上海交大第三版大学物理学答案上册
大学物理学(第三版)上课后习题答案
第一章运动的描述1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。
在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。
或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量。
上海交大第三版大学物理学答案上册
第一章 运动的描述1、解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v2、解:=a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)3、解: ct b t S +==d /d vc t a t ==d /d v()R ct b a n /2+=根据题意:a t =a n即()R ct b c /2+=解得cb c R t -=4、解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时,v = 4Rt 2 = 8 m/s 2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 25、解:(1) 球相对地面的初速度=+='v v v 030 m/s抛出后上升高度9.4522='=gh v m/s 离地面高度H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 08.420==gt v s 6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船 7、解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如图(a)由图可知1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如图(b),同上法,得5012=v 1h km -⋅,方向南偏东o 87.36第二章 运动定律与力学中的守恒定律1、解:(1)位矢j t b i t a rωωsin cos += (SI)可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωυcos d dy == 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω2、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0①2220212121B B A A A A m m m v v v +=② 联立解出0A B A B AA m m m m v v +-=,02A BA AB m m m v v += 由于二球同时落地,∴0>A v ,B A m m >;且B B A A L L v v //=∴52==B A B A L L v v ,522=-A B Am m m 解出5/=B A m m3、解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B 0,由机械能守恒,有2/3212020B m kx v = 得mk x B 300=v A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有022211B m m m v v v =+①202222221121212121B m m kx m v v v =++②当v 1 =v 2时,由式①解出v 1 =v 2mkx B 3434/300==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 =v 2 =3v B 0/4,再由式②解出0max 21x x =4、解:二滑块在弹力作用下将沿水平导杆作振动. 因导杆光滑,不产生摩擦阻力, 故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v 1和v 2且此时弹簧为原长,弹簧势能为零。
上海交大版大学物理上册答案
上海交大版大学物理上册答案第一章质点运动学【例题】例1-1 At= s 例1-2D 例1-3 D 例1-4 B 例1-5 33 例1-6 D 例1-7 C 例1-8 证明:dvdt?dvdx?dxdt?vdvdx??Kv ∴ d v /v =-Kdx 2?v1vv0dv???Kdx , ln0xvv0??Kx ∴v =v 0e-Kx例1-9 1 s m例1-10 B 【练习题】1-1 x=(y-3)2 1-2 -/s-6m/s 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小at必为常数,即at1?at2?at3,现在虽然a1?a2?a3,但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即at1?at2?at3,故该质点不作匀变速率运动。
1-5 D 1-6证明:设质点在x处的速度为v a?1-7 16 R t 4 rad /s2 2 dvdt?dvdx?dxdtv?2?6x 2?vdv?0??2?6x?dx v20x?2x?x?3?12 1-8 Hv/(H-v) 1-9 C 第二章质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv,牛顿定律?Kmdt?dvvt ∴dxdt,??m0xKvdt?t?v0dvv?Kt/m∴v?v0e (2) 求最大深度v? dx?v0e?Kt/mdt?0dx??0v0e?Kt/ mdt∴x?(m/K)v0(1?e?Kt/m) xmax?mv0/K 例2-4 D 例2-5 答:(1) 不正确。
向心力是质点所受合外力在法向方向的分量。
质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。
即使某个力指向圆心,也不能说它就是向心力,这要看是否还有其它力的法向分量。
(2) 不正确。
作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心。
大学物理(交大3版)答案(11-15章)
第11章11-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m ,04.0==AC BC ).解:1q 在C 点产生的场强 20114ACq E πε=2q 在C 点产生的场强 22204q E BC πε=C 点的合场强 22412 3.2410VE E E m=+=⨯ 方向如图11-2. 用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向.解: 棒长 m d r l 12.32=-=π电荷线密度 19100.1--⋅⨯==m C lqλ若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强。
由于r d ππ,该小段可看成点电荷 C d q 11100.2-⨯=='λ圆心处场强 1211920072.0)5.0(100.2100.94--⋅=⨯⨯⨯='=m V r q E πε 方向由缝隙指向圆心处11-3. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:设O 为坐标原点,水平方向为x 轴,竖直方向为y 轴 半无限长导线∞A 在O 点的场强 )(40j i E 1-=Rπελ半无限长导线∞B 在O 点的场强 )(40j i E 2+-=RπελAB 圆弧在O 点的场强 )(40j i E 3+=Rπελ总场强 j)i E E E E 321+=++=(40Rπελ111-4. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d RdldE 00204sin 4πεϕϕλπελ==ϕcos dE dE x = 考虑到对称性 0=x E ϕsin dE dE y =RR d dE E y 00002084sin sin ελπεϕϕλϕπ===⎰⎰方向沿y 轴负向11-5. 一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度.解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2=2322023220)(42)(4r x dl rx r x xdq dE +=+=πεσππεθcos R x =θsin R r =θRd dl =21sin 2224E d i πσσθθεε==⎰11-6. 图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ.求板内、外的场强分布,并画出场强随坐标x 变化的图线,即x E -图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板).解:在平板内作一个被平板的中间面垂直平分的闭合圆柱面1S 为高斯面S E d S ∆=•⎰21S E S x q ∆=∑ρ20ερx E =)2(d x ≤ 同理可得板外一点场强的大小 02ερd E =()2dx >11-7. 设电荷体密度沿x 轴方向按余弦规律x cos 0ρρ=分布在整个空间,式中0ρ为恒量.求空间的场强分布.解:过坐标x ±处作与x 轴垂直的两平面S ,用与x 轴平行的侧面将之封闭,构成高斯面。
(上海交大)大学物理上册课后习题答案4动量和角动量
)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。
在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T 的冲量T I。
解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆ ,∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。
4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。
已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。
求:(1)力F在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。
解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d dJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J 时,其他的力 的功为-125.6J 。
4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。
解:(1)根据动量的定义:P mv = ,而drv dt== sin cos a t i b t j ωωωω-+ , ∴()(sin cos )P t m a t i b t j ωωω=-- ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。
4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。
大学物理学答案上海交大版上下册
4-12. 一质量为 M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为 k . 一质量为 m 的子弹射入木块后,弹簧长度被压缩了 L .
(1)求子弹的速度;(2)若子弹射入木块的深度为 s ,求子弹所受的平均阻力。
解:(1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,
因为 m1
m2
m
,
x1
xc 2
故
xc
mxc
2mx2 4m
,
x2
3 2
xc
4-8. 两个质量分别为 m1 和 m2 的木块 A、B ,用一劲度系数为 k 的轻弹簧连接,放在光滑的水平面上。A 紧靠墙。
今用力推 B 块,使弹簧压缩 x0 然后释放。(已知 m1 m , m2 3m )求:
3-5. 在劲度系数为 k 的弹簧下,如将质量为 m 的物体挂上慢慢放下,弹簧伸长多少?如瞬间挂上让其自由下落弹
簧又伸长多少?
答:如将质量为 m 的物体挂上慢慢放下,弹簧伸长为 mg=kx,所以 x mg k
如瞬间挂上让其自由下落,弹簧伸长应满足能量守恒: mgx 1 kx2 ,所以 2
x 2mg k
由碰撞时,动量守恒,分析示意图,可写成分量式:
m1 sin m2 cos
P m1 cos m2 sin
所以 P 1.41022 kg m / s 151.9
(2)反冲的动能为: Ek
P2 2m
0.17 1018 J
4-6. 一颗子弹在枪筒里前进时所受的合力大小为 F 400 4 105 t / 3 ,子弹从枪口射出时的速率为 300m/s 。
大学物理学(第三版上) 课后习题3答案详解
习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J+ (B) 02)(ωR m J J + (C)02ωmRJ(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。
(B )动量不变,动能改变。
(C )角动量不变,动量不变。
(D )角动量改变,动量改变。
(E )角动量不变,动能、动量都改变。
[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n=。
[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。
木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。
题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。
大学物理学(第三版上) 课后习题5答案详解-推荐下载
习题55.1选择题(1)一物体作简谐振动,振动方程为,则该物体在时2cos(πω+=t A x 0=t 刻的动能与(T 为振动周期)时刻的动能之比为:8/T t =(A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于(A) (B) 4A±2A ±(C) (D) 23A±22A ±[答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。
[答案:]23s (2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。
振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。
振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。
题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。
(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。
(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。
[答案:; ]cos(2//2)x A t T ππ=-cos(2//3)x A t T ππ=+5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:(1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点;而小球在运动中的回复力为,如题5.3图(b)中O θsin mg -所示,因<<,故→0,所以回复力为.式中负号,表示回复力的方S ∆R RS∆=θθmg -向始终与角位移的方向相反.即小球在点附近的往复运动中所受回复力为线性的.若以O 小球为对象,则小球在以为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切O '线方向上有θθmg tmR -=22d d令,则有Rg=2ω222d 0d tθωθ+=5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aπωωω=====所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。
大学物理(交大3版)答案(1-5章)
《大学物理学》答案(上海交大版)上下册 2
0.003
4-7. 有质量为 2m 的弹丸,从地面斜抛出去,它的落地点为 x c 。如果它在飞行到最高点处爆炸成质量相等的两碎
片。其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。问第二块碎片落在何处。 解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为 xc。
v2 R
根据圆周运动的规律:T-G= M (2)根据冲量定理可得:
v2 T M g M1 84.6N R
I mv mv0 0.02 570 11.4 N s
4-5. 一静止的原子核经放射性衰变产生出一个电子和一个中微子, 巳知电子的动量为 1.2 10
22
(2) m3 v μm3 g t
t
v 0.2 0.1s μg 0.2 10
4-12. 一质量为 M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为 k . 一质量为 m 的子弹射入木块后,弹簧长度被压缩了 L . (1)求子弹的速度;(2)若子弹射入木块的深度为 s ,求子弹所受的平均阻力。 解: (1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,
m1v0 (m1 m2 m 3 )v m1v0 (m1 m2 )v
1 2
v 0.2 m s
m1 5 2 1 v0 ms m1 m2 5 25 3
v
1 2
m3 gs (m1 m2 )v 2 (m1 m2 m3)v 2
1 1 (m1 m2 )v 2 (m1 m2 m3)v 1 2 s 2 m m3 g 60
kg m/s ,中微子
的动量为 6.4 1023 kg m/s ,两动量方向彼此垂直。 (1)求核反冲动量的大小和方向; (2)已知衰变后原子核的质量 为 5.8 10
大学物理上海交大参考答案
大学物理上海交大参考答案大学物理上海交大参考答案在大学物理课程中,上海交通大学一直以来都是备受关注的学府。
其严谨的教学体系和扎实的学术研究基础,使得上海交大的物理学科在国内外享有盛誉。
学生们在学习物理课程时,常常会遇到各种难题,而参考答案则成为他们解决问题的重要依据。
本文将为大家提供一些大学物理上海交大参考答案,希望对广大学子有所帮助。
第一章:力学1. 一个物体以初速度v0沿着直线做匀加速运动,经过时间t后速度变为v,求物体的加速度a。
答案:根据物体匀加速运动的公式v = v0 + at,可以得到a = (v - v0) / t。
2. 一个质量为m的物体在水平面上受到一个恒力F作用,已知物体在受力方向上的加速度为a,求恒力F的大小。
答案:根据牛顿第二定律F = ma,可以得到F = ma。
第二章:热学1. 一个理想气体在等温过程中,体积从V1变为V2,求气体对外界所做的功。
答案:由于等温过程中气体的温度不变,根据理想气体的状态方程PV = nRT,可以得到P1V1 = P2V2。
所以气体对外界所做的功为W = P1(V1 - V2)。
2. 一个理想气体在绝热过程中,体积从V1变为V2,求气体对外界所做的功。
答案:由于绝热过程中气体与外界不发生热交换,根据理想气体的状态方程PV^γ = 常数,可以得到P1V1^γ = P2V2^γ。
所以气体对外界所做的功为W = P1(V1 - V2) / (γ - 1)。
第三章:电磁学1. 一个电容器由两块平行金属板组成,两板间的电容为C,电压为U,求电容器储存的电能。
答案:电容器储存的电能为E = (1/2)CU^2。
2. 一个电感器的感抗为X,通过的电流为I,求电感器的电压。
答案:电感器的电压为U = IX。
第四章:光学1. 一束光线从空气射入玻璃中,入射角为θ1,折射角为θ2,求光线的折射率。
答案:光线的折射率为n = sinθ1 / sinθ2。
2. 一束平行光通过一个凸透镜后,光线会汇聚于焦点处,求凸透镜的焦距。
大学物理学(上)第三版习题答案
习题解答习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v tsd d .trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =trd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
(完整版)(上海交大)大学物理上册课后习题答案1质点运动
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +v v v其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +v v v,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=v v ,有速度:sin Rcos v R t i t j ωωωω=-+v v v而v v ϖ=,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)rt i t j =++v v v,式中r ϖ的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。
解:(1)由24(32)r t i t j =++v v v ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)从0=t 到1=t s 的位移为:j i j j i r r r ϖϖϖϖϖϖϖϖ243)54()0()1(+=-+=-=∆(3)由d rv dt =v v ,有速度:82v t i j =+v v v0=t 和1=t 秒两时刻的速度为:(0)2v j =v v,(1)82v i j =+v v v 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+v v v ,式中r ϖ的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =v v ,有:22v t i j =+v v v ,d v a dt=v v ,有:2a i =v v ;(2)而v v ϖ=,有速率:12222[(2)2]21v t t =+=+∴tdv a dt=21t =+,利用222t n aa a =+有: 22221n t a a a t =-=+。
大学物理学(第三版)课后习题参考答案
习题 11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为(A)dtdr (B)dtr d (C)dtr d ||(D)22)()(dtdy dt dx [答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零(B)等于-2m/s (C)等于2m/s(D)不能确定。
[答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)tR t R 2,2(B) t R2,0(C) 0,0(D) 0,2tR[答案:B]1.2填空题(1) 一质点,以1s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
[答案:10m ;5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
[答案:23m ·s -1](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V 和3V 的关系是。
[答案:0321V V V ]1.3一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、解:设质点在x处的速度为v,
2、解: dv/dt t,dv tdt
v t2
v x/dt t2
x t3/3+x0(SI)
3、解:
根据题意:at=an
即
解得
4、解:根据已知条件确定常量k
,
时,v= 4Rt2= 8 m/s
m/s2
5、解:(1)球相对地面的初速度
30 m/s
抛出后上升高度 m/s
=0.56 s
t= 0时,
解得 m
180°+12.6°=3.36 rad
也可取=-2.92 rad
振动表达式为x= 2.05×10-2cos(11.2t-2.92)(SI)
或x= 2.05×10-2cos(11.2t+3.36)(SI)
t= s时, cm
由上二式解得tg= 1
因为在A点质点的速度大于零,所以=-3/4或5/4(如图)
cm
∴振动方程 (SI)
(2)速率 (SI)
当t= 0时,质点在A点
m/s
3、解:k=m0g/l N/m
cm
,= 0.64 rad
(SI)
4、解:设弹簧的原长为l,悬挂m1后伸长l,则kl=m1g,
k=m1g/l= 2 N/m取下m1挂上m2后, rad/s
8、解:受力分析如图所示.
设重物的对地加速度为a,向上.则绳的A端对地有加速度a向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a向下.
根据牛顿第二定律可得:
对人:Mg-T2=Ma①
对重物:T1- Mg= Ma②
根据转动定律,对滑轮有
(T2-T1)R=J=MR2/ 4③
因绳与滑轮无相对滑动,a=R④
由图可知
方向北偏西
(2)小船看大船,则有 ,依题意作出速度矢量图如图(b),同上法,得
,方向南偏东
第二章
1、解:(1)位矢 (SI)
可写为 ,
,
在A点(a,0), ,
EKA=
在B点(0,b), ,
EKB=
(2) =
由A→B =
=
2、解:A、B两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得
①
②
①、②、③、④四式联立解得a=2g / 7
9、解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力
矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即
m2v1l=-m2v2l+ ①
碰后棒在转动过程中所受的摩擦力矩为
②
由角动量定理 ③
由①、②和③解得
10、解: (1)由题意,子弹到枪口时,有
,得
(2)子弹所受的冲量
将 代入,得
(3)由动量定理可求得子弹的质量
第三章
1、解:设立方体的长、宽、高分别以x0,y0,z0表示,观察者A测得立方体的长、宽、高分别为 , , .
相应体积为
观察者A测得立方体的质量
故相应密度为
2、解:令O系中测得正方形边长为a,沿对角线取x轴正方向(如图),则边长在坐标轴上投影的大小为
①
A与B碰撞过程中以A、B为系统,动量守恒,机械能守恒
②
③
A与B碰撞后,A压缩弹簧,机械能守恒
④
联立①、②、③、④并考虑到 且 为压缩量与x0一样应取正值,可求出
m
7、解:
油灰与笼底碰前的速度
碰撞后油灰与笼共同运动的速度为V,应用动量守恒定律
①
油灰与笼一起向下运动,机械能守恒,下移最大距离x,则
②
联立解得: m
联立解出 ,
由于二球同时落地,∴ , ;且
∴ ,
解出
3、解:(1)释放后,弹簧恢复到原长时A将要离开墙壁,设此时B的速度为vB0,由机械能守恒,有
得
A离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧
伸长量为x时有 ①
②
当v1=v2时,由式①解出
v1=v2
(2)弹簧有最大伸长量时,A、B的相对速度为零v1=v2=3vB0/4,再由式②
(2)如使a>g,小物体能脱离振动物体,开始分离的位置由N= 0求得
cm
即在平衡位置上方19.6 cm处开始分离,由 ,可得
=19.6 cm.
2、解:由旋转矢量图和|vA| = |vB|可知T/2 = 4秒,
∴T= 8 s,= (1/8) s-1,
s-1
(1)以 的中点为坐标原点,x轴指向右方.
t= 0时, cm
离地面高度H= (45.9+10) m =55.9 m
(2)球回到电梯上时电梯上升高度=球上升高度
s
6、解: 设人到船之间绳的长度为 ,此时绳与水面成 角,由图可知
将上式对时间 求导,得
根据速度的定义,并注意到 , 是随 减少的,
∴
即
或
将 再对 求导,即得船的加速度
7、解:(1)大船看小艇,则有 ,依题意作速度矢量图如图(a)
,
面积可表示为:
在以速度v相对于O系沿x正方向运动的O'系中
=0.6×
在O'系中测得的图形为菱形,其面积亦可表示为
cm2
3、解:(1)观测站测得飞船船身的长度为
54 m
则t1=L/v=2.25×10-7s
(2)宇航员测得飞船船身的长度为L0,则
t2=L0/v=3.75×10-7s
4、解:以地球上的时钟计算: 年
①
动能为零。对此系统应用机械能守恒定律和动量守恒定律得到:
②
③
解此二式得
5、解:以V表示球上升到最大高度时m和M的共同速度,则由动量守恒和机械能
守恒可得
由此二式可解得
以V′表示球离开小车时小车的速度,则在小球射入到离开的整个过程中,由动量守恒和机械能守恒可得
由此二式可得
v与v0反向.
6、解:释放物体A到A与B碰撞前,以\A与弹簧为系统,机械能守恒
7、解: 测得相遇时间为
测得的是固有时
∴
,
,
,
或者, 测得长度收缩,
第四章
1、解:(1)小物体受力如图.
设小物体随振动物体的加速度为a,按牛顿第二定律有(取向下为正)
当N= 0,即a=g时,小物体开始脱离振动物体,已知
A= 10 cm,
有 rad·s-1
系统最大加速度为 m·s-2
此值小于g,故小物体不会离开.
以飞船上的时钟计算: 0.20年
5、解:令S'系与S系的相对速度为v,有
,
则 ( = 2.24×108m·s-1)
那么,在S'系中测得两事件之间距离为:
= 6.72×108m
6、解:根据功能原理,要作的功W=E
根据相对论能量公式E=m2c2-m1c2
根据相对论质量公式
∴ =4.72×10-14J=2.95×105eV
解出
4、解:二滑块在弹力作用下将沿水平导杆作振动.因导杆光滑,不产生摩擦阻力,故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v1和v2且此时弹簧为原长,弹簧势能为零。
由题意得知,开始时系统的弹性势能为