原子发射光谱分析法

合集下载

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱仪通常由三部分构成: 光源、分光、检测
二、火焰光度计
利用火焰作为激发光源,仪器装置简单,稳定性高。该仪器通常采用滤光片、光电池检测器等元件,价格低廉,又称火焰光度计。
常用于碱金属、钙等谱线简单的几种元素的测定,在硅酸盐、血浆等样品的分析中应用较多。对钠、钾测定困难,仪器的选择性差。
缺点: 弧光不稳,再现性差; 不适合定量分析。
2. 低压交流电弧
工作电压:110~220 V。 采用高频引燃装置点燃电弧,在每一交流半周时引燃一次,保持电弧不灭;
工作原理
(1)接通电源,由变压器B1升压至2.5~3kV,电容器C1充电;达到一定值时,放电盘G1击穿;G1-C1-L1构成振荡回路,产生高频振荡; (2)振荡电压经B2的次级线圈升压到10kV,通过电容器C2将电极间隙G的空气击穿,产生高频振荡放电;
二、原子发射光谱的产生
在正常状态下,元素处于基态,元素在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱);
特征辐射
基态元素M
激发态M*
热能、电能
E
原子的共振线与离子的电离线
原子由第一激发态到基态的跃迁: 第一共振线,最易发生,能量最小; 原子获得足够的能量(电离能)产生电离,失去一个电子,一次电离。(二次电离) 离子外层电子跃迁时发射的谱线称为离子线,每条离子线都具有相应的激发电位,其大小与电离电位大小无关。 原子谱线表:I 表示原子发射的谱线; II 表示一次电离离子发射的谱线; III表示二次电离离子发射的谱线; Mg:I 285.21 nm ;II 280.27 nm;
1. 直流电弧 直流电作为激发能源,电压150 ~380V,电流5~ 30A; 两支石墨电极,试样放置在一支电极(下电极)的凹槽内; 使分析间隙的两电极接触或用导体接触两电极,通电,电极尖端被烧热,点燃电弧,再使电极相距4 ~ 6mm

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法(Atomic Emission Spectroscopy,AES)和原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是常用的分析方法,它们利用原子在能量激发下发射或吸收特定波长的光线来确定样品中的元素含量。

以下是它们的优缺点比较:一、原子发射光谱法优点:1. 灵敏度高:原子在激发后能发出强烈的荧光,使得检测灵敏度高。

2. 分辨率高:能够分离出元素的不同能级,对于元素的多种化合价态也有很好的分辨率。

3. 多元素分析:可以同时分析多种元素,适用于复杂样品。

4. 快速:仅需要几分钟即可得到结果。

缺点:1. 形成荧光需要外部能量输入,易受分析环境影响,如气体的压力和温度等。

2. 需要专业人员操作:仪器复杂,需要专业的技术人员进行操作和维护。

3. 样品处理复杂:由于样品需要被分解为原子态,因此需要严格的前处理过程。

4. 不能定量:由于荧光强度与供能的原子数不成比例,因此不能直接定量。

二、原子吸收光谱法优点:1. 灵敏度高:具有极高的检测灵敏度,尤其适用于微量元素的分析。

2. 定量性好:由于原子吸收的强度与元素浓度呈线性关系,因此可以直接定量。

3. 选择性好:由于不同元素的吸收谱线是独立的,因此可以区分不同元素。

4. 不受环境影响:对于气体和液体样品,只需要进行简单的前处理即可进行分析。

缺点:1. 只能测量单一元素:每个元素只有一个特定的吸收波长,因此只能测量一个元素。

2. 影响灵敏度的因素多:灵敏度受到多种因素影响,如化学基质等。

3. 仅限于溶液测量:由于需要将样品转化为气态原子,因此只适用于溶液样品。

4. 仪器复杂:仪器需要精密的光学部件以保证精确的测量结果。

无论是原子发射光谱法还是原子吸收光谱法,都有其独特的优点和缺点。

在选择分析方法时,需要考虑样品类型、分析目标和实验室条件等因素,并综合评估各种分析方法的优缺点,以选择最适合的方法。

(仪器分析)11.1原子发射光谱分析法

(仪器分析)11.1原子发射光谱分析法

11.1.3 原子发射光谱分析的应用
1. 元素的分析线、最后线、灵敏线
分析线:复杂元素的谱线可能多至数千条,只选择其中几 条特征谱线检验,称其为分析线; 最后线:浓度减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是 最灵敏线、最后线。
nmgmex pE(m/kT)
N
Z
2020/10/24
nmgmex pE(m/kT)
N
Z
Z 为温度 T 的函数,分析中的温度通常在2000~7000 K ,Z 变化很小,谱线强度为
I hc4g πm Z AN exE pm(/kT )
式中:Φ 是考虑在 4 球面角度上发射各向同性的常数。 Z 可视为常数,对于某待测元素,选定分析线后,T一定
2020/10/24
原子发射光谱分析法的特点:
(1) 可多元素同时检测:发射各自的特征光谱; (2) 分析速度快:试样不需处理,同时对几十种元素进行定 量分析。 (3) 选择性高 各元素具有不同的特征光谱; (4) 检出限较低:10~0.1gg-1(一般); ngg-1(ICP)。 (5) 准确度较高:5%~10% (一般光源);<1% (ICP) 。 (6) ICP-AES性能优越 线性范围4~6数量级,可测高、中 、低不同含量试样。 缺点:非金属元素不能检测或灵敏度低。
常见光源的种类和特点是什么?
2020/10/24
(1)直流电弧
电弧是指在两个电极间施加高电流密度和低燃点电压 的稳定放电。
石墨电极,试样放置凹槽内。试样量10~20mg。
两电极接触通电后,尖端被烧热,点 燃电弧,再使电极相距4 ~ 6mm。

分析化学二第3章原子发射光谱法PPT

分析化学二第3章原子发射光谱法PPT
l = 0, 1, 2, ……,(n-1)
轨道符号: s p d
二、能级图与光谱项——光谱项
基本原理
(1)核外单电子运动状态的描述
磁量子数(m ) 描述电子云在空间的不同取向
m = 0, ±1, ±2, …… ±l (即 m 共有2l ±1个取值)
自旋量子数(s ) 描述电子的自旋情况
s= 1
2

共有2L+1个值
二、能级图与光谱项——光谱项
(3)光谱项符号 作 用: 用来表示原子中电子特定的能级
一个光谱项符号代表原子的一个能级
基本原理
表示方法:
谱线多重性符号
主量子数
n 2S 1LJ
总角量子数(用S、P、D…表示) 内量子数, 代表不同的光谱支项
二、能级图与光谱项——光谱项
基本原理
写出基态Na的光谱项符号
2、理想的光源条件
() () () () () ()
二、AES中的光源
3、AES中常用的光源
经典光源
原子发射光谱仪
现代光源
原子发射光谱仪
二、AES中的光源
与光源相关的几个重要概念
击穿电压:使电极间击穿而发生自持放电的最小电压。 自持放电:电极间的气体被击穿后,即使没有外界的
电离作用,仍能继续保持电离,使放电持 续的现象。
1.988 10 23 J cm 5893 10 8 cm
3.37 10 19 J
(2)求gJ 和g0
Na的基态3s的光谱项为 32 S1/ 2
g0
(2J 1) 2 1 1 2
2
Na的激发态3p的光谱项为 32 P1/ 2 和 32 P3/ 2
gi
(2J 1) (2 1 1) (2 3 1) 6

第二章+原子发射光谱分析法

第二章+原子发射光谱分析法
J 的取值范围: L + S, (L + S – 1), (L + S – 2), …, L - S
(2) 钠原子的第一激发态 :(3p)1 n=3 L=l=1 S = 1/2 (2S+1) = 2 J = 3/2,1/2
光谱项:32P
光谱支项 : 32P1/2 和 32P3/2
由于轨道运动和自旋运动的相互作用, 这两个光 谱支项代表两个能量有微小差异的能级状态。
J 的取值范围:
L + S, (L + S – 1), (L + S – 2), …, L - S
谱线多重性符号:2S+1(M)
钠原子由第一激发态向基态跃迁发射两条谱线
第一激发态光谱支项 : 32P1/2 和 32P3/2 基态光谱项:32S1/2
589.593 nm ,588.996 nm
能量 原子能级图 实际光谱项
主量子数 n: 1,2,3…
电子运动状态的描述
原子轨道描述: n、l、m
角量子数 l : 0,1,2, …n-1 磁量子数 ml(m): l~-l 自旋量子数 ms(s): 1/2
基态Na原子的核外电子排布: (1s)2(2s)2(2p)6(3s)1
单价电子原 子电子能级
5
(二)原子能级和能级图
单、多价电子 原子电子能级
光谱定量公式推导:
激发光源中的电离
气体(等离子体)
离解
MX
M+ X
试样
元素浓度: C
M + e 电离 M+ + 2e
NMX NM NM +
NM = N0 + N2 + ···+ Ni + ···

仪器分析 第7章 原子发射光谱分析

仪器分析 第7章 原子发射光谱分析

摄谱法原理 ⑴ 摄谱步骤
安装感光板在摄谱仪的焦面上
激发试样,产生光谱而感光
显影,定影,制成谱板 特征波长—定性分析 特征波长下的谱线强度—定量分析
⑵ 感光板 玻璃板为支持体,涂抹感光乳剂(AgBr+明胶+增感剂) 感光:
2AgX+2hυ→ Ag(形成潜影中心)+X2
OH
O
显影: 对苯二酚
乳剂特性曲线:
感光板的反衬度
以黑度S与曝光量的对数lgH作图 在正常曝光部分:
γ
S lg H lg H i lg H i
α
乳 剂 特 性 曲 线
S lg( It ) i
Hi为感光板的惰延量
谱线黑度与辐射强度的关系:
S lg( It ) i
定量分析中,更主要是采用 内标法,测量分析线对的相 对强度
磁辐射,通过测定其波长或强度进行分析的方法
不涉及能级跃迁,物质与辐射作用,使其传播方 向等物理性质发生变化,利用这些改变进行分析 的方法
光分析法
非光谱分析法
光谱分析法
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原子光谱分析法 旋 光 法
X 射 线 荧 光 光 谱
分子光谱分析法
分 子 荧 光 光 谱 法 分 子 磷 光 光 谱 法 核 磁 共 振 波 谱 法
e. 波长尽可能靠近
(3) 摄谱法中的内标法基本关系式
• 摄谱法中谱线黑度S与辐射强度、浓度、曝光时间 、感光板的乳剂性质及显影条件有关,固定其他 条件不变,则感光板上谱线的黑度仅与照射在感 光板上的辐射强度有关
i0 S lg i
i0 未曝光部分的透光强度 i 曝光部分的透光强度

原子发射光谱分析

原子发射光谱分析

ICP的分析特点 的分析特点
1. 对大多数元素有高的灵敏度 检测限达 -9-10-11 检测限达10 g·L-1因为温度高(等离子体核处 因为温度高(等离子体核处10000K,中央 ,中央6000- - 8000K);惰性气氛,有利于难熔物质分解。 );惰性气氛 );惰性气氛,有利于难熔物质分解。 2. 测定线性范围宽 因趋肤效应而无自吸现象。 因趋肤效应而无自吸现象 自吸现象。 高频电流密度在导体截面呈不均匀分布, 趋肤效应 高频电流密度在导体截面呈不均匀分布,集 中在导体表层的现象。 中在导体表层的现象。 3. 碱金属电离不造成干扰,因电流密度大。 碱金属电离不造成干扰,因电流密度大。 4. 无电极污染 因是无极放电。 因是无极放电。 5. 耗样量小 载气流速低,试样在中央通道充分激发 载气流速低, 6. 背景干扰小 因工作气体氩气是惰性气体不产生其 它物质。 它物质。
第一共振线 原子由第一激发态跃迁到基态发射的谱线。 原子由第一激发态跃迁到基态发射的谱线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 原子获得足够的能量(电离能)产生电离。 原子获得足够的能量(电离能)产生电离。失去一个电 子形成一级离子,再失去一个电子形成二级离子。 子形成一级离子,再失去一个电子形成二级离子。 离子由第一激发态跃迁到基态发射的谱线。 电离线 离子由第一激发态跃迁到基态发射的谱线。与电 离能大小无关,离子的特征共振线。 离能大小无关,离子的特征共振线。 识别元素的特征光谱鉴别元素的存在 定性分析 测定特征谱线的强度测定元素的含量 定量分析
R 镇流电阻 调节 和稳定电流 L 减小电流波动
直流电弧工作原理
电弧点燃后,热电子流高速通过分析间隔冲击阳极, 电弧点燃后,热电子流高速通过分析间隔冲击阳极, 产生高热,试样蒸发并原子化, 产生高热,试样蒸发并原子化,电子与原子碰撞电离出 正离子冲向阴极。电子、原子、离子间的相互碰撞, 正离子冲向阴极。电子、原子、离子间的相互碰撞,使 原子跃迁到激发态,返回基态时发射出该原子的光谱。 原子跃迁到激发态,返回基态时发射出该原子的光谱。 弧焰温度: 多种元素激发 弧焰温度:4000~7000 K,可使 多种元素激发。 ~ ,可使70多种元素激发。 绝对灵敏度高,背景小,适合定性分析。 特 点:绝对灵敏度高,背景小,适合定性分析。

原子发射光谱法

原子发射光谱法
灵敏线 是元素激发电位低、强度较大的谱线,多是 共振线。
最后线 是指当样品中某元素的含量逐渐减少时,最 后仍能观察到的几条谱线。
谱线强度
I = A CB
赛伯-罗马金公式
影响谱线强度的因素:
激发电位 统计权重 原子密度
跃迁几率 光源温度 其他因素
仪器
光源
单色器
熔融、蒸发、 离解、激发
分光
检测器 检测
围要大,对于ICP而言准确性也较高。有些元素原子吸收是无 法测定的,但发射可测,如P、S 等;(3)AAS比较普遍,其
价格相对AES便宜,操作也比较简单。
AES理论基础
❖ 原子结构及原子光谱的产生 ❖ 原子的激发和电离 ❖ 谱线强度
原子结构及原子光谱的产生
❖ 原子结构 ❖ 原子光谱的产生
原子结构及原子光谱的产生
激发光源。 ❖ 在一定频率的外部辐射光能激发下,原子的外层电子在由一个
较低能态跃迁到一个较高能态的过程中产生的光谱就是原子吸
收光谱 (AAS)。 ❖ (1)一般来说AES在多元素测定能力上优于AAS,但是AES在
操作上比AAS来的复杂;还有就是AES由谱线重叠引起的光谱
干扰较严重,而AAS就小的多 ;(2)原子发射比吸收测定范
AES的发展简史
❖ 定量分析阶段 20世纪30年代,罗马金(Lomakin)和赛伯(Scheibe) 通过实验方法建立了谱线强度(I)与分析物浓度(c) 之间的经验式--- I = A CB 从而建立了AES的定量分析法。
❖ 等离子光谱技术时代
20世纪60年代,电感耦合等离子体(ICP)光源的 引入,大大推动了AES的发展。
激发光源
激发光源的作用及理想光源 光源 光源选择

《现代仪器分析教学》3.原子发射光谱分析法

《现代仪器分析教学》3.原子发射光谱分析法
整理课件
2、光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱 中存在着自吸现象,需要引入自吸常数 b ,则:
I acb
(自吸:原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的 辐射,这种现象称为自吸现象整理)课件
3.激发电位:原子中的电子从基态跃迁至激发态所需的 能量称为激发电位。
整理课件
4、原子发射光谱的产生:气态原子或离子的核外层电 子当获取足够的能量后,就会从基态跃迁到各种激发 态,处于各种激发态不稳定的电子(寿命<10-8s)迅速回 到低能态时,就要释放出能量,若以电磁辐射的形式
释放能量,即得到原子发射光谱。
(quantitative spectrometric analysis)
1.光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范 围;
谱线强度比较法:将被测元素配制成质量分数分别 为1%,0.1%,0.01%,0.001%四个标准。将配好的标样 与试样同时摄谱,并控制相同条件。在摄得的谱线 上查出试样中被测元素的灵敏线,根据被测元素的 灵敏线的黑度和标准试样中该谱线的黑度,用目视 进行比较。
2)光栅摄谱仪
光栅摄谱仪采用衍射光栅代替棱镜作为色散元件。 特点:适用波长范围广,色散和分辨能力大
整理课件
3.4 发射光谱分析的应用
3.4.1 光谱定性分析
1、定性依据:元素不同→电子结构不同→光谱不同 →特征光谱 2、定性分析基本概念 分析线:复杂元素的谱线可能多至数千条,只选择其 中几条特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的 谱线;

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法和原子吸收光谱法是分析化学中常用的两种技术手段,用于测定样品中的元素含量。

它们在实验原理、仪器设备、分析方法等方面存在一些差异,同时也各自具有一些优点和缺点。

下面将详细介绍这两种光谱法的特点。

一、原子发射光谱法1. 原理:原子发射光谱法是基于原子激发态与基态之间的电子跃迁而进行分析的。

样品先被气体火焰、电弧等高温条件下原子化,然后通过外部能量激发原子使其处于激发态,激发态原子会发射出特定波长的光线。

通过检测和测量这些发射光线的强度和波长,可以确定样品中的元素含量。

2. 优点:- 灵敏度高:原子发射光谱法对于大多数元素都具有较高的灵敏度,可以测定低至微克级别的元素含量。

- 多元素分析:原子发射光谱法可以同时分析多个元素,因为不同元素的激发发射光谱具有独特的特征波长,可以通过同时检测多个波长来分析多种元素。

- 范围广:原子发射光谱法适用于固体、液体和气体样品,可以分析多种不同形态的样品。

3. 缺点:- 精密度较低:原子发射光谱法的精密度相对较低,误差较大。

这是因为在样品原子化和激发过程中,可能会出现非选择性的基态原子和激发态原子共存,导致信号的干扰和背景噪声。

- 不适用于稀释样品:如果样品中元素含量过低,原子发射光谱法的灵敏度可能不足以准确测定元素含量。

- 仪器复杂:原子发射光谱法需要使用高温和高能量的电弧或火焰进行样品原子化和激发,因此仪器设备较为复杂。

二、原子吸收光谱法1. 原理:原子吸收光谱法是基于原子对特定波长的光线的吸收而进行分析的。

样品先被原子化,然后经过光源产生的特定波长的光线通过样品,被原子吸收。

通过测量吸收光线的强度,可以确定样品中的元素含量。

2. 优点:- 精密度高:原子吸收光谱法的精密度相对较高,误差较小。

因为在原子吸收过程中,只有特定波长的光线能够被原子吸收,不会受到其他波长光线的干扰。

- 高选择性:原子吸收光谱法可以通过选择不同的波长来分析不同元素,具有较高的选择性。

第6章原子发射光谱法

第6章原子发射光谱法

影、定影等过程后,制得光谱底片,其上有许多黑度不同
的光谱线。
然后用映谱仪观察谱线位置及大致强度,进行光谱定 性及半定量分析。
用测微光度计测量谱线的黑度,进行光谱定量分
析。
H = E •t=KIt 黑度S定义为透过率倒数的对 数,故
S = lg1/T = lg i0 / i
感光板上谱线黑度,一般用测 微光度计测量。
(2)ICP的分析性能 ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电。 优点: Ⅰ、温度高(5000-8000K),惰性气氛,原子化条件好,有利于 难熔化合物的分解和难激发元素激发,可测定70多种元素。 Ⅱ、试样在光源中停留时间长,有利于试样的原子化、电离和 激发。氩气的环境使化学干扰和基体效应小,有很高的灵敏度。 Ⅲ、放电的稳定性很好,分析的精密度高,相对误差1%左右 。
分辨率(resolving power): 摄谱仪的光学系统能够正确分辨出紧邻两条 谱线的能力。可用两条可分辨开的光谱线波长 的平均值λ与其波长差△λ之比值来表示。即: R= λ/ △λ 集光本领 指摄谱仪的光学系统传递辐射的能力,大型 摄谱仪的集光本领较中型摄谱仪弱。
摄谱法是用感光板记录光谱。将光谱感光板置于摄谱 仪焦面上,接受被分析试样的光谱作用而感光,再经过显
原子发射光谱法的应用:在地质、冶金、机械、环境、 生命及医学等领域得到广泛应用。
第二节 原子发射光谱法的基本原理
一、原子发射光谱的产生
一般情况下,物质的原子处于基态,通过电致激发、
热致激发等激发光源作用下,原子获得能量,外层电子从 基态跃迁到较高能态变为激发态 ,约经10-8 s,外层电子就 从高能级向较低能级或基态跃迁,能量以光辐射形式发射 出去,这样就得到发射光谱。 热能、电能

原子发射光谱

原子发射光谱

原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 磁量子数( m ): 描述核外电子云沿磁场方向的分量,即决 定了电子绕核运动的角动量沿磁场方向的 分量。 m = 0、1、 2、 3、……、 l
原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 自旋量子数( s ): 描述核外电子云自旋方向,即自旋角动量 沿磁场方向的分量。电子自旋的空间取向 只有两个,顺磁场和反磁场。s = 1/2 Na:(1s)2(2s)2(2p)6(3s)1 (3s)1 n = 3 l = 0 m=0
2、原子线和离子线
原子线(Ⅰ) :原子核外激发态电子跃迁回基态 所发射出的谱线,用罗马字母Ⅰ 标识,通常也指电弧线。 M*M (I) 离子线(Ⅱ,Ⅲ) : 离子核外激发态电子跃迁回基态 所发射出的谱线,用罗马字母Ⅱ Ⅲ等表示一级电离、二级电离离子 发射的谱线,通常也指火花线。 M+ * M+ (Ⅱ ) M2+* M2+ (Ⅲ )
光谱项
n2S+1LJ 或者nM LJ 原子发射光谱是由原子或离子的核外电子 在高低能级间跃迁而产生的,原子或离子的 能级通常用光谱项来表示。 n:主量子数; L:总角量子数; S:总自旋量子数; M=2S+1,体现了谱线的多重性 J:内量子数;又称光谱支项。
Na (1s)2(2s)2(2p)6(3s)1
原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 角量子数( l ):
描述核外电子云的形状,决定了电子绕核运 动的角动量,同一主量子数 n 下,按不同角 量子数 l 可分为n个亚层。 l = 0、1、 2、 3、 4、…… 符号: s、p、d、 f、 g、……

仪器分析原子发射光谱法

仪器分析原子发射光谱法

△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。

第二章原子发射光谱分析

第二章原子发射光谱分析
以火焰、电弧、等离子炬等作为光源,使气态原子的外 层电子受激发射出特征光谱进行定量分析的方法。
2.原子吸收光谱分析法
利用特殊光源发射出待测元素的共振线,并将溶液中离 子转变成气态原子后,测定气态原子对共振线吸收而进行的 定量分析方法。
3.原子荧光分析法
气态原子吸收特征波长的辐射后,外层电子从基态或低 能态跃迁到高能态,在10-8s后跃回基态或低能态时,发射出 与吸收波长相同或不同的荧光辐射,在与光源成90度的方向 上,测定荧光强度进行定量分析的方法。
二、光分析法仪器的基本单元
1. 光源
依据方法不同,采用不同的光源:火焰、灯、激光、电 火花、电弧等;依据光源性质不同,分为:
连续光源:在较大范 围提供连续波长的光源, 氢灯、氘灯、钨丝灯等;
线光源:提供特定波 长的光源,金属蒸气灯( 汞灯、钠蒸气灯)、空心 阴极灯、激光等;
2.单色器
单色器:获得高光谱纯度辐射束的装置,而辐射束的波长 可在很宽范围内任意改变;
平行光经过棱镜后按波长顺序排列成为单色光;经聚焦 后在焦面上的不同位置上成像,获得按波长展开的光谱;
棱镜的分辨能力取 决于棱镜的几何尺寸和 材料;
棱镜的光学特性可 用色散率和分辨率来表 征;
棱镜的特性与参数
(1)色散率
角色散率:用dθ/dλ表示,偏向角θ对波长的变化率;
d d
2sin
2
4.分子荧光分析法
某些物质被紫外光照射激发后,在回到基态的过程中发 射出比原激发波长更长的荧光,通过测量荧光强度进行定量 分析的方法。
5. 分子磷光分析法
处于第一最低单重激发态分子以无辐射弛豫方式进入第 一激发态的三线态,再跃迁返回基态发出磷光。测定磷光强 度进行定量分析的方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)样品的组成对分析结果的影响比较显著。因此, 进行定量分析时,常常需要配制一套与试样组成相仿 的标准样品,这就限制了该分析方法的灵敏度、准确 度和分析速度等的提高。
(2)发射光谱法,一般只用于元素分析,而不能用来 确定元素在样品中存在的化合物状态,更不能用来测 定有机化合物的基团;对一些非金属,如惰性气体、 卤素等元素几乎无法分析。
在正常状态下,元素处于基态,元素在受到外界能量(热能或电能)激发时 ,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)。
热能、电能
基态元素M
E
激发态M*
2020/10/13
特征辐射
激发电位:原子中某一外层电子由基态激发到高能级所需要 的能量称为激发电位(Excitation potential)(or激发 能)。
1.玻耳兹曼分布定律 原子由某一激发态 i 向基态或较低能级 j 跃迁
,所发射的谱线强度与激发态原子数成正比。
在热力学平衡时,单位体积的基态原子数N0与激发态原子数Ni的之
间的分布遵守玻耳兹曼分布定律:
Ni
gi g0
Ei
N0 e kT
gi 、g0为激发态与基态的统计权重; Ei :为激发能;k为玻耳兹曼常数;T为
Self-absorption and self reversal of spectrum line
2020/10/13
• 定量分析阶段
• 19世纪20年代至50年代,罗马金和赛伯分别提出定 量分析的经验公式,把光谱线强度和物质浓度联系 了起来。
• 罗马金进一步提出了罗马金-赛伯公式的物理意义, 完善了定量分析的基础。使AES成为广泛应用的成 分分析手段。
• 现代阶段
• 开始于20世纪60年代,由于光电谱仪在工业中广泛 应用,Fassel and Greefield 把电感耦合等离子体电 源(ICP)应用于发射光谱的手段,使分析性能有了 显著的提高,成为分析分析中最能用的多元素分析
2020/10/13
Iij
gi g0
Aij h ij
N0
Ei
e kT
(3)基态原子数 (No) 谱线强度与基态原子数成正比 ,在一定条件下,基态原子数与试样中该元素浓度成正比 。因此,在一定的实验条件下谱线强度与被测元素浓度成 正比,这是光谱定量分析的依据。
2020/10/13
四、谱线的自吸与自蚀
II 表示一次电离离子发射的谱线; III表示二次电离离子发射的谱线。 如Mg I 285.21 nm ;Mg II 279.55 nm; 同种元素的原子和离子所产生的原子线和离子线都是该元 素的特征谱线,习惯上统称为原子光谱。m line intensity
激发温度。
2.发射谱线强度: Iij = Ni Aijhij h为Plank常数;Aij两个能级间的跃迁几率; ij发射谱线的频率。将Ni代入上 式,得:
2020/10/13
Iij
gi g0
Aij h ij
N0
Ei
e kT
3.影响谱线强度的因素: (1)激发能 (Ej) 激发能越小 ,谱线强度越强; (2)温度(T) 温度升高,谱 线强度增大,但易电离。
原子发射光谱法:根据待测物质的气态原子或离子受激发后 所发射的特征光谱的波长及其强度来测定物质中元素组成和 含量的分析方法。
定性分析阶段
1802年,wollastion,火焰中的钠黄线。
1860年,Kirchhoff 和 Bunsen,证明谱线是由元素而不是由分子产 生的。这一发现将样品中的元素与光谱线联系起来。并据发现了许多新 的元素,如:铯、铷、铊、铟、镓等。
2020/10/13
二、原子发射光谱的产生
Formation of atomic emission spectra
1.AES的产生 原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁
到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出 多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。
19世纪末到20世纪初,Barlmer, Lyman, Pacchen, Brakeff and Pfund, 先后发现了氢光谱的5个线系,奠定了光谱学理论的实验基础。
随后,Plank(普朗克)提出量子理论,Bohr(玻尔)应用量子理论成功 解释了氢光谱的归属,使原子发射光谱与原子结构联系起来,完成了光 谱分析的第一阶段。
共振线:由激发态向基态跃迁所发射的谱线称为共振线 (resonance line)。 第一共振线具有最小的激发电位,因此最容易被激
发,为该元素最强的谱线。
2020/10/13
2.原子的共振线与离子的电离线
非共振线:激发态与激发态之间跃迁形成的光谱线 共振线: 激发态与基态之间的跃迁产生的光谱线 原子线:原子发射的谱线 离子线:离子发射的谱线 元素谱线表:I 表示原子发射的谱线;
(3)仪器设备比较复杂、昂贵。
2020/10/13
一、概述
1.原子发射光谱分析法(AES):根据待测物质的气态原子或离子受 激发后所发射的特征光谱的波长及其强度来测定物质中元素组成和含量 的分析方法。
2.原子发射光谱法的一般分析步骤: (1)在激发光源中,将待测物质蒸发、解离、电离、激发,产生光 辐射。 (2)将待测物质发射的复合光经分光装置色散成光谱 (3)通过检测器检测待测物质中元素光谱线的波长和强度,进行元 素的定性和定量分析 3.优点:选择性好,分析速度快,多种元素同时分析。
3.试样用量少,测定元素范围广。 周期表上约七十个元素可以用光谱方法较容易地定性鉴 定。 分析试样不经化学处理,固体、液体样品都可直接测定(电弧火 花法)。
4. 适宜于作低含量及痕量元素的分折。 5. 对于冶金工厂,光谱分析不仅可以作成品分析,还可以作控制
冶炼的炉前快速分析。
2020/10/13
6.局限性
工具。
2020/10/13
原子发射光谱分析的特点
1.灵敏度和准确度较高,检测限低。 一般光源可达10~0.1mg/mL,电感耦合高频等离子体原子
发射光谱(ICP-AES)检出限可达ng/mL级。 ICP光源校准曲线线性范围宽可达4~6个数量级。
2.选择性好,分析速度快。 多元素同时检测,在几分钟内同时检测几十种元素。
相关文档
最新文档