最新九年级数学弧长和扇形面积教学讲义ppt
合集下载
人教版九年级上册数学课件:24.4弧长和扇形面积(共21张PPT)
课件说明
• 学习目标:
1 1.理解 1°的圆心角所对的弧长等于圆周长的 , 360 1 所对的扇形面积等于圆面积的 ;能够发现 n° 360 的圆心角所对的弧长和扇形面积都是 1°的圆心角 所对的弧长和扇形面积的 n 倍;能利用弧长表示扇 形面积.并能利用公式计算弧长和扇形面积. 2.在弧长和扇形面积公式的推导过程中,发现弧长与 圆周长、扇形面积与圆面积都是部分与整体之间的 关系,从而将计算弧长和扇形面积的问题转化为求 圆周长和圆面积的一部分来解决,体会转化、类比 的数学思想.
课件说明
• 学习重点: 弧长和扇形面积公式的推导及运用.
1.引入新知
在田径二百米跑比赛中,每位运 动员的起跑位置相同吗?每位运动 员弯路的展直长度相同吗?
制造弯形管道时,经常要先按中心线计算“展 直长度”(图中虚线成的长度),再下料,这就 涉及到计算弧长的问题.
A R=900m B
700m m
归纳: nR 2 1 nR 1 R lR. S扇形 360 2 180 2
3.应用拓展,培养能力
例1有一段弯道是圆弧形的,道长是12m,弧所对的圆心 角是81°,求这段圆弧的半径R(精确到0.1m).
解:由弧长公式:
得:
nR l 180
180l R n
180l 180 12 R 8.5m. n 81 3.14
4.归纳小结
(1)弧长和扇形面积公式是什么?你是如何得到 这两个公式的?如何运用? (2)弧长与圆周长、扇形面积与圆面积之间有什 么联系?
5.布置作业
1.布置作业:从教材“习题24.4”中选取。 2.完成精析精练中本课时练习的“课后巩固练习”部分。
AD 0.3 3
在Rt△AOD中, OD ∴∠OAD=30°
3.8.1 弧长公式 课件(共20张PPT)2023-2024学年浙教版九年级上册数学
运动到A′位置时,点A经过的路线长为
.
1.若扇形的圆心角为40°,半径为18,则它的弧
长为( B )
A.3π
B.4π
C.5π
D.6π
2. 如图,用一个半径为10 cm的定滑轮带动重物上升,滑轮上
一点P旋转了72°,假设绳索(粗细不计)与滑轮之间没有滑
4π
动,则重物上升了________cm.
l=
R=
n=
.
当这条弧所对的圆心角增加1°后,弧长l′=
所以它的弧长增加l′-l=
+ πR πR πR
= .
+ πR
.
例4 如图,把Rt△ABC的斜边放在直线l上,按顺时针方向转动一
次,使它转到三角形A′BC′的位置.若BC=1,∠A=30°.求点A
运动到A′位置时,点A经过的路线长为
N
例2 一段圆弧形的公路弯道,圆弧的半径是2km.一辆汽车以每
小时60km的速度通过弯道,需时20s.求弯道所对圆心角的度
数(精确到0.1°).
解题秘方:如果能求出弯道的弧长,那么由于半径已知,根据
弧长公式就可以求出弯道所对圆心角的度数.
解:汽车在20s内通过的路程为l=
由弧长公式l=
n=
_______.
知识点 2 弧长公式的应用
例1
如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上
一点,DC⊥AN,与AN交于点C.已知AC=15mm,⊙O的半径
Ⴃ
R=30mm,求的长.
B
A
E
C
D
O
M
九年级数学(下)弧长及扇形的面积-完整版PPT课件
A
B
O
巩固训练
例2 扇形AOB的半径为12cm,∠AOB=120°,求 AB的长(结果精确到0.1cm)和扇形AOB的面积 (结果精确到0.1cm2)
活学活用
1.解答下列各题:
(1)已知扇形的圆心角为150°,它的面积为 240π,求弧长;
(2)已知扇形的弧长为20π,面积为240π, 求扇形的圆心角;
重要概念 扇形概念
一条弧和经过这条弧的端点的 两条半径组成的图形叫做扇形
思考:弧长与什么有关?扇形的面积与什么有关?
探索发现
扇形的面积
扇形面积S
R2
360
n
n R2
360
R2
360
1°
弧长l =
2 R n
360
n R
180
1°的圆心角所对的弧长
2 R
360
归纳整理
圆的周长 CS扇形 2 RR2
弧长及扇形的面积
想一想??
A
某传送带的一个转动轮的半径是10cm, (1)转动轮转动一周,传送带上的物品A被传送多少厘米? (2)转动轮转1°,传送带上的物品A被传送多少厘米? (3)转动轮转n°,传送带上的物品A被传送多少厘米?
知识 工具
圆的周长和圆的面积
A R O
圆周长 C 2 R d 圆的面积 S R 2
圆与外接圆组成的圆环的面积。
O B
O
A
C
B
应用举例
2.如图,AB是半圆的直径,C、D是半圆的三等 分点,求图中阴影部分的面积。
C
D
O
B
应用举例
3.已知:半径为R的⊙O的面积恰好被它的同心圆所平分; 求:所成的圆环夹于小圆的两条平行切线间部分的面积。
人教版九年级数学上册24.4.1弧长和扇形面积(共29张PPT)
8. 如图,Rt△ABC中,∠C=90°, ∠A=30°,BC=2,O、H分别为AB、AC 的中点,将
△ABC顺时针旋转120°到△A1BC1的位置,则整 个旋转过程中线段OH所扫过的面积为( C )
A. 7 7 3 B.4 7 3
38
38
A1
C.
D.
4 3
3
H
C
O1 H1
3. 1°的圆心角所对弧长是多少? 4. n°的圆心角呢?
半径为R圆的周长为C2R
可以看作是360°圆心角所对的弧长
O· 1°
n°
1
R
1°的圆心角所对弧长是
2R 360
n°的圆心角所对的弧长 l 1 2RnnR
360
180
弧长公式
若设⊙O半径为R, n°圆心角所对弧长l,则
注意:
1 2R 2, 360
圆心角为n°的扇形面积是
S扇形
nR 2 360
.
例题讲解 例1 如图,水平放置的圆柱形排水管道的截面半径 是0.6m,其中水面高0.3m,求截面上有水部分的 面积(精确到0.01m2).
解:如图,连接OA、OB,作弦 A交BA的⌒B垂于直点平C分.线,垂足为D,
O
D
A
700mm
B
100°R=900mm
700mm
C
D
由上面的弧长公式,可得A⌒B 的长
l1 0 0 9 0 0 5 0 0 1 5 7 0m m .
1 8 0
因此所要求的展直长度
L 2 7 0 0 1 5 7 0 2 9 7 0 m m .
例1、已知:如图,圆环的外圆周长C1=250cm,内圆周 长C2=150cm,求圆环的宽度d (精确到1mm).
人教版九年级数学上册课件:24.4 弧长和扇形面积(共15张PPT)
蒙古包可以近似地看作由圆锥和圆柱组成.如果想 圆锥的侧面积和全面积的计算.
形的生日礼帽,如图,圆锥帽底面积半
用毛毡搭建 的面积为_________.
的距离为______.
20
个底面积为
12
m2,高为
3.2
,外围高
的距离为______.
圆1 扇锥1形的.A8母O线Bm的有半多径少的为条1,蒙2它cm们,古都相等包吗?,至少需要多少平方米的毛毡(π取
P
l
r O
A
1.导入新知
圆锥的母线有多少条,它们都相等吗? 圆锥在展开的过程中,有没有相等关系的量?
P
l
r O
A
1.导入新知
根据下列条件求值(其中 r、h、a 分别是圆锥的底 2.如何计算圆锥的侧面积?
你能利用手中的工具制作一个圆锥形的纸帽吗? 形的生日礼帽,如图,圆锥帽底面积半
面半径、高线、母线长) . ∠AOB=120°,求AB的长和扇形
的面积为_________. 142,结果取整数)?
ha
1.圆锥的侧面展开图是什么图形?
3、扇形的面积是S,它的半径是r,这个扇形的弧长是( ) 的面积为_________.
r
2.解决问题 2.通过本节课的学习,学会观察、归纳的学习方法,
培养空间想象能力.
圆锥的母线有多少条,它们都相等吗?
学习重点:
2小红准备自己动手用纸板制作圆锥
(1)a = 2,r = 1,则 h = _______; 142,结果取整数)?
径为9cm,母线长为36cm,请你帮助他
(2)a = 10,h = 8,则 r = _______. 径为9cm,母线长为36cm,请你帮助他
人教版九年级数学上册24.4 弧长和扇形面积课件 (共27张PPT)
1 n 9 ,n°的圆心角对应的圆面积 n 360 40 40 40
360
课堂小结
1. 弧长公式
R . n°
在半径为 R 的圆中,n°的圆心角所 对的弧长(arclength )的计算公式为:
nR l 180
A
B O
2. 扇形
由组成圆心角的两条半径和圆心角所 对的弧所围成的图形叫扇形. 3. 扇形面积公式 在半径为 R 的圆中,n°的圆心角所 对的扇形面积的计算公式为:
解:(1)转动轮转一周,传送带上的物品A 被传送 2 10 20cm ;
20 被传送 cm ; 360 18
(2)转动轮转1°,传送带上的物品A
20 n 被传送 n cm 。 360 18
(3)转动轮转n°,传送带上的物品A
举一反三
(1)弧长公式涉及三个量, 弧长、圆心 角的度数、 弧所在的半径,知道其中两个量, 就可以求第三个量。 (2)当问题涉及多个未知量时,可考虑 用列方程组来求解
【情感态度与价值观】
• 在合作交流中体验成功的快乐。 • 通过本节知识的学习,注重从“特殊到一般”的数 学思用弧长表示扇形面积呢? • 想方法的渗透和应用,培养学生归纳、推理的能力.
教学重难点
• 对弧长和扇形面积计算公式的灵活运用. • 弧长和扇形面积计算公式的推导.
圆弧(弧)
回顾
弧一般是圆的一 部分,那么你会 求弧的长度吗?
24.4 弧长和扇形面积
新课导入
在田径二百米比赛中,每位运动员 的起跑位置相同吗?
不同
制造弯形管道时,怎样才能精确用料?
700mm
● A
B ●
● C
R=900m 100 m ° O
360
课堂小结
1. 弧长公式
R . n°
在半径为 R 的圆中,n°的圆心角所 对的弧长(arclength )的计算公式为:
nR l 180
A
B O
2. 扇形
由组成圆心角的两条半径和圆心角所 对的弧所围成的图形叫扇形. 3. 扇形面积公式 在半径为 R 的圆中,n°的圆心角所 对的扇形面积的计算公式为:
解:(1)转动轮转一周,传送带上的物品A 被传送 2 10 20cm ;
20 被传送 cm ; 360 18
(2)转动轮转1°,传送带上的物品A
20 n 被传送 n cm 。 360 18
(3)转动轮转n°,传送带上的物品A
举一反三
(1)弧长公式涉及三个量, 弧长、圆心 角的度数、 弧所在的半径,知道其中两个量, 就可以求第三个量。 (2)当问题涉及多个未知量时,可考虑 用列方程组来求解
【情感态度与价值观】
• 在合作交流中体验成功的快乐。 • 通过本节知识的学习,注重从“特殊到一般”的数 学思用弧长表示扇形面积呢? • 想方法的渗透和应用,培养学生归纳、推理的能力.
教学重难点
• 对弧长和扇形面积计算公式的灵活运用. • 弧长和扇形面积计算公式的推导.
圆弧(弧)
回顾
弧一般是圆的一 部分,那么你会 求弧的长度吗?
24.4 弧长和扇形面积
新课导入
在田径二百米比赛中,每位运动员 的起跑位置相同吗?
不同
制造弯形管道时,怎样才能精确用料?
700mm
● A
B ●
● C
R=900m 100 m ° O
人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)
-
1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面
《弧长和扇形面积》PPT课件 人教版九年级数学
B
B
弧
O
圆心角
扇形
A
O
A
探究新知
判一判
下列图形是扇形吗?
×
×
×
√
√
探究新知
2
问题1 半径为r的圆,面积是多少? S = r
问题2 ①360°的圆心角所对扇形的面积是多少?
②1°的圆心角所对扇形的面积是多少?
③n°的圆心角所对扇形的面积是多少?
r
O
问题3 下页图中各扇形面积分别是圆面积的几分之几,
∴=360°×
l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
n r 2
S扇形 =
360
注意
①公式中n的意义.n表示1°圆心角的倍数,它
是不带单位的;②公式要理解记忆(即按照上面推导过
程记忆).
探究新知
问题 扇形的面积与哪些因素有关?
A
E
B
C
A
C
O
D
●
F
B
O●
D
圆心角大小不变时,对应
圆的 半径 不变时,扇形面
的扇形面积与 半径 有关,
积与 圆心角 有关,圆心角越
圆锥有无数条母线,它们都相等.
圆锥的高
S
பைடு நூலகம்
B
弧
O
圆心角
扇形
A
O
A
探究新知
判一判
下列图形是扇形吗?
×
×
×
√
√
探究新知
2
问题1 半径为r的圆,面积是多少? S = r
问题2 ①360°的圆心角所对扇形的面积是多少?
②1°的圆心角所对扇形的面积是多少?
③n°的圆心角所对扇形的面积是多少?
r
O
问题3 下页图中各扇形面积分别是圆面积的几分之几,
∴=360°×
l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
n r 2
S扇形 =
360
注意
①公式中n的意义.n表示1°圆心角的倍数,它
是不带单位的;②公式要理解记忆(即按照上面推导过
程记忆).
探究新知
问题 扇形的面积与哪些因素有关?
A
E
B
C
A
C
O
D
●
F
B
O●
D
圆心角大小不变时,对应
圆的 半径 不变时,扇形面
的扇形面积与 半径 有关,
积与 圆心角 有关,圆心角越
圆锥有无数条母线,它们都相等.
圆锥的高
S
பைடு நூலகம்
弧长和扇形面积 初中九年级数学教学课件PPT 人教版
360
其中n表示弧AB所对的圆心角的度数,R表示弧AB所在圆的半径。
同样的根据扇形面积的计算公式,我们可知,只要知道n和R 就可以求扇形面积。
探究二:扇形面积的计算公式
重点知识★
特别的,几个特殊圆心角所对的扇形面积是我们经常用到的,比如:
①当n=30°时,扇形面积S=
30 360
πR2
πR2 12
探究一:弧长的计算公式
重点知识★
活动2 例题演练,巩固新知。
运用弧长计算公式解决下列各题:
cm (1)半径为3cm,圆心角为30°的弧长为____2______
(2)半径为6cm,圆心角为120°的弧长为____4___c_m__
(3)半径为4cm,长度为2π的弧所对的圆心角是___9_0____°
360
2
探究二:扇形面积的计算公式
重点知识★
活动3 例题演练,巩固新知。
运用扇形面积计算公式解决下列各题:
3 cm2
(1)半径为3cm,圆心角为30°的扇形面积为____4______
(2)半径为6cm,圆心角为120°的扇形面积为___1_2___c_m_2_
(3)半径为4cm,面积为4π的扇形所对应的圆心角是___9_0____° (4)圆心角为150°,面积为 5 的扇形所在圆的半径是___2____
(4)圆心角为150°,长度为5π的弧所在圆的半径是___6_____
通过上面的4个问题,我们不难发现弧长、圆心角度数、半 径三者中可以“知二求一”。
探究二:扇形面积的计算公式
重点知识★
活动1 引入概念
观察下面阴影部分图形,它像我们生活中的什么图案呢?
扇子的形状
A O
B
像上面阴影这样由两条半径和圆心角所对的弧围成的 图形就叫做扇形。
其中n表示弧AB所对的圆心角的度数,R表示弧AB所在圆的半径。
同样的根据扇形面积的计算公式,我们可知,只要知道n和R 就可以求扇形面积。
探究二:扇形面积的计算公式
重点知识★
特别的,几个特殊圆心角所对的扇形面积是我们经常用到的,比如:
①当n=30°时,扇形面积S=
30 360
πR2
πR2 12
探究一:弧长的计算公式
重点知识★
活动2 例题演练,巩固新知。
运用弧长计算公式解决下列各题:
cm (1)半径为3cm,圆心角为30°的弧长为____2______
(2)半径为6cm,圆心角为120°的弧长为____4___c_m__
(3)半径为4cm,长度为2π的弧所对的圆心角是___9_0____°
360
2
探究二:扇形面积的计算公式
重点知识★
活动3 例题演练,巩固新知。
运用扇形面积计算公式解决下列各题:
3 cm2
(1)半径为3cm,圆心角为30°的扇形面积为____4______
(2)半径为6cm,圆心角为120°的扇形面积为___1_2___c_m_2_
(3)半径为4cm,面积为4π的扇形所对应的圆心角是___9_0____° (4)圆心角为150°,面积为 5 的扇形所在圆的半径是___2____
(4)圆心角为150°,长度为5π的弧所在圆的半径是___6_____
通过上面的4个问题,我们不难发现弧长、圆心角度数、半 径三者中可以“知二求一”。
探究二:扇形面积的计算公式
重点知识★
活动1 引入概念
观察下面阴影部分图形,它像我们生活中的什么图案呢?
扇子的形状
A O
B
像上面阴影这样由两条半径和圆心角所对的弧围成的 图形就叫做扇形。
人教版九年级上册 24.4 弧长和扇形面积(共58张ppt)
例题——底面半径,母线,圆心角的关系
已知圆锥的底面半径为8cm, 母线长20cm,求它的侧面展开 图的圆心角. 由侧面扇形的弧长等于底面周长可知:
这是底面半径、母线、圆心
角之间的固定关系,已知其
中任意两个都可以求第三个
n=144
.
所以圆锥的侧面展开图的圆心角是144°.
底面半径和母线的比与圆心角的关系 底面半径和母线的比与圆心角有什么关系?
已知正三角形ABC的边长为a,分别以A、B、C为圆心,以 a/2为半径的圆相切于点D、 E、F,求图中阴影部分的面积S .
圆锥的相关概念 我们知道,圆锥是由一个底面和一个侧面围成的几何体,
我们把连接圆锥顶点和底面圆周上任 意一点的线段叫做圆锥的母线.
圆锥的侧面展开图是什么图形? 扇形
圆锥的侧面积
如何计算半径为的 R 圆的面积呢?
圆面积可以看作是多少度圆心角所 对的扇形的面积呢?
360°
思考 怎么计算圆半径为R,圆心角n°的扇形面积呢? 1°的圆心角所对的扇形面积是多少?
n°的圆心角所对的扇形面积是多少?
扇形面积公式 圆心角为n°的扇形面积是
扇形面积 如何求扇形的面积?
另一个公式 比较扇形面积公式与弧长公式
答案:2π.
扇形面积计算综合
如图,直径 AB 为 8 的半圆,绕 A 点逆时针旋转 60°,此时点 B 到了点 B ',则图中阴影部分的面积是___________.
圆锥中的最短路径问题
圆锥的底面半径是 1,母线长是 4,一只蜘蛛从底面圆周上的 一点 A 出发沿圆锥的侧面爬行一周后回到 A 点,则蜘蛛爬行的 最短路径的长是________.
圆周长 C = 2πR
圆的周长可以看作多少度的圆心角所 对的弧长?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则阴影部分面积等于 。
C
B
O
A
再 见
/ 北京保安
望咯/没存在想到壹向自诩君子の方心远被对方壹喝斥/连话都不敢说咯/就这样着本人の同伴送到虎口/刘荤尔那双眸子里毫无生机/滚滚热泪不断从眸子里面流淌出来/整佫人仿佛失去咯全身の力量似の/在这寂静压抑の空间/她站立不稳/抓着壹张凳子才没存在摔下去/刘荤尔望咯方心虎 壹眼/它壹直喜欢本人/曾经扬言可以为她去死/可相信此刻却也避开她の目光/刘荤尔心如死灰/咬着嘴唇/嘴唇咬出猩红の血液/而就在刘荤尔认命/对着素钗惨然壹笑准备跳冷江时/却发现在素钗の身后/壹佫少年缓缓の跑出来/依旧相信那副慵懒の模样/第六部分为美出头刘荤尔捂着嘴巴 /原本毫无生机の眼里/露出咯不敢置信之色/流淌の如同溪流の泪水猛然止下/脑袋壹片混沌//)||任她如何猜测/也不能想到会相信这佫人站出来/她呆呆の站立在那里/愣愣の着那佫手插着裤兜/带着漫不经心不羁姿态出现の少年/素钗见到刘荤尔の异状/疑惑转头过去/当她到面前壹幕时 /同样为之失神/美眸盯着这佫她之前漠视の少年/这佫曾经声名狼藉の少年缓缓跑来/步子不快去特别平稳/每壹步都让素钗心底颤咯颤/四周依旧壹片寂静/没存在人主意到这壹边の变化/庞绍の喝斥使得它们不敢张嘴/甚至连呼吸都不敢发出声音/噤若寒蝉/压抑至极/少年の步伐不快/刘 荤尔和素钗の目光却都集里在它身上/两颗晶莹の心随着它の步子而震动/死气沉沉の心在这壹步步下/悄然の绽放咯一些生机/|庞胖子/祸害够咯云龙城/又来祸害舜城咯?小心被人割咯恁那东西/|可就在死寂の让人呼吸都困难/阴云密布般压抑の空间/壹句笑骂却扬起来/声音不大/却在这 噤若寒蝉の环境下/如同惊雷壹般在每壹佫人の耳朵里面响起来/|谁它丫の想找|庞绍怒咯/它最讨厌存在人叫它胖子/以前就存在人不知天高地厚叫它胖子/被它生生の剪掉咯舌头/可相信它这句暴怒还没存在说完/当它扭头到那佫熟悉の身影时/猛然の把下面那句话止住/不敢置信の着马 开/它怎么也没存在想到/会在舜城碰到这佫祸害/所存在人の目光此刻骤然射到马开身上/和刘荤尔壹样/它们也不相信马开会站出来为刘荤尔出头/壹佫佫脑袋存在些转不开来/但在沉默咯壹会儿之后/壹大伙儿终于反应过来/心里却扬起咯嗤笑/|不知死活/它居然敢出头/||嗤/人渣居然改 性咯/还会英雄救美咯/||色迷心窍咯吧/惹上胖少年/死の会更彻底/|||这些人心底讥讽/忘记咯本人刚刚在庞绍の威势下/连呼吸都极力压制不敢出声/梁善着跑到场里の马开/它同样张大嘴巴/那张还算英俊の脸壹片惨灰/它怎么也没存在想到/马开会站出来阻拦胖少年/面前の胖子何其身 份/收拾马开/挥挥手就能把马开大卸八块/|完咯/|梁善脑海里只剩下这佫念头咯/梁善向方心远壹群人/果然见它们面带笑容/显然相信等待着好戏/方心虎更相信激动/马开出手拦住咯庞绍/庞绍の注意力被马开吸引去/刘荤尔因此安全咯/同时这佫讨厌の小子要被庞绍给整死咯/大伙儿都 期待着马开被庞绍壹巴掌拍死/可这壹幕却没存在出现/方心远壹大伙儿到の相信另外壹种场面/而这壹幕却挑战者它们の小心脏/小心脏噗通噗通跳の如同小媳妇遇到情郎の频率/它们每壹佫人瞪圆眼睛/瞳孔收缩吸着凉气着面前/跑到场里の马开/壹脚直接飞咯出去/踹在咯庞绍肥大の屁 股上/恁骂咱壹句试试/|梁善觉得这壹刻它要晕眩咯/使劲の掐着本人/努力の让本人保持清醒/用着手撑着身边の桌子才没存在倒下/使劲の眨咯几下眼睛/相信面前到の相信真实后/它呆滞在原地/脑海里只剩下壹佫念头/马开疯咯/|包括素钗在内の所存在人/着庞绍肥大屁股上の脚印/都 涌起咯这佫念头/这相信让王上都礼敬存在加の人物/在舜城谁对它不相信恭恭敬敬/可居然存在人敢踹它壹脚/此刻不要说庞绍不放过马开/舜城那些想和庞绍攀上关系の人/也会为庞绍出手/不要说马开此刻被驱除出叶家/就算此刻它还相信叶家子弟/也没见得能保住它/刚刚还不敢说壹句 话の方心远壹大伙儿/此刻如同找到发泄の目标壹样/对着马开怒吼/大胆/方心虎/抓它过来/|方心虎兴奋/跑上去准备出手擒马开/可它化作鹰爪の手要狠狠の抓在马开肩膀时/它の动作猛然の截止下来/被马开踹咯壹脚の庞绍/却转过身子/也不拍它肥屁股上の脚印/狠狠の壹拍马开の肩膀 /靠/恁这祸害怎么也在这里/两人の亲热举动配合庞绍の话/原本对马开出手の壹大伙儿/生生の止住咯它们の攻势/动作还定格在空间里/仿佛这壹刻时间都为此而静止/马开刚见到庞绍同样错愕/那里知道会在这里碰到故人/壹年前游历大陆/在帝都结识咯庞绍/并且带着它做咯几件疯狂の 事情/没存在想到壹年后の今天/能在舜城再见到它/|知道恁要做坏事/所以咱来阻止恁/|马开耸耸肩/|毕竟/咱相信壹佫存在良知の人/|梁善听到这句话/差点没存在壹口唾沫喷出来/刚刚の惧怕因为马开这壹句话扫の壹干贰净/就马开在舜城の名声/也敢大众广庭下说出它存在良知这典型 被雷劈の话/庞绍早就见识过这人の无耻/它又不相信第壹次贬低别人抬高本人/所以马开说出这句话它壹点也不奇怪/要早知道恁这祸害在这里/打死本少都不来/见到恁太恶心人咯/|庞绍觉得本人壹定相信出门没烧香の缘故/要不然怎么可能在舜国这样の小王国见到这佫祸害/对于这佫祸 害/它可相信记忆幽深/本人被它连番算计咯多次/偏偏存在苦都说不出来/壹年前在帝都云龙城认识咯它/见它相信新人/觉得好欺负/但没存在想到/身为云龙城壹霸の它/次次被它算计/折腾の死去活来/让它恨の直咬牙/偏偏没存在办法/不过/这祸害虽然折腾它们半死/可带它们做咯几件 特别疯狂热血の事/让它们恨の同时/又忍不住和对方亲近/|马开和庞绍相信认识の/|大伙儿都明灰过来/都古怪の着马开/心里惊奇不已/无法理解舜城声名狼藉の败类怎么可能认识帝都来の大人物/梁善更相信觉得不可思议/着和梁善谈笑风生の马开/感觉壹阵恍惚/这三年马开到底发生 咯什么?居然连庞绍这样の人物都认识?这可相信帝国古老世家の世子啊/每壹佫古老世家都相信神秘の/它们の世子自然不用说/壹般人能和它们存在交集?马开能踹对方而不发火の份上/两人显然相信熟到咯壹定程度/方心远壹群人也呆傻在原地/任谁都没存在想到会相信这样壹种结果/目 光都停留在马开和庞绍身上/心里疑惑和好奇两人到底相信什么关系/素钗和刘荤尔也忍不住握着秀拳/期待马开能改变庞绍の主意/美丽の眸子/直直の盯着马开/这相信马开以往从没存在过の待遇/==希望大家喜欢新/另外请求大家正版籍/正版地址3g城/也相信の站第七部分庞绍发怒|恁 来舜城做什么/马开退后几步/离庞绍隔の远壹些/||这家伙天生最好色/别の坏事不做/就相信喜欢到处威逼利诱勾搭美人/仗着家世和本人の一些武力/鲜少存在失手の/这些年囡人都不知道换咯多少佫/也因此马开不敢和它靠太近/鬼知道它如此糜烂存在没存在染上花柳病/本人毕竟相信 壹佫纯洁の人/不想染上这罪恶の气息/沾上壹丝那都相信对本人纯洁の亵渎/不过/这家伙却还存在一些道德/虽然会威逼利诱把囡人拖上床陪睡/但囡人真要相信拼死抵抗の
4 3
,
则这个扇形的面积,S扇形=—34—.
例2:如图、水平放置的圆柱形排水管道的截 面半径是0.6cm,其中水面高0.3cm,求截面 上有水部分的面积。(精确到0.01cm)。
弓形的面积 = S扇- S⊿
0
A
D
B
C
变式:如图、水平放置的圆柱形排水管道的截
面半径是0.6cm,其中水面高0.9cm,求截面 上有水部分的面积。(精确到0.01cm)。
九年级数学弧长和扇形 面积
(1)半径为R的圆,周长是多少? C=2πR
(2)圆的周长可以看作是多少度的圆心角所对的弧?
(3)1°圆心角所对弧长是多少?2R R
360 180
若设⊙O半径为R, n°的圆心角所对的弧长
l为 ,则 l n R
180 A
(4)140°圆心角所对的
B
弧长是多少?
n°
140R 7R
O
180
9
例1、制造弯形管道时,要先按中心线计算“展直 长度”,再下料,试计算图所示管道的展直长度 L(单位:mm,精确到1mm)
解:由弧长公式,可得弧AB 的长
l 10090050015(7m0m)
180
因此所要求的展直长度 L 270 1057 20 9 (m7m)0 答:管道的展直长度为2970mm.
A
B
O
O
l nR
180
S扇形
nR2
360
比较扇形面积与弧长公式, 用弧长表示扇1、已知扇形的圆心角为120°,半径为2,
则这个扇形的面积S扇形=_ 4 .
3
2、已知扇形面积为 1 ,圆心角为60°,
则这个扇形的半径R=3___2 _.
3、已知半径为2cm的扇形,其弧长为
D
弓形的面积 = S扇+ S△ A
E
B
0
C
2、如图,⊙A、 ⊙B、 ⊙C、 ⊙D两两不相交,且半 径都是2cm,求图中阴影部分的面积。
B A
D
C
已知正三角形ABC的边长为a,分别
以A、B、C为圆心,以a/2为半径的
圆相切于点D、 E、F,求图中阴影部 分的面积S.
3、如图,A是半径为1的圆O外一点,且OA=2,AB 是⊙O的切线,BC//OA,连结AC,
C
B
O
A
再 见
/ 北京保安
望咯/没存在想到壹向自诩君子の方心远被对方壹喝斥/连话都不敢说咯/就这样着本人の同伴送到虎口/刘荤尔那双眸子里毫无生机/滚滚热泪不断从眸子里面流淌出来/整佫人仿佛失去咯全身の力量似の/在这寂静压抑の空间/她站立不稳/抓着壹张凳子才没存在摔下去/刘荤尔望咯方心虎 壹眼/它壹直喜欢本人/曾经扬言可以为她去死/可相信此刻却也避开她の目光/刘荤尔心如死灰/咬着嘴唇/嘴唇咬出猩红の血液/而就在刘荤尔认命/对着素钗惨然壹笑准备跳冷江时/却发现在素钗の身后/壹佫少年缓缓の跑出来/依旧相信那副慵懒の模样/第六部分为美出头刘荤尔捂着嘴巴 /原本毫无生机の眼里/露出咯不敢置信之色/流淌の如同溪流の泪水猛然止下/脑袋壹片混沌//)||任她如何猜测/也不能想到会相信这佫人站出来/她呆呆の站立在那里/愣愣の着那佫手插着裤兜/带着漫不经心不羁姿态出现の少年/素钗见到刘荤尔の异状/疑惑转头过去/当她到面前壹幕时 /同样为之失神/美眸盯着这佫她之前漠视の少年/这佫曾经声名狼藉の少年缓缓跑来/步子不快去特别平稳/每壹步都让素钗心底颤咯颤/四周依旧壹片寂静/没存在人主意到这壹边の变化/庞绍の喝斥使得它们不敢张嘴/甚至连呼吸都不敢发出声音/噤若寒蝉/压抑至极/少年の步伐不快/刘 荤尔和素钗の目光却都集里在它身上/两颗晶莹の心随着它の步子而震动/死气沉沉の心在这壹步步下/悄然の绽放咯一些生机/|庞胖子/祸害够咯云龙城/又来祸害舜城咯?小心被人割咯恁那东西/|可就在死寂の让人呼吸都困难/阴云密布般压抑の空间/壹句笑骂却扬起来/声音不大/却在这 噤若寒蝉の环境下/如同惊雷壹般在每壹佫人の耳朵里面响起来/|谁它丫の想找|庞绍怒咯/它最讨厌存在人叫它胖子/以前就存在人不知天高地厚叫它胖子/被它生生の剪掉咯舌头/可相信它这句暴怒还没存在说完/当它扭头到那佫熟悉の身影时/猛然の把下面那句话止住/不敢置信の着马 开/它怎么也没存在想到/会在舜城碰到这佫祸害/所存在人の目光此刻骤然射到马开身上/和刘荤尔壹样/它们也不相信马开会站出来为刘荤尔出头/壹佫佫脑袋存在些转不开来/但在沉默咯壹会儿之后/壹大伙儿终于反应过来/心里却扬起咯嗤笑/|不知死活/它居然敢出头/||嗤/人渣居然改 性咯/还会英雄救美咯/||色迷心窍咯吧/惹上胖少年/死の会更彻底/|||这些人心底讥讽/忘记咯本人刚刚在庞绍の威势下/连呼吸都极力压制不敢出声/梁善着跑到场里の马开/它同样张大嘴巴/那张还算英俊の脸壹片惨灰/它怎么也没存在想到/马开会站出来阻拦胖少年/面前の胖子何其身 份/收拾马开/挥挥手就能把马开大卸八块/|完咯/|梁善脑海里只剩下这佫念头咯/梁善向方心远壹群人/果然见它们面带笑容/显然相信等待着好戏/方心虎更相信激动/马开出手拦住咯庞绍/庞绍の注意力被马开吸引去/刘荤尔因此安全咯/同时这佫讨厌の小子要被庞绍给整死咯/大伙儿都 期待着马开被庞绍壹巴掌拍死/可这壹幕却没存在出现/方心远壹大伙儿到の相信另外壹种场面/而这壹幕却挑战者它们の小心脏/小心脏噗通噗通跳の如同小媳妇遇到情郎の频率/它们每壹佫人瞪圆眼睛/瞳孔收缩吸着凉气着面前/跑到场里の马开/壹脚直接飞咯出去/踹在咯庞绍肥大の屁 股上/恁骂咱壹句试试/|梁善觉得这壹刻它要晕眩咯/使劲の掐着本人/努力の让本人保持清醒/用着手撑着身边の桌子才没存在倒下/使劲の眨咯几下眼睛/相信面前到の相信真实后/它呆滞在原地/脑海里只剩下壹佫念头/马开疯咯/|包括素钗在内の所存在人/着庞绍肥大屁股上の脚印/都 涌起咯这佫念头/这相信让王上都礼敬存在加の人物/在舜城谁对它不相信恭恭敬敬/可居然存在人敢踹它壹脚/此刻不要说庞绍不放过马开/舜城那些想和庞绍攀上关系の人/也会为庞绍出手/不要说马开此刻被驱除出叶家/就算此刻它还相信叶家子弟/也没见得能保住它/刚刚还不敢说壹句 话の方心远壹大伙儿/此刻如同找到发泄の目标壹样/对着马开怒吼/大胆/方心虎/抓它过来/|方心虎兴奋/跑上去准备出手擒马开/可它化作鹰爪の手要狠狠の抓在马开肩膀时/它の动作猛然の截止下来/被马开踹咯壹脚の庞绍/却转过身子/也不拍它肥屁股上の脚印/狠狠の壹拍马开の肩膀 /靠/恁这祸害怎么也在这里/两人の亲热举动配合庞绍の话/原本对马开出手の壹大伙儿/生生の止住咯它们の攻势/动作还定格在空间里/仿佛这壹刻时间都为此而静止/马开刚见到庞绍同样错愕/那里知道会在这里碰到故人/壹年前游历大陆/在帝都结识咯庞绍/并且带着它做咯几件疯狂の 事情/没存在想到壹年后の今天/能在舜城再见到它/|知道恁要做坏事/所以咱来阻止恁/|马开耸耸肩/|毕竟/咱相信壹佫存在良知の人/|梁善听到这句话/差点没存在壹口唾沫喷出来/刚刚の惧怕因为马开这壹句话扫の壹干贰净/就马开在舜城の名声/也敢大众广庭下说出它存在良知这典型 被雷劈の话/庞绍早就见识过这人の无耻/它又不相信第壹次贬低别人抬高本人/所以马开说出这句话它壹点也不奇怪/要早知道恁这祸害在这里/打死本少都不来/见到恁太恶心人咯/|庞绍觉得本人壹定相信出门没烧香の缘故/要不然怎么可能在舜国这样の小王国见到这佫祸害/对于这佫祸 害/它可相信记忆幽深/本人被它连番算计咯多次/偏偏存在苦都说不出来/壹年前在帝都云龙城认识咯它/见它相信新人/觉得好欺负/但没存在想到/身为云龙城壹霸の它/次次被它算计/折腾の死去活来/让它恨の直咬牙/偏偏没存在办法/不过/这祸害虽然折腾它们半死/可带它们做咯几件 特别疯狂热血の事/让它们恨の同时/又忍不住和对方亲近/|马开和庞绍相信认识の/|大伙儿都明灰过来/都古怪の着马开/心里惊奇不已/无法理解舜城声名狼藉の败类怎么可能认识帝都来の大人物/梁善更相信觉得不可思议/着和梁善谈笑风生の马开/感觉壹阵恍惚/这三年马开到底发生 咯什么?居然连庞绍这样の人物都认识?这可相信帝国古老世家の世子啊/每壹佫古老世家都相信神秘の/它们の世子自然不用说/壹般人能和它们存在交集?马开能踹对方而不发火の份上/两人显然相信熟到咯壹定程度/方心远壹群人也呆傻在原地/任谁都没存在想到会相信这样壹种结果/目 光都停留在马开和庞绍身上/心里疑惑和好奇两人到底相信什么关系/素钗和刘荤尔也忍不住握着秀拳/期待马开能改变庞绍の主意/美丽の眸子/直直の盯着马开/这相信马开以往从没存在过の待遇/==希望大家喜欢新/另外请求大家正版籍/正版地址3g城/也相信の站第七部分庞绍发怒|恁 来舜城做什么/马开退后几步/离庞绍隔の远壹些/||这家伙天生最好色/别の坏事不做/就相信喜欢到处威逼利诱勾搭美人/仗着家世和本人の一些武力/鲜少存在失手の/这些年囡人都不知道换咯多少佫/也因此马开不敢和它靠太近/鬼知道它如此糜烂存在没存在染上花柳病/本人毕竟相信 壹佫纯洁の人/不想染上这罪恶の气息/沾上壹丝那都相信对本人纯洁の亵渎/不过/这家伙却还存在一些道德/虽然会威逼利诱把囡人拖上床陪睡/但囡人真要相信拼死抵抗の
4 3
,
则这个扇形的面积,S扇形=—34—.
例2:如图、水平放置的圆柱形排水管道的截 面半径是0.6cm,其中水面高0.3cm,求截面 上有水部分的面积。(精确到0.01cm)。
弓形的面积 = S扇- S⊿
0
A
D
B
C
变式:如图、水平放置的圆柱形排水管道的截
面半径是0.6cm,其中水面高0.9cm,求截面 上有水部分的面积。(精确到0.01cm)。
九年级数学弧长和扇形 面积
(1)半径为R的圆,周长是多少? C=2πR
(2)圆的周长可以看作是多少度的圆心角所对的弧?
(3)1°圆心角所对弧长是多少?2R R
360 180
若设⊙O半径为R, n°的圆心角所对的弧长
l为 ,则 l n R
180 A
(4)140°圆心角所对的
B
弧长是多少?
n°
140R 7R
O
180
9
例1、制造弯形管道时,要先按中心线计算“展直 长度”,再下料,试计算图所示管道的展直长度 L(单位:mm,精确到1mm)
解:由弧长公式,可得弧AB 的长
l 10090050015(7m0m)
180
因此所要求的展直长度 L 270 1057 20 9 (m7m)0 答:管道的展直长度为2970mm.
A
B
O
O
l nR
180
S扇形
nR2
360
比较扇形面积与弧长公式, 用弧长表示扇1、已知扇形的圆心角为120°,半径为2,
则这个扇形的面积S扇形=_ 4 .
3
2、已知扇形面积为 1 ,圆心角为60°,
则这个扇形的半径R=3___2 _.
3、已知半径为2cm的扇形,其弧长为
D
弓形的面积 = S扇+ S△ A
E
B
0
C
2、如图,⊙A、 ⊙B、 ⊙C、 ⊙D两两不相交,且半 径都是2cm,求图中阴影部分的面积。
B A
D
C
已知正三角形ABC的边长为a,分别
以A、B、C为圆心,以a/2为半径的
圆相切于点D、 E、F,求图中阴影部 分的面积S.
3、如图,A是半径为1的圆O外一点,且OA=2,AB 是⊙O的切线,BC//OA,连结AC,