,C .(1) 求椭圆M 的方程;(2) 证明:直线AC 与直线BD 交于点Q (0,1); (3) 求线段AC 长的取值范围.50.已知椭圆C :22y a +22x b=1(a >b >0)的短轴长为2,且椭圆C的顶点在圆M :x 2+2y ⎛⎫- ⎪ ⎪⎝⎭2=12上. (1)求椭圆C 的方程;(2)过椭圆的上焦点作相互垂直的弦AB ,CD ,求|AB |+|CD |的最小值.51.已知椭圆C :()222210x y a b a b +=>>过点1,2P ⎛- ⎝⎭,左、右焦点分别是1F ,2F ,过2F 的直线与椭圆交于M ,N 两点,且1F MN ∆的周长为8b . (1)求椭圆C 的方程;(2)若点D 满足111F D FM F N =+,求四边形1F MDN 面积的最大值. 52.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b>0)的左、右顶点分别为A 1(﹣2,0),A 2(2,0),右准线方程为x =4.过点A 1的直线交椭圆C 于x 轴上方的点P ,交椭圆C 的右准线于点D .直线A 2D 与椭圆C 的另一交点为G ,直线OG 与直线A 1D 交于点H .(1)求椭圆C 的标准方程;(2)若HG ⊥A 1D ,试求直线A 1D 的方程; (3)如果11A H A P λ=,试求λ的取值范围.53.把半椭圆22221x y a b+=(x≥0)与圆弧(x ﹣c )2+y 2=a 2(x <0)合成的曲线称作“曲圆”,其中F (c ,0)为半椭圆的右焦点.如图,A 1,A 2,B 1,B 2分别是“曲圆”与x 轴、y 轴的交点,已知∠B 1FB 2=23π,扇形FB 1A 1B 2的面积为43π.(1)求a ,c 的值;(2)过点F 且倾斜角为θ的直线交“曲圆”于P ,Q 两点,试将△A 1PQ 的周长L 表示为θ的函数;(3)在(2)的条件下,当△A 1PQ 的周长L 取得最大值时,试探究△A 1PQ 的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.-54.已知点P 是椭圆E:2x 4+y 2=1上的任意一点,F 1,F 2是它的两个焦点,O为坐标原点,动点Q 满足12OQ PF PF =+. (1)求动点Q 的轨迹方程;(2)若已知点A(0,-2),过点A 作直线l 与椭圆E 相交于B,C 两点,求△OBC 面积的最大值.55.已知椭圆Γ:22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,且焦距为2,直线l 交椭圆Γ于E 、F 两点(点E 、F 与点A 不重合),且满足AE AF ⊥. (1)求椭圆的标准方程;(2)O 为坐标原点,若点P 满足2OP OE OF =+,求直线AP 的斜率的取值范围.56.已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点与抛物线2:12E x y =的焦点相同,且过点12P ⎫⎪⎭. (1)求椭圆C 的标准方程;(2)不过原点的直线l 与椭圆C 交于,M N 两点,已知OM ,直线,l ON 的斜率12,,k k k 成等比数列,记以,OM ON 为直径的圆的面积分别为12,S S ,试探究12S S +的值是否为定值,若是,求出此值;若不是,说明理由.57.如图所示,椭圆E 的中心为坐标原点,焦点12,F F 在x 轴上,且1F 在抛物线24y x =的准线上,点P 是椭圆E 上的一个动点,12PF F △面积(Ⅰ)求椭圆E 的方程;(Ⅱ)过焦点12,F F 作两条平行直线分别交椭圆E 于,,,A B C D 四个点. ①试判断四边形ABCD 能否是菱形,并说明理由; ②求四边形ABCD 面积的最大值.58.已知动点P 到点()2,0A -与点()2,0B 的斜率之积为14-,点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若点Q 为曲线C 上的一点,直线,AQ BQ 与直线4x =分别交于M N 、两点,求线段MN 长度的最小值.59.已知椭圆C :22221(0)x y a b a b+=>>的四个顶点组成的四边形的面积为⎛ ⎝⎭.(1)求椭圆C 的方程;(2)若椭圆C 的下顶点为P ,如图所示,点M 为直线2x =上的一个动点,过椭圆C 的右焦点F 的直线l 垂直于OM ,且与C 交于A ,B 两点,与OM 交于点N ,四边形AMBO 和ONP ∆的面积分别为1S ,2S ,求12S S 的最大值.60.已知椭圆的两个焦点为,动点P 在椭圆上,且使得的点P 恰有两个,动点P 到焦点的的距离的最大值为. (1)求椭圆的方程;(2)如图所示,以椭圆的长轴为直径作圆,过直线上的动点T 作圆的两条切线,设切点分别为A ,B .若直线AB 与椭圆交于不同的两点C ,D ,求的取值范围.61.已知中心在原点,焦点在坐标轴上的椭圆Ω的方程为22221(0),x y a b a b +=>>它的离心率为12,一个焦点是(-1,0),过直线4x =上一点引椭圆Ω的两条切线,切点分别是A 、B . (1)求椭圆Ω的方程;(2)若在椭圆Ω22221(0)x y a b a b +=>>上的点00(,)x y 处的切线方程是00221x x y ya b+=.求证:直线AB 恒过定点C ,并求出定点C 的坐标; (3)是否存在实数λ,使得求证:(点C 为直线AB恒过的定点).若存在λ,请求出,若不存在请说明理由62.如图,已知椭圆M:x 2a 2+y 2b 2=1(a >b >0),焦距为2c(c >0),其离心率为√32,a 2c=4√33,B,C 分别为椭圆M 的上、下顶点,过点T(t,2)(t ≠0)的直线TB,TC 分别交椭圆M 于E,F 两点.(1)求椭圆M 的标准方程;(2)若ΔTBC 的面积是ΔTEF 的面积的k 倍,求k 的最大值.63.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆(1)求椭圆C 的方程;(2)过右焦点F 作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线3x =于,M ,N 两点,若直线MF ,NF 的斜率分别为1k ,2k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由.64.在平面直角坐标系xOy 中,已知椭圆E :22221x y a b+=(a >b >0)的离心率为12,且椭圆E 的短轴的端点到焦点的距离等于2. (1)求椭圆E 的标准方程;(2)已知A ,B 分别为椭圆E 的左、右顶点,过x 轴上一点P (异于原点)作斜率为k (k ≠0)的直线l 与椭圆E 相交于C ,D 两点,且直线AC 与BD 相交于点Q .①若k =1,求线段CD 中点横坐标的取值范围;②判断OP OQ ⋅是否为定值,并说明理由.65.已知椭圆2222:1(0)x y C a b a b +=>>过点⎭,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)若M ,N 分别是椭圆C 与x 轴的两个交点,过点1,02⎛⎫ ⎪⎝⎭且斜率不为0的直线l 与椭圆C 交于P ,Q 两点,直线MP 过点()8,R R y ,求证:直线NQ 过点R .66.已知椭圆()222210x y a b a b+=>>的右焦点为F ,A 为短轴的一个端点且OA OF ==O 为坐标原点). (1)求椭圆的方程;(2)若C 、D 分别是椭圆长轴的左右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P ,试问x 轴上是否存在异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,说明理由.67.在平面直角坐标系xOy 中,已知椭圆2222x y a b+=1(a >b >0)的右顶点为(2,0),离心率为2,P 是直线x =4上任一点,过点M (1,0)且与PM 垂直的直线交椭圆于A ,B 两点. (1)求椭圆的方程;(2)若P 点的坐标为(4,3),求弦AB 的长度;(3)设直线P A ,PM ,PB 的斜率分别为k 1,k 2,k 3,问:是否存在常数λ,使得k 1+k 3=λk 2?若存在,求出λ的值;若不存在,说明理由.68.给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O ,的圆是椭圆C 的“伴椭圆”,若椭圆C 的一个焦点为F ,其短轴上一个端点到F (1)求椭圆C 的方程;(2)过点(,)22a b 作椭圆C 的“伴随圆”'C 的动弦MN ,过点11(,)M x y 、22(,)N x y 分别作“伴随圆”'C 的切线,设两切线交于点Q ,证明:点Q 的轨迹是直线,并写出该直线的方程;(3)设点P 是椭圆C 的“伴随圆”'C 上的一个动点,过点P 作椭圆C 的切线1l 、2l ,试判断直线1l 、2l 是否垂直?并说明理由.69.已知圆O :2243x y +=,椭圆C :()222210x y a b a b +=>>,圆O 上任意一点P 处的切线交椭圆C 于两点M ,N ,当P 恰好位于x 轴上时,OMN ∆的面积为43.(1)求椭圆C 的方程;(2)试判断PM PN ⋅是否为定值?若为定值,求出该定值;若不是定值,请说明理由.70.如图,已知点P 是椭圆22221(0)x y a b a b+=>>上的任意一点,直线MN与椭圆交于M ,N 两点,直线PM ,PN 的斜率都存在.(1)若直线MN 过原点,求证:PM PN k k ⋅为定值;(2)若直线MN 不过原点,且0MN OP k k +=,试探究PM PN k k ⋅是否为定值.71.在平面直角坐标系xOy 中,已知圆221:(1)1C x y ++=,圆222:(3)(4)1C x y -+-=.(1)若过点1(1,0)C -的直线l 被圆2C 截得的弦长为65,求直线l 的方程; (2)设动圆C 同时平分圆1C 的周长、圆2C 的周长. ①证明:动圆圆心C 在一条定直线上运动;②动圆C 是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.72.已知椭圆2222:1x y C a b +=(0)a b >>的左,右焦点1F ,2F ,上顶点为M ,1260F MF ︒∠=,P 为椭圆上任意一点,且12PF F ∆.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点A .B 为椭圆C 上的两个不同的动点,且0A OB t ⋅=(O 为坐标原点),则是否存在常数t ,使得O 点到直线AB 的距离为定值?若存在,求出常数t 和这个定值;若不存在,请说明理由.73.已知12(),100(1)F F -,,分别是椭圆2222:1,(0)x y C a b a b+=>>的左焦点和右焦点,椭圆C A B 、是椭圆C 上两点,点M 满足12BM BA =. (1)求C 的方程;(2)若点M 在圆221x y +=上,点O 为坐标原点,求OA OB ⋅的取值范围.74.已知点P 是曲线1C :2214x y +=上的动点,延长PO (O 是坐标原点)到Q ,使得2||||OQ OP =,点Q 的轨迹为曲线2C . (1)求曲线2C 的方程;(2)若点1F ,2F 分别是曲线1C 的左、右焦点,求12F P F Q ⋅的取值范围;(3)过点P 且不垂直x 轴的直线l 与曲线2C 交于M ,N 两点,求QMN ∆面积的最大值.75.(1)求证:椭圆2214x y +=中斜率为1的平行弦的中点轨迹必过椭圆中心;(2)用作图方法找出下面给定椭圆的中心;(3)我们把由半椭圆22221x y a b+=(0)x ≥与半椭圆22221y x b c +=(0)x ≤合成的曲线称作“果圆”,其中222a b c =+,0a >,0b c >>.如图,设点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 是“果圆” 与x ,y 轴的交点. 连结“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数k ,使斜率为k 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值,若不存在,说明理由.76.已知椭圆2222:1(0)C b b x a a y +>>=过点(1,0),直线l 与椭圆C 相交于A ,B 两点. (Ⅰ)求椭圆C 的方程;(Ⅱ)若弦AB 的中点M 到椭圆C 中心的距离为1,求弦长||AB 的最大值;(Ⅲ)过原点O 作直线m AB ⊥,垂足为P ,若||1OP =,13AP PB ⋅=,求直线l 的方程.77.已知椭圆C :的长轴是短轴的两倍,点在椭圆上.不过原点的直线l 与椭圆相交于A 、B 两点,设直线OA 、l 、OB 的斜率分别为1k 、k 、2k ,且1k 、k 、2k 恰好构成等比数列.(Ⅰ)求椭圆C 的方程.(Ⅱ)试探究22OA OB +是否为定值?若是,求出这个值;否 则求出它的取值范围.78.已知椭圆:E 22221x y a b +=(0a b >>y x =.(1)求椭圆E 的方程;(2)已知点()2,1M ,斜率为12的直线l 交椭圆E 于两个不同点A .B ,设直线MA 与MB 的斜率分别为1k ,2k ,①若直线l 过椭圆E 的左顶点,求此时1k,2k的值;②试猜测1k,2k的关系,并给出你的证明.79.在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB 的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).(1)求m2+k2的最小值;(2)若|OG|2=|OD|∙|OE|,(i)求证:直线l过定点;(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.80.已知椭圆x2a2+y2b2=1(a>0,b>0)的离心率是√32.(1)若点P(2,1)在椭圆上,求椭圆的方程;(2)若存在过点A(1,0)的直线l,使点C(2,0)关于直线l的对称点在椭圆上,求椭圆的焦距的取值范围.81.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为,,点()0,2M 是椭圆的一个顶点,△是等腰直角三角形.(1)求椭圆的方程;(2)设点是椭圆上一动点,求线段的中点的轨迹方程;(3)过点M 分别作直线,交椭圆于,两点,设两直线的斜率分别为,,且128k k +=,探究:直线AB 是否过定点,并说明理由.82.已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(−2,0),点B(2,√2)在椭圆C 上,直线y =kx(k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N (Ⅰ)求椭圆C 的方程;(Ⅱ)在x 轴上是否存在点P ,使得无论非零实数k 怎样变化,总有∠MPN 为直角?若存在,求出点P 的坐标,若不存在,请说明理由.83.已知椭圆C :的离心率为,以原点为圆心,以椭圆的短半轴长为半径的圆与直线相切.(I )求椭圆C 的方程;(II )过椭圆的右焦点F 的直线l 1与椭圆交于C 、D ,过F 与l 1垂直的直线与椭圆交于,与交于λ, (1)求证:直线的斜率成等差数列(2)是否存在常数λ使得成立,若存在,求出λ的值,若不存在,说明理由.84.已知椭圆()2222:10x y C a b a b+=>>的左顶点为()2,0A -,两个焦点与短轴一个顶点构成等腰直角三角形,过点()1,0P 且与x 轴不重合的直线l 与椭圆交于M ,N 不同的两点. (Ⅰ)求椭圆P 的方程;(Ⅱ)当AM 与MN 垂直时,求AM 的长;(Ⅲ)若过点P 且平行于AM 的直线交直线52x =于点Q ,求证:直线NQ 恒过定点.85.已知椭圆2222:1(0),x y C a b a b+=>>其左,右焦点分别为12,F F ,离心率为3点(,R 又点2F 在线段1RF 的中垂线上。
(完整word版)椭圆常见题型与典型方法归纳

A、椭圆
B、线段 F1, F2
考点二 椭圆的标准方程
C、直线 F1, F2
D、不能确定
一 标准方程
1 焦点在 x 轴上 (c, 0), (c, 0)
标准方程是: x2 a2
y2 b2
1(其中 b2
25 9
考点三 椭圆的简单几何性质
标准方程
x2 a2
y2 b2
1
(a b 0)
y2 a2
x2 b2
1
(a b 0)
图形
范围 对称性
顶点 离心率
焦点 焦距
a x a, b y b
a y a, b x b
关于原点对称 x 轴和 y 轴是椭圆的对称轴
(a, 0), (a, 0), (0,b), (0, b)
a2
c2,a
b
0). 焦点的坐标分别为
2 焦点在 y 轴上 (0, c), (0, c)
标准方程是:
y2 a2
x2 b2
1(其中 b2
a2
c2,a
b
0). 焦点的坐标分别为
3 焦点位置判断
哪项分母大焦点就在相应的轴上 如 求 x2 y2 1的焦点坐标
79
4 椭圆过两定点,焦点位置不确定时可设椭圆方程为 mx2 ny2 1(其中 m 0, n 0 )
1
(完整 word 版)椭圆常见题型与典型方法归纳(word 版可编辑修改)
椭圆常见题型与典型方法归纳
考点一 椭圆的定义
椭圆的第一定义:我们把平面内与两个定点 F1, F2 的距离的和等于常数 2a(2a F1.F2 ) 的点的轨 迹叫做椭圆。这两定点 F1, F2 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦 距.
椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

第19讲椭圆中6种常考基础题型【考点分析】考点一:椭圆的通径过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a.考点二:椭圆中有关三角形的周长问题图一图二如图一所示:21F PF ∆的周长为c a 22+如图一所示:ABC ∆的周长为a 4考点三:椭圆上一点的有关最值①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c -.考点四:椭圆的离心率椭圆的离心率()10<<=e a c e ,222222221ab a b a ac e -=-==考点五:椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)考点六:中点弦问题(点差法)中点弦问题:若椭圆与直线l 交于AB 两点,M 为AB 中点,且AB k 与OM k 斜率存在时,则22ab K k OM AB -=⋅;(焦点在x 轴上时),当焦点在y 轴上时,22ba K k OMAB -=⋅若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,22ab K k PB P A -=⋅(焦点在x 轴上时),当焦点在y 轴上时,22ba K k PBP A -=⋅【题型目录】题型一:椭圆的定义有关题型题型二:椭圆的标准方程题型三:椭圆的离心率题型四:椭圆中焦点三角形面积题型五:椭圆中中点弦问题题型六:椭圆中的最值问题【典型例题】题型一:椭圆的定义有关题型【例1】已知△ABC 的周长为10,且顶点()2,0B -,()2,0C ,则顶点A 的轨迹方程是()A .221(0)95x y y +=≠B .221(0)59x y y +=≠C .221(0)64x y y +=≠D .221(0)46x y y +=≠【答案】A【解析】∵△ABC 的周长为10,顶点()2,0B -,()2,0C ,∴=4BC ,+=10464AB AC -=>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵3,2a c ==,∴2945b =-=,又因为,,A B C 三点构成三角形,∴椭圆的方程是()221095x y y +=≠.故选:A .【例2】如果点(),M x y =M 的轨迹是().A .不存在B .椭圆C .线段D .双曲线【答案】B=(),M x y 到点(0,3),(0,3)-的距离之和为3(3)6--=<M 的轨迹是椭圆,故选:B【例3】设1F ,2F 分别为椭圆2214x y +=的左、右焦点,点P 在椭圆上,且1223PF PF += ,则12F PF ∠=()A .6πB .4πC .3πD .2π【答案】D【解析】因32221==+PO PF PF ,所以213OF OF PO ===,所以︒=∠9021PF F 【例4】1F 、2F 是椭圆22:1259x yC +=的左、右焦点,点P 在椭圆C 上,1||6PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则||OM 的长为()A .1B .2C .3D .4【答案】C【详解】如图,直线1F M 与直线2PF 相交于点N ,由于PM 是12F PF ∠的平分线,且PM ⊥1F N ,所以三角形1F PN 是等腰三角形,所以1PF PN =,点M 为1F N 中点,因为O 为12F F 的中点,所以OM 是三角形12F F N 的中位线,所以212OM F N =,其中212112226F N PF PF PF a PF =-=-=-,因61=PF ,所以62=N F ,所以3=OM ,所以选C【例5】已知椭圆22:12516x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=()A .10B .15C .20D .25【答案】C【解析】设MN 的中点为G ,椭圆的左右焦点分别为21,F F ,则G 为MN 的中点,1F 为MA 的中点,所以12GF AN =,同理22GF BN =,所以()204221==+=+a GF GF BN AN【例6】方程x 2+ky 2=2表示焦点在x 轴上的椭圆的一个充分但不必要条件是()A .0k >B .12k <<C .1k >D .01k <<【答案】B【解析】方程x 2+ky 2=2可变形为:22122x y k+=,表示焦点在x 轴上的椭圆,则有:202k<<,解得k 1>.易知当12k <<时,k 1>,当k 1>时未必有12k <<,所以12k <<是k 1>的充分但不必要条件.故选B.【例7】点1F ,2F 为椭圆C :22143x y+=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为()A .()2,6B .[)4,6C .()4,6D .[)4,8【答案】C【解析】由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=,当点P 在x 轴上时,去最小值,为44c =,又因点P 为椭圆C 内部的动点,所以12PF F △周长的取值范围为()4,6.故选:C.【例8】椭圆22193x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,如果1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A .7倍B .6倍C .5倍D .4倍【答案】C【解析】由题意知:212F F PF ⊥,所以13322===a b PF ,因6221==+a PF PF ,所以51=PF ,所以521=PF PF【题型专练】1.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .2.焦点在x 轴上的椭圆222125x y a +=焦距为8,两个焦点为12,F F ,弦AB 过点1F ,则2ABF ∆的周长为()A .20B .28C .D .【答案】D【解析】由题意知252=b ,因为222c b a +=,所以16252+=a ,解得41=a ,所以2ABF ∆的周长为4144=a ,故选:D3.(2021新高考1卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C【解析】因2121262MF MF a MF MF ⋅≥==+,所以921≤⋅MF MF 4.已知椭圆22192x y +=的左、右焦点分别为12,F F ,点M 在椭圆上,若1||4MF =,则12F MF ∠=()A .30°B .60︒C .120︒D .150︒【答案】C 【解析】【分析】根据椭圆方程求得12F F =1226MF MF a +==,求得1||4MF =,所以22MF =,在12F MF △中,再由余弦定理列出方程,求得121cos 2F MF ∠=-,即可求解.【详解】解:由题意,椭圆方程22192x y +=,可得3,a b c ===所以焦点12(F F ,又由椭圆的定义,可得1226MF MF a +==,因为1||4MF =,所以22MF =,在12F MF △中,由余弦定理可得222121212122cos F F MF MF MF MF F MF =+-∠,所以2221242242cos F MF =+-⨯⨯∠,解得121cos 2F MF ∠=-,又由12(0,180)F MF ∠∈,所以12120F MF ∠= .故选:C .5.设1F ,2F 为椭圆22194x y +=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A .513B .45C .27D .49【答案】C 【解析】【分析】由中位线定理以及椭圆方程得出243PF =,再由椭圆的定义得出1PF ,再求21PF PF 的值.【详解】由椭圆的定义可知,1226PF PF a +==,由中位线定理可知,212PF F F ⊥,将x =22194x y+=中,解得43y =±,即243PF =,1414633PF =-=,故214323147PF PF =⨯=故选:C6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】由题意得:11122=+ny m x ,所以当0>>n m ,则nm 110<<,所以表示焦点在y 轴上的椭圆,所以A 对,B 错,当0>=n m 时,曲线C 为ny x 122=+,所以表示圆,半径为n 1,当0,0>=n m 时,曲线C 为ny 12=,所以n y 1±=,所以表示两条直线,故选:AD7.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()AB.CD.【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.8.在平面直角坐标系xOy 中,若△ABC 的顶点(0,2)A -和(0,2)C ,顶点B 在椭圆181222=+xy 上,则sin sin sin A C B +的值是()AB .2C .D .4【答案】A 【解析】【分析】由题设易知,A C 为椭圆的两个焦点,结合椭圆定义及焦点三角形性质有||||2AB CB a +=,||2AC c =,最后应用正弦定理的边角关系即可求目标式的值.【详解】由题设知:,A C 为椭圆的两个焦点,而B 在椭圆上,所以||||2AB CB a +==||24AC c ==,由正弦定理边角关系知:|||||sin sin sin |A A CB CB A BC +=+故选:A9.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .10.已知椭圆22143x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上且在x 轴的下方,若线段2PF 的中点在以原点O 为圆心,2OF 为半径的圆上,则直线2PF 的倾斜角为()A .6πB .4πC .3πD .23π【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.11.已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O 为坐标原点,若2OP =则AF =()A .8B .6C .4D .2【答案】B【解析】不妨设椭圆2212516x y +=左焦点为F ,右焦点为E ,因为AE 的中点为P ,EF 的中点为O ,所以24AE OP ==,又由210AE AF a +==,可得1046AF =-=.故选:B .12.已知椭圆C :22194x y +=的左右焦点分别是12,F F ,过2F 的直线与椭圆C 交于A ,B 两点,且118AF BF +=,则AB =()A .4B .6C .8D .10【答案】A【解析】由椭圆22:194x y C +=知:a =3,由椭圆的定义得:121226,26AF AF a BF BF a +==+==,所以11412AF BF AB a ++==,又因为118AF BF +=,所以AB 4=,故选:A题型二:椭圆的标准方程【例1】已知椭圆E :()222210x y a b a b+=>>右焦点为),其上下顶点分别为1C ,2C ,点()1,0A ,12AC AC ⊥,则该椭圆的标准方程为()A .22134x y +=B .22143x y +=C .2213y x +=D .2213x y +=【例2】已知椭圆C :()222210x y a b a b+=>>,椭圆C 的一顶点为A ,两个焦点为1F ,2F ,12AF F △焦距为2,过1F ,且垂直于2AF 的直线与椭圆C 交于D ,E 两点,则ADE ∆的周长是()A .B .8C .D .16【例3】如图,已知椭圆C 的中心为原点O ,(F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =,且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2214525x y +=C .2213010x y +=D .2213616x y +=故选:D【例4】阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为53,面积为12π,则椭圆C 的方程为()A .221188x y +=B .22198y x +=C .221188y x +=D .22184y x +=【例5】过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【例6】已知12,F F 分别是椭圆221(0)x y a b a b +=>>的左、右焦点,A ,B 分别为椭圆的上,下顶点,过椭圆的右焦点2F 的直线交椭圆于C ,D 两点,1FCD 的周长为8,且直线AC ,BC 的斜率之积为14-,则椭圆的方程为()A .2212x y +=B .22132x y +=C .2214x y +=D .22143x y +=【例7】已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过F 2的直线与C 交于A ,B 两点.若22||3||AF F B =,15||4||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【题型专练】1.已知1F 、2F 是椭圆C :22221x ya b+=()0a b >>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= 且122AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的方程为()A .2214x y +=B .22143x y +=C .221169x y +=D .2211612x y +=1612故选:D2.已知椭圆()2222:10x y C a b a b +=>>,其左、右焦点分别为1F ,2F ,离心率为12,点P 为该椭圆上一点,且满足12π3F PF ∠=,若12F PF △的内切圆的面积为π,则该椭圆的方程为()A .221129x y +=B .2211612x y +=C .2212418x y +=D .2213224x y +=3.已知椭圆的两个焦点为1(F ,2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22172x y +=B .22127x y +=C .22194x y +=D .22149x y +=4.已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆C 于A ,B 两点,3AB =,则椭圆C 的标准方程为()A .2213y x +=B .2213x y +=C .22143x y +=D .22132x y +=方法二:由题意,设椭圆C 的标准方程为所以a =2或12a =-(舍去),所以2a 故椭圆C 的标准方程为22143x y +=.故选:C.5.已知椭圆C :()222210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA 的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为()A .2213x y +=B .22153x y +=C .22175x y +=D.22197x y +=6.已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -=与椭圆C 相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=7.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,P 是C 上一点,213PF PF =,123F PF π∠=,C 的面积为12π,则C 的标准方程为()A .221364x y +=B .22112x y +=C .221169x y +=D .22143x y +=8.已知椭圆C :22=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C的标准方程为()A .22=134y x +B .22=134x y +C .22=13x y +D .22=132x y +9.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线交于C 与A ,B ,若222AF F B =,1AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22198x y +=1F 题型三:椭圆的离心率【例1】已知1F ,2F 为椭圆22221x ya b+=(a >b >0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A ,B ,若1ABF 为等边三角形,则椭圆的离心率为()A1B 1C .12D 又1290F AF ∠=,∴21,3AF c AF c ==,∴32c c a +=,可得2331c a ==+故选:B .【例2】已知椭圆C :()21024b b+=<<的左焦点为1F ,直线()0y kx k =≠与C 交于点M ,N .若1120MF N ︒∠=,1183MF NF ⋅=,则椭圆C 的离心率为()A .12B .22C D 因为O 为12,MN F F 的中点,所以四边形所以12MF NF =,12NF MF =,由椭圆的定义可得:又因为1183MF NF ⋅=,所以1MF 【例3】已知椭圆()22:10x y C a b a b+=>>上存在两点,M N 关于直线3310--=x y 对称,且线段MN 中点的纵坐标为53,则椭圆C 的离心率是()A B C .23D【例4】已知椭圆C :221a b+=()0a b >>的左右焦点分别为1F ,2F ,过点2F 做倾斜角为6π的直线与椭圆相交于A ,B 两点,若222,AF F B =,则椭圆C 的离心率e 为()AB .34C .35D【例5】设B 是椭圆()22:10C a b a b+=>>的上顶点,若C 上的任意一点P 都满足2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎝⎦【例6】12,F F 是椭圆C 的两个焦点,P 是椭圆C 上异于顶点的一点,I 是12PF F △的内切圆圆心,若12PF F △的面积等于12IF F △的面积的3倍,则椭圆C 的离心率为()A .13B .12C .2D .2a b如图,设()()()12,,,0,,0,P m n F c F c ∴-三角形由椭圆的定义可得22l a c=+122222PF F S cn cnr l a c a c∴===++ ,又2121113,2322P I F F F F cn S S c n a =∴⨯⨯=⨯⨯ 故选:B【例7】用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论:①两个球与α的切点是所得椭圆的两个焦点;②椭圆的短轴长与嵌入圆柱的球的直径相等;③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大.其中,所有正确结论的序号是()A .①B .②③C .①②D .①③【答案】C【分析】根据切线长定理可以证明椭圆上任意一点到12,F F 的距离之和为定值,即12,F F 是焦点再运用勾股定理证明短轴长,最后构造三角形,运用三角函数表示离心率即可.【详解】如图:在椭圆上任意一点P 作平行于12O O 的直线,与球1O 交于F 点,与球2O 交于E 点,则PE ,2PF 是过点P 作球2O 的两条公切线,2PE PF =,同理1PF PF =,是椭圆的焦点;①正确;【例8】国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于34-,则椭圆的离心率为()A .34B .58C .12D .4【题型专练】1.直线:l y =与椭圆2222:1x y C a b+=交于,P Q 两点,F 是椭圆C 的右焦点,且0PF QF ⋅= ,则椭圆的离心率为()A .4-B .3C 1D .2【详解】的左焦点为F ',由对称性可知:四边形PF QF '为平行四边形,PF QF '∴=2PF PF QF a '=+=;2.设12,F F 分别是椭圆221x ya b+=的左、右焦点,若椭圆上存在点A ,使12120F AF ∠=︒且123AF AF =,则椭圆的离心率为()AB C D3.设椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点M ,N 在C 上(M 位于第-象限),且点M ,N 关于原点O 对称,若1222||,F F MN MF ==,则C 的离心率为()A .4B .37C .12D .377122a +故选:B4.如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是12A A 椭圆的长轴,1PA 垂直于地面且与球相切,16PA =,则椭圆的离心率为()A .12B .23C .13D .2【答案】A【分析】根据给定条件,结合球的性质作出截面12PA A ,再结合三角形内切圆性质求出12A A 长即可作答.【详解】依题意,平面12PA A 截球O 得球面大圆,如图,12Rt PA A 是球O 大圆的外切三角形,其中112,PA A A 切圆O 于点E ,F ,=5.如图圆柱12O O 的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱12O O 内部,现用一垂直于轴截面ABB A ''的平面α去截圆柱12O O ,且与上下两半球相切,求截得的圆锥曲线的离心率为()A .3B .3C D .3半径为1,12O O 平面α与底面夹角余弦值为圆柱的底面半径为1,∴又 椭圆所在平面与圆柱底面所成角余弦值为以G 为原点建立上图所示平面直角坐标系,12,332FH a EF a ∴===,则椭圆标准方程为2222c a b =-=,故离心率故选:A.6.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为坐标平面上一点,且满足120PF PF ⋅=的点P 均在椭圆C 的内部,则椭圆C 的离心率的取值范围为()A .2⎛ ⎝⎭B .10,2⎛⎫⎪⎝⎭C .,12⎛⎫ ⎪ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知点A ,P ,Q 为椭圆C :()222210x y a b a b +=>>上不重合的三点,且点P ,Q 关于原点对称,若12AP AQ k k ⋅=-,则椭圆C 的离心率为()A .2B C D8.已知椭圆22:1(0)x yC a ba b+=>>的一个焦点为F,椭圆C上存在点P,使得PF OP⊥,则椭圆C的离心率取值范围是()A.2⎛⎝⎦B.,12⎫⎪⎪⎣⎭C.10,2⎛⎤⎥⎝⎦D.1,12⎡⎫⎪⎢⎣⎭故选:B题型四:椭圆中焦点三角形面积【例1】已知椭圆()222210+=>>x y C a b a b:的左、右焦点分别为1F ,2F ,P 为C 上一点,12π3F PF ∠=,若12F PF △的面积为C 的短袖长为()A .3B .4C .5D .6【例2】(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.【题型专练】1.设P 为椭圆221259x y +=上一点,1,F 2F 为左右焦点,若1260F PF ︒∠=,则P 点的纵坐标为()A.4B.4±C.4D.4±【答案】B 【分析】根据椭圆中焦点三角形的面积公式2tan 2S b θ=求解即可.【详解】由题知12609tan2F PF S ︒=⨯= 设P 点的纵坐标为h则12421F F h h ⋅⋅=±⇒=.故选:B2.已知()()1200F c F c -,,,是椭圆E 的两个焦点,P 是E 上的一点,若120PF PF ⋅=,且122=△PF F S c ,则E 的离心率为()ABC .2D 3.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅ 12,则12F PF △的面积为()A.B.CD .9题型五:椭圆中中点弦问题【例1】已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,直线230x y +-=与椭圆C 相交于A 、B 两点,若线段AB 的中点为(1,1)M ,则椭圆C 的方程为()A .221168x y +=B .22142x y +=C .2211612x y +=D .22143x y +=【例2】平行四边形ABCD 内接于椭圆221x y a b +=()0a b >>,椭圆的离心率为2,直线AB 的斜率为1,则直线AD 的斜率为()A .1-4B .1-2C .2D .-1设E 为AD 中点,由于O 为BD 中点,所以因为1133(,),(,)A x y D x y 在椭圆上,【例3】椭圆2294144x y +=内有一点(2,3)P ,过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为()A .23120x y +-=B .32120x y +-=C .941440x y +-=D .491440x y +-=【例4】已知椭圆E :143+=上有三点A ,B ,C ,线段AB ,BC ,AC 的中点分别为D ,E ,F ,O为坐标原点,直线OD ,OE ,OF 的斜率都存在,分别记为1k ,2k ,3k ,且123k k k ++=直线AB ,BC ,AC 的斜率都存在,分别记为AB k ,BC k ,AC k ,则111AB BC ACk k k ++=()AB .C .-D .1-【例5】离心率为2的椭圆()222210x y a b a b +=>>与直线y kx =的两个交点分别为A ,B ,P 是椭圆不同于A 、B 、P 的一点,且PA 、PB 的倾斜角分别为α,β,若120αβ+=︒,则()cos αβ-=()A .16-B .13-C .13D .16【例6】(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【例7】(2022·全国甲(理)T10)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解:(),0A a -,设()11,P x y ,则()11,Q x y -,则1111,AP AQ y y k k x a x a==+-+,故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+,又2211221x y a b +=,则()2221212b a x y a -=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率2c e a ===.故选:A.【例8】椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.【答案】63【解析】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,因为||BF AF'=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=时,离心率的最大值为63,故答案为63.【题型专练】1.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为则该椭圆的离心率为()A .13B .23C.3D .32.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是()A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦D .314⎡⎤⎢⎥⎣⎦,【答案】B【详解】由题意,椭圆C :22143x y +=的左、右顶点分别为12(2,0),(2,0)A A -,设00(,)P x y ,则()2200344y x =-,又由1220002200034PA PA y y y k k x a x a x a ⋅=⨯=-+--,可得1234PA PA k k -=,因为[]12,1PA k ∈--,即23421PA k --≤≤-,可得23384PA k ≤≤,所以直线2PA 斜率的取值范围33,84⎡⎤⎢⎥⎣⎦.故选:B3.已知椭圆22:184x y C +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线l 的斜率的乘积()A .1-B .1C .12D .12-【答案】D,进而联立方程求解中点4.点A ,B 在椭圆2212x y +=上,点11,2M ⎛⎫ ⎪⎝⎭,2OA OB OM +=,则直线AB 的方程是()A .12y x =-B .522y x =-+C .32y x =-+D .322y x =-5.已知椭圆143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若34OD OE OF k k k ++=-(O 为坐标原点),则111AB BC ACk k k ++=()A .1B .-1C .34-D .34【答案】A的斜率转化为6.直线:20l x y-=经过椭圆22+1(0)x y a ba b=>>的左焦点F,且与椭圆交于,A B两点,若M为线段AB中点,||||MF OM=,则椭圆的标准方程为()A.22+163x y=B.22+185x y=C.2214x y+=D.22+1129x y=7.已知三角形ABC 的三个顶点都在椭圆:143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=()A .43-B .3-C .1813-D .32-8.已知过点()1,1M 的直线l 与椭圆22184x y +=交于,A B 两点,且满足,AM BM =则直线l 的方程为()A .30x y -+=B .230x y +-=C .2230x y -+=D .230x y +-=题型六:椭圆中的最值问题【例1】已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别是1F ,2F ,点P 在椭圆C 上则下列结论正确的是()A .12PF PF ⋅有最大值无最小值B .12PF PF ⋅无最大值有最小值C .12PF PF ⋅既有最大值也有最小值D .12PF PF ⋅既无最大值也无最小值【例2】若点O 和点F 分别为椭圆()222210x y a b a b+=>>的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为()A .()a a c +B .()b a c +C .()a a c -D .()b ac -【例3】已知点P 是椭圆4x +2y =1上的动点(点P 不在坐标轴上),12F F 、为椭圆的左,右焦点,O 为坐标原点;若M 是12F PF ∠的角平分线上的一点,且1F M 丄MP ,则丨OM 丨的取值范围为()A .(0B .(0,2)C .(l ,2)D .2)【答案】A=因为1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,PN 因为O 为12F F 的中点,所以,212OM F N =设点00(,)P x y ,由已知可得2a =,1b =,c 则022x -<<且00x ≠,且有220114y x =-,()2221000032331PF x y x x =++=+++-【例4】已知点P 在椭圆193x y +=上运动,点Q 在圆22(1)8x y -+=上运动,则PQ 的最小值为()A .2B .2C .24-D .4【答案】D【分析】先求出点P 到圆心(1,0)A 的距离的最小值,然后减去圆的半径可得答案。
椭圆重点题型整理

椭圆重点题型整理椭圆一.椭圆的定义1.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是()A .椭圆B .直线C .线段D .圆2.定点12,F F ,且128F F =,动点P 满足128PF PF +=,则点P 的轨迹是():A 椭圆 :B 圆 :C 直线 :D 线段3.设定点()3,01-F ,()3,02F ,动点()y x P ,满足条件a PF PF =+21(a >)0,则动点P 的轨迹是()A. 椭圆B. 线段C. 椭圆或线段或不存在D. 不存在4.方程x = ():A 圆 :B 椭圆 :C 半圆 :D 半个椭圆5. 焦点为21,F F 的圆221259x y +=上点P ,51=PF ;则=2PF () :A 5 :B 6 :C 4 :D 106.过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ?,那么2ABF ?的周长是()A. 22B. 2C.2 D. 17.若AB 为过椭圆22110064x y +=左焦点1F 的弦,则2F AB ?(2F 为右焦点)的周长是 . 8.若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆的两焦点,且9021=∠PF F ,则21PF F ?的面积是() A. 2 B. 1 C. 23D. 219.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程.二.椭圆的几何性质1.椭圆2266x y +=的长轴的端点坐标是():A )0,1(± :B )6,0(± :C )0,6(± :D )6,0(±2.椭圆63222=+y x 的焦距是()A .2B .)23(2-C .52D .)23(2+3. 已知椭圆1422=+y m x 的离心率为22,则此椭圆的长轴长为。
高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。
椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。
这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。
该性质主要用于求最值、轨迹检验等问题。
椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。
长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。
椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。
当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。
椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。
二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。
1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。
高考椭圆最常考的题型(140分推荐)

高考椭圆最常考的题型(140分推荐)一、单选题(本大题共8小题,共40.0分)1. 已知椭圆:x 24+y 2b2=1(0<b <2) ,左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A,B 两点,若|BF 2⃗⃗⃗⃗⃗⃗⃗ |+|AF 2⃗⃗⃗⃗⃗⃗⃗ |的最大值为5,则b 的值是( )A. 1B. √2C. 32D. √32. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√22,直线x =√2与椭圆C 交于A ,B 两点,O 为坐标原点,且OA ⊥OB ,则椭圆的方程为( )A.x 22+y 2=1B.x 24+y 22=1C.x 28+y 24=1D.x 26+y 23=13. 已知直线y =kx(k ≠0)与椭圆C :x 2a2+y 2=1(a >1)交于P ,Q 两点,点F ,A 分别是椭圆C 的右焦点和右顶点,若|FP|+|FQ|+|FA|=52a ,则a =( )A. 4B. 2C. 43D. 2√334. 已知直线2x +y −4=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,F 1是椭圆的左焦点,且|AB |=|AF 1|,则椭圆的方程为( )A. x 240+y 236=1B. x 220+y 216=1C. x 210+y 26=1D.x 25+y 2=15. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为( )A. √32B. √22C. 12D. 136. 已知椭圆方程为x 2+ky 2=5的一个焦点是(0,2),那么k =( )A. 59B. 97C. 1D. 537. 已知焦点在x 轴上的椭圆C :x 2a 2+y 24=1的焦距为4,则C 的离心率( )A. 13B. 12C. √22D. 2√238. 已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为4√3,则椭圆C 的方程为( )A. x 23+y 2=1B. x 23+y 22=1 C. x 212+y28=1 D. x 212+y24=1二、单空题(本大题共2小题,共10.0分)9.已知椭圆C的焦点在x轴上,且离心率为12,则C的方程可以为.10.椭圆E:x2a2+y23=1的右焦点为F2,直线y=x+m与椭圆E交于A,B两点.若△F2AB周长的最大值是8,则m的值等于________.三、解答题(本大题共20小题,共240.0分)11.设椭圆C∶x2a2+y2b2=1(a>b>0)过点(0,4),离心率为35.(1)求C的方程;(2)求过点(3,0)且斜率为45的直线被C所截线段的中点坐标.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√33,短轴一个端点到右焦点的距离为√3.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆的左焦点且斜率为1的直线l交椭圆于A,B两点,求|AB|.13.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,√32)在椭圆C上,且△PF1F2的面积为32.(1)求椭圆C的标准方程;(2)若椭圆C上存在A,B两点关于直线x=my+1对称,求m的取值范围.14.已知点P(3,4)是椭圆x2a2+y2b2=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程;(2)△PF1F2的面积.15.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为2√3.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,且线段AB的垂直平分线过定点(13,0),求k的取值范围.16.已知椭圆x2a2+y2b2=1(a>b>0)和直线l:xa−yb=1,椭圆的离心率e=√63,坐标原点到直线l的距离为√32.(1)求椭圆的方程;(2)已知定点E(−1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.17.已知椭圆E:x2a2+y2b2=1(a>b>0)经过两点(0,1),(√3,12).(I)求椭圆E的方程;(II)若直线l:x−y−1=0交椭圆E于两个不同的点A,B,O是坐标原点,求△AOB 的面积S.18.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,M(√3,−12)是椭圆C上的一点.(1)求椭圆C的方程;(2)过点P(−4,0)作直线l与椭圆C交于不同两点A、B,A点关于x轴的对称点为D,问直线BD是否过定点?若是,求出该定点的坐标;若不是,请说明理由.19.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,短轴的一个端点到右焦点的距离为3√2.(1)求椭圆的方程;(2)若直线y=x−1与椭圆相交于不同两点A、B,求|AB|.20.已知椭圆C1的方程为x24+y23=1,椭圆C2的短轴为C1的长轴且离心率为√32.(1)求椭圆C2的方程;(2)如上图,M,N分别为直线l与椭圆C1,C2的交点,P为椭圆C2与y轴的交点,△PON 的面积为△POM的面积的2倍,若直线l的方程为y=kx(k>0),求k的值.21.如图,在平面直角坐标系xOy中,已知A,B两点分别为椭圆x2a2+y2b2=1(a>b>0)的右顶点和上顶点,且AB=√7,右准线l的方程为x=4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P,交l于点Q.若以PQ为直径的圆经过原点,求直线PQ的方程.22.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.23.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,长轴长为4,直线y=kx+2与椭圆C交于A,B两点且∠AOB为直角,O为坐标原点.(1)求椭圆C的方程;(2)求AB的长度.24.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.25.如图,在平面直角坐标系xOy中,已知圆C:(x−3)2+y2=1,椭圆E:x2a2+y2b2=1(a>b>0)的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当AN=127AM时,求直线l的方程.26.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.27.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆E上.(1)若F1F2=2√2,点P的坐标为(√3,√2),求椭圆E的方程;(2)若点P横坐标为a2,点M为PF1中点,且OP⊥F2M,求椭圆E的离心率.28.如图,在直角坐标系xOy中,设椭圆C:x2a2+y2b2=1 (a>b>0)的左右两个焦点分别为F1、F2过右焦点F2且与x轴垂直的直线l与椭圆C相交,其中一个交点为M( √2, 1 )(1)求椭圆C的方程;(2)设椭圆C的一个顶点为B( 0,−b ),直线BF2交椭圆C于另一点N,求△F1BN的面积29.如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C 于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若ΔAEF与ΔBDF的面积比为1:7,求直线l的方程.30.已知椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点坐标为F1(−√3,0),F2(√3,0),且椭圆E经过点P(−√3,12).(1)求椭圆E的标准方程;(2)设点M是椭圆E上位于第一象限内的动点,A,B分别为椭圆E的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求四边形ABCD的面积.答案和解析1.【答案】D【解析】【分析】本题主要考查椭圆的定义的应用,做题时要善于发现规律,进行转化,三角形AF2B为焦点三角形,周长等于两个长轴长,再根据椭圆方程,即可求出三角形AF2B的周长,欲使|BF2|+|AF2|的最大,只须|AB|最小,利用椭圆的性质即可得出答案.【解析】解:由椭圆的方程可知:长半轴长为a=2,由椭圆的定义可知:|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8−(|AF2|+|BF2|)≥3,由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b2a=3,可求得b2=3,即b=√3.故选D.2.【答案】D【解析】【分析】本题考查椭圆的方程和离心率,属于简单题.结合已知条件建立关系式求得a2=6,b2=3,即可得到椭圆方程.【解答】解:因为椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,所以ca =√22①又因为直线x=√2与椭圆C交于A,B两点,O为坐标原点,且OA⊥OB,所以A(√2,√2)代入x2a2+y2b2=1得2a2+2b2=1②又因为a2=b2+c2③联立①②③解得a2=6,b2=3,所以椭圆的方程为x26+y23=1.故选D.3.【答案】D【解析】【分析】本题主要考查了椭圆的概念与标准方程、椭圆的几何性质、直线与椭圆的位置关系,属于基础题.取椭圆的左焦点F′,由三角形全等知|PF|=|QF′|,由椭圆的概念及集合性质知|FP|+ |FQ|=|F′Q|+|FQ|=2a,|FA|=a−c,b=1,代入条件及利用a,b,c的关系式求得a.【解答】解:取椭圆的左焦点F′,因为直线过原点,∴|OP|=|OQ|,|OF|=|OF′|,由椭圆的对称性,∴|PF|=|QF′|,∴|FP|+|FQ|=|F′Q|+|FQ|=2a,∵|FP|+|FQ|+|FA|=52a,|FA|=a−c,所以2a+a−c=52a,即a=2c,∵a2=b2+c2=1+14a2,a=2√33.故选D.4.【答案】D【解析】【分析】本题考查椭圆的定义、标准方程以及简单的几何性质,属于基础题.由直线2x+y−4=0经过椭圆x2a2+y2b2=1(a>b>0)的右焦点F2,可求得c=2,由椭圆定义可求得即a=√5,故a2=5,b2=1,椭圆方程可解.【解答】解:直线2x +y −4=0与x 轴和y 轴的交点分别为F 2(2,0),B(0,4), 所以c =2,又2a =|AF 1|+|AF 2|=|AB|+|AF 2|=|BF 2|=2√5, 所以a =√5,从而b 2=5−4=1, 所以椭圆方程x 25+y 2=1.故选D .5.【答案】C【解析】 【分析】本题考查椭圆的几何性质,涉及向量的线性关系,属基础题.根据向量关系得出|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,根据平行线截线段成比例定理得出|AO||AF|的值,得到a ,c 的关系,求得离心率. 【解答】 解:如图所示:∵AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ , ∴|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,∴|PA||AB|=23, 又∵PO//BF , ∴|AO||AF|=|PA||AB|=23, 即aa+c =23, ∴e =ca =12. 故选C .6.【答案】A【解析】 【分析】本题考查椭圆的标准方程及椭圆的简单性质,利用待定系数法求参数的值,属于基础题. 把椭圆x 2+ky 2=5的方程化为标准形式,得到c 2的值等于4,解方程求出k . 【解答】解:椭圆x 2+ky 2=5,即x 25+y 25k=1,∵焦点坐标为(0,2),c 2=4, ∴5k −5=4,∴k =59, 故选:A .7.【答案】C【解析】 【分析】本题主要考查椭圆的离心率,属于基础题.根据题意求出c =2,a =2√2,由e =ca 即可求出结果. 【解答】 解:∵椭圆C :x 2a 2+y 24=1的焦点在x 轴上,且焦距为4,∴a 2>4,c =2, ∴a 2−4=4, ∴a =2√2, ∴e =ca =2√2=√22. 故选C .8.【答案】B【解析】 【分析】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 利用△AF 1B 的周长为4√3,求出a =√3,根据离心率为√33,可得c =1,求出b ,即可得出椭圆的方程. 【解答】解:∵△AF 1B 的周长为4√3,∵△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a , ∴4a =4√3, ∴a =√3, ∵离心率为√33,∴ca =√33,c =1,∴b =√a 2−c 2=√2, 即椭圆C 的方程为x 23+y 22=1.故选B .9.【答案】x 24+y 23=1(答案不唯一)【解析】 【分析】本题主要考查了椭圆的标准方程以及椭圆的几何性质,解题的关键是熟练掌握椭圆标准方程中a ,b 和c 之间的关系,属于基础题. 利用离心率为12,可得b =√32a ,即可求解.【解答】解:设椭圆的标准方程为 x 2a2+y 2b 2=1(a >b >0),∵离心率为12, ∴e =ca =√a 2−b 2a=12, ∴b =√32a , 令a =2,则b =√3,∴椭圆的标准方程为x 24+y 23=1.故答案为x 24+y 23=1(答案不唯一).10.【答案】1【解析】 【分析】本题考查的知识要点:椭圆的定义和方程的应用,属于基础题型.首先利用椭圆的定义建立周长的等式,进一步利用三角形的边长关系建立等式,求出相应的值,最后求出结果. 【解答】 解:椭圆E :x 2a 2+y 23=1的右焦点为F 2,N 为左焦点,直线y =x +m 与椭圆E 交于A ,B 两点,则△F 2AB 周长l =AB +BF 2+AF 2=AB +2a −NB +2a −NA =4a +(AB −NA −NB), 由于NA +NB ≥AB ,所以当N 、A 、B 三点共线时,△F 2AB 的周长l =4a =8, 所以a =2, 所以椭圆的方程为x 24+y 23=1,直线y =x +m 经过左焦点,所以m =1. 故答案为1.11.【答案】解:(1)将(0,4)代入C 的方程得16b 2=1,则b =4,∵e =ca =35,∴a 2−b 2a 2=925,即1−16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x −3), 设直线与C 的交点为A(x 1,y 1),B(x 2,y 2). 将直线方程y =45(x −3)代入C 的方程,得x 225+(x−3)225=1,即x 2−3x −8=0,故x 1+x 2=3.设线段AB 的中点坐标为(x′,y′),则x′=x 1+x 22=32,y′=y 1+y 22=25(x 1+x 2−6)=−65,即所求中点坐标为(32,−65).【解析】本题考查椭圆的标准方程及性质,以及直线与椭圆的综合应用,属于中档题目. (1)将(0,4)代入椭圆方程求出b ,再由椭圆的离心率求出a ,得到椭圆方程; (2)写出直线方程联立椭圆方程,利用中点坐标公式结合韦达定理得出.12.【答案】解:(Ⅰ)由题意:e =c a =√33,即a =√3c ,短轴一个端点到右焦点的距离为√3, 即b 2+c 2=(√3)2=3, 而a 2=b 2+c 2, 所以a 2=3,b 2=2, 所以椭圆的方程:x 23+y 22=1;(Ⅱ)由(Ⅰ),左焦点(−1,0),直线l 的方程:y =x +1, 设A(x,y),B(x′,y′),联立直线l 与椭圆的方程,消去y 整理得:5x 2+6x −3=0, 所以x +x′=−65,xx′=−35,∴|AB|=√1+k 2√(x +x′)2−4xx′ =√1+1×√(−65)2−4×(−35)=8√35.【解析】本题考查直线与椭圆的交点弦长,属于基础题.(Ⅰ)由题意得离心率及长半轴长及a ,b ,c 之间的关系,求出椭圆的方程;(Ⅱ)由题意写出直线l 的方程与椭圆联立写出两根之和及之积,再由弦长公式求出弦长.13.【答案】解:(1)由题意可得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2解得a =2,b =1,故椭圆C 的标准方程为x 24+y 2=1..(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0). 因为直线x =my +1过定点(1,0),所以(x 1−1)2+y 12=(x 2−1)2+y 22.因为A ,B 在椭圆上,所以x 124+y 12=1,x 224+y 22=1,所以(x 1−1)2+1−x 124=(x 2−1)2+1−x 224,整理得x 12−x 224=(x 1−x 2)(x 1+x 2−2),所以x 1+x 2=83,所以x 0=43.因为点M 在直线x =my +1上,所以x 0=my 0+1,则y 0=13m .由{x 24+y 2=1,x =43,得y =±√53, 则−√53<13m <0或0<13m <√53,解得m <−√55或m >√55.故m 的取值范围为(−∞,−√55)⋃(√55,+∞).【解析】本题考查椭圆的性质和标准方程,直线与椭圆的位置关系,属于中档题. (1)由题意得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2,解出a ,b ,进而求出答案.(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0),由条件求出x 1+x 2=83,x 0=43,进而由条件求出y =±√53,进而求出答案.14.【答案】解:(1) 令F 1(−c,0),F 2(c,0),∵PF 1⊥PF 2,∴k PF 1·k PF 2=−1,即43+c ·43−c =−1,解得c =5,∴椭圆的方程为x 2a 2+y 2a 2−25=1.∵点P(3,4)在椭圆上,∴9a 2+16a 2−25=1,解得a 2=45,或a 2=5, 又a >c ,∴a 2=5舍去, 故所求椭圆方程为x 245+y 220=1.(2)P 点纵坐标的值即为F 1F 2边上的高,∴△PF1F2=12|F1F2|×4=12×10×4=20.【解析】本题考查椭圆的简单性质的应用,以及用待定系数法求椭圆的标准方程的方法.(1)设出焦点的坐标,利用垂直关系求出c值,椭圆的方程化为x2a2+y2a2−25=1,把点P的坐标代入,可解得a2的值,从而得到所求椭圆方程.(2)P点纵坐标的值即为F1F2边上的高,由S△PF1F2=12|F1F2|×4求得△PF1F2的面积.15.【答案】解:(Ⅰ)由题意可知:{2b=2√3ca=12a2=b2+c2,得{a=2b=√3c=1,故椭圆C的标准方程为x24+y23=1;(Ⅱ)设直线l:y=kx+m,A(x1,y1),B(x2,y2),将y=kx+m代入椭圆方程,消去y得(3+4k2)x2+8kmx+4m2−12=0,所以,即m2<4k2+3…………①由根与系数关系得x1+x2=−8km3+4k2,则y1+y2=k(x1+x2)+2m=6m3+4k2,所以线段AB的中点P的坐标为(−4km3+4k2,3m3+4k2).又线段AB的垂直平分线l′的方程为y=−1k (x−13),由点P在直线l′上,得3m3+4k2=−1k(−4km3+4k2−13),即4k2+3km+3=0,所以m=−13k(4k2+3)…………②由①②得(4k2+3)29k2<4k2+3,∵4k2+3>0,∴4k2+3<9k2所以k2>35,即k<−√155或k>√155,所以实数k的取值范围是.【解析】本题考查了椭圆方程的求法,考查了直线和圆锥曲线间的关系,考查了直线和圆锥曲线的关系问题,常采用联立直线方程和圆锥曲线方程,利用根与系数的关系求解,属于中档题.(Ⅰ)由离心率得到a ,c ,b 的关系,再代入椭圆的标准方程中即可求解.(Ⅱ)设出A ,B 的坐标,联立直线方程和椭圆方程,由判别式大于0得到m 2<4k 2+3,再结合根与系数关系得到AB 中点P 的坐标为(−4km3+4k 2,3m3+4k 2).求出AB 的垂直平分线l′方程,由P 在l′上,得到4k 2+3km +3=0.结合m 2<4k 2+3求得k 的取值范围.16.【答案】解:(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca=√63ab√a 2+b 2=√32,又a 2=b 2+c 2,解得:a 2=3,b =1, ∴椭圆的方程为x 23+y 2=1;(Ⅱ)假设存在这样的k ,使以CD 为直径的圆过定点E , 联立直线与椭圆方程得(1+3k 2)x 2+12kx +9=0, ∴△=(12k)2−36(1+3k 2)>0,∴k >1或设C(x 1,y 1),D(x 2,y 2), 则{x 1+x 2=−12k1+3k 2x 1·x 2=91+3k2,② 而y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4,EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),要使以CD 为直径的圆过点E(−1,0),当且仅当CE ⊥DE 时,故EC ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0, 则y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0,③ 将②代入③整理得k =76>1, 经验证使得①成立,综上可知,存在k =76,使得以CD 为直径的圆过点E .【解析】本题考查椭圆的方程及直线与椭圆的位置关系,注意合理地进行等价转化,属于中档题.(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca =√63√a 2+b 2=√32,由此能求出椭圆的方程;(Ⅱ)假设存在这样的值,联立方程得(1+3k 2)x 2+12kx +9=0,再由根的判别式和根与系数的关系进行求解即可.17.【答案】解:(1)由题意得{b 2=13a2+14b2=1,解得{a =2b =1,所以椭圆E 的方程为x 24+y 2=1.(2)记A(x 1,y 1),B(x 2,y 2),由{x 24+y 2=1x =y +1, 消去x 得5y 2+2y −3=0. 所以y 1,2=−1或35,直线l 与x 轴的交点为(1,0),记为点P ,S =12|OP||y 1−y 2|=45.【解析】本题主要考查了椭圆的概念及标准方程,椭圆的性质及几何意义,直线与椭圆的位置关系,三角形面积的应用,属于简单题.(1)根据已知及椭圆的概念及标准方程,椭圆的性质及几何意义的计算,求出椭圆E 的方程;(2)根据已知及直线与椭圆的位置关系,三角形面积的计算,求出△AOB 的面积S .18.【答案】解:(1)∵c a =√32,a 2=b 2+c 2,∴a 2=4b 2,∴x 24b 2+y 2b 2=1,将M (√3,−12)代入椭圆C ,∴b 2=1, ∴椭圆C 方程为:x 24+y 2=1.(2)显然AB 斜率存在,设AB 为:y =k(x +4),{x 24+y 2=1,y =k(x +4)⇒(1+4k 2)x 2+32k 2x +64k 2−4=0,Δ=16−192k 2>0,∴k 2<112. 设A(x 1,y 1),B(x 2,y 2),D(x 1,−y 1), ∴x 1+x 2=−32k 21+4k2,x 1x 2=64k 2−41+4k 2,∵BD :y +y 1=y 2+y1x 2−x 1(x −x 1),∴y =0时x =x 1+x 2y 1−x 1y 1y 1+y 2=2kx 1x 2+4k(x 1+x 2)k(x 1+x 2)+8k=2k(64k 2−41+4k 2)+4k(−32k 21+4k 2)k(−32k 21+4k 2)+8k =128k 3−8k−128k 3−32k 3+8k+32k 3=−1,∴直线BD 过定点(−1,0).【解析】本题考查椭圆方程的求法,直线与椭圆的位置关系,直线的斜率的应用,考查转化思想以及计算能力.(1)根据点在椭圆上得3a 2+14b 2=1,与离心率联立方程组解得a 2=2,b 2=1,即得太严方程;(2)设直线l 的方程为y =k(x +4),A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=−32k 21+4k 2,x 1x 2=64k 2−41+4k 2求出BD 的方程,令y =0,解得横坐标,结合韦达定理化简可得横坐标为定值,即可证明直线BD 过定点.19.【答案】解:(1)根据题意,椭圆C 的短轴一个端点到右焦点的距离为3√2,则有a =3√2, 又由椭圆C 的离心率为√22,则有e =ca =√22,则有c=3,则b2=a2−c2=18−9=9,则椭圆的标准方程为:x218+y29=1;(2)设A(x1,y1),B(x2,y2).由(1)可得:椭圆的标准方程为:x218+y29=1,直线l的方程为:y=x−1,联立{x218+y29=1y=x−1,消去y得3x2−4x−16=0,则有x1+x2=43,x1x2=−163,|AB|=√1+12√(x1+x2)2−4x1x2=√2√169+643=4√263.【解析】本题考查椭圆的几何性质,直线与椭圆的位置关系,椭圆的标准方程,属基础题.(1)根据题意,由椭圆的几何性质可得e=ca =√22且a=3√2,解可得c的值,进而计算可得b的值,将a、b的值代入椭圆的标准方程,即可得答案;(2)联立直线与椭圆的方程,可得方程3x2−4x−16=0,结合根与系数的关系由弦长公式计算可得答案.20.【答案】解:(1)椭圆C1的方程为x24+y23=1的长轴长为4,设椭圆C2的方程为y2a2+x2b2=1(a>b>0),由题意可得b=2,e=ca =√32,a2−c2=4,解得a=4,b=2,c=2√3,可得椭圆C2的方程为y216+x24=1;(2)设M(x1,y1),N(x2,y2),△PON面积为△POM面积的2倍,可得|ON|=2|OM|,即有|x2|=2|x1|,联立{y =kx 3x 2+4y 2=12,消去y 可得x =±√123+4k2,即|x 1|=√123+4k 2,同样求得|x 2|=√164+k 2, 由√164+k 2=2√123+4k 2,解得k =±3, 由k >0,得k =3.【解析】本题考查椭圆的方程和性质及直线与椭圆位置关系,考查联立方程求交点,考查化简整理的运算能力,属于中档题. (1)由题意设椭圆C 2的方程为y 2a 2+x 2b 2=1(a >b >0),运用离心率公式和a ,b ,c 的关系,解方程即可得到所求方程;(2)设M(x 1,y 1),N(x 2,y 2),由题意可得|x 2|=2|x 1|,联立直线y =kx 和椭圆方程,求得交点的横坐标,解方程即可得到所求值.21.【答案】解:(1)设椭圆的焦距为2c(c >0).由题意得{a 2c=4,a 2=b 2+c 2,√a 2+b 2=√7,解得a 2=4,b 2=3. 所以椭圆的标准方程为:x 24+y 23=1.(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y 23=1,消y 得(4k 2+3)x 2−16k 2x +16k 2−12=0. 又直线PQ 过点A(2,0),则方程必有一根为2,则x P =8k 2−64k 2+3. 代入直线y =k(x −2),得点P (8k 2−64k 2+3,−12k4k 2+3).联立{y =k(x −2),x =4,所以Q(4,2k).又以PQ 为直径的圆过原点,所以OP ⊥OQ , 则OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k 4k 2+3=8k 2−244k 2+3=0,解得k 2=3,所以k =±√3.所以直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x0−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0, 所以4x 0+2y 02x0−2=0 ①,又x 024+y 023=1 ②,联立①②,解得x 0=65或x 0=2(舍),所以P (65,−4√35)或P (65,4√35). 所以直线PQ 的斜率为±√3,从而直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.【解析】本题考查椭圆的标准方程,椭圆的性质以及直线与椭圆的位置关系,属于难题. (1)由题意列出关于a ,b ,c 的方程组,求解即可;(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y23=1,求出P (8k 2−64k 2+3,−12k 4k 2+3),Q(4,2k).利用OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k4k 2+3=8k 2−244k 2+3=0,求出k 即可求解;方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0,求出x 0=65,得到P (65,−4√35)或P (65,4√35).所以直线PQ 的斜率为±√3,即可求解.22.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(1,32),(−1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.23.【答案】解:(1)由题意2a =4,∴a =2,∴ca =√32,∴c =√3,b 2=a 2−c 2=1,∴椭圆C 的方程为x 24+y 2=1;(2)设A(x 1,y 1),B(x 2,y 2), 把y =kx +2代入x 24+y 2=1,得(4k 2+1)x 2+16kx +12=0,Δ=(16k)2−4×12×(4k 2+1)=64(k 2−3)>0,即k 2>3, ∴x 1+x 2=−16k 1+4k 2,x 1x 2=121+4k 2,∵∠AOB 为直角,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, ∴x 1x 2+(kx 1+2)(kx 2+2)=0, 即(k 2+1)x 1x 2+2k(x 1+x 2)+4=0, ∴12(k 2+1)1+4k 2−32k 21+4k 2+4=0,∴−4k 2+16=0,∴k 2=4,∴x 1+x 2=−16k1+4k 2=±3217,x 1x 2=121+4k 2=1217,∴|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√5⋅√(3217)2−4817=4√6517, 故|AB|的长度4√6517.【解析】本题考查了椭圆方程与几何性质、直线与椭圆的位置关系等基础知识,属于中档题.(1)根据离心率和长轴长,可得a ,b ,然后即可写出椭圆方程;(2)联立直线与椭圆,利用韦达定理以及∠AOB =90°,求出k.再用弦长公式求出弦长|AB|.24.【答案】解:(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,右焦点到右准线的距离为3.得{e =c a =12,a 2c −c =3解得{a =2,c =1所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),因为OAQB 为平行四边形,所以OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ , 则Q(x 1+x 2,y 1+y 2),当直线l 的斜率不存在时,直线l 过原点O ,此时O 、A 、B 三点共线,不符合题意: 当直线l 的斜率存在时,设直线l 的方程为y =kx +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2,将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意, 所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系,属于较难题.(1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =kx +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.25.【答案】解:(1)记椭圆E 的焦距为2c(c >0).因为右顶点A (a , 0)在圆C 上,右准线x =a 2c与圆C :(x −3)2+y 2=1相切.所以{(a −3)2+02=1 , | a 2c−3 |=1 ,解得{a =4 ,c =8,(舍去) { a =2 ,c =1 .于是b 2=a 2−c 2=3,所以椭圆方程为:x 24+y 23=1.(2)法1:设N (x N , y N ) , M (x M , y M ),显然直线l 的斜率存在,设直线l 的方程为:y =k (x −2). 由方程组 {y =k (x −2) , x 24+y 23=1消去y 得,(4k 2+3)x 2−16k 2x +16k 2−12=0.所以x N ⋅2=16k 2−124k 2+3,解得x N =8k 2−64k 2+3. 由方程组{ y =k (x −2) ,(x −3)2+y 2=1 ,消去y 得(k 2+1)x 2−(4k 2+6)x +4k 2+8=0 , 所以x M ⋅2=4k 2+8k 2+1,解得x M =2k 2+4k 2+1.因为AN =127AM ,所以2−x N =127(x M −2).即124k 2+3=127⋅21+k 2,解得 k =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.法2:设N (x N , y N ) , M (x M , y M ),当直线l 与x 轴重合时,不符题意. 设直线l 的方程为:x =ty +2 (t ≠0).由方程组{x =ty +2 , x 24+y 23=1消去x 得,(3t 2+4)y 2+12ty =0,所以y N =−12t3t 2+4 , 由方程组 {x =ty +2 ,(x −3)2+y 2=1消去x 得(t 2+1)y 2−2ty =0, 所以y M =2tt 2+1, 因为AN =127AM ,所以y N =−127y M ,即−12t3t 2+4=−127⋅2t t 2+1,解得 t =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.【解析】本题主要考查了椭圆的概念及标准方程,直线与椭圆的位置关系,直线与圆的位置关系及判定,直线的一般式方程,考查学生的计算能力和推理能力,属于较难题. (1)记椭圆E 的焦距为2c ,根据题意可知{ (a −3)2+02=1 ,| a 2c −3 |=1 ,从而即可得a ,c 的值,进而求得椭圆E 的方程.(2)法1:设N (x N , y N ) , M (x M , y M )且直线l 的方程为:y =k (x −2),从而联立直线和椭圆方程消去y 后可得x N =8k 2−64k 2+3,同理联立直线和圆可得x M =2k 2+4k 2+1,再根据AN =127AM 即可求得k 的值,从而求得直线l 的方程.法2:设N (x N , y N ) , M (x M , y M )且设直线l 的方程为:x =ty +2 (t ≠0),联立直线和椭圆方程消去x 可得y N =−12t3t 2+4,再联立直线和圆可得y M =2tt 2+1,从而据AN =127AM 即可求得t 的值,从而求得直线l 的方程.26.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.27.【答案】解:(1)设椭圆E 焦距为2c ,则2c =|F 1F 2|=2√2,所以c 2=a 2−b 2=2, ① 又点(√3,√2)在椭圆E :x 2a 2+y 2b 2=1上,所以3a 2+2b 2=1,②联立①②解得{a 2=6b 2=4或{a 2=1b 2=−1(舍去),所以椭圆E 的方程为x 26+y 24=1;(2)设椭圆E 焦距为2c ,则F 1(−c,0),F 2(c,0),将x =a2代入x 2a 2+y 2b 2=1,得y 2=3b24,不妨设点P 在x 轴上方, 故点P 坐标为(a2,√3b2), 又点M 为PF 1中点,故点M 坐标为(a−2c 4,√3b4), 所以F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =(a−6c 4,√3b 4),OP ⃗⃗⃗⃗⃗ =(a 2,√3b2),由,得OP ⃗⃗⃗⃗⃗ ⋅F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =0, 即a−6c 4⋅a2+√3b4⋅√3b 2=0,化简得a 2−6ac +3b 2=0,将b 2=a 2−c 2代入得3c 2+6ac −4a 2=0, 即3(ca )2+6⋅ca −4=0, 所以3e 2+6⋅e −4=0, 解得e =−1±√213,因为e ∈(0,1),所以椭圆E 的离心率为e =√213−1.【解析】本题考查向量的数量积、椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系,为基础题.(1)把点(√3,√2)代入椭圆方程,求出a ,b ,即可求出结果; (2)将x =a2代入x 2a2+y 2b 2=1,得出点P 坐标为(a 2,√3b2),得出点M 的坐标和相应向量的坐标,利用数量积,即可求出结果.28.【答案】解:(1)因为l ⊥x 轴,所以F 2(√2,0),由题意可得{2a 2+1b 2=1a 2−b 2=2,解得{a 2=4b 2=2,∴椭圆C 的方程为x 24+y 22=1.(2)直线BF 2的方程为y =x −√2. 由{y =x −√2x 24+y 22=1得点N 的纵坐标为√23.又| F 1F 2 |=2√2, ∴S △F 1BN =12×(√2+√23)×2√2=83.【解析】本题考查求椭圆的方程,三角形的面积,是直线与椭圆位置关系,属于基础题(1)由题意可得F 2(√2,0),进而得到{2a 2+1b 2=1a 2−b 2=2,求解即可得到椭圆C 的方程;(2)根据题意可得直线BF 2的方程为y =x −√2.联立直线方程和椭圆方程即可得到N 的纵坐标为√23.再根据| F 1F 2 |=2√2和三角形的面积公式即可得解.29.【答案】解:(1)设椭圆的半焦距长为c ,∴{ c a =121a 2+94b 2=1, 又∵a 2=b 2+c 2,∴{a =2b =√3,∴椭圆C 的方程为x 24+y 23=1;(2)设直线DE 的方程为x =ky −1,D(x 1,y 1),E(x 2,y 2),,联立{x =ky −13x 2+4y 2=12⇒3(ky −1)2+4y 2=12 ∴(3k 2+4)y 2−6ky −9=0 ∴{y 1+y 2=6k3k 2+4 ①y 1y 2=−93k 2+4 ②y 2=−37y 1 ③,由①③得{y 1=21k2(3k 2+4)y 2=−9k 2(3k 2+4)代入 ②21⋅9⋅k 24(3k 2+4)2=93k 2+4⇒k =±43综合图象知k =43∴l 的方程为3x −4y +3=0【解析】本题考查了椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系和圆锥曲线中的面积问题,是中档题.(1)由离心率为12和(1,32)在椭圆上,再结合a 2=b 2+c 2,可得a 、b ,从而得出椭圆方程;(2)设直线DE 的方程为x =ky −1,由ΔAEF 与ΔBDF 的面积比为1:7,可得y 2y 1=−37,直线DE与椭圆联立,计算可得k的值,即可得出直线l的方程.30.【答案】解:(1)因为椭圆焦点坐标为F1(−√3,0),F2(√3,0),且过点P(−√3,12),所以2a=PF1+PF2=12+√494=4,所以a=2,从而b=√a2−c2=√4−3=1,故椭圆的方程为x24+y2=1;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),因为A(−2,0),且A,D,M三点共线,所以y0x0+2=n2,解得n=2y0x0+2,所以BD=1+2y0x0+2=x0+2y0+2x0+2,同理得AC=x0+2y0+2y0+1,因此,S ABCD=12AC⋅BD=12⋅x0+2y0+2x0+2⋅x0+2y0+2y0+1=(x0+2y0+2)2 2(x0+2)(y0+1)=x02+4y02+4x0y0+4x0+8y0+42(x0y0+x0+2y0+2),因为点M(x0,y0)在椭圆上,所以x024+y02=1,即x02+4y02=4,代入上式得:S ABCD=4x0y0+4x0+8y0+82(x0y0+x0+2y0+2)=2,∴四边形ABCD的面积为2.【解析】本题考查的是椭圆的标准方程和计划意义,直线与椭圆的位置关系,属于较难题.(1)由2a=PF1+PF2=12+√494=4得到a,再由焦点坐标可得到c,利用b=√a2−c2,即可得到b,从而得到椭圆E的标准方程;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),A,D,M三点共线,所以y0x0+2=n2,从而得到BD=1+2y0x0+2=x0+2y0+2x0+2,AC=x0+2y0+2y0+1,由S ABCD=12AC⋅BD,即可得到四边形ABCD的面积.。
椭圆基本题型总结(基础题、压轴小题分类总结七大题型)

椭圆基本题型总结(小题压轴题、基础题分类)题型一、椭圆定义的运用1、 已知1F 、2F 是椭圆的两个焦点,AB 是经过焦点1F 的弦且8AB =,若椭圆长轴长是10,求21F A F B +的值;2、已知A、B是两个定点,4AB =,若点P的轨迹是以A,B为焦点的椭圆,则PA PB +的值可能为( )A 2 B 3 C 4 D 53、椭圆221259x y +=的两个焦点为1F 、2F ,P为椭圆上一点,若01290F PF ∠=,求12F PF ∆的面积。
4、设P是椭圆221499x y +=上的点,1F 、2F 是椭圆的两个焦点,,若12PF =,则2PF =5、椭圆221259x y +=上一点M到焦点1F 的距离为2,N是1MF 中点,则ON =( )A 2 B 6 C 4 D 326、在椭圆2219y x +=上有一点P ,1F 、2F 分别是椭圆的上下焦点,若122PF PF =,则2PF = ;7、已知1F 、2F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A 、B 两点,若2212F A F B +=,则AB = ;8、设1F 、2F 为椭圆221496x y +=的两个焦点,P 是椭圆上的点,且12=43PF PF ::,求12F PF ∆的面积。
9、0m n >>是方程221mx ny +=表示焦点在y 轴上的椭圆的 条件;10、若方程22125x y k k+=−−表示椭圆,则的取值范围为 ;11、已知ABC ∆的顶点在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ;题型二、椭圆的标准方程1. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.2.设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.题型三、离心率1、1F 、2F 分别是椭圆22221(0)x y a b a b+=>>的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与该椭圆的两个交点,且2F AB ∆是等边三角形,则椭圆的离心率为 ;242、已知1F 、2F 是椭圆的两个焦点,点P 在椭圆上,且01260F PF ∠=,求椭圆的离心率的取值范围;3、设1F 、2F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,若在其右准线上存在点P ,使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是 ;4、在平面直角坐标系xoy 中,设椭圆22221(0)x y a b a b+=>>的焦距为2C ,以点O 为圆心,a 为半径作圆M,若过点2(,0)a P c所作圆M的两条切线相互垂直,则该椭圆的离心率为 ;5、已知椭圆22221(0)x y a b a b+=>>的左焦点为 F ,(,0),(0,)A a B b −为椭圆的两个顶点,若F 到AB,则椭圆的离心率为 ; 6、已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,且122F F c =,点A 在椭圆上,1120AF F F ⋅=,212AF AF c ⋅=,则椭圆的离心率为 ;7、已知1F 、2F ,是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A、B两点,若2ABF ∆是等腰直角三角形,则这个椭圆的离心率为 ;8、椭圆22221(0)x y a b a b+=>>的右焦点为F ,其右准线与x 轴的交点为A 。
高考数学考前三个月复习冲刺专题7第30练椭圆问题中最值得关注的基本题型理

第30练 椭圆问题中最值得关注的基本题型[题型分析·高考展望] 椭圆问题在高考中占有比较重要的地位,并且占的分值也较多.分析历年的高考试题,在选择题、填空题、解答题中都涉及到椭圆的题,所以我们对椭圆知识必须系统的掌握.对各种题型,基本的解题方法也要有一定的了解.常考题型精析题型一 利用椭圆的几何性质解题例1 如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,求PF →·PA →的最大值和最小值.点评 熟练掌握椭圆的几何性质是解决此类问题的根本,利用离心率和椭圆的范围可以求解范围问题、最值问题,利用a 、b 、c 之间的关系和椭圆的对称性可构造方程.变式训练1 (2014·课标全国Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.题型二 直线与椭圆相交问题 例2 (2015·山东)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,左,右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(ⅰ)求|OQ ||OP |的值; (ⅱ)求△ABQ 面积的最大值.点评 解决直线与椭圆相交问题的一般思路:将直线方程与椭圆方程联立,转化为一元二次方程,由判别式范围或根与系数的关系解决.求范围或最值问题,也可考虑求“交点”,由“交点”在椭圆内(外),得出不等式,解不等式.变式训练2 (2014·四川)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.题型三 利用“点差法,设而不求思想”解题例3 已知椭圆x 22+y 2=1,求斜率为2的平行弦的中点轨迹方程.点评 当涉及平行弦的中点轨迹,过定点的弦的中点轨迹,过定点且被定点平分的弦所在直线方程时,用“点差法”来求解.变式训练3 (2015·福州模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点. (1)若直线l 的方程为y =x -4,求弦|MN |的长.(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式.高考题型精练1.(2015·课标全国Ⅰ)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |等于( )A.3B.6C.9D.122.(2014·大纲全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 3.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( ) A.5 2 B.46+ 2 C.7+ 2 D.6 24.若椭圆和双曲线具有相同的焦点F 1,F 2,离心率分别为e 1,e 2,P 是两曲线的一个公共点,且满足PF 1⊥PF 2,则1e 21+1e 22的值为( ) A.4B.2C.1D.125.椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的两个焦点为F 1,F 2,M 为椭圆上一点,且MF 1→·MF 2→的最大值的取值范围是[c 2,2c 2],其中c 是椭圆的半焦距,则椭圆的离心率取值范围是( ) A.⎣⎢⎡⎦⎥⎤33,22 B.⎣⎢⎡⎦⎥⎤13,12 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫12,1 6.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.7.(2014·江西)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________. 8.(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.9.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且|BF 2|=2,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.10.(2015·重庆)如图,椭圆x2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,过F2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e .11.(2015·陕西)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .答案精析第30练 椭圆问题中最值得关注的基本题型 常考题型精析例1 解 设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0), PA →=(2-x 0,-y 0),∴PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.当x 0=2时,PF →·PA →取得最小值0,当x 0=-2时,PF →·PA →取得最大值4.变式训练1 解 (1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2), 将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d |PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t≥4,当且仅当t =2,即k =±72时等号成立, 且满足Δ>0,所以,当△OPQ 的面积最大时l 的方程为y =72x -2或y =-72x -2. 例2 解 (1)由题意知2a =4,则a =2, 又ca =32,a 2-c 2=b 2, 可得b =1,所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1. (ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又-λx 0216+-λy 024=1,即λ24⎝ ⎛⎭⎪⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.(ⅱ)设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,① 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m21+4k2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k2=2k 2+4-m 2m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.② 由①②可知0<t ≤1, 因此S =2-t t =2-t 2+4t ,故S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由(ⅰ)知,△ABQ 面积为3S , 所以△ABQ 面积的最大值为6 3.变式训练2 (1)解 由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明 由(1)可得F 的坐标是(-2,0), 设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3--=-m .当m ≠0时,直线PQ 的斜率k PQ =1m, 直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y22=1.消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0, 所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3, x 1+x 2=m (y 1+y 2)-4=-12m 2+3.所以PQ 的中点M 的坐标为(-6m 2+3,2mm 2+3). 所以直线OM 的斜率k OM =-m3.又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ . ②解 由①可得|TF |=m 2+1, |PQ |=x 1-x 22+y 1-y 22= m 2+y 1+y 22-4y 1y 2]=m 2+4m m 2+32-4·-2m 2+3] =24m 2+m 2+3.所以|TF ||PQ |=124·m 2+2m 2+1=124m 2+1+4m 2+1+≥ 124+=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 所以当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).例3 解 设弦的两端点分别为M (x 1,y 1),N (x 2,y 2),MN 的中点为R (x ,y ),则x 21+2y 21=2,x 22+2y 22=2, 两式相减并整理可得,y 1-y 2x 1-x 2=-x 1+x 2y 1+y 2=-x2y,①将y 1-y 2x 1-x 2=2代入式①, 得所求的轨迹方程为x +4y =0(-2<x <2).变式训练3 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)如图,椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知 BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2, 即得Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4, 且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得x 1+x 2x 1-x 220+y 1+y 2y 1-y 216=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65, 故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0. 高考题型精练1.B [因为e =c a =12,y 2=8x 的焦点为(2,0),所以c =2,a =4,故椭圆方程为x 216+y 212=1,将x =-2代入椭圆方程,解得y =±3,所以|AB |=6.] 2.A [由e =33得c a =33.① 又△AF 1B 的周长为43,由椭圆定义,得4a =43,得a =3, 代入①得c =1,∴b 2=a 2-c 2=2, 故C 的方程为x 23+y 22=1.]3.D [如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0, 解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62,故选D.]4.B [由题意设焦距为2c ,椭圆的长轴长为2a ,双曲线的实轴长为2m ,不妨令P 在双曲线的右支上.由双曲线的定义知|PF 1|-|PF 2|=2m ,① 由椭圆的定义知|PF 1|+|PF 2|=2a ,② 又PF 1⊥PF 2,∴∠F 1PF 2=90°,|PF 1|2+|PF 2|2=4c 2,③ ①式的平方加上②式的平方得 |PF 1|2+|PF 2|2=2a 2+2m 2,④由③④得a 2+m 2=2c 2,即a 2c 2+m 2c2=2,∴1e 21+1e 22=2.]5.A [设M (x 0,y 0),则MF 1→=(-c -x 0,-y 0),MF 2→=(c -x 0,-y 0),∴MF 1→·MF 2→=x 20-c 2+y 20=x 2-c 2+b 2⎝⎛⎭⎪⎫1-x 20a 2=⎝ ⎛⎭⎪⎫1-b 2a 2x 20-c 2+b 2=c 2a 2x 20-c 2+b 2.∵x 0∈[-a ,a ],∴当x 0=±a 时,MF 1→·MF 2→有最大值b 2,∴c 2≤b 2≤2c 2,∴c 2≤a 2-c 2≤2c 2,∴2c 2≤a 2≤3c 2, ∴13≤c 2a 2≤12,∴e ∈⎣⎢⎡⎦⎥⎤33,22,故选A.] 6.12解析 椭圆x 29+y 24=1中,a =3.如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点, ∴|BN |=2|DF 2|, |AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12. 7.22解析 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,∴x 1-x 2x 1+x 2a2+y 1-y 2y 1+y 2b2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2. ∵y 1-y 2x 1-x 2=-12, x 1+x 2=2,y 1+y 2=2, ∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2, ∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22. 8.x 2+32y 2=1解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝ ⎛⎭⎪⎫-531-b 2,-b 23.将B ⎝ ⎛⎭⎪⎫-531-b 2,-b 23代入x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.9.解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以|BF 2|=b 2+c 2=a .又|BF 2|=2,故a = 2.因为点C ⎝ ⎛⎭⎪⎫43,13在椭圆上, 所以169a 2+19b2=1,解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +y b=1.解方程组⎩⎪⎨⎪⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=bc 2-a 2a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b c 2-a 2a 2+c 2. 又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b a 2-c 2a 2+c 2. 因为直线F 1C 的斜率为b a 2-c 2a 2+c 2-02a 2c a 2+c2--c =b a 2-c 23a 2c +c3,直线AB 的斜率为-b c,且F 1C ⊥AB ,所以b a 2-c 23a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2. 故e 2=15,因此e =55.10.解 (1)由椭圆的定义,得2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=+22+-22=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)方法一 如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2, 求得x 0=±a ca 2-2b 2,y 0=±b 2c.由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b4c2.=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a , 即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4,解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 方法二 如图,由椭圆的定义,得|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|, 有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a , 从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =c a =|PF 1|2+|PF 2|22a=-22+2-2=9-62=6- 3.11.解 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c 2=bca, 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)方法一 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k k +1+4k2,x 1x 2=k +2-4b21+4k2,由x 1+x 2=-4,得-8kk +1+4k 2=-4,解得k =12,从而x 1x 2=8-2b 2. 于是|AB |= 1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52x 1+x 22-4x 1x 2=b 2-,由|AB |=10,得b 2-=10,解得b 2=3,故椭圆E 的方程为x 212+y 23=1.方法二 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2,②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB |=10,设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2, 得-4(x 1-x 2)+8(y 1-y 2)=0, 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1-y 2x 1-x 2=12, 因此直线AB 的方程为y =12(x +2)+1,代入②得x 2+4x +8-2b 2=0, 所以x 1+x 2=-4,x 1x 2=8-2b 2, 于是|AB |= 1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52x 1+x 22-4x 1x 2=b 2-.由|AB |=10,得b 2-=10,解得b 2=3,故椭圆E 的方程为x 212+y 23=1.12.(1)解 由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510. 进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明 由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a2,-b 2,可得NM →=⎝ ⎛⎭⎪⎫a 6,5b 6,又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)的计算结果可知a 2=5b 2, 所以AB →·NM →=0,故MN ⊥AB .。
椭圆大题定值定点、取值范围、最值问题总结

椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在) 121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+= ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x xy y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()43200000032004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点.(1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---,,,,所以()22120021PF PF x y ⋅=--=,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x =-,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k +++-=,设()B B B x y ,,则1B x ==同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -=-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+. 4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k-+=+, 即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k=,所以222212m k k k +=+,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y xx y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E Dn y y m k ==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k =,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B ,,且3AP PB =, 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-,所以112m -<-或112m <, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-或112m <.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--,,,,,. 由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>. 所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k-+--+,解得213k . (3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅的取值范围. 解:(13)AP =,,设()(31)Q x y AQ x y =--,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-因为221182y x +=,即22(3)18x y +=,而22(3)2|||3|x y x y +⋅,所以18618xy -.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x 轴上.若右焦点到直线0x y -+的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=. (2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+,所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y += (2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=,所以()()112222x y x y λ-=-,,, 所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,,所以()22121221x xx x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭,因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===,,, 所以113λ<,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25||3PA PB -<t 取值范围.解:(1)由题意知c e a =,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=. (2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为25||3PA PB-<12x -<,所以()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为(()26223-,,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x ab+=,由题意可得2a b c ===,故椭圆方程为22142y x += 设AB 的直线方程:y m =+.由22124y m y x ⎧=+⎪⎨+=⎪⎩,,得22440xm ++-=,由()22)1640m ∆=-->,得m -<< P 到AB 的距离为d =则1||2PAB S AB d ∆=⋅=,)(2188m -=当且仅当2(m =±∈-取等号,所以三角形P AB . (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t .当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()331122-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=相切,得2||11t k =+,即221t k =+.所以()()()()()222222212122224443||4||1434t t k t AB x x y y k k t k ⎡⎤-⎢⎥=-+-=+-=⎢⎥+++⎣⎦. 因为243||43||233||||t AB t t t ==++,且当3t =±时, 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯,当且仅当3t =±时,AOB ∆面积S 的最大值为1,相应的T 的坐标为(03)-,或(03),.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m的函数,并求AB 的最大值. 解:由题意知,||1m .当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB =; 当1m =-时,同理可得AB =;当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a ba b+=>>上的三点,其中点A 的坐标为0),BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m,不是左右顶点),且以AB为直径的圆过椭圆C的,两点(A B=+与椭圆C相交于A B右顶点,求证:直线l过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点1M,,平行于OM(2)的直线l在y轴上的截距为(0),两个不同点.m m≠,l交椭圆于A B(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA MB,与x轴始终围成一个等腰三角形.。
椭圆常考题型汇总及练习

椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。
6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第31练 椭圆问题中最值得关注的基本题型[题型分析·高考展望] 椭圆问题在高考中占有比较重要的地位,并且占的分值也较多.分析历年的高考试题,在选择题、填空题、解答题中都有涉及到椭圆的题,所以我们对椭圆知识必须系统的掌握.对各种题型,基本的解题方法也要有一定的了解.体验高考1.(2015·广东)已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m 等于( )A.2B.3C.4D.9 答案 B解析 由题意知25-m 2=16,解得m 2=9,又m >0,所以m =3.2.(2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1 答案 A解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2. 离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32, 故选A.3.(2016·课标全国丙)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B分别为C 的左,右顶点.P 为椭圆C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则椭圆C 的离心率为( ) A.13 B.12 C.23 D.34 答案 A解析 设M (-c ,m ),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.4.(2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2 代入直线方程y =mx +12,解得b =-m 2+22m 2,②由①②得m <-63或m >63.(2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 5.(2016·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.(1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆C 的方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1. 当x 0≠0时,直线P A 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2.直线PB 方程为y =y 0-1x 0x +1,令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4. 故|AN |·|BM |为定值.高考必会题型题型一 利用椭圆的几何性质解题例1 如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,求PF →·P A →的最大值和最小值.解 设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0), P A →=(2-x 0,-y 0),∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=2时,PF →·P A →取得最小值0, 当x 0=-2时,PF →·P A →取得最大值4.点评 熟练掌握椭圆的几何性质是解决此类问题的根本,利用离心率和椭圆的范围可以求解范围问题、最值问题,利用a 、b 、c 之间的关系和椭圆的对称性可构造方程.变式训练1 如图,F 1、F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)若△AF 1B 的面积为403,求椭圆C 的方程. 解 (1)由题意可知,△AF 1F 2为等边三角形, a =2c ,所以e =12.(2)方法一 a 2=4c 2,b 2=3c 2, 直线AB 的方程可为y =-3(x -c ), 将其代入椭圆方程3x 2+4y 2=12c 2, 得B (85c ,-335c ),所以|AB |=1+3·|85c -0|=165c ,由1 AF B S =12|AF 1|·|AB |sin ∠F 1AB=12a ·85a ·32=235a 2=403, 解得a =10,b =53,所以椭圆C 的方程为x 2100+y 275=1.方法二 设|AB |=t ,因为|AF 2|=a ,所以|BF 2|=t -a , 由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t ,再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得, t =85a ,由1 AF B S =12|AF 1|·|AB |sin ∠F 1AB =12a ·85a ·32=235a 2=403知,a =10,b =53, 所以椭圆C 的方程为x 2100+y 275=1.题型二 直线与椭圆相交问题例2 (2015·课标全国Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值. (1)解 由题意得a 2-b 2a =22,4a 2+2b2=1, 解得a 2=8,b 2=4.所以椭圆C 的方程为x 28+y 24=1.(2)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.点评 解决直线与椭圆相交问题的一般思路:将直线方程与椭圆方程联立,转化为一元二次方程,由判别式范围或根与系数的关系解决.求范围或最值问题,也可考虑求“交点”,由“交点”在椭圆内(外),得出不等式,解不等式.变式训练2 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过其右焦点F 与长轴垂直的直线被椭圆C 截得的弦长为2.(1)求椭圆C 的方程;(2)设点P 是椭圆C 的一个动点,直线l :y =34x +32与椭圆C 交于A ,B 两点,求△P AB 面积的最大值.解 (1)∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,∴e =c a =32,∴2c =3a ,即4c 2=3a 2,又∵过椭圆右焦点F 与长轴垂直的直线被椭圆C 截得的弦长为2, ∴c 2a 2+1b 2=1,∴34a 2a 2+1b 2=1, 即b 2=4,又a 2-b 2=c 2,∴a 2=b 2+c 2=4+34a 2,即a 2=16,∴椭圆C 的方程为x 216+y 24=1.(2)联立直线l :y =34x +32与椭圆C 的方程, 得⎩⎨⎧y =34x +32,x 216+y 24=1消去y ,整理可得7x 2+12x -52=0,即(7x +26)(x -2)=0,解得x =2或x =-267,∴不妨设A (2,3),B (-267,-337),则|AB |=(2+267)2+(3+337)2=10719,设过P 点且与直线l 平行的直线L的方程为y =34x +C ,L 与l 的距离就是P 点到AB 的距离,即△P AB 的边AB 上的高,只要L 与椭圆相切, 就有L 与边AB 的最大距离,即得最大面积. 将y =34x +C 代入x 216+y 24=1,消元整理可得:7x 2+83Cx +16C 2-64=0,令判别式Δ=(83C )2-4×7×(16C 2-64)=-256C 2+28×64=0, 解得C =±28×64256=± 7. ∴L 与AB 的最大距离为|-7-32|(34)2+1=219(27+3)19,∴△P AB 面积的最大值为12×10719×219(27+3)19=107(27+3).题型三 利用“点差法,设而不求思想”解题例3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y =x -4,求弦|MN |的长;(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)如图,椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2, 即得Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.点评 当涉及平行弦的中点轨迹,过定点的弦的中点轨迹,过定点且被定点平分的弦所在直线方程时,用“点差法”来求解.变式训练3 已知椭圆x 2a 2+y 2b 2=1(a >b >0),焦点在直线x -2y -2=0上,且离心率为12.(1)求椭圆方程;(2)过P (3,1)作直线l 与椭圆交于A ,B 两点,P 为线段AB 的中点,求直线l 的方程. 解 (1)∵椭圆x 2a 2+y 2b 2=1(a >b >0),焦点在直线x -2y -2=0上, ∴令y =0,得焦点(2,0),∴c =2, ∵离心率e =c a =12,∴2a =12,解得a =4,∴b 2=16-4=12,∴椭圆方程为x 216+y 212=1.(2)设A (x 1,y 1),B (x 2,y 2),∵过P (3,1)作直线l 与椭圆交于A ,B 两点, P 为线段AB 的中点,∴由题意,x 1+x 2=6,y 1+y 2=2,⎩⎨⎧x 2116+y 2112=1,x 2216+y2212=1,∴(x 2-x 1)(x 2+x 1)16+(y 2-y 1)(y 2+y 1)12=0,∴k l =y 2-y 1x 2-x 1=-94,∴l 的方程为y -1=-94(x -3),即9x +4y -31=0.高考题型精练1.(2016·课标全国乙)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34 答案 B解析 如图,由题意得,BF =a ,OF =c ,OB =b ,OD =14×2b =12b .在Rt △OFB 中,|OF |×|OB |=|BF |×|OD |, 即cb =a ·12b ,代入解得a 2=4c 2,故椭圆离心率e =c a =12,故选B. 2.已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点,则|P A |+|PF 1|的最大值是( )A.6B.6+2 2C.6- 2D.6+ 2答案 D解析 |P A |+|PF 1|=|P A |+2a -|PF 2|≤2a +|AF 2|=6+2,当P ,A ,F 2共线时取最大值,故选D.3.已知椭圆x 29+y 25=1的右焦点为F ,P 是椭圆上一点,点A (0,23),当△APF 的周长最大时,直线AP 的方程为( )A.y =-33x +2 3B.y =33x +2 3 C.y =-3x +2 3D.y =3x +2 3答案 D 解析 椭圆x 29+y 25=1中a =3,b =5,c =a 2-b 2=2,由题意,设F ′是左焦点,则△APF 周长=|AF |+|AP |+|PF |=|AF |+|AP |+2a -|PF ′| =4+6+|P A |-|PF ′|≤10+|AF ′|(A ,P ,F ′三点共线,且P 在AF ′的延长线上时,取等号),直线AP 的方程为x -2+y 23=1, 即y =3x +23,故选D.4.如果椭圆x 236+y 29=1的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A.x -2y =0B.x +2y -4=0C.2x +3y -14=0D.x +2y -8=0答案 D解析 设这条弦的两端点为A (x 1,y 1),B (x 2,y 2), 斜率为k ,则⎩⎨⎧ x 2136+y 219=1,x 2236+y 229=1,两式相减再变形得x 1+x 236+k y 1+y 29=0, 又弦中点坐标为(4,2),故k =-12, 故这条弦所在的直线方程为y -2=-12(x -4), 整理得x +2y -8=0,故选D.5.设F 1、F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 1的中点在y 轴上,若∠PF 1F 2=30°,则椭圆的离心率为( ) A.33 B.36 C.13 D.16答案 A解析 ∵线段PF 1的中点在y 轴上,设P 的横坐标为x ,F 1(-c ,0),∴-c +x =0,∴x =c ,∴P 与F 2的横坐标相等,∴PF 2⊥x 轴,∵∠PF 1F 2=30°,∴|PF 2|=12|PF 1|, ∵|PF 2|+|PF 1|=2a ,∴|PF 2|=23a , tan ∠PF 1F 2=|PF 2||F 1F 2|=2a 32c =33, ∴a c =3,∴e =c a =33. 6.过点M (0,1)的直线l 交椭圆C :x 24+y 23=1于A ,B 两点,F 1为椭圆的左焦点,当△ABF 1周长最大时,直线l 的方程为______________.答案 x +y -1=0解析 设右焦点为F 2(1,0),则|AF 1|=4-|AF 2|,|BF 1|=4-|BF 2|,所以|AF 1|+|BF 1|+|AB |=8+|AB |-(|AF 2|+|BF 2|),显然|AF 2|+|BF 2|≥|AB |,当且仅当A ,B ,F 2共线时等号成立,所以当直线l 过点F 2时,△ABF 1的周长取最大值8,此时直线方程为y =-x +1,即x +y -1=0.7.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b 2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案 63解析 联立方程组⎩⎨⎧ x 2a 2+y 2b 2=1,y =b 2,解得B 、C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2,又F (c ,0), 则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫32a -c ,b 2, 又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得:c 2-34a 2+b 24=0, ①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23, 则椭圆离心率为e =c a =23=63. 8.P 为椭圆x 29+y 28=1上的任意一点,AB 为圆C :(x -1)2+y 2=1的任一条直径,则P A →·PB →的取值范围是________.答案 [3,15]解析 圆心C (1,0)为椭圆的右焦点,P A →·PB →=(PC →+CA →)·(PC →+CB →)=(PC →+CA →)·(PC →-CA →)=PC →2-CA →2=|PC →|2-1,显然|PC →|∈[a -c ,a +c ]=[2,4],所以P A →·PB →=|PC →|2-1∈[3,15].9.设椭圆的中心为原点O ,焦点在x 轴上,上顶点为A (0,2),离心率为255. (1)求该椭圆的标准方程;(2)设B 1(-2,0),B 2(2,0),过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.解 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0), ∵c a =255,∴1-b 2a 2=45, 即b 2a 2=15,又∵b 2=4,∴a 2=20, ∴椭圆的标准方程为x 220+y 24=1. (2)由题意知直线l 的倾斜角不为0,故可设直线l 的方程为:x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5, 又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5, 由PB 2⊥QB 2得B 2P →·B 2Q →=0,即16m 2-64=0,解得m =±2,∴直线l 的方程为x =±2y -2,即x ±2y +2=0.10.(2016·课标全国乙)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过点B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过点B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧ y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0. 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1), 点A 到m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).11.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求椭圆E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .(1)解 由题设条件知,点M 的坐标为⎝⎛⎭⎫2a 3,b 3,又k OM =510,从而b 2a =510. 进而a =5b ,c =a 2-b 2=2b ,故e =c a =255. (2)证明 由N 是AC 的中点知,点N 的坐标为⎝⎛⎭⎫a 2,-b 2,可得NM →=⎝⎛⎭⎫a 6,5b 6, 又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2). 由(1)的计算结果可知a 2=5b 2,谢谢大家。