大学生数学竞赛习题及详细解答
第十四届全国大学生数学竞赛初赛(补赛二)试题及参考解答
第十四届全国大学生数学竞赛初赛(补赛二)试题及参考解答(非数学类, 2023年3月5日)一、 填空题(本题满分30分,每小题6分) (1)极限22231lim13(21)→∞⎡⎤+++-=⎣⎦ n n n .【解】 利用定积分的定义,得2122223011114lim 13(21)4lim 4d 23→∞→∞=⎛⎫⎡⎤+++-=-== ⎪⎣⎦⎝⎭∑⎰ n n n k k n x x n n nn . (2)设函数()f x 在1=x 的某一邻域内可微,且满足(1)3(1)42()+--=++f x f x x o x ,其中()o x 是当0→x 时x 的高阶无穷小,则曲线()=y f x 在点(1,(1))f 处的切线方程为.【解】 由于()f x 在1=x 处可微,因而连续,故对所给等式求极限0→x ,可得2(1)4-=f ,所以(1)2=-f . 仍由所给等式,得(1)(1)(1)(1)()32+---+⋅=+-f x f f x f o x x x x,两边取极限0→x ,并根据导数的定义,得4(1)2'=f ,所以1(1)2'=f . 因此,曲线()=y f x 在点(1,(1))f 处的切线方程为(1)(1)(1)'-=-y f f x , 即 250--=x y .(3)设()=y y x 是初值问题31,(0)0(0)21,''--=⎧⎨'=⎩'=y y y y y 的解,则()=y x .【解】 对于齐次微分方程230'-=''-y y y ,其特征方程2302λλ--=的根为13λ=,21λ=-,所以230'-=''-y y y 的通解为312e e -=+x x y C C .经观察,非齐次微分方程231'-=''-y y y 的一个特解为013=-y . 所以,方程的通解为312()e e 13--=+x x y x C C .又由(0)0(0)1,'==y y 解得,113=C ,20=C ,因此()313()e 1=-x y x .(4)设可微函数(,)=z z x y 满足2222∂∂+=∂∂z z x y z x y ,又设=u x ,11=-v y x,【解】 由=u x ,11=-v y x 解得=x u ,1=+u y uv ,且11=-w z u,所以 2222111111⎛⎫∂∂∂∂∂∂∂⎛⎫=-=-⋅+=-⋅+⋅+ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭w z z x z y u u z u z u u z x u y u u222222111111(1)(1)⎛⎫⎛⎫∂∂+-∂∂=-+⋅+=-+⋅+ ⎪ ⎪∂∂+∂∂+⎝⎭⎝⎭z z uv uv z z z x y uv u z x y uv u 222222222211111⎛⎫⎛⎫∂∂∂∂=-+⋅+=-++=- ⎪ ⎪∂∂∂∂⎝⎭⎝⎭z z y z z x y z x y u u z u x y u u.因此2114==∂=-∂u v w u . (5)设0>a ,则均匀曲面2222++=x y z a (0,0,0)≥≥≥x y z 的重心坐标为.【解】 记所给曲面为∑,并设∑的面密度为常数μ, ∑的重心坐标为(,,)x y z ,由于∑的质量为221482πμπμ=⋅=a M a ,所以212dd μπ∑∑==⎰⎰⎰⎰z z S z S M a .设∑的外法向量与z 轴正向的夹角为γ,则cos γ=za,所以 2222221d cos d d d 42γπππππ∑∑∑====⋅=⎰⎰⎰⎰⎰⎰a z z S S x y a a a a a . 根据对称性,2==a x y ,因此曲面的重心坐标为,,222⎛⎫⎪⎝⎭a a a .二、(本题满分14分) 设函数202320()e d 1-=+⎰xxt f x t t ,正整数2023≤n ,求导数()(0)n f .【解】 令202320()d 1=+⎰xt F x t t ,则20232()1'=+x F x x,202222024222023(1)2()(1)+-''=+x x x F x x ,所以(0)(0)(0)0'''===F F F . ------------------- 5分对()e ()-=x f x F x 利用Leibniz 公式,再代入0x =得()()()(0)e(1)()(1)(0)---====-=-∑∑nnn xn kkk n k k k nn k k x fC Fx C F .------------------- 4分欲求()(0)k F ,对22023(1)()'+=x F x x 两边求1-k 阶导数,并利用Leibniz 公式,得2()(1)(2)2023(1)(1)()2(1)()(1)(2)()()---++-+--=k k k k x F x k xF x k k F x x ,代入0x =,并注意到2023≤≤k n ,得()(2)(0)(1)(2)(0)-=---k k F k k F . 由此递推,得(2)1(0)(1)(21)!(0)0-''==--= k k F k F , (2+1)(0)(1)(2)!(0)0'==-= k k F k F ,因此,()()(0)(1)(0)0-==-=∑nn n k k k n k f C F . ------------------- 5分三、(本题满分14分) 设函数()f x 在区间(0,1)内有定义,+lim ()0→=x f x ,且+0()()3lim0→-=x x f x f x. 证明:+0()lim 0→=x f x x . 【证】 根据题设条件得,对于任意非负整数k ,有10()()33lim 03++→-=k k x kx xf f x .------------------- 4分令0,1,2,,1=- k n ,并求和,可得1001()(()()1333lim lim 033++→→=--=⋅=∑n n k k k x x k kx x x f x f f f x x . ------------------- 5分因此,有()(()3α-=n xf x f x x ,其中()x α是当0+→x 时的无穷小.对上式取极限n →∞,并利用条件+lim ()0→=x f x ,得()()α=f x x x . 所以 00()limlim ()0α→→==x x f x x x. ------------------- 5分四、(本题满分14分) 设函数()f x 在区间[0,1]上连续,在(0,1)内可导,且(0)0=f ,(1)2=f . 证明:存在两两互异的点123,,(0,1)ξξξ∈,使得12()(2ξξ''≥f f .【证】 令()()2=-+F x f x x ,则()F x 在[0,1]上连续,且(0)2=-F ,(1)1=F .根据连续函数介值定理,存在3(0,1)ξ∈使得3()0ξ=F ,即33()2ξξ=-f .------------------- 5分在区间3[0, ]ξ,3[,1]ξ上分别利用Lagrange 中值定理,存在13(0, )ξξ∈,23(,1)ξξ∈,使得313()(0)()0ξξξ-'=-f f f , 且323()(1)()1ξξξ-'=-f f f , 即3132()ξξξ-'=f ,323()1ξξξ'=-f , ------------------- 5分 所以3123321()()111ξξξξξ-''==+≥--f f , 因此,存在两两互异的点123,,(0,1)ξξξ∈,使得12()(2ξξ''≥f f .------------------- 4分五、(本题满分14分) 设()f x 是[1,1]-上的连续的偶函数,计算曲线积分:()22d =+⎰LI x f x y ,其中曲线L 为正向圆周222+=-x y y .【解】 取圆的圆心角θ作参数,则曲线L :22(1)1++=x y 的参数方程为:cos ,1sin θθ=+=x y (02)θπ≤≤. 因为d sin d ,d cos d θθθθ=-=x y ,所以22001sin (sin )d (cos )cos d |sin |ππθθθθθθθ-=-+⎰⎰I f .------------------- 4分其中第一项为22100(1sin )sin d (1sin )d (1sin )d 4|sin |ππππθθθθθθθθ--==--+-=⎰⎰⎰I ,------------------- 5分第二项为2220(cos )cos d (cos )cos d (cos )cos d (cos )cos d (cos())cos()d (cos )cos d (cos )cos d 0,ππππππππθθθθθθθθθθθθππθθθ==+=+++=--=⎰⎰⎰⎰⎰⎰⎰I f f f f f t t tf f t t t因此,原积分 124=+=I I I . ------------------- 5分六、(本题满分14分) 设函数30ln(1)()d 1sin -+=+⎰xt t f x t e t,(0)>x ,证明级数11()∞=∑n f n 收敛,且1115()36∞=<<∑n f n . 【解】 利用不等式:当(0,1]x ∈时,2ln(1)2-≤+≤x x x x ,sin ≤x x ,可得2232300ln(1)111()d d 1sin 1212631-⎛⎫⎛⎫+=≥-=->⋅ ⎪ ⎪++++⎝⎭⎝⎭⎰⎰xx t t t x x x f x t t t e t x x x, ------------------- 3分且2300ln(1)1()d d 1sin 2-+=≤=+⎰⎰xx t t f x t t t x e t , ------------------- 3分 所以21111111111111()133(1)3131∞∞∞∞====⎛⎫>==-= ⎪++⎝⎭+∑∑∑∑n n n n n f n n n n n n. ------------------- 4分221111115(2266π∞∞==≤=⋅<∑∑n n f n n . 综合上述,级数11(∞=∑n f n 收敛,且1115(36∞=<<∑n f n . ------------------- 4分。
大学生数学知识竞赛试题及答案
大学生数学知识竞赛试题及答案本文为大学生数学知识竞赛试题及答案的整理和汇总。
以下是一系列数学试题及答案,涵盖了各个层次和难度的题目,以供大学生参考和练习。
试题分门别类,内容全面且有层次感。
读者可根据自身情况选择适合的题目进行学习和应用。
一、代数题1. 求下列方程的根:x^2 - 5x + 6 = 0。
答案:x = 2, x = 3。
2. 已知函数 f(x) = 2x^2 + 3x - 2,求 f(x) = 0 的解。
答案:x = -2/4, x = 1/2。
二、几何题1. 在平面直角坐标系中,已知 A(2, 3) 和 B(5, -1),求 AB 的长度。
答案:AB 的长度为√26。
2. 已知直线 L1 过点 A(3, 4),斜率为 -2,求直线 L1 的方程。
答案:直线 L1 的方程为 y = -2x - 1。
三、概率题1. 甲、乙、丙三个人按顺序抛掷一枚均匀的硬币,甲获得先抛中正面,乙获得后抛中正面,丙获得最后抛中正面的机会。
已知甲乙丙依次抛掷的概率分别为 1/4,1/3,1/2,求丙最后抛中正面的概率。
答案:丙最后抛中正面的概率为 1/24。
2. 在一副扑克牌中,红心和黑桃的总数分别为 26 张,从中随机抽取一张牌,求抽到红心或黑桃的概率。
答案:抽到红心或黑桃的概率为 1/2。
四、微积分题1. 求函数 f(x) = x^3 的导数。
答案:f'(x) = 3x^2。
2. 求曲线 y = x^2 在点 (2, 4) 处的切线方程。
答案:切线方程为 y = 4x - 4。
五、数论题1. 判断数 n = 12345678 是否为质数。
答案:n 不是质数。
2. 求最大公约数和最小公倍数:8 和 12。
答案:最大公约数为 4,最小公倍数为 24。
六、线性代数题1. 已知矩阵 A = [[1, 2], [3, 4]],求矩阵 A 的逆。
答案:A 的逆矩阵为 [[-2, 1], [1.5, -0.5]]。
数学竞赛试题精选精解及答案
数学竞赛试题精选精解及答案【试题一】题目:已知函数 \(f(x) = ax^3 + bx^2 + cx + d\),其中 \(a\),\(b\),\(c\),\(d\) 均为实数,且 \(a \neq 0\)。
若 \(f(1) = 8\),\(f(2) = 27\),求 \(f(-1)\) 的值。
【精解】首先,根据给定条件,我们可以建立以下方程组:\[\begin{align*}a +b +c +d &= 8, \\8a + 4b + 2c + d &= 27.\end{align*}\]接下来,我们可以从第一个方程中解出 \(d\):\[ d = 8 - a - b - c. \]将 \(d\) 的表达式代入第二个方程,得到:\[ 8a + 4b + 2c + (8 - a - b - c) = 27, \]简化后得到:\[ 7a + 3b + c = 19. \]现在我们有两个方程:\[\begin{align*}a +b +c + (8 - a - b - c) &= 8, \\7a + 3b + c &= 19.\end{align*}\]将第一个方程简化为:\[ 8 = 8, \]这是一个恒等式,说明我们的方程组是正确的。
现在我们需要找到 \(f(-1)\) 的值,根据函数表达式:\[ f(-1) = -a + b - c + d. \]将 \(d\) 的表达式代入,得到:\[ f(-1) = -a + b - c + (8 - a - b - c) = 8 - 2a - 2b - 2c. \]由于我们没有足够的信息来解出具体的 \(a\),\(b\),\(c\) 的值,我们无法直接计算 \(f(-1)\)。
但是,我们可以通过观察发现,\(f(1)\) 和 \(f(2)\) 的值与 \(f(-1)\) 有相似的形式,我们可以推测 \(f(-1)\) 的值可能与 \(f(1)\) 和 \(f(2)\) 的值有关。
大学生数学竞赛试卷及答案(数学类)
Fe1 = e2 , F 2 e1 = Fe2 = e3 ," , F n −1e1 = F ( F n − 2 e1 ) = Fen −1 = en
由
(*)
Me1 = (an1 F n −1 + an −11 F n − 2 + " + a21 F + a11 E )e1 = an1 F n −1e1 + an −11 F n − 2 e1 + " + a21 Fe1 + a11 Ee1 = an1en + an −11en −1 + " + a21e2 + a11e1 = α1 = Ae1
圆柱面的半径即为平行直线 x = y = z 和 x − 1 = y + 1 = z 之间的距离. P0 (1, −1, 0) 为 L0 上的点.
G JJJG G JJJG | n ×ቤተ መጻሕፍቲ ባይዱP0 S | | n × P0O | G G = 对圆柱面上任意一点 S ( x, y, z ) , 有 , 即 |n| |n| (− y + z − 1) 2 + ( x − z − 1) 2 + (− x + y + 2) 2 = 6 ,
地, Wm 在 g 下是不变的. 下面证明, Wm 在 f 下也是不变的.事实上,由 f (η ) = λ0η ,知
fg (η ) = gf (η ) + f (η ) = λ0 g (η ) + λ0η
fg 2 (η ) = gfg (η ) + fg (η ) = g (λ0 g (η ) + λ0η ) + (λ0 g (η ) + λ0η ) = λ0 g 2 (η ) + 2λ0 g (η ) + λ0η
第13届全国大学生数学竞赛非数学类初赛试卷参考答案(2021年)
第十三届全国大学生数学竞赛初赛 《非数学类》试题及参考解答一、填空题(每小题6分,共30分) 1、极限lim x.【答案】:0【参考解答】:原式lim10xx xe2、设(,)z z x y 是由方程2sin(23)23x y z x y z 所确定的二元隐函 数,则z zx y.【参考解答】:将方程两边分别关于x 和y 求偏导,得2cos(23)13132cos(23)2323z z x y z x x z z x y z y y按1cos(23)2x y z和12两种情形,都可解得: 12,.33z z x y 因此1.z zx y3、设函数()f x 连续,且(0)0f ,则02()()d lim()d xxx x t f t tx f x t t.【参考解答】:令x t u ,则0()d ()d xxf x t t f u u. 于是由洛必达法则和积分中值定理,得00002()d 2()d 2()d 2()2()limlim()d ()d ()2()d 2()limlim1()()()d ()xxxxxx x x xx x x f t t tf t tf t t xf x xf x x f u u f u u xf x f t txf xf xf x f u u xf x 原式其中 介于0,x 之间.4、过三条直线120,0,:,:2,20,x x L L y z x y z与3:0x L y z的圆柱面方程为 .【答案】: 222224x y z yz 【参考解答】:三条直线的对称式方程分别为1221102:,:01101111:11x y z x y z L L y z L 所以三条直线平行. 在1L 上取点1(0,1,1)P ,过该点作与三直线都垂直的平面0y z ,分别交23,L L于点23(0,1,1),0,0)P P . 易知经过这三点的圆的圆心为(0,0,0)O . 这样,所求圆柱面的中心轴线方程为011x y z. 设圆柱面上任意点的坐标为(,,)Q x y z ,因为点Q,所以有化简即得所求圆柱面的方程为222224x y z yz . 5、记 22(,)D x y x y∣,则22sin cos d d D x y x y.【答案】:【参考解答】:根据重积分的对称性, 得222222222222200sin cos d d sin cos d d 11sin cos sin cos d d sin d d 221sin d cos 22D D D D x y x y y x x yx y y x x y x y x yd r r r原式二、(14分) 设12021x , 212120210(1)nn n x x x n . 证明数列 n x 收敛, 并求极限limn n x. 【参考解答】:记1011,1n n a y x ,函数()(0)2x af x x x,则12y a 且 1(1).n n y f y n 易知,当x()x f x所以 n y 是单调减少且有下界的数列,因而收敛. 由此可知 n x 收敛.令lim n n y A,则0A 且()A f A,解得A因此lim 1n n x.三、(14分) 设()f x 在[0,) 上是有界连续函数,证明:方程1413()y y y f x 的每一个解在[0,) 上都是有界函数.【参考解答】:易得对应的齐次方程14130y y y 的通解为1312x xy C e C e 又 由1413()y y y f x 得13()y y y y f x .令1y y y ,则1113()y y f x,解得1313130()d x x t y e f t e t C. 同理,由1413()y y y f x ,得1313()y y y y f x .令213y y y ,则22()y y f x ,解得240()d x xt y ef t e t C. 取340C C ,得131300()d ,13()d .x x t x x t y y e f t e t y y e f t e t 由此解得原方程的一个特解为 *13130011()d ()d 1212x x x t x t y e f t e t e f t e t因此,原方程的通解为131313120011()d ()d .1212x x xxx tx t y C e C e e f t e t e f t e t 因为()f x 在[0,) 上有界,所以,存在0M ,使得|()|,0f x M x注意到当[0,)x 时,1301,01x x e e ,所以131313120131312001312121211||()d ()d 1212|||d d 1212111212137||||||12121378xxx x x t x t x x x t x tx x y C e C e e f t e t e f t e tM M C C e e t e e t M MC C e e M MM C C C C∣∣对于方程的每一个确定的解,常数12,C C 是固定的,所以,原方程的每一个解都是有界的.四、(14分) 对于4次齐次函数444222222123456(,,)333f x y z a x a y a z a x y a y z a x z 计算曲面积分(,,)d f x y z S,其中222:1x y z .【参考解答】:因为(,,)f x y z 为4次齐次函数,所以对t R ,恒有4(,,)(,,)f tx ty tz t f x y z对上式两边关于t 求导,得3123(,,)(,,)(,,)4(,,)xf tx ty tz yf tx ty tz zf tx ty tz t f x y z 取1t ,得(,,)(,,)(,,)4(,,).x y z xf x y z yf x y z zf x y z f x y z 设曲面 上点(,,)x y z 处的外法线方向的方向余弦为(cos ,cos ,cos ) ,则cos ,cos ,cos x y z因此由高斯公式和轮换对称性,记222:1x y z ,得2214621(,,)d (,,)(,,)(,,)d 411cos cos cos dS d d d d d d 441(,,)(,,)(,,)d 43222x y z x y z x y z xx yy zz f x y z S xf x y z yf x y z zf x y z S f f f f y z f z x f x y f x y z f x y z f x y z Vx a a a y a a24535666212222201161=2d d d d sin d 45i i i i ii a z a a a Va x y z V a a五、(14分) 设函数()f x 在闭区间[,]a b 上有连续的二阶导数,证明:21221lim ()d ()2()()().24n b a n k b a k n f x x f a b a n n b a f b f a 【参考解答】:记()(21)(),,1,2,,2k k k b a k b a x a a k n n n. 将()f x 在1,k k x x 上展开成泰勒公式,得2()2k k k k k f f x f f x x其中1,,k k k x x x 介于0和x 之间. 于是11111212121()d ()2()d d 21d 2kk kk k k nbn ak nx k x k nx k k k k x k nx k k x k b a k B f x x f a b a n n f x f xf f x x x f x x设()f x 在1,k k x x 上的最大值和最小值分别为,k k M m ,因为1323()d 12k k x k x b a x x n 因为()f x 在[,]a b 上连续,所以()f x 在[,]a b 上可积. 根据定积分10()d f x x 的定义及牛顿-莱布尼兹公式,得11lim lim ()d ()()n nk k n n k k bab a b am M n n f x x f b f a再根据夹逼准则, 得22()lim ()().24n n b a n B f b f a六、(14分) 设 n a 与 n b 均为正实数列,满足:111a b 且12,2,3,n n n b a b n .又设 n b 为有界数列,证明级数1211nn a a a收敛,并求该级数的和. 【参考解答】:首先,注意到111a b ,且121nn n n b a b b所以当2n 时,有1223222111.n n n a a a b b b b由于 n b 有界,故存在0M ,使得当1n 时,恒有0n b M . 因此111122312220111210,n n n n b a a a b b b n M根据夹逼准则,12lim0nn nb a a a .考虑级数1211nn a a a的部分和n S ,当2n 时,有 112112121121121221112131222nnk k k n kk k k n k k n k k nk a b b S a a a a a a a b b b a a a a a a a a a所以3lim 2n n S ,这就证明了级数1211nn a a a收敛,且其和为32.。
第十一届全国大学生数学竞赛(非数学类)试题
第十一届全国大学生数学竞赛(非数学类)试题参考解答及评分标准一、填空题(每小题6分)1. sin 014x x →=.解:sin sin 00x x x x x →→→=- sin 1/31/30022(e 1)1sin 1limlim 444422x x x x x x →→-=+-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 2. 设隐函数()y y x =由方程22()y x y x -=所确定,则232ln ||dx y y C y x x=-+⎰. 解:令y tx =,则21(1)x t t =-,1(1)y t t =-,3223(1)tdx dt t t -+=-, 这样,223332ln ||2ln ||dx t y ydt t t C C y t x x-+==-+=-+⎰⎰. 3. 定积分220(1sin )1cos x e x dx e xππ+=+⎰.解:222000(1sin )sin 1cos 1cos 1cos x xx e x e xdx dx de xx x πππ+=++++⎰⎰⎰ 2222200sin cos (1cos )+sin 1cos 1cos (1cos )xxxe xe x x x dx e dx x x x πππ+=+-+++⎰⎰2222000sin 1cos 1cos 1cos xxx e xe edx dx e x x x ππππ=+-=+++⎰⎰. 4. 已知22(,)323ydx xdy du x y x xy y -=-+,则1(,)()C 3x u x y y =-+. 解:22(,)323ydx xdy du x y x xy y -=-+21()233()3xd x yx x y y y ==--+().所以,1(,)()C 3x u x y y =-+.5. 设,,,0a b c μ>,曲面xyz μ=与曲面2222221x y z a b c ++=相切,则μ=.解:根据题意有:22x yz a λ=,22y xz b λ=,22zxy c λ=,以及 222x a μλ=,222y b μλ=,222z c μλ=,从而得:32228a b cλμ=,32μλ=,联立解得:μ=二、(14分)计算三重积分22d d d Ω+⎰⎰⎰xyzx y z x y,其中Ω是由曲面2222()2++=x y z xy 围成的区域在第一卦限部分.解:采用“球面坐标”计算,并利用对称性,得ππ3224222sin cos sin cos 2d d sin d sin I ρϕθθϕθϕρϕρρϕ=⎰⎰ -------5分ππ342002sin cos d sin cos d d θθθϕϕϕρρ=⎰⎰ππ3354202sin cos d sin cos d θθθϕϕϕ=⎰⎰ -------10分ππ354201sin 2d sin d(sin )4θθϕϕ=⎰⎰π3201121sin d 4848372t t ==⋅=⎰. -------14分 三、(14分)设()f x 在[0,)+∞上可微,(0)0f =,且存在常数0A >,使得|()||()|f x A f x '≤在[0,)+∞上成立,试证明:在(0,)+∞上有()0f x ≡.证明:设01[0,]2x A ∈,使得01|()|max |()|[0,]2f x f x x A ⎧⎫=∈⎨⎬⎩⎭, -------5分 000011|()||(0)+()||()||()|22f x f f x A f x f x A ξ'=≤=,只有0|()|0f x =. 故当 1[0,]2x A∈时,()0f x ≡. -------12分 递推可得,对所有的1[,]22k kx A A-∈,1,2,k =,均有()0f x ≡. -------14分四、(14分)计算积分2sin (cos sin )0sin I d e d ππθφφφθθ-=⎰⎰解:设球面 Σ:x 2+y 2+z 2=1, 由球面参数方程sin cos x θφ=,sin sin y θφ=,cos z θ=知sin dS d d θθφ=,所以,所求积分可化为第一型曲面积分I =∬e x−ydS Σ-------4分 设平面P t :√2=t,−1≤t ≤1,其中t 为平面P t 被球面截下部分中心到原点距离.用平面P t 分割球面Σ,球面在平面P t ,P t+dt 之间的部分形如圆台外表面状,记为Σt,dt .被积函数在其上为 e x−y =e √2t . -------8分由于Σt,dt 半径为r t =√1−t 2,半径的增长率为 d√1−t 2=√1−t 2 就是 Σt,dt 上下底半径之差. 记圆台外表面斜高为ℎt ,则由微元法知 dt 2+(d √1−t 2)2=ℎt 2, 得到ℎt =√1−t 2 ,所以 Σt,dt 的面积为 dS =2πr t ℎt =2πdt, -------12分I =∫e √2t 1−12πdt =√2√2t |−11=√2π(e √2−e −√2). -------14分 五、(14分)设()f x 是仅有正实根的多项式函数,满足 0()()n n n f x c x f x +∞='=-∑. 试证:0n c >,(0n ≥),极限lim n ()f x 的最小根. 证明:由f (x )为仅有正实根的多项式,不妨设()f x 的全部根为 0<a 1<a 2<⋯<a k ,这样,f (x )=A (x −a 1)r 1⋯(x −a k )r k ,其中 r i 为对应根a i 的重数 (i =1,⋯,k,r k ≥1). -------2分f ′(x )=Ar 1(x −a 1)r 1−1⋯(x −a k )r k +⋯+Ar k (x −a 1)r 1⋯(x −a k )r k −1,所以,f ′(x )=f (x )(r 1x−a 1+⋯+rkx−a k),从而, −f ′(x)f(x)=r 1a 1∙11−xa 1+⋯+r k a k∙11−x a k.-------6分若|x |<a 1, 则 −f ′(x)f(x)=r 1a 1∙∑(xa1)n∞n=0+⋯+r k a k∙∑(xak)n∞n=0=∑(r 1a 1n+1+⋯+r k a kn+1)∞n=0x n .而 −f ′(x)f(x)=∑c n x n∞n=0,由幂级数的唯一性知c n =r 1a 1n+1+⋯+r kak n+1>0, ------9分c ncn+1=r 1a 1n+1+⋯+r k a kn+1r 1a 1n+2+⋯+r k a kn+2=a 1∙r 1+⋯+(a1a k)n+1r kr 1+⋯+(a 1a k)n+2r k.limn→∞c nc =a 1∙r 1+0+⋯+0r +0+⋯+0=a 1>0, limn→∞c n+1c =1a , -----12分limn→∞1n ∙(ln c2c1+⋯+ln c n+1c n)=ln 1a 1,√c n n=elnc nn=elnc 1n +1n (ln c 2c 1+⋯+ln cn+1c n)→eln1a 1=1a 1.从而,lim√c nn=a 1,即f (x )的最小正根. -----14分六、(14分)设函数()f x 在[0, )+∞上具有连续导数,满足22223[3()]()2[1()]-'+=+x f x f x f x e ,且(0)1≤f .证明:存在常数0>M ,使得[0,)∈+∞x 时,恒有()≤f x M .证明:由于()0'>f x ,所以()f x 是[0, )+∞上的严格增函数,故+lim ()→∞=x f x L (有限或为+∞). 下面证明 ≠+∞L . -----2分记()=y f x ,将所给等式分离变量并积分得 222232d d (1)3-+=+⎰⎰x y y e x y ,即 2222arctan d 13-+=++⎰x t y y e t C y , ------6分 其中2(0)2arctan (0)1(0)=++f C f f . ------8分若=+∞L ,则对上式取极限→+∞x ,并利用2d 2+∞-=⎰t e t ,得π3=-C .-----10分 另一方面,令2()2arctan 1=++ug u u u ,则2223()>0(1)+'=+u g u u ,所以函数()g u 在(, )-∞+∞上严格单调增加. 因此,当(0)1≤f 时,1π((0))(1)2+=≤=C g f g , 但2π1π22+>>C ,矛盾, 这就证明了+lim ()→∞=x f x L 为有限数.最后,取max{(0),}=M f L ,则|()|≤f x M ,[0,)∀∈+∞x . -----14分。
大学生数学知识竞赛试题及答案
大学生数学知识竞赛试题及答案以下是关于大学生数学知识竞赛试题及答案的文章:在当今竞争激烈的社会环境中,全面发展的大学生必须具备扎实的数学知识。
而数学知识竞赛试题及答案的研究和学习,不仅能够提高学生的数学水平,还有助于培养他们的逻辑思维和问题解决能力。
本文将为大家分享一些常见的大学生数学知识竞赛试题及答案,希望能够对广大学子有所帮助。
1. 题目一:求解方程解:此题为一元二次方程的求解问题,我们可以根据求根公式来求解。
首先将方程整理为标准形式:$x^2 + 3x - 4 = 0$,然后代入求根公式:$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times (-4)}}{2 \times 1}$。
经过计算可以得到两个解:$x_1 = -4$和$x_2 = 1$。
2. 题目二:数列求和解:我们可以将该数列的前$n$项进行展开,然后利用数列求和公式进行求解。
数列展开为:$1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\ldots$。
根据数列求和公式:$S_n = \frac{a_1(1-q^n)}{1-q}$,其中$a_1$为首项,$q$为公比,$n$为项数。
代入数值可以得到:$S_n =\frac{1(1-\frac{1}{2^n})}{1-\frac{1}{2}}$。
经过化简,最终求得数列的和为:$S_n = 2(1-\frac{1}{2^n})$。
3. 题目三:概率计算解:根据题意可知,共有5只红球和7只白球,从中随机取出3只球,求其中至少有一只红球的概率。
我们可以采用排除法来计算。
首先计算没有红球的概率,即全为白球的概率为:$\frac{C_7^3}{C_{12}^3}$。
然后再计算至少有一只红球的概率为:$1 - \frac{C_7^3}{C_{12}^3}$。
经过计算,最终得到的概率为:$1 -\frac{35}{220} = \frac{9}{22}$。
全国大学生数学竞赛试题及答案
河北省大学生数学竞赛试题及答案一、(本题满分10 分) 求极限))1(21(1lim222222--++-+-∞→n n n n nn 。
【解】 ))1(21(1222222--++-+-=n n n n nS n因21x -在]1,0[上连续,故dx x ⎰102-1存在,且dx x ⎰12-1=∑-=∞→-121.)(1lim n i n n n i ,所以,=∞→n n S limn dx x n 1lim-112∞→-⎰4-1102π==⎰dx x 。
二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1lim 220c tdt t ax x x b x =+-⎰→【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b,当0=b 时使用洛必达法则得到2202201)(cos lim1sin 1lim xa x x t dt t ax x x x x +-=+-→→⎰, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则21)1(cos lim 1sin 1lim 22220-=+-=+-→→⎰xx x t dt t ax x x x b x ,综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。
三、(本题满分10 分) 计算定积分⎰+=22010tan 1πxdxI 。
【解】 作变换t x -=2π,则=I2220ππ=⎰dt ,所以,4π=I 。
四、(本题满分10 分) 求数列}{1nn-中的最小项。
【解】 因为所给数列是函数xxy 1-=当x 分别取 ,,,3,2,1n 时的数列。
又)1(ln 21-=--x xy x且令e x y =⇒='0,容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。
第二届全国大学生数学竞赛决赛试题及解答
第二届全国大学生数学竞赛决赛试题及解答一、(15分)求出过原点且和椭球面2224561x y z ++=的交线为一个圆周的所有平面.【解】 所述圆周过原点,则一定以原点为圆心,且在球面2222x y z R ++= ①上.因此,该球面与椭球面2224561x y z ++= ②的交线即为圆周.由①、②确定的平面也必包含此圆周.联立此二式,得2222221114560x y z R R R ⎛⎞⎛⎞⎛⎞−+−+−=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠ 显然,当215R =时,有220x z −=,这是两相交平面x z =,0x z +=,即为所求.二、(15分)设()01f x <<,无穷积分()0d f x x +∞∫和()0d xf x x +∞∫都收敛.求证:()()()21d d 2xf x x f x x +∞+∞>∫∫.【证】令()0d f x x a +∞=∫,则()0,a ∈+∞.据题设条件()01f x <<,得()()()0d d d aaxf x x xf x x xf x x +∞+∞=+∫∫∫()()0d d a axf x x a f x x +∞>+∫∫()()()d d aaxf x x a a f x x =+−∫∫()()()0d 1d a axf x x a f x x =+−∫∫()()()0d 1d a axf x x x f x x >+−∫∫201d 2a x x a ==∫, 因此,得()()()21d d 2xf x x f x x +∞+∞>∫∫.三、(15分)设1nn na+∞=∑收敛,122n n n n k t a a ka +++=++++"".证明:lim 0n n t →∞=.【证】 首先,注意到1n n k k t ka +∞+==∑()1n k k kn k a n k+∞+==++∑,据题设条件1n n na +∞=∑收敛,可知()1n kk n k a +∞+=+∑收敛,而k n k ⎧⎫⎨⎬+⎩⎭关于k 单调,且01k n k <<+即有界,故由Abel 判别法知()1n k k kn k a n k+∞+=++∑收敛,即n t 有意义. 因为1nn na+∞=∑收敛,所以0ε∀>,存在N +∈],使得当n N >时,+n kk nR ka ∞==∑(),εε∈−.此时,对任何n N >以及1m >,有()111mmn kk n k n k k k kaR R n k ++++===−+∑∑11211m m k n k n k k k k R R n k n k +++==−=−++−∑∑ 1121111m n m n k n k m k k R R R n n m n k n k ++++=−⎛⎞=−+−⎜⎟++++−⎝⎠∑,于是,有1mn kk ka+=∑21111mk m kk n n m n kn k εε=−⎛⎞⎛⎞≤++−⎜⎟⎜⎟++++−⎝⎠⎝⎠∑22m n m εε=<+. 所以,2n t ε≤,()n N >,即lim 0n n t →∞=.四、(15分)设()n A M ∈^,定义线性变换:()()A n n M M σ→^^,()A X AX XA σ=−.证明:当A 可对角化时,A σ也可对角化.这里()n M ^是复数域^上n 阶方阵组成的线性空间.【证】取()n M ^的自然基{}:,1,2,ij E i j n =",其中ij E 是(,)i j 元等于1,其它元均为0的n 阶矩阵.因为A 可对角化,所以存在可逆矩阵()n P M ∈^,使得112diag(,,,)n P AP λλλ−=Λ=".显然,{}1:,1,2,ij PE P i j n −="也是()n M ^的一组基,并且有11111()()()()()A ij ij ij ij ij i j ij PE P A PE P PE P A P E E P PE P σλλ−−−−−=−=Λ−Λ=−,所以A σ在基11111111,,,,,,n n nn PE P PE P PE P PE P −−−−"""下的矩阵为对角矩阵12111diag(0,,,,,,,,0)n n n n λλλλλλλλ−−−−−""",这就是说,A σ可对角化.五、(20分)设连续函数:f →\\,满足()()(),sup x y f x y f x f y ∈+−−<+∞\.证明:存在实常数a 满足()sup x f x ax ∈−<+∞\.【证】 令()()(),sup x y M f x y f x f y ∈=+−−\,则+,,x m n ∀∈∈\`,有()()()f x y f x f y M +−−≤, ①()((1))()f nx f n x f x M −−−≤.于是,有()()()2()((1))()1nk f nx nf x f kx f k x f x n M nM =−≤−−−≤−≤∑. ②因此()()()()()()()nf mx mf nx nf mx f mnx f mnx mf nx n m M −≤−+−≤+,()()11f mx f nx M m n n m ⎛⎞−≤+⎜⎟⎝⎠. 这表明函数列()f nx n ⎧⎫⎨⎬⎩⎭在(,)−∞+∞上一致收敛,设其极限为()g x ,则()g x 是连续函数. 进一步,由不等式①,有()()()()f n x y f nx f ny M nn n n+−−≤,,;x y n +∀∈∈\`. 取极限,得()()()g x y g x g y +=+,,x y ∀∈\.由此可解得()()1g x g x ax ==.另一方面,再由②式,得()()f nx f x M n−≤. 令n →∞,得()()g x f x M −≤,x ∀∈\.从而()()sup x g x f x M ∈−≤<+∞\.故存在实常数a ,使得()sup x f x ax M ∈−≤<+∞\.六、(20分) 设:()n M ϕ→\\是非零线性映射,满足()()XY YX ϕϕ=,,()n X Y M ∀∈\,这里()n M \是实数域\上n 阶方阵组成的线性空间.在()n M \上定义双线性型(-,-):()()n n M M ×→\\\为(,)()X Y XY ϕ=.(1)证明(-,-)是非退化的,即若(,)0X Y =,()n Y M ∀∈\,则X O =; (2)设212,,,n A A A "是()n M \的一组基,212,,,n B B B "是相应的对偶基,即0,(,)1,.i j ij i j A B i j δ≠⎧==⎨=⎩当,当 证明21n i ii A B =∑是数量矩阵.【证】(1)先确定ϕ的结构.取()n M \的自然基{}:,1,2,ij E i j n =",其中ij E 是(,)i j 元等于1,其它元均为0的n 阶矩阵.令()ji ij c E ϕ=,则()()ij n C c M =∈\.()n A M ∀∈\,有1111()()tr()n n n nij ij ij ji i j i j A a E a c AC ϕϕ=======∑∑∑∑.根据题设,()()XY YX ϕϕ=,,()n X Y M ∀∈\,所以tr()tr()tr()YCX XYC YXC ==.因此XC CX =.由于X 的任意性,知C E λ=为数量矩阵.于是有()tr()A A ϕλ=,()n A M ∀∈\.因为0ϕ≠,所以0λ≠.现在,如果(,)tr()0X Y XY λ==,()n Y M ∀∈\,取TY X =,那么X O =. (2)令()ii pqA a =,()i i stB b =.设21n pq pq ii i E B ε==∑,利用{}i A 与{}j B 的对偶性,有()()21,,n pq pq jpqijij i A E A B εε===∑.另一方面,由(1)的结果,有(),tr()j j pq j pq qpA E A E a λλ==,所以21n i pq qpi i E aB λ==∑.比较等式两边的(,)s t 元,得211n i i qp st ps qt i a b δδλ==∑.注意到,pq st qs pt E E E δ=,因此,有22211,1, 1,1, 11,1,11n n n n n n n n n i i i ii i pq pq st st pq st qs pt pt qs pti i p q s t p q s t i s t p q n A B a E b E a b E E E δδδλλ=========⎛⎞⎛⎞====⎜⎟⎜⎟⎝⎠⎝⎠∑∑∑∑∑∑∑∑∑.。
第二届中国大学生数学竞赛决赛试卷参考答案
第二届中国大学生数学竞赛决赛试卷参考答案一.计算下列各题(本题共3小题,每小题各5分,共15分,要求写出重要步骤。
)(1)解:方法一(用两个重要极限):()()20003221sin 1cos sin 1cos 001sin cos 12limlimlim sin 11331cos 3222sin sin lim lim 1lim x x x x x xxx x x x x x x x x x x x x x x x x x x x x x x ee eee→→→-∙---→→------→-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭=====方法二(取对数):11cos 0002sin sin ln 1sin lim exp lim exp lim 11cos 2xx x x x x x x x x x x -→→→⎡⎤⎛⎫⎡⎤- ⎪⎢⎥⎢⎥⎛⎫⎝⎭⎢⎥==⎢⎥ ⎪-⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦20003221sin cos 12limlimlim 11333222x x x x x x x x x x eee e→→→----====(2).解:方法一(用欧拉公式)令111...12n x n n n n=++++++ 111ln =C+o 12n n +++-由欧拉公式得(),11111ln 2=C+o 1212n n n n++++++-+则(),其中,()1o表示n →∞时的无穷小量,-ln2o 1n x ∴=两式相减,得:(),lim ln 2.n n x →∞∴= 方法二(用定积分的定义)111lim lim lim()12n n n n x n n n→∞→∞→∞=++++111lim ()111n n n nn→∞=++++101ln 21dx x==+⎰(3)解:222222221211,121121tt t t t t t t t tte dx e dy e dy e e e e dt e dt e dx e e --++==-∴==+++ ()()222222412121224ttt tt tte e d y d dy e e dx dx dt dx e e edt+--+⎛⎫∴=∙==⎪⎝⎭二.(本题10分)解:设24,1P x y Q x y =+-=+-,则0P d x Q d y +=1,P Qy x∂∂==∴∂∂0Pdx Qdy +=是一个全微分方程,设dz Pdx Qdy =+方法一:由24zP x y x∂==+-∂得 ()()2244z x y dx x xy x C y =+-=+-+⎰由()'1zx C y Q x y y∂=+==+-∂得()()'211,2C y y C y y y c =-∴=-+22142z x xy x y y c ∴=+-+-+方法二:()()()(),0,024x y z dz Pdx Qdy x y dx x y dy==+=+-++-⎰⎰⎰,P Qy x∂∂=∴∂∂该曲线积分与路径无关 ()()2200124142xyz x dx x y dy x x xy y y ∴=-++-=-++-⎰⎰三.(本题15分)证明:由极限的存在性:()()()()1230lim 2300h k fh k f h k f h f →++-=⎡⎤⎣⎦即[]()123100k k k f ++-=,又()00f ≠,1231k k k ∴++=①由洛比达法则得()()()()()()()1232'''1230230lim2233lim 02h h k f h k f h k f h f h k f h k f h k f h h →→++-++==由极限的存在性得()()()'''1230lim 22330h k f h k f h k f h →⎡⎤++=⎣⎦即()()'1232300k k k f ++=,又()'00f ≠,123230k k k ∴++=② 再次使用洛比达法则得()()()()()()()()()'''1230"""1230""1232233lim24293lim02490000h h k f h k f h k f h hk f h k f h k f h k k k f f →→++++==∴++=≠123490k k k ∴++=③由①②③得123,,k k k 是齐次线性方程组1231231231230490k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩的解设1231111123,,01490k A x k b k ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则Ax b =, 增广矩阵*11111031230010314900011A ⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()(),3R A b R A ==所以,方程Axb =有唯一解,即存在唯一一组实数123,,k k k 满足题意,且1233,3,1k k k ==-=。
大学数学竞赛试题及答案
大学数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项不是实数?A. πB. iC. √2D. -1答案:B2. 函数f(x) = x^2 + 3x + 2在区间[-4, -1]上是:A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:C3. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。
A. 23B. 27C. 29D. 31答案:A4. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。
A. 相离B. 相切C. 相交D. 内含答案:C5. 已知矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式。
A. 0B. 1C. 7D. 8答案:C6. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2 + 1/3 + 1/4 + ...D. 1 - 1/2 + 1/4 - 1/8 + ...答案:A二、填空题(每题5分,共20分)7. 已知函数g(x) = 2x - 3,求g(4)的值:________。
答案:58. 一个直角三角形的两条直角边分别为3和4,求斜边的长度:________。
答案:59. 求函数f(x) = x^3 - 2x^2 + 3x的极小值点:________。
答案:x = 110. 已知一个球的体积是(4/3)π,求该球的半径:________。
答案:1三、解答题(每题25分,共50分)11. 证明:对于任意实数x,不等式e^x ≥ x + 1始终成立。
证明:略12. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求该函数的极值点。
解:首先求导数f'(x) = 3x^2 - 12x + 11。
令f'(x) = 0,解得x = 1, 3。
通过二阶导数检验,可知x = 1为极大值点,x = 3为极小值点。
大三数学竞赛试题及答案
大三数学竞赛试题及答案题目一:极限问题题目描述:求下列极限:\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案:根据洛必达法则,当分子分母同时趋向于0或无穷大时,可以使用洛必达法则。
由于分子和分母都趋向于0,我们可以对分子和分母同时求导数,得到:\[ \lim_{x \to 0} \frac{\cos x}{1} = 1 \]题目二:微分方程问题题目描述:解下列微分方程:\[ y'' - y' - 6y = 0 \]答案:这是一个二阶线性常系数齐次微分方程。
设其特征方程为:\[ r^2 - r - 6 = 0 \]解得特征根为 \( r_1 = 3 \) 和 \( r_2 = -2 \)。
因此,微分方程的通解为:\[ y(x) = C_1 e^{3x} + C_2 e^{-2x} \]题目三:级数问题题目描述:判断级数 \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 的收敛性,并求其和。
答案:这个级数可以通过部分分式分解来化简:\[ \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \]解得 \( A = 1 \) 和 \( B = -1 \),因此:\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \]利用级数的可加性,我们发现这是一个可裂项求和的级数,其和为:\[ S = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots = 1 \]题目四:多元函数微分问题题目描述:设函数 \( f(x, y) = x^2y + y^3 - 3x \),求 \( f \) 在点\( P(1, 1) \) 处的偏导数 \( f_x \) 和 \( f_y \)。
大学数学竞赛试题及答案
大学数学竞赛试题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),则\( f(x) \)的最小值是:A. 0B. 1C. 2D. 32. 若\( \int_{0}^{1} x dx = \frac{1}{2} \),则\( \int_{0}^{2} x dx \)的值是:A. 1B. 2C. 3D. 43. 设\( A \)为3阶方阵,且\( \det(A) = 2 \),则\( \det(2A) \)的值是:A. 2B. 4C. 8D. 164. 以下哪个选项不是\( \mathbb{R}^3 \)中的向量?A. \( \vec{a} = (1, 2, 3) \)B. \( \vec{b} = (1, 2, 3, 4) \)C. \( \vec{c} = (1, 2) \)D. \( \vec{d} = (1, 2, 3) \)5. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),则\( A \cap B \)的元素个数是:A. 0B. 1C. 2D. 36. 圆的方程为\( x^2 + y^2 - 6x - 8y + 24 = 0 \),圆心坐标是:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)二、填空题(每题5分,共20分)1. 函数\( f(x) = \sin(x) \)在区间\( [0, \pi] \)上的最大值是______。
2. 若\( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \)的值为______。
3. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式\( \det(A) \)的值是______。
大学数学竞赛题库及答案
大学数学竞赛题库及答案大学数学竞赛通常涵盖了高等数学、线性代数、概率论与数理统计、数学分析等多个领域。
以下是一些典型的大学数学竞赛题目及其答案。
# 题目一:高等数学题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在区间 \( [1, 2] \)上的最大值和最小值。
答案:首先,我们找到函数的导数 \( f'(x) = 6x - 2 \)。
令导数等于零,解得 \( x = \frac{1}{3} \)。
这个点不在给定区间内,所以我们需要检查区间端点的函数值。
在 \( x = 1 \) 时,\( f(1) = 3(1)^2 - 2(1) + 1 = 2 \)。
在 \( x = 2 \) 时,\( f(2) = 3(2)^2 - 2(2) + 1 = 9 \)。
因此,函数在区间 \( [1, 2] \) 上的最大值为 9,最小值为 2。
# 题目二:线性代数题目:求解线性方程组:\[ \begin{cases}x + y + z = 6 \\2x - y + z = 1 \\3x + y + 2z = 8\end{cases} \]答案:我们可以使用高斯消元法来解这个方程组。
首先将方程组写成增广矩阵的形式,然后进行行操作:\[ \left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\2 & -1 & 1 & 1 \\3 & 1 & 2 & 8\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\0 & -3 & -1 & -11 \\0 & 1 & 1 & 2\end{array}\right] \]继续行操作,得到:\[ \left[\begin{array}{ccc|c}1 & 0 & -2 & -5 \\0 & 1 & 1 & 2 \\0 & 0 & 3 & 13\end{array}\right] \]最后,我们得到解为 \( x = 1, y = 2, z = 3 \)。
大学生数学竞赛(非数)试题及答案
大学生数学竞赛(非数学类)试卷及标准答案考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、填空(每小题5分,共20分).(1)计算)cos 1(cos 1lim 0x x x x --+→= .(2)设()f x 在2x =连续,且2()3lim2x f x x →--存在,则(2)f = . (3)若tx x xt t f 2)11(lim )(+=∞→,则=')(t f .(4)已知()f x 的一个原函数为2ln x ,则()xf x dx '⎰= .(1)21. (2) 3 . (3)t e t 2)12(+ . (4)C x x +-2ln ln 2.二、(5分)计算dxdy x y D⎰⎰-2,其中1010≤≤≤≤y x D ,:.解:dxdy xy D⎰⎰-2=dxdy y xx y D )(21:2-⎰⎰<+⎰⎰≥-22:2)(x y D dxdy xy -------- 2分=dy y x dx x )(2021-⎰⎰+dy x y dx x)(12102⎰⎰- -------------4分=3011-------------5分. 姓名:身份证号:所在院校年级:专业:线封密注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.三、(10分)设)](sin[2xf y =,其中f 具有二阶导数,求22dxyd .解:)],(cos[)(222x f x f x dxdy'=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(222222222222x f x f x x f x f x x f x f dxy d '-''+'=-----7分 =)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.四、(15分)已知3123ln 0=-⋅⎰dx e e a x x ,求a 的值. 解:)23(232123ln 0ln 0x ax axxe d e dx e e ---=-⋅⎰⎰---------3分令t e x =-23,所以dt t dx e e aax x ⎰⎰--=-⋅231ln 02123---------6分=a t 231233221-⋅-------------7分=]1)23([313--⋅-a ,-----------9分由3123ln 0=-⋅⎰dx e e a x x ,故]1)23([313--⋅-a =31,-----------12分即3)23(a -=0-----------13分 亦即023=-a -------------14分所以23=a -------------15分.五、(10分)求微分方程0=-+'x e y y x 满足条件e yx ==1的特解.解:原方程可化为xe y x y x=+'1-----------2分这是一阶线性非齐次方程,代入公式得⎥⎦⎤⎢⎣⎡+⎰⋅⎰=⎰-C dx e x e e y dxx xdx x 11----------4分=⎥⎦⎤⎢⎣⎡+⋅⎰-C dx e x e e x x xln ln ----------5分 =[]⎰+C dx e xx 1-----------6分 =)(1C e x x+.---------------7分所以原方程的通解是)(1C e xy x+=.----------8分再由条件e yx ==1,有C e e +=,即0=C ,-----------9分因此,所求的特解是xe y x=.----------10分.六(10分)、若函数()f x 在(,)a b 内具有二阶导数,且123()()()f x f x f x ==,其中123a x x x b <<<<,证明:在13(,)x x 内至少有一点ξ,使()0f ξ'=。
大学数学竞赛题库及答案
大学数学竞赛题库及答案一、单项选择题1. 设函数f(x) = (x - 1) / (x + 1),则f(-1)的值为()A. -1B. 0C. 1D. -∞答案:A2. 设矩阵A = [[a, b], [c, d]],则A的行列式det(A)的值为()A. ad - bcB. a + b + c + dC. ab + bd + ca + dcD. |a| |b| |c| |d|答案:A3. 设函数f(x) = x^3 - 6x + 9,则f'(x)的值为()A. 3x^2 - 6B. x^3 - 6C. 9 - 6xD. 3x^2答案:A4. 设函数f(x) = ln(x),则f'(x)的值为()A. 1/xB. xC. 1D. e^x答案:A5. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积a·b的值为()A. -5B. 4C. 7D. 0答案:A二、多项选择题6. 以下哪个选项是正确的矩阵乘法规则?()A. AB = BAB. (AB)C = A(BC)C. (A+B)C =AC+BC D. A(B+C) = AB+AC答案:B7. 以下哪个选项是正确的导数运算法则?()A. (f+g)' = f' + g'B. (fg)' = fg' + gf'C. (f/g)' = f'/g - f/g^2D. (f^n)' = nf^(n-1)答案:A、C三、填空题8. 设函数f(x) = x^2 - 4x + 3,则f(x)的图像是一个________。
答案:抛物线9. 设矩阵A = [[1, 2], [3, 4]], 则矩阵A的逆矩阵A^-1为________。
答案:[[2, -1], [-3, 1]]10. 设向量a = (2, 3), 向量b = (-1, 2), 则向量a与向量b的夹角θ的值为________。
河北大学数学竞赛试题及答案
河北大学数学竞赛试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(-1) \)的值。
A. 0B. 2C. 6D. 82. 若\( a \),\( b \),\( c \)为实数,且满足\( a^2 + b^2 +c^2 = 1 \),求\( (a+b+c)^2 \)的最大值。
A. 1B. 2C. 3D. 43. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。
A. 相切B. 相交C. 相离D. 无法确定4. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值。
A. 32B. 35C. 38D. 41二、填空题(每题4分,共12分)5. 若\( \sin x = \frac{3}{5} \),\( x \)在第一象限,求\( \cos x \)的值。
6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
7. 某工厂生产的产品合格率为95%,求生产100件产品中不合格产品的数量。
三、解答题(每题18分,共54分)8. 证明:对于任意实数\( x \),都有\( e^x \geq x + 1 \)。
9. 解不等式:\( |x - 2| + |x + 3| \geq 5 \)。
10. 已知函数\( g(x) = \sin x + \cos x \),求\( g(x) \)的最大值。
四、综合题(每题16分,共16分)11. 某公司计划在一条直线上建立两个仓库,仓库之间的距离为10公里。
公司希望两个仓库到市中心的距离之和最小。
求两个仓库应该建在何处。
答案:1. B. 22. C. 33. A. 相切4. D. 415. \( \cos x = \frac{4}{5} \)6. 斜边长度为57. 不合格产品数量为58. 证明略9. 解不等式略10. \( g(x) \)的最大值为\( \sqrt{2} \)11. 两个仓库应建在市中心两侧,且与市中心的距离相等。
大学数学竞赛习题与答案
x
x
( )
于是 e2c=e, 则2c=1, 即
c 1. 2
30
1
例3 求
ax bx cx x
lim
x0
3
a 0,b 0,c 0.
1
解
ax bx cx x
lim
x0
3
a b c 3 x
x
x
a
x
b
3 x
c
x
3
a
x
bx 3
x
c
x
3
lim
x0
1
3
3
a x bx cx 3 axbxcx3
lim n n k1 1 ( k )2
n
1 dx 0 1 x2
arctan x |10
4
39
例2 求
lim
n
n k 1
sin k
n n 1
2.
k
夹逼定理
解 因为
1 n k
sin n 1 k1 n
n
sin k
n
k1 n 1
1 n k
sin
n k1
n
k
而
lim 1 n sin k
lim
x0
cx x
1
1 ln a ln b ln c 1 lnabc.
3
3
1
ax
lim
x0
bx 3
cx
x
1 lnabc
e3
3
abc .
32
注:2009年全国决赛试题有类似题目
1
1
1 n
求
lim
n
an
bn 3
第十六届北京市大学生数学竞赛甲乙组试题与解答
第十六届北京市大学生数学竞赛甲乙组试题与解答第十六届北京市数学竞赛试题答案(甲、乙组)一、 填空(20分)1.1)0(,)1(2='=+'-+''y e y x y x y x ,且a xx x y x =-→20)(lim ,则__________=a . 解 由a xx x y x =-→20)(lim ,得0)0(=y ,利用方程,得2)0(=''y ,得1=a . 2.))(()(b x a x b e x f x ---=,e x =为无穷间断点,1=x 为可去间断点,则__________=b .e解 ))(1()(b x x b e x f x ---= 3.,),0(,)0,(,),,(22y y f x x f y x yx z y x f z ==+=∂∂∂= 则 __________),(=y x f .解 __________),(=y x f y x xy y x +++2222. 4.,)2()2()2(222dz xy z dy xz y dx yz x du -+-+-= 则__________),,(=z y x u .解 C xyz z y x z y x u +-++=23__________),,(333 5.,)(13)(1022⎰--=dx x f x x x f 则__________)(=x f .解 ,13)(2x k x x f --=其中⎰--=1022)13(dx x k x k ,得 k k k dx x kx x k dx x k x k 2329)16)9(()13(22102221022-+=+---=--=⎰⎰,得,2992k k +=得23,3439472819=±=-±=k .()()03212,033>-+-=''<x x y x ,()(),0321233>-++=''x x y()()1,03111,3111,2022==-++-='-++=<<x x x y x x y x , ()(),03212,2033>-++=''<<x x y x ()()002,00>-'<+'y y ,极小值=()1.1=y()(),01111,1111,,222<--+-='-++=≥x x y x x y x y 单调减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 填空题(每小题4分,共40分)1. 设⎭⎬⎫⎩⎨⎧+=∞→x t x x t t f 2)11(lim )(,则=')(t f .解:)(t f tx x x t 2)11(lim ⎭⎬⎫⎩⎨⎧+=∞→tte 2=,t t t e t te e t f 222)21(2)(+=+='∴.2. 设曲线L 的方程为te x 2=,te t y --=,则L 的拐点个数为 .解:)(21213-22t ttt t t e e e e x y dx dy +=+=''=--, )32(412/)32(215-423-222tt t t t t t e e e e e x dx dy dxy d +-=--=''⎪⎭⎫ ⎝⎛=--. 022<dxyd ,∴无拐点,即L 的拐点个数为0.3. 设2)1()(x e x x f +=,则=)0()2009(f.解:n n xx n e ∑∞==0!1 ,n n x x n e 20!12∑∞==∴,12020!1!1)1()(2+∞=∞=∑∑+=+=∴n n n n x x n x n e x x f .令200912=+n ,则20082=n ,1004=n ,∴2009次幂项的系数!100412009=a . 又!2009)0()2009(2009f a =,!1004!2009)0()2009(=∴f . 另解:利用2009阶Peano 型余项(或者拉格朗日型余项)的麦克劳林公式,或者高阶导数的乘法法则.4. 设x e f xsin 1)(+=',则=)(x f .解:x e f xsin 1)(+=' ,⎰⎰-+=+=∴x d e e x de x e f x x x x sin )sin 1()sin 1()(⎰-+=xdx e e x x x cos )sin 1(.而⎰xdx e xcos ⎰=x d e x sin ⎰-=xdx e x e x xsin sin ⎰+=x d e x e xxcos sin)cos cos (sin ⎰-+=xdx e x e x e x x x ⎰-+=xdx e x x e x x cos )cos (sin ,⎰∴xdx e x cos C x x e x ++=)cos (sin 21.)(x e f ∴x e x )sin 1(+=C x x e x ++-)cos (sin 21C x x e x +-+=)cos sin 2(21.C x x x x f +-+=∴)]cos(ln )sin(ln 2[21)(.另解:x e f xsin 1)(+=' ,令xe t =,则t x ln =,)sin(ln 1)(t tf +='∴,dxxx x x x dx x x f ⎰⎰⋅⋅-+=+=∴1)cos(ln )]sin(ln 1[])sin(ln 1[)(dx x x x ⎰-+=)cos(ln )]sin(ln 1[.而dx x ⎰)cos(ln dx xx x x x ⎰⋅⋅+=1)sin(ln )cos(ln dx x x x ⎰+=)sin(ln )cos(lndxxx x x x x x 1)cos(ln )sin(ln )cos(ln ⋅⋅-+=⎰dx x x x x ⎰-+=)cos(ln )]sin(ln )[cos(ln .而dx x ⎰∴)cos(ln C x x x ++=)]sin(ln )[cos(ln 21. -+=∴x x x f )]sin(ln 1[)(Cx x x ++)]sin(ln )[cos(ln 21C x x x ++-=)]sin(ln )cos(ln 2[21.5. 设)(x f 在),(+∞-∞上连续,且⎰-+=-02)1()(xx x e x dt t x f ,则=)1(f .解:⎰--02)(xx dt t x f⎰-=-=x xtx u du u f 2))((⎰=2)(x xdu u f ,⎰+=∴2)1()(x xx e x du u f .对方程两边求导,有xxxe e x f x x f ++=-⋅1)(2)(2. 令1=x ,有e e f f ++=-1)1()1(2,e f 21)1(+=∴. 6. =⎪⎪⎭⎫⎝⎛-++-+-∞→2222241241141lim n n n n n . 解:原式n nk kn nk n nk n 1)(41lim 41lim 12122⋅-=-=∑∑=∞→=∞→621arcsin 2arcsin 4110102π===-=⎰x dx x .7. 设曲线)(x f y =在原点处有拐点及切线x y 2=,且满足微分方程0='-'''y y ,则曲线的方程为 .解:)(x f 为0='-'''y y 满足00==x y ,20='=x y ,00=''=x y 的特解.由特征方程03=-r r ,得特征根01=r ,12-=r ,13=r , 得微分方程的通解为xx e C e C C y 321++=-.由初始条件,有0)0(321=++=C C C y , 2)0(32=+-='C C y ,0)0(32=+=''C C y ,解得01=C ,12-=C ,13=C .∴曲线方程为x x e e y --=.8. 设yxxy z )(=(0>x ,0>y ),则=∂∂==12y x xz .解:由)ln (ln ln y x yxz +=,有)1ln (ln 11)ln (ln 11++=⎭⎬⎫⎩⎨⎧⋅++='y x y x x y x y z z x, )1ln (ln 1)(++⋅='∴y x yxy z yx x.)12(ln 4)12(ln 2212+=+⋅='∴==y x x z ..9. 已知{}n a 为等差数列,01≠=-+d a a n n ,0≠n a ( ,2,1=n ),且∞=∞→n n a lim ,则级数∑∞=+111n n n a a 的和是 . 解:)111(lim 11322111+∞→∞=++++=∑n n n n n n a a a a a a a a ⎭⎬⎫⎩⎨⎧-++-+-=++∞→)(1lim 1132232112n n n n n a a a a a a a a a a a a d )111111(lim 113221+∞→-++-+-=n n n a a a a a a d 1111)11(lim 1da a a d n n =-=+∞→. 10. 设L 为圆周122=+y x ,则{}=++⎰ds y x y x yL2222sin )cos(π .解:原式L ds y x ds x ds y ds y L Lyx L L 21)(21cos 22222L -=+-=-=-==⎰⎰⎰⎰↔方程对称性的方程πππ-=⋅-=221.二、 计算题(10分)设0)1(=f , 2)1(='f ,求xe x xf x x cos )cos (sin lim220-+→.解:原式[]xe x x x xf x x f x x x cos 1cos sin lim 1cos sin )1(1)1cos (sin lim 2202200--+⋅-+-+-+=→→∴;变形;连续乘法))(21())(1(1))(21())((lim )1(22222220)1(x o xx o x x o x x o x f x f +--++-+-++⋅'=→'存在;泰勒公式 )(23)(2)(lim222222202)1(x o x x o x x o x x f ++-+=→=' 32)1(23)1(21lim 20=++=→o o x .三、 计算题(10分)设可导函数)(x f y =由方程3223323=+-y xy x 所确定,求)(x f 的极值点与极值. 解:视)(x f y =,对方程两边求导,得06)2(33222=⋅+⋅+-dxdyy dx dy xy y x , 即 0)(222=---dxdy y x y y x .由原方程知,有 x y ≠, 02=-+∴dxdyy y x .……………………………………①令0=dxdy,得x y -=,代入原方程,有3223333=--x x x , 解得唯一驻点2-=x ,此时2)2(=-=f y .再对①式两边求导,得0)(21222=⎥⎦⎤⎢⎣⎡+-+dx y d y dxdy dx dy .………………………………………②在驻点2-=x 处,有0202012222=⎥⎥⎦⎤⎢⎢⎣⎡+-+-=x dx yd ,041222>=∴-=x dx yd , 2-=∴x 为)(x f 的极小值点,)(x f 有极小值2)2(=-f .四、 证明题(10分)试证:当0≠x 时,有不等式21)4(arctan 10<-<πx e x 成立. 证明:令te tf arctan )(=,t tg =)(,则对0≠x ,在0与x 构成的闭区间上)(t f 与)(t g 满足柯西中值TH 条件,所以存在介于0与x 之间的ξ,使得)()()0()()0()(ξξg f g x g f x f ''=--,即22)(11104arctan ξξξξπe e e e x e x +=⋅+=--. 由212)(102=<+<ξξξξe e e e ,即得21)4(arctan 10<-<πxe x ,证毕. 另证:利用拉格朗日中值定理,或者泰勒中值定理.五、 计算题(10分)计算二次积分dy e x dx dy e x dx I y xy x2210130113}1){sin(}1){sin(⎰⎰⎰⎰+-+=--.解:⎰dy e y 2积不出来,∴考虑交换积分次序.dye x dx dy e x dx I y xy x2210130113}1){sin(}1){sin(⎰⎰⎰⎰+++=∴<--交换上下限下限,上限第二个积分的内积分有 .相应二重积分区域D 如图所示.⎰⎰⎰⎰⎰⎰-==+=1yx )sin(32232)1)(sin(yyy Dy D x Dy dx dy edxdy edxdye x I 后先左右对称为奇函数121011222-====⎰⎰e ededy ye y y y .六、 计算题(10分)求幂级数∑∞=-+11213n n n x n 的收敛半径、收敛域及和函数.解:21211221333)1(lim )()(lim x x n x n x u x u n n n n n nn n =+=-+++∞→+∞→ ,∴收敛区间为31<x ,收敛半径为31. 当31±=x 时,级数为∑∑∞=∞=+±=±11133)3(313n n nn n n ,发散.∴收敛域为)31,31(-. ∑∑∑∞=∞=++∞=-++=+=0201221121)3)(1(93)1(3n n n n n n n n x n x xn xn)(9)(9)1(9010132'='=+=∑∑∑∞=+∞=+∞==n n n n n nx y y x yx y n x 令2222)31(9)1(19)1()1()1(9)1(9x x y x y y y x y y x -=-⋅=--⋅--⋅='-=.七、 计算题(10分)求曲面积分⎰⎰∑++++=23222)(z y x zdxdy ydzdx xdydz I ,其中∑是球面4)1()1()1(222=-+-+-z y x的内侧. 解:( 直接计算困难,∴考虑借助高斯公式).记222z y x r ++=,则3r x P =,3r yQ =,3rz R =. 522623333)(r x r r r xr x r r xx x P -=⋅⋅-=∂∂=∂∂,有对称性可知,5223r y r y Q -=∂∂,5223rz r z R -=∂∂, 有033522=-=∂∂+∂∂+∂∂r r r z R y Q x P ,)0,0,0(),,(≠∀z y x .∴可以改变积分闭曲面. 记22221:ε=++∑z y x (320-<<ε),取内侧,则⎰⎰⎰⎰∑∑∑++=++++=1113232221)(zdxdy ydzdx xdydz z y x zdxdy ydzdx xdydz Iε方程改变积分闭曲面ππεεεεε4343131)3(13313:322221-=⋅⋅-=Ω⋅-=-=⎰⎰⎰≤++Ωz y x Gauss dV 方程。