五年级举一反三奥数题组合图形的面积B

合集下载

五年级奥数举一反三-第19讲--组合图形的面积(二)

五年级奥数举一反三-第19讲--组合图形的面积(二)

第19讲组合图形的面积(二)一、知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点: 1。

两个三角形等底、等高,其面积相等;2.两个三角形底相等,高成倍数关系,面积也成倍数关系;3。

两个三角形高相等,底成倍数关系,面积也成倍数关系。

二、精讲精练【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。

(单位:厘米)【思路导航】按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积.其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC。

面积是:6×3÷2=9平方厘米。

练习1:1.求下图中阴影部分的面积。

2.求图中阴影部分的面积。

(单位:厘米)3。

下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。

【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积.【思路导航】三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1。

5倍。

阴影部分的面积是:7.5÷(1+1。

5)×1。

5=45。

练习2:1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。

2。

图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积.3。

图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。

【例题3】两条对角线把梯形ABCD分割成四个三角形.已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)【思路导航】1.因为三角形ABD与三角形ACD等底等高,所以面积相等。

五年级奥数举一反三第18讲组合图形的面积含答案

五年级奥数举一反三第18讲组合图形的面积含答案

第18 讲组合图形面积(一)一、知识要点组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点:1. 切实掌握有关简单图形的概念、公式,牢固建立空间观念;2. 仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3. 适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

二、精讲精练【例题1】一个等腰直角三角形,最长的边是12 厘米,这个三角形的面积是多少平方厘米?练习1:1. 求四边形ABCD的面积。

(单位:厘米)2. 已知正方形ABCD的边长是7 厘米,求正方形EFGH的面积3.有一个梯形,它的上底是 5 厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5 平方厘米。

求原来梯形的面积。

【例题2】正图正方形中套着一个长方形,正方形的边长是12 厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的 2 倍。

求中间长方形的面积。

练习2:1. (如下图)已知大正方形的边长是12 厘米,求中间最小正方形的面积。

2. 正图长方形ABCD的面积是16 平方厘米,E、F都是所在边的中点,求三角形AEF的面积3. 求下图(上右图)长方形ABCD的面积(单位:厘米)【例题3】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7 平方厘米。

三角形CDH的面积是多少平方厘米?练习3:1. 图中两个正方形的边长分别是 6 厘米和 4 厘米,求阴影部分的面积2. 下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

(单位:厘米)3. 下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?【例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习4:1. 如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积2. 在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3. 图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方例题5】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大 6 平方厘米,AB=4厘米,BC=6厘米。

五年级奥数举一反三 第18讲 组合图形面积(一)

五年级奥数举一反三 第18讲  组合图形面积(一)

第18讲组合图形面积(一)一、知识要点组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两种:一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

二、精讲精练【例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?【思路导航】由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。

我们可以假设有4个这样的三角形,且拼成了下图正方形。

显然,这个正方形的面积是12×12.那么,一个三角形的面积就是12×12÷4=36平方厘米。

练习1:1.求四边形ABCD的面积。

(单位:厘米)2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3.有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

【例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

【思路导航】图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。

这两个正方形的边长分别是12÷(1+2)=4(厘米)和4×2=8(厘米)。

中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。

即:12×12-(4×4+8×8)=64(平方厘米)练习2:1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。

小学五年级奥数 举一反三课件组合图形的面积(一)(附讲解步骤及答案)

小学五年级奥数 举一反三课件组合图形的面积(一)(附讲解步骤及答案)

解析:
A
B F
4×4=16(平方厘米)□ABCD的面积
16+6=22(平方厘米)△ACE的面积
22×2÷4=11(厘米)线段CE的长度
C D E 11-4=7(厘米)线段DE的长度
3
如图所示,大正方形和小正方形的边长分别是4cm、3cm,求阴影部分的面积。 解析:两个正方形的面积之和
减去空白部分的面积 正方形面积之和:
B
则:a+b=16÷2=8; a²+b²=68÷2=34。 ab=[(a+b)²-( a²+b² )]÷2
D
C
68÷2=34
16÷2=8
(8×8-34)÷2=15(平方厘米)
5
如图所示,在边长为12cm的正方形ABCD中,E、F是BC边上的三等分点, M、N是对角线BD上的三等分点,求三角形EMN的面积。
A
D
解析: 12÷3=4(厘米) 线段MF的长度 12÷3=4(厘米) △MNE的高
N M
4×4÷2=8(平方厘米) △MNE的面积 B E F C
6 A
梯形ABCF的下底BC是12cm,高AB是18cm,CE=2DE,求DF。 D F
18÷(1+2)×2=12(厘米) 线段CE的长度 12×18÷2=108(平方厘米) △BCF的面积
E
12×12÷2=72(平方厘米) △BCE的面积
108-72=36(平方厘米)
36×2÷12=6(厘米)
ቤተ መጻሕፍቲ ባይዱ△CEF的面积
线段DF的长度
B
C
□ABCD的面积为:4×8=32(平方厘米)
C
G
D
6
如图所示,长方形的长是8cm,宽是6cm,A、B是宽的中点, 求长方形内阴影部分的面积。

举一反三-五年级奥数分册~第19周 组合图形的面积

举一反三-五年级奥数分册~第19周  组合图形的面积

第十九周组合图形的面积专题简析:在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1,两个三角形等底、等高,其面积相等;2,两个三角形底相等,高成倍数关系,面积也成倍数关系;3,两个三角形高相等,底成倍数关系,面积也成倍数关系。

例题1 如图,ABCD是直角梯形,求阴影部分的面积和。

(单位:厘米)分析按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积。

其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC。

面积是:6×3÷2=9平方厘米。

练习一1,求下图中阴影部分的面积。

2,求图中阴影部分的面积。

(单位:厘米)3,下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。

例题2 下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。

分析三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1.5倍。

阴影部分的面积是:7.5÷(1+1.5)×1.5=45。

练习二1,下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。

2,图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。

3,图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。

例题3 两条对角线把梯形ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)分析1,因为三角形ABD与三角形ACD等底等高,所以面积相等。

因此,三角形ABO的面积和三角形DOC的面积相等,也是6平方厘米。

小学奥数五年级举一反三第19周组合图形的面积

小学奥数五年级举一反三第19周组合图形的面积

第十九周组合图形的面积专题简析:在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1,两个三角形等底、等高,其面积相等;2,两个三角形底相等,高成倍数关系,面积也成倍数关系;3,两个三角形高相等,底成倍数关系,面积也成倍数关系。

例题1 如图,ABCD是直角梯形,求阴影部分的面积和。

(单位:厘米)分析按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积。

其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC。

面积是:6×3÷2=9平方厘米。

练习一1,求下图中阴影部分的面积。

2,求图中阴影部分的面积。

(单位:厘米)3,下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。

例题2 下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。

分析三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1.5倍。

阴影部分的面积是:7.5÷(1+1.5)×1.5=45。

练习二1,下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。

2,图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。

3,图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。

例题3 两条对角线把梯形ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)分析1,因为三角形ABD与三角形ACD等底等高,所以面积相等。

因此,三角形ABO的面积和三角形DOC的面积相等,也是6平方厘米。

小学数学五年级奥数举一反三第18周 组合图形面积(一)

小学数学五年级奥数举一反三第18周  组合图形面积(一)

第18周组合图形面积(一)专题简析:组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两种:一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点:1,切实掌握有关简单图形的概念、公式,牢固建立空间观念;2,仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3,适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

例1 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?分析与解答由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。

我们可以假设有4个这样的三角形,且拼成了下图正方形。

显然,这个正方形的面积是12×12,那么,一个三角形的面积就是12×12÷4=36平方厘米。

练习一1,求四边形ABCD的面积。

(单位:厘米)2,已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3,有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

例2 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

分析与解答图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。

这两个正方形的边长分别是12÷(1+2)=4(厘米)和4×2=8(厘米)。

中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。

即:12×12-(4×4+8×8)=64(平方厘米)练习二1,(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。

2,正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

五年级奥数举一反三--组合图形面积

五年级奥数举一反三--组合图形面积

第18 周组合图形面积(一)例1、一个等腰直角三角形,最长的边是12 厘米,这个三角形的面积是多少平方厘米?1、求四边形ABCD 的面积。

(单位:厘米)2、已知正方形ABCD 的边长是7 厘米,求正方形EFGH 的面积5 厘米,下底7 厘米。

如果只把上底增加 3 厘米,那么面积就增加 4.5 平方厘米。

求原来梯形的面积。

例2、正图正方形中套着一个长方形,正方形的边长是12 厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的 2 倍。

求中间长方形的面积。

1、(如下图)已知大正方形的边长是12 厘米,求中间最小正方形的面积。

2、如下图长方形ABCD 的面积是16 平方厘米,E、F 都是所在边的中点,求三角形AEF 的面积。

3、求下图长方形ABCD 的面积(单位:厘米)例 3 、四边形ABCD 和四边形DEFG 都是正方形,已知三角形AFH 的面积是7 平方厘米。

角形CDH 的面积是多少平方厘米?1、图中两个正方形的边长分别是 6 厘米和 4 厘米,求阴影部分的面积2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积(单位:厘米)例4、下图中正方形的边长为8 厘米,CE 为20 厘米,梯形BCDF 的面积是多少平方厘米?1、如下图,正方形ABCD 中,AB=4 厘米,EC=10 厘米,求阴影部分的面积2 、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中 BC=10 厘米, EC=8 厘米,且阴影部分面积比三角形 EFG 的面积大 10 平方厘米。

求平行四边形的面积。

例 5、图中 ABCD 是长方形,三角形 EFD 的面积比三角形 ABF 的面积大 6 平方厘米,求 ED 的1、如图,平行四边形 BCEF 中, BC=8 厘米,直角三角形中, AC=10 厘米,阴影部分面积比三角形 ADH 的面积大 8 平方厘米。

求 AH 长多少厘米?2、图中三个正方形的边长分别是 1 厘米、2 厘米和 3 厘米,求图中阴影部分的面积3、正方形的边长是 2(a+b) ,已知图中阴影部分 B 的面积是 7平方厘米,求阴影长部分 A 和 C 的和是多少平方厘米?第十九周 组合图形的面积例题 1、如图, ABCD 是直角梯形,求阴影部分的面积和。

2022-2023学年小学五年级奥数(全国通用)测评卷24《组合图形的面积》(解析版)

2022-2023学年小学五年级奥数(全国通用)测评卷24《组合图形的面积》(解析版)

【五年级奥数举一反三—全国通用】测评卷24《组合图形的面积》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________ 一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图中长方形的面积相等,则图中阴影部分面积相比较,()A.甲的面积大B.乙的面积大C.甲和乙的面积相等D.无法确定【解答】解:甲的面积=长方形的长⨯长方形的宽2÷;乙的面积=长方形的长⨯长方形的宽2÷;即:甲乙的面积都是长方形面积的一半,它们的面积一样大.故选:C。

2.(2分)在图中,平行线间的三个图形,它们的面积()A.平行四边形最大B.三角形最大C.梯形最大D.一样大【解答】解:设他们的高为h,平行四边形的面积4h=三角形的面积184 2h h =⨯⨯=梯形面积(26)24h h=+⨯÷=所以它们的面积相比,都相等;故选:D。

3.(2分)甲长方形包含16个小正方形,乙长方形包含12个小正方形.甲长方形与乙长方形的面积相比,结果是什么?()A.甲的面积大B.乙的面积大C.无法确定【解答】解:因为不能确定甲、乙长方形包含的小正方形的面积是否相等,所以无法比较甲长方形与乙长方形面积的大小;故选:C.4.(2分)如图所示,把一个长方形分成一个梯形和一个三角形.已知梯形的面积比三角形的面积大18厘米2,那么梯形的上底长为()厘米.A.2 B.3 C.4 D.6【解答】解:设梯形的上底为a厘米,那么三角形的底为(12)a-厘米,根据题意可得:+⨯÷--⨯÷=(12)62(12)6218a a+⨯--⨯=a a(12)3(12)318+-+=a a33636318a=618a=3答:梯形的上底是3厘米.故选:B.5.(2分)如图,甲、乙两个平行四边形中阴影部分面积的大小为()A.甲>乙B.甲=乙C.甲<乙D.无法确定【解答】解:如图:甲+丙=乙+丙,丙是公共部分,所以甲=乙,答:甲的面积等于乙的面积.故选:B .6.(2分)如图的长方形中有三个三角形,它们面积间的关系是( )A .123S S S +=B .13S S =C .23S S =D .321S S S =-【解答】解:由图可知:2S 的面积是长方形形面积的一半,3S 和1S 的面积和也是长方形面积的一半,由此可得:132S S S +=,即:321S S S =-.故选:D .7.(2分)图中,直线//a b ,比较三角形ADC 和三角形ABD 面积的大小,结果是( )A .三角形ADC 面积大B .三角形ABD 面积大C .它们的面积相等D .无法比较【解答】解:由题意可知:三角形ADC 和三角形ABD 等底等高,所以角形ADC 和三角形ABD 面积相等. 故选:C .8.(2分)如图ABCD 是长方形,已知4AB =厘米,6BC =厘米,三角形EFD 的面积比三角形ABF 的面积大6平方厘米,求(ED = )厘米.A .9B .7C .8D .6【解答】解:长方形ABCD 的面积:4624⨯=(平方厘米);三角形EBC的面积:+=(平方厘米);24630⨯÷=(厘米);CE的长:302610DE的长:1046-=(厘米).故选:D.二.填空题(共9小题,满分18分,每小题2分)9.(2分)如图,图中2=,阴影部分的面积是6平方厘米,求梯形ABCD的面积是27平方厘米.BO DO【解答】解:因为2=,BO DO所以三角形CDO的面积=三角形BCO面积的一半,即三角形CDO的面积3=平方厘米;三角形BCD与三角形ACD同底等高,所以三角形BCD与三角形ACD的面积相等,三角形AOD的面积=三角形BCO的面积,即三角形AOD的面积6=平方厘米;=,三角形ABO的面积是三角形AOD面积的2倍,BO DO2即三角形AOB的面积12=平方厘米;梯形ABCD的面积为:6361227+++=(平方厘米),答:梯形ABCD的面积为27平方厘米.故答案为:27.10.(2分)如图涂色部分的面积是322cm.【解答】解:8866⨯+⨯=+6436=(平方厘米)100(86)62882+⨯÷+⨯÷=+423274=(平方厘米)⨯-÷6(86)2=⨯÷6226=(平方厘米)-+100746=+266=(平方厘米)32答:涂色部分的面积是232cm.故答案为:32.11.(2分)如图,它是由两个正方形拼成的,小正方形的边长为2厘米,大正方形的边长为4厘米,阴影部分的面积为6平方厘米.【解答】解:(24)22+⨯÷=⨯÷622=(平方厘米)6答:阴影部分的面积是6平方厘米.故答案为:6.12.(2分)六个等腰三角形如图摆放,那么四个空白三角形的面积和是两个阴影三角形的面积和的6倍.【解答】解:如下图:把这六个等腰直角三角形从小到大分别编号为①②③④⑤⑥,设①号三角形的面积为1,则②号的面积为2,③号的面积为4,④号的面积为8,⑤号的面积为16,⑥号的面积为32,+++÷+(241632)(18)=÷5496=答:四个空白三角形的面积和是两个阴影三角形的面积和的6倍.故答案为:6.13.(2分)如图,梯形的面积是18.【解答】解:如图:已知45BAC∠=︒,90ABC∠=︒,所以180904545ACB∠=︒-︒-︒=︒,所以AB BC=;因为90ACE∠=︒,所以180904545ECD∠=︒-︒-︒=︒,则45DEC∠=︒,所以DE CD=,梯形的面积()62DE AB=+⨯÷()62BC CD=+⨯÷662=⨯÷18=.故答案为:18.14.(2分)如图:ABCD是一个面积为36平方厘米的长方形,E为BC中点,则阴影部分的面积是15平方厘米.【解答】解:据分析可知:三角形ABE的面积为13694⨯=(平方厘米);三角形DHC的面积和三角形ADH的面积比是1:2,而三角形ADC的面积是36218÷=(平方厘米),所以三角形DHC 的面积为18(12)6÷+=(平方厘米),则三角形AHE 的面积也是6平方厘米.所以阴影部分的面积是9615+=(平方厘米).答:阴影部分的面积是15平方厘米.故答案为:15.15.(2分)如图,ABCD 是直角梯形,5AD =厘米,3DC =厘米,三角形DOC 的面积是1.5平方厘米,则阴影部分的面积是 6 平方厘米.【解答】解:352 1.5⨯÷-,7.5 1.5=-,6=(平方厘米); 答:阴影部分的面积是6平方厘米.故答案为:6.16.(2分)图中直角三角形里有3个正方形,已知25AD cm =,100BD cm =,阴影部分的面积是 10754 2cm .【解答】解:100:25100254=÷=4BC AB =4(25100)=⨯+500=(厘米)设最小正方形的边长为x 厘米4()1005004x x x x ++++= 6.25100500x ++=6.25100100500100x +-=-6.25400x =6.25 6.25400 6.25x ÷=÷64x =中正方形的边长:4x x + 64644=+6416=+80=(厘米)500(25100)2(10010080806464)⨯+÷-⨯+⨯+⨯5001252(1000064004096)=⨯÷-++3125020496=-10754=(平方厘米)答:阴影部分的面积是10754平方厘米.故答案为:10754.17.(2分)如图,已知正方形ABCD 的周长是40厘米, 6.4DE =厘米,阴影部分的面积是 32 平方厘米.【解答】解:由分析可知阴影部分的面积为:6.4(404)2⨯÷÷6.4102=⨯÷642=÷32=(平方厘米); 答:阴影部分的面积是32平方厘米.故答案为:32.三.计算题(共3小题,满分18分,每小题6分)18.(6分)求阴影部分面积.【解答】解:(1)222+=,空白三角形是一个直角三角形,304050空白三角形的面积:30402⨯÷=÷12002=(平方分米)600斜边上的高:⨯÷600250=÷120050=(分米)24+⨯÷(4050)242=⨯÷90242=(平方分米)1080-=(平方分米)1080600480答:阴影部分的面积是480平方分米.(2)40403030⨯+⨯=+1600900=(平方分米)2500⨯÷=(平方分米)40402800+⨯÷(4030)302=⨯÷70302=÷21002=(平方分米)1050--25008001050=-17001050=(平方分米)650答:阴影部分的面积是650平方分米.19.(6分)平行四边形ABCD的边BC长10厘米,直角三角形的直角边EC长8厘米.已知阴影部分的面积比三角形EGF的面积大9平方厘米.求CF的长.【解答】解:设EF长为x厘米,则CF就是8x-厘米,根据题干分析可得方程:x⨯-=⨯÷+10(8)10829-=801049xx=1031x=3.1-=(厘米);8 3.1 4.9答:CF长为4.9厘米.20.(6分)求图中阴影部分的面积.【解答】解:6644662(64)42⨯+⨯-⨯÷-+⨯÷3616181042=+--⨯÷=+--36161820=(平方厘米)14答:阴影部分的面积是14平方厘米.四.应用题(共5小题,满分29分)21.(5分)如图是一幢楼房占地的平面图,算一算它的占地面积有多大?(单位:)m你能想出几种算法?【解答】解:方法一如图:⨯+-⨯-÷6048(6030)(7248)2=+⨯÷288030242=+28803603240=(平方米)方法二如图:⨯-+⨯-÷7260(6030)(7248)2432090242=-⨯÷=-43201080=(平方米)3240答:它的占地面积有3240平方米。

小学五年级举一反三奥数题:组合图形的面积(一)B

小学五年级举一反三奥数题:组合图形的面积(一)B
2. 如图所示,ABCD是正方形,三角形DEF的面积比三角形ABF的面积大6cm2,CD长4cm,求DE的的长度。
3.如图所示,大正方形和小正方形的边长分别是4cmБайду номын сангаас3cm,求阴影部分的面积。
4.长方形ABCD的周长是16cm,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68cm2,求长方形ABCD的面积。
5. 如图所示,在边长为12cm的正方形ABCD中,E、F是BC边上的三等分点,M、N是对角线BD上的三等分点,邱三角形EMN的面积。
6. 梯形ABCF的下底BC是12cm,高AB是18cm,CE=2DE,求DF。
7.
组合图形的面积(一)
基础卷
1. 如图所示,两个完全一样的直角三角形重叠在一起,求阴影部分的面积。(单位:cm)
2. 把边长是10cm的正方形卡片按下图的方法重叠起来,3张这样的卡片重叠以后组成的图形的面积是多少?
3. 有一块长方形草地,长16m,宽12m,中间有一条宽2m的小路,求草地(阴影部分)的面积。
4.如图所示,三角形ABC被分为四个小三角形,其中三个三角形的面积分别为8cm2、6cm2、12cm2,求阴影部分的面积。
5.已知正方形EFGH的边长是4cm,求正方形ABCD的面积。
6. 如图所示,长方形的长是8cm,宽是6cm,A、B是宽的中点,求长方形内阴影部分的面积
提高卷
1. 在腰长为10cm,面积为34cm2的等腰三角形的底边上任取一点,设这个点到两腰的垂线分别长acm、bcm,那么a+b的长度是多少厘米?

五年级奥数举一反三第18周组合图形面积(一)

五年级奥数举一反三第18周组合图形面积(一)

五年级奥数举一反三第18周组合图形面积【一】专题简析;组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两种;一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点;1,切实掌握有关简单图形的概念、公式,牢固建立空间观念;2,仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3,适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

例1 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?分析与解答由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。

我们可以假设有4个这样的三角形,且拼成了下图正方形。

显然,这个正方形的面积是12×12,那么,一个三角形的面积就是12×12÷4=36平方厘米。

练习一1,求四边形ABCD的面积。

【单位;厘米】2,已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3,有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4,5平方厘米。

求原来梯形的面积。

例2 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

分析与解答图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。

这两个正方形的边长分别是12÷【1+2】=4【厘米】和4×2=8【厘米】。

中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。

即;12×12-【4×4+8×8】=64【平方厘米】练习二1,【如下图】已知大正方形的边长是12厘米,求中间最小正方形的面积。

2,正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

五年级的举一反三第18周组合图形面积一.doc

五年级的举一反三第18周组合图形面积一.doc

第 18 周组合图形面积(一)专题简析:组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两种:一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点:1,切实掌握有关简单图形的概念、公式,牢固建立空间观念;2,仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3,适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

例 1一个等腰直角三角形,最长的边是12 厘米,这个三角形的面积是多少平方厘米?分析与解答由于此三角形中只知道最长的边是12 厘米,所以,不能用三角形的面积公式来计算它的面积。

我们可以假设有 4 个这样的三角形,且拼成了下图正方形。

显然,这个正方形的面积是12× 12,那么,一个三角形的面积就是12× 12÷ 4=36 平方厘米。

练习一1,求四边形ABCD的面积。

(单位:厘米)2,已知正方形ABCD的边长是7 厘米,求正方形EFGH的面积。

3,有一个梯形,它的上底是 5 厘米,下底7 厘米。

如果只把上底增加 3 厘米,那么面积就增加 4.5 平方厘米。

求原来梯形的面积。

例 2正图正方形中套着一个长方形,正方形的边长是12 厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的 2 倍。

求中间长方形的面积。

分析与解答图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。

这两个正方形的边长分别是12÷( 1+ 2) =4(厘米)和4× 2=8(厘米)。

中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。

即:12× 12-( 4× 4+ 8× 8) =64(平方厘米)练习二1,(如下图)已知大正方形的边长是12 厘米,求中间最小正方形的面积。

五年级举一反三_第1819讲_组合图形的面积 (优选.)

五年级举一反三_第1819讲_组合图形的面积 (优选.)

wo最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改rd第18讲组合图形面积(一)一、知识要点组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两种:一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

二、精讲精练【例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?【思路导航】由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。

我们可以假设有4个这样的三角形,且拼成了下图正方形。

显然,这个正方形的面积是12×12.那么,一个三角形的面积就是12×12÷4=36平方厘米。

练习1:1.求四边形ABCD的面积。

(单位:厘米)2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3.有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

【例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

【思路导航】图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。

这两个正方形的边长分别是12÷(1+2)=4(厘米)和4×2=8(厘米)。

中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合图形的面积(一)
基础卷
1.如图所示,两个完全一样的直角三角形重叠在一起,求阴影部分的面积。

(单位:cm)
2.把边长是10cm的正方形卡片按下图的方法重叠起来,3张这样的卡片重叠以后组成的图
形的面积是多少?
3.有一块长方形草地,长16m,宽12m,中间有一条宽2m的小路,求草地(阴影部分)的
面积。

4.如图所示,三角形ABC被分为四个小三角形,其中三个三角形的面积分别为8cm2、6cm2、
12cm2,求阴影部分的面积。

5.已知正方形EFGH的边长是4cm,求正方形ABCD的面积。

6.如图所示,长方形的长是8cm,宽是6cm,A、B是宽的中点,求长方形内阴影部分的面

提高卷
1.在腰长为10cm,面积为34cm2的等腰三角形的底边上任取一点,设这个点到两腰的垂线
分别长acm、bcm,那么a+b的长度是多少厘米?
2.如图所示,ABCD是正方形,三角形DEF的面积比三角形ABF的面积大6cm2,CD长4c
m,求DE的的长度。

3.如图所示,大正方形和小正方形的边长分别是4cm,3cm,求阴影部分的面积。

4.长方形ABCD的周长是16cm,在它的每条边上各画一个以该边为边长的正方形,已知这
四个正方形的面积和是68cm2,求长方形ABCD的面积。

5.如图所示,在边长为12cm的正方形ABCD中,E、F是BC边上的三等分点,M、N是对角
线BD上的三等分点,邱三角形EMN的面积。

6.梯形ABCF的下底BC是12cm,高AB是18cm,CE=2DE,求DF。

相关文档
最新文档