第3章 线性控制系统的时域分析
自动控制原理(3-1)
动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;
第三章 线性系统时域分析法 第2讲
[
e
( 2 1 )n t
e
( 2 1 )n t
2 1
]
1时,二阶系统的单位阶跃响应含有两个衰减指 从上式看出,
数项。当阻尼比
远大于1时,闭环极点 s ( 2 1) 1 n
n 3 n 2 1 n
一定时,随n 的增大,系统的响应速度变快。
4、无阻尼情况 0
0 时 ,特征根为一对纯共轭虚数,将欠阻尼二阶系统的单 位阶跃响应中的 用零代替,可得到无阻尼二阶系统的单位阶
跃响应为:
C(t ) 1 sin(nt 900 ) 1 cos(nt )
同时反映响应速度和阻尼程度的综合性指标。
% 评价系统的阻尼程度。
1.等价关系——线性定常系统的重要特性: 系统对输入信号导数的响应,就等于系统对该输入信号响 应的导数; 系统对输入信号积分的响应,就等于系统对该输入信号响 应的积分; 注意:积分常数由零初始条件确定。该结论可推广至高阶系统。 2.动态特性: 由时间常数T决定。T响应速度,即响应时间,反之亦 然 3.跟踪能力: 阶跃输入无稳态误差,能跟踪阶跃信号,跟踪速度取决于T; 斜坡输入有位置误差,且稳态误差等于时间常数T; 加速度输入稳态误差无穷大,一阶系统不能跟踪加速度信号。 4. 一阶系统只有一个特征参数T,即时间常数。在一定的输入 信号作用下,其时间响应c(t)由其时间常数惟一确定。
越大,超调量越小,响应速度越慢;决定了系统振荡特性
2) 0 1时,系统输出有超调,且
n 越大,响应速度越快。
3) 1时,系统输出无超调,系统的响应速度随
的
增大而变慢,随 n 的增大而变快。
二阶系统极点分布同单位阶跃响应之间的对应关系
第三章 线性系统的时域分析法(第三四五讲)
变号的次数为特征根在s右半平面的个数!
劳斯表出现零行
设系统特征方程为:
s4+5s3+7s2+5s+6=0 劳 斯 表
s4 1 s3 5 1 s2 6 1 s1 0 2 s0 1 7 6 1 5 6 1 这是零行
① 有大小相等符号相反的 特征根时会出现零行 ② 由零行的上一行构成 辅助方程:
或 %
100%
tg
e
100%
欠阻尼二阶系统动态性能计算
tr d
tr 特征根的虚部
弧度
tp d
tp 特征根的虚部
cos
5%
3.5 ts n
% e
1 2
100%
tg
3.5 ts 特征根的实部
n=[0.05 10]; d=[0.0025 0.5125 2.52 4.01 3]; sys=tf(n,d); step(sys)
第三章 系统的时域性能指标
3.1 系统的时域性能指标 3.2 一阶系统的时域分析 3.3 二阶系统的时域分析
3.4 高阶系统的时域分析
3.5 线性系统的稳定性分析 3.6 线性系统的稳态误差计算
1
t T 2 2
0<ξ<1 s1, 2 n jjn 1 2 ξ=0 0<ξ<1
0
h( t ) 1 ξ=0 e n t 1
2
j 0 0 j
sin(,d jn 欠阻尼t ) s1 2
0 零阻尼 h(t ) 1 cos n t
欠阻尼二阶系统动态性能分析
它们的阶跃响应曲线如图所示,试在同一平面画出3个系统闭环 极点的相对位置,并说明理由。
第3章 线性系统的时域分析第九节_3
(3)根轨迹起始于开环极点,终止于开环零点
说明 当根轨迹增益K1从0变化到∞时,在s平面就会画 出一条一条的根轨迹,每条根轨迹都有起点和终 点,对应于K1 =0的s点叫根轨迹的起点,对应于 K1 →∞的s点叫根轨迹的终点。 由幅值条件
可见 当s=pj时, K1 =0 ;根轨迹起始于开环极点; 当s=zi时, K1 →∞ ;终止于开环零点; 当|s|→∞且n≥m时, K1 →∞。如果开环零点个 数m少于开环极点个数n,则有(n-m)条根轨迹终 止于无穷远处。
(5)两条根轨迹的交点方程为
其中sd为交点。
说明: 交点sd是指两支根轨迹会合后分离的点, 该点为闭环特征方程的重根
假设闭环特征方程有2个重根,则可将其 改写为
例3-6 单位负反馈系统开环传递函数为
试画出系统实轴上的根轨迹并求出系统根轨迹 的交点。
解: 由规则1),系统有3条根轨迹; 由规则3),3条根轨迹的起点为
(4)实轴上的根轨迹 实轴上的某一区域,若其右边开环实数零、 极点个数之和为奇数,则该区域必是根轨迹。 (如红线所示)
红色部分 为根轨迹
说明:以实轴上的s0点为例,根据相角条 件,分三个方面说明这个法则。
G ( s ) H ( s )
m n
(s z ) (s p )
解 系统有3条根轨迹分支,且3条根轨迹都趋 于无穷远处。 实轴上的根轨迹: ,2 1,0 渐近线:
根轨迹的交点满足以下方程
交点必须在根轨迹上,所以交点取
根轨迹与虚轴的交点及临界增益。
令s=iω
令实部及虚部分别为0
解得
第一组解为根迹的起点,第二组得根迹和虚轴的 交点 ,临界根轨迹增益为6
K s ( s 1)( s 2) K 1 s ( s 1)( s 2)
自动控制原理第3章
arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
自控(第六版 胡寿松)第三章
3.1
时间响应性能指标
3.2
3.3
一阶系统的时域响应
二阶系统的时域响应
3.4
3.5
系统的稳定性分析
系统稳态性能分析
2
3.1
时间响应性能指标
工程实际中,有些系统的输入信号是已知的(如恒值系 统),但对有些控制系统来说,常常不能准确地知道其输 入量是如何变化的(如随动系统)。
因此,为了方便系统的分析和设计,使各种控制系统有一 个进行比较的统一的基础,需要选择一些典型试验信号作 为系统的输入,然后比较各种系统对这些输入信号的响应。
11
y(t) p
1 0.5 0
稳态误差
td tr t p
ts
t
峰值时间tp:响应超过其稳态值到达第一个峰值所需时间。 调节时间ts:响应到达并保持在稳态值内所需时间。 超调量%:响应的最大偏离量h(tp)与稳态值h(∞)之差的百 分比,即 h( t p ) h() % 100% h() 稳态性能:由稳态误差ess描述。
17
3.2.2 单位斜坡响应
设系统的输入为单位斜坡函数r(t)=t,其拉氏变换为 R( s ) 1 / s 2 则输出的拉氏变换为
C ( s) 1 1 1 T T 2 2 Ts 1 s s s s 1
t T
T
t T
r(t)=t
C ( t ) t T Te
R( s ) L[ r ( t )] A ( t )e st dt
0
A ( t )e dt A ( t )e st dt A
st 0 0
0
单位脉冲函数的拉氏变换为R(s)=1。
《自动控制原理》第三章-3-5-稳态误差计算
伺服电动机
R(s)
E(s)
1
C(s)
-
s(s 1)
K 1, 1
r(t) 1(t),k p , ess 0
r(t) t, kv 1, ess 1
r(t)
1 2
t2, ka
0, ess
位置随动系统
能源与动力学院 第三章 线性系统的时域分析法
14
4.扰动作用下稳态误差
R(s)
-
E(s)
R(s) E(s) 20
s4
N (s)
+
2
C(s)
s(s 2)
能源与动力学院 第三章 线性系统的时域分析法
28
3-20
R
-
K1
U
K2 S(T1S 1)
C
G(s)
K1K 2
B
s(T1s 1)(T2s 1)
1 T2S 1
(s)
C(s) R(s)
T1T2 s 3
K1K2 (T2s 1) (T1 T2 )s2 s
1
能源与动力学院 第三章 线性系统的时域分析法
7
3.输入作用下稳态误差计算
(1)阶跃作用下的稳态误差
r(t) R 1(t), R(s) R s
ess
Lim sR(s) s0 1 G(s)H (s)
Lim s1R(s)
s0
K Lim s
s0
1
R LimG(s)H (s)
Lim s R
s0
K Lim s
27
参考答案: Kp= ,kv=5,ka=0,essr=0.4,essn=-0.2
四、控制系统如图, r(t) 1 2t, n(t) 1(t), 试计算
自动控制原理第3章
自动控制原理
17
调量越小, 响应的振荡 越弱,系统 的平稳性越 好,灵敏性?
越大,超
自动控制原理
18
3-3-2 二阶系统的单位阶跃响应
一定时 ,瞬态分 量衰减速 度取 n e 决于 n 故 衰减系数
自动控制原理
19
3-3-2 二阶系统的单位阶跃响应
(2)等幅振荡型
h(t ) 0 1 e nt 1
c (s)
自动控制原理
12
3-3-1 二阶系统的数学模型
开环传递函数
K G(s) s(Tm s 1)
c ( s) K ( s) r ( s ) Tm s 2 s K
R(S) C(S)
闭环传递函数
二阶系统微分方程 系统的闭环传递函数的标准形式:
2 n ( s) 2 2 s 2 n s n
自动控制原理
4
3-1 系统的时域性能指标
动态性能指标
在阶跃函数作用下测定或计算系统的动态性能指标 因为阶跃输入可以表征系统受到的最严峻的工作状态 (1)延迟时间
td
h ()
(2)上升时间
(3)峰值时间 (4)调节时间
tr
tp
0.9h() 0.5h() 0.1h()
td
ts
tr
ts
tp
5
误差带:±5%, ±2%
3-3-3 欠阻尼二阶系统的动态过程分析
(3)峰值时间 t p 的计算
dh(t ) n t e n p sin( d t p ) 0 dt t t p 1 2
则 sin( d t p ) 0
d t p 0, ,2 , d t p
第三章线性系统的时域分析
系统已达到稳态,系统达到稳态的时间称为系统的响应时 间,对于一阶系统,响应时间为 (3 ~ 4) 。
2013年6月8日星期六 第3章第10页共97页
误差:
t
e(t ) r (t ) c(t ) 1 (1 e ) e
t
当t 时,e(t ) 0
所以,一阶系统能准确跟踪单位阶跃输入。
d n 1 2
C(t)
d 称为阻尼自然振荡频率。
C(∞)
2013年6月8日星期六
0
t
第3章第26页共97页
1 2 c(t ) 1 e nt sin( 1 2 nt arctan ), t 0 1 2 1
当 0时,可得系统的无阻尼响应为:
在工程上,当 1.5 时,使用上述近似关系已 有足够的准确度了.
2013年6月8日星期六 第3章第23页共97页
2013年6月8日星期六
第3章第24页共97页
j
2.欠阻尼 0 1 的情况 §3-3二阶系统的时域响应
×
j n 1
2
系统的闭环极点为:
2
n
s1 ( j 1 ) n s 2 ( j 1 2 ) n
第3章第7页共97页
§3-2 一阶系统的时域响应
一阶系统的框图如下: 系统的传函为:
R(s)
1 s
C (s)
C ( s) 1 R( s ) s 1
分析系统在零初始条件下对典型输入信号的响应
2013年6月8日星期六
第3章第8页共97页
1.单位阶跃响应
C(t)
1 R( s) s 1 1 C (s) s (s 1) s s 1 1 1 s s 1
朱玉华自动控制原理第3章 时域分析3-1,2,3
1
1
ቤተ መጻሕፍቲ ባይዱ
s4 3s3 s2 3s 1 0 s3 3 3
试判别该系统的稳定性。 s2 0 1
当 0时,3 3 0,
s1 3 3 0
s0
1
有2个特征根在s平面第右3章边控. 制系系统统的是时域不分析稳定的
10 0 0
(2) 劳斯表中某一行的元素全为零。
——这时系统在s平面上存在一些大小相等符号相反的
61
s0 6
劳斯表中第一列元素大于零,所以该系统是稳定的。 这时,系统所有的特征根均处于s平面的左半平面。
第3章 控制系统的时域分析
课程回顾(1)
1、 稳态性能指标 2、 动态性能指标
ess
lim[r(t)
t
cr (t)]
(1)延迟时间td (2)上升时间tr
(3)峰值时间tp
(4)调整时间ts
负可化为全为正) (2)劳斯表中第一列所有元素均大于零。
第3章 控制系统的时域分析
例3-1 已知三阶系统特征方程为 a0s3 a1s2 a2s a3 0
试写出系统稳定的充要条件
解:列写劳斯表 s3
a0
a2
0
s2
a1
a3
0
s1 a1a2 a0a3 0
a1
s0
a3
0
故得出三阶系统稳定的充要条件为:
0
9
s0 5
s1 32
0
s0 5
所得结论不变
第3章 控制系统的时域分析
2、劳斯稳定判据的特殊情况
(1) 劳斯表中某一行的第一个元素(系数)为零,而该 行其它元不为零。
——计算下一行第一个元素时将出现无穷大,以至劳斯 表的计算无法进行。
控制系统的时域分析
L-1
1 s3
其中:A
-
[
T +T2 s2 s
1 s3( Ts
- T3 Ts + 1
1 ) s3 ]s=0
1
1 2
t2
- Tt + T 2 - T 2e -t/T
d
1
B ds [ s3(Ts 1 )
s3
]s=0
T
s1,2,3 0
C
1 {
( 3 1 )
d 31 ds 31
[
1 s3( Ts 1 )
=- 1 T
s(Ts
+
1)
(Ts
+
1)
p2
=
-
1 T
=
1
= -T
红河学院自动化系
T
自动控制原理
单位阶跃
慣性
拉氏反变换:
c(t) = L-1 C(s)
=
L-1
1 s
-
s
1 + 1/T
=
1
-
-t
eT
一阶系统没有超调,
c(t)
系统的动态性能指标为 调节时间:
ts = 3T (±5%)
单位阶跃响应曲线
一、时域分析法及其特点
时域分析法——控制系统在一定输入作用下,根 据输出量的时域表达式,分析系统的稳定性、瞬 态过程性能和稳态误差。 特点:
(1) 直接在时间域中对系统进行分析校正,直观、 准确; (2) 可以提供系统时间响应的全部信息; (3) 基于求解系统输出的解析解,比较烦琐。
红河学院自动化系
自动控制原理
二、常用的典型输入信号
红河学院自动化系
自动控制原理 三、线性系统时域性能指标 总要求
第三章 控制系统的时域分析—1引言及一阶系统时域分析
稳定性指标(收敛、发散)
稳定是控制系统能够工作的首要条件,只有动态过程收 敛 (响应衰减),研究动态性能与稳态性能才有意义。
收敛是指系统从一个状态运动到另一个状态,在其动态响应过 程中,振荡逐渐减弱并稳定在某一状态。反之则称为发散。
T
量衰减为零。在整个工作时间内,系统的响应都
不会超过其稳态值。由于该响应曲线具有非振荡
特征,故也称为非周期响应。
1 斜率 1
T 0.632
C(t) 0.95
T
3T
图中响应曲线的初始斜率(t=0时)为 1/T。如果系统保 持初始响应的变化速度不变,则当t=T时,输出量就能达 到稳态值。实际上,响应曲线的斜率是不断下降的,经
过T时间后,输出量c(t)从0上升到稳态值的63.2%。经过 3T-4T时, c(t)将分别达到稳态值的95%-98%。可见,时 间常数T反应了系统的响应速度,T越小,输出响应上升 越快,响应过程的快速性也越好。
c(t) 1 exp( t ) T
由上式可知,只有当t趋于无穷大时,响应的瞬 态过程才能结束,在实际应用中,常以输出量达到 稳态值的95%或98%的时间作为系统的响应时间 (即调节时间),这时输出量与稳态值之间的偏差 为5%或2%。
t
c(t)
c(t) 1 e T
ess
lim
t
e(t)
0
1
1 T
0.632
动态性能指标:
63.2% 86.5% 95% 98.2% 99.3%
td 0.69T tr 2.20T
t
自动控制原理课后答案第3章
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当H=1时,称为单位脉冲信号,记为 (t)。如果令 0,则称为单位理
想脉冲函数,如图所示,并用 (t) 表示。
2020/2/6
第三章 线性控制系统的时域分析
4
自动控制原理
典型输入信号
• 5.正弦信号
r(t) Asin t
实际工作中,如:电源的波动、机械振动、元件的噪声干扰、海浪对 舰艇的扰动力等均可视为正弦作用。另外,还可以用不同频率的正弦 输入,得到系统的频率特性,据此判断系统的性能。 在分析控制系统时,究竟采用哪一种输入信号,取决于系统正常工作 时,最常见、最不利的输入情况。但是无论选用哪一种输入信号,系 统表现的性能是一样的。
是由 R(s) 的极点形成; e T 为暂态分量,当 t 时, e T 0 ,暂态分量是由传递函
数的极点形成。一阶系统的单位阶跃响应是一单调上升的指数曲线,如图 3.6 所示。
2020/2/6
第三章 线性控制系统的时域分析
12
自动控制原理
一阶系统的时域分析
图3.6 一阶系统的单位阶跃响应
自动控制原理
第3章 线性控制系统的时域分析
2020/2/6
第三章 线性控制系统的时域分析
1
自动控制原理Biblioteka 3.1 系统时间响应的性能指标
一个控制系统的时域响应 不仅取决于系统本身的结构和 参数,即系统的传递函数 ,而且和系统的初始状态以及系统 的输入信号有关。为便于研究,规定系统在外加输入信号之 前是相对静止的,即为零初始状态。
一阶系统的数学模型
T dc(t) c(t) r(t) dt
式中,c(t) 为电路的输出电压;r(t) 为电路的输入电压,T RC ,T为时间 常数。
零初始条件下,其传递函数为
C(s) G(s) 1
R(s)
Ts 1
2020/2/6
第三章 线性控制系统的时域分析
10
自动控制原理
一阶系统的时域分析
2020/2/6
第三章 线性控制系统的时域分析
6
自动控制原理
动态性能与稳态性能
图3.3 系统的单位阶跃响应
2020/2/6
第三章 线性控制系统的时域分析
7
自动控制原理
动态性能与稳态性能
• (1)延迟时间 阶跃响应曲线从零第一次到达稳态值的10% 所需的 时间。
• (2)上升时间 阶跃响应曲线从零第一次上升到稳态值所需的时间。 若阶跃响应曲线为过阻尼的单调变化状态,其响应不超过稳态值,则 定义阶跃响应曲线从稳态值的10%上升到90%所需的时间为上升时间。
(a)RC电路
(b)一阶系统框图
(c)等效框图 图:一阶系统及结构框图
2020/2/6
第三章 线性控制系统的时域分析
11
自动控制原理
一阶系统的时域分析
• 一阶系统的时域响应
1)单位阶跃响应
设 r(t) 为单位阶跃输入,即 r(t) 1(t) , R(s) 1 s ,零初始条件下一阶系统单位阶跃
控制系统的实际输入信号往往是未知的,为了便于对系 统进行分析和设计,常需要一些输入函数作为测试信号。根 据其响应情况,对系统的性能作出评价。选取的测试信号应 具有下列特点:
• (1)能反映系统工作时的实际情况;
• (2)易于在实验室中获得;
• (3)数学表达形式简单,以便数学上的分析和处理。
2020/2/6
2020/2/6
第三章 线性控制系统的时域分析
5
自动控制原理
动态性能与稳态性能
• 1)稳定性
• 稳定性是控制系统分析和设计中最为重要的概念,也是对控制系统性 能的最基本要求,是控制系统在各种非理想条件下能够可靠工作,对 外部扰动有自调节能力的前提条件。
• 2)稳态性能
• 稳态误差 :指稳态响应的期望值与实际值的差值。若系统输入为单位 阶跃信号,则
2020/2/6
第三章 线性控制系统的时域分析
13
自动控制原理
一阶系统的时域分析
一阶系统的单位阶跃响应具有两个特征: • 时间常数 为表征响应特性的唯一参数 • 响应曲线的初始上升斜率为 1/T
响应的拉氏变换为
C(s) 1 R(s) 1 1 T
Ts 1
s(Ts 1) s Ts 1
(3.9)
对上式取拉氏反变换,得
1t
c(t) 1 e T
(3.10)
由式(3.10)可见,一阶系统的单位阶跃响应包含两个分量:“1”为稳态分量,c(t) 的终值,
1t
1t
第三章 线性控制系统的时域分析
2
自动控制原理
典型输入信号
• 1.阶跃信号
r
(t)
0,
t0
R0 , t 0
(a)阶跃信号
当阶跃信号的幅值为1,即 时,称为单位阶跃信号。
• 2.斜坡信号
r(t)
0,
t0
v0t, t 0
当v0 1 时,称为单位斜坡信号。
(b)斜坡信号
• (3)峰值时间 阶跃响应曲线超过稳态值到达第1个峰值所需的时 间。
• (4)调节时间 阶跃响应曲线到达并保持在其稳态值允许的误差范 围(即误差带)内所需的时间,通常误差范围定义为5%c() 或2%c()。
• (5)超调量 阶跃响应曲线的最大值 cmax 与其稳态值c() 之差与稳态 值的百分比,即
M
p
%
c(tp ) c() c()
100%
2020/2/6
第三章 线性控制系统的时域分析
8
自动控制原理
抗扰动性能
系统突加扰动的动态过程
2020/2/6
第三章 线性控制系统的时域分析
9
自动控制原理
3.2 控制系统的时域分析
• 一阶系统时域分析
用一阶微分方程式描述的控制系统称为一阶系统。它是工程中最基 本、最简单的系统,如:RC电路、热处理器、体温计等,均为一阶系统 的实例。
• 稳态误差是系统控制精度的一种度量,若稳态误差 ,则称系统是无静 差的,反之称系统是有静差的。
• 3)动态性能
• 稳定是控制系统能够运行的首要条件,因此只有当动态过程收敛时, 研究系统的动态性能才有意义。系统的输出能准确地跟踪或复现阶跃 输入时,认为是较为严格的工作条件,所以评价系统时域性能指标, 通常是根据系统的单位阶跃响应确定。
2020/2/6
第三章 线性控制系统的时域分析
3
自动控制原理
典型输入信号
• 3.等加速度信号
0, t 0
r
(t
)
1 2
a0t
2
,
t0
当a0 1时,称为单位等加速度信号。
• 4.脉冲信号
(c)等加速度信号
0, t 0, t
r (t )
H
,
0t