多元正态分布的参数估计
多元正态分布参数的估计与假设检验-判别分析
注 共轭分布族总是针对分布中的某个参数而言的 共轭分布族总是针对分布中的某个参数而言的.
三、贝叶斯风险
1、贝叶斯风险的定义 由第一小节内容可知,给定损失函数以后, 由第一小节内容可知,给定损失函数以后,风 险函数定义为
R(d ) = inf R(d ),
* d ∈D
∀d ∈ D
则称d * ( X )为参数θ的贝叶斯估计量
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 、 函数. 函数 2、不同的先验分布,对应不同的贝叶斯估计 、不同的先验分布, 2、贝叶斯点估计的计算 平方损失下的贝叶斯估计 定理4.2 定理 设θ的先验分布为π(θ)和损失函数为 的先验分布为π θ 和损失函数为
Θ
=∫
Θ
∫
Χ
L(θ , d ( x ))q( x | θ )π(θ )dxdθ
=∫
Θ
∫θ | x )g(x )dxdθ
Θ
= ∫ g(x ){ ∫ L(θ , d ( x ))h(θ | x )dθ }dx
Χ
四 、贝叶斯估计
1、贝叶斯点估计 定义4.6 若总体 的分布函数F(x,θ)中参数θ为随机 定义 若总体X的分布函数 中参数θ 的分布函数 θ 中参数 变量, θ 为 的先验分布,若决策函数类D中存在 变量,π(θ)为θ的先验分布,若决策函数类 中存在 一个决策函数使得对决策函数类中的任一决策函数 均有
第8.2节 节
判别分析
一、先验分布和后验分布 二、共轭先验分布 三、贝叶斯风险 四、贝叶斯估计
一、先验分布与后验分布
上一章提出用风险函数衡量决策函数的好坏, 上一章提出用风险函数衡量决策函数的好坏,但 是由于风险函数为二元函数,很难进行全面比较。 是由于风险函数为二元函数,很难进行全面比较。 贝叶斯通过引入先验分布, 的指标. 贝叶斯通过引入先验分布,给出了整体比较 的指标 1、先验信息 在抽取样本之前, 在抽取样本之前,人们对所要估计的未知参数 先验信息. 所了解的信息,通常称为先验信息 所了解的信息,通常称为先验信息 例1(p121例4.6) 某学生通过物理试验来确定当地 1(p121例 的重力加速度,测得的数据为(m/s²): 的重力加速度,测得的数据为 9.80, 9.79, 9.78, 6.81, 6.80 试求当地的重力加速度. 试求当地的重力加速度
第2章多元正态分布的参数估计
第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。
在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。
本章将介绍多元正态分布的参数估计方法。
多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。
在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。
首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。
我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。
均值向量的估计可以通过计算样本向量的平均值来得到。
均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。
协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。
协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。
这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。
修正的常用方法有Ledoit-Wolf修正和修正。
在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。
在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。
参数估计的过程中,还需要考虑到样本量的大小。
当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。
多元正态分布下贝叶斯估计法
多元正态分布下贝叶斯估计法贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,可以用于在已有数据的情况下估计未知参数的分布。
在统计学中,多元正态分布是一种常见的概率分布,描述了多个变量之间的关系。
本文将介绍多元正态分布下的贝叶斯估计法,并详细讨论其原理、应用和计算方法。
一、多元正态分布及其性质多元正态分布是一种连续型概率分布,用于描述多个随机变量之间的关系。
假设有一个d维随机向量x=(x₁, x₂, ..., x d)服从多元正态分布x(x, Σ),其中x是一个d维均值向量,Σ是一个d×d的协方差矩阵。
多元正态分布的概率密度函数可以表示为:x(x; x, Σ)=(2x)⁻ᵈ/²|Σ|⁻¹/²exp[−½(x−x)ᵀΣ⁻¹(x−x)] 其中x表示向量的转置,|Σ|表示协方差矩阵Σ的行列式。
多元正态分布具有许多重要的性质,例如,线性组合仍然服从多元正态分布,条件分布也是多元正态分布等。
这些性质使得多元正态分布在实际问题中的应用非常广泛。
二、贝叶斯估计法的原理贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,通过引入先验分布和后验分布来估计未知参数的分布。
其基本思想是将参数视为随机变量,并基于已有数据对参数进行推断。
在多元正态分布中,我们通常需要估计的参数包括均值向量x和协方差矩阵Σ。
贝叶斯估计法假设这些参数服从先验分布,然后通过观测数据来更新先验分布,得到后验分布,进而对参数进行估计。
具体而言,假设我们有n个样本x₁, x₂, ..., x n,那么贝叶斯估计法的步骤如下:1.选择参数的先验分布。
通常先验分布会根据领域知识或经验进行选择,常见的先验分布包括共轭先验、非信息先验等。
2.根据先验分布和样本数据,计算参数的后验分布。
根据贝叶斯定理,后验分布可以表示为:x(x, Σ | x₁, x₂, ..., xn)∝x(x₁, x₂, ..., x n|x, Σ)x(x, Σ)其中x(x₁, x₂, ..., x n|x, Σ)表示给定参数x和Σ的情况下样本数据的似然函数。
第三讲多元正态分布
二元正态分布的密度曲面图
2 2 下图是当 1 2 , 0.75 时二元正态分布的钟形密
度曲面图。
多元正态分布性质
(1)、若 X ( X1, X 2 , X p )T ~ N p (, ), 是对角阵, 则 X1, X 2 , X p 相互独立。 (2)、若 X ~ N p (, ) , A 为 s p 阶常数阵,则
•有些现象服从多元正态分布
•许多多元统计分布的抽样分布是近似正态分布
23
多元正态分布
它是一元正态分布的推广
X ~ N p ,
设随机向量 X ( x1 , x2 ,, x p )' 服从P维正态分布,则有,
f ( X ) 2
p 2
1 2
1 1 exp x x 2
12
随机向量的数字特性
随机向量的均值
E ( X 1 ) 1 E( X 2 ) 2 E( X ) E( X ) p p
性质
E ( AX ) AE( X ) E ( AXB) AE( X ) B E ( AX BY ) AE( X ) BE(Y )
15
性质
1)若(x1,x2,…,xp)’ 和(y1,y2,…,yq)’不相关。则
cov(x1 , y1 ) cov(x1 , y2 ) cov(x1 , yq ) cov(x2 , y1 ) cov(x2 , y2 ) cov(x2 , yq ) 0 cov(x , y ) cov(x , y ) cov(x , y ) p 1 p 2 p q
(1) q
第二章多元正态分布的参数估计
就是剔除了 X2 Xk1, , X p 得(线性)影响之后,Xi和
Xj之间得协方差。
给定X2时Xi 和Xj得偏相关系数(partial correlation
coefficient)定义为: ij k1, , p
ij k1, , p
,
ii k1, , p jj k1, , p
其中 Σ11 2 ij k1, , p 。
μ12
μ1
Σ12
Σ
1 22
x2 μ2
Σ112
Σ11
Σ12
Σ
1 22
Σ
21
μ1·2和Σ11·2分别就是条件数学期望和条件协方差矩
阵,Σ11·2通常称为偏协方差矩阵。
这一性质表明,对于多元正态变量,其子向量得条件分布仍
就是(多元)正态得。
例5 设X~N3(μ, Σ),其中
1
16 4 2
μ
0 2
μ(1) μ(2)
11 Σ 21
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22
则
X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 , , X p ) 服从 p
aX
(0,1,
0)
X
2
X2
~
N (aμ, aΣa)
X3
1
aμ
(0,1,
0)
2
2
3
11 12 aΣa (0,1, 0) 21 22
多元正态分布参数估计与检验
则称随机向量 为X维正p态随机向量,
其中
称为均值向量, V为协方差矩阵(协差阵),且
V0. 对于一般情形 V0, 仍可定义多维正
态随机向量, 记为 X~ Np(,V 。) 当 V0时,
X有前面的密度表示,而当
布是退化的正态分布。
时|V,|0 X的分
多元正态分布的性质:
(1) p维正态分布由其均值向量和协方差阵唯
即
~
H0
成立时, 1
时,
2
D 0 6 n 1 n 20 7(X Y )T V 0 8 1 (X Y )0 9 2 (p )1 0
n n 而当 不 1有偏2 大的趋
因此,对
给定的显著
当
H 成立时, 0
势。
D
性水平 ,
D n n 11 n n 22(X Y )T V 1 (X Y )1 2 (p )
体 Np(,V)的简单样本, 令
X
1n nk1
Xk
——样本均值向量
n
S (XkX)X (kX)T —样本离差阵
k1
定理18.1
态总体
的简单样本,
设 X 1 ,X 2 , ,X n ( n 是p ) 来自多元正
态总体 Np(,的V简)单样本,
且 V,0 则 X是
的极大似然估计,
1 S 是 V的极大似然估计。
体 Np(,V的) 简单样本,
其中 V已知。 考虑假设
检验问题
H 0 : 0 , H 1 : 0
令 D n (X 0)T V 1(X 0),则可以证明当
H 0 成立时,即 时,0 D~ 2(p)
H0
D
01
0 2
03
04
多元正态分布
(
xi1
x1)(xip
x
p
)
n (xi2 x1)(xi1 x2)
i1
(
xip
xp )(xi1
x1)
(xi2 x2)2
(xip xp )(x2 x2)
(xi2 x1)(xip xp )
(xip xp )2
组内组间水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响如果原假设成立
第一章多元正态分布及其参数估计
多元正态分布的重要性: (1)多元统计分析中很多重要的理论和方法都是直接或间接
地建立在正态分布 基础上的,许多统计量的极限分布往往和 正态分布有关。 (2)许多实际问题涉及的随机向量服从多元正态分布或近似 服从正态分布。因此多元正态分布是多元统计分析的基础。
一、多元正态分布的定义 定义1:若p维随机向量 X (X1,X p) 的密度函数为:
(1 0,2 0, 1)
为X1和X2的相关系数。
当 0 时X1与X2不相关,对于正态分布来说不相关和独立
等价。因为:
X1, X 2
第1章多元正态分布的参数估计(精)
第一章 多元正态分布的参数估计一、填空题1.设X 、Y 为两个随机向量,对一切的u 、v ,有)v (p )u (p )uv (p =,则称X 与Y 相互独立。
2.多元分析处理的数据一般都属于 横截面 数据。
3.多元正态向量()'=X X X p ,,1 的协方差阵∑是 对角阵 ,则X 的各分量是相互独立的随机变量。
4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条 件是 p 'p 21p 21R )x ,,x ,x (,0)x ,,x ,x (f ∈∀≥和1dx dx dx )x ,,x ,x (f p 21-p 21-=⎰⎰+∞∞+∞∞ 。
5.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= ),n (W k1i i p ∑∑=。
二、判断题1.多元分布函数()x F 是单调不减函数,而且是右连续的。
正确2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。
错误3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B 正确4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。
正确5.一般情况下,对任何随机向量()'=X X X p ,,1 ,协差阵∑是对称阵,也是正定阵。
错误6.多元正态向量()'=X X X p ,,1 的任意线性变换仍然服从多元正态分布。
正确7.多元正态分布的任何边缘分布为正态分布,反之一样。
错误8.多元样本中,不同样品之间的观测值一定是相互独立的。
正确9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。
第二章 多元正态分布及参数的估计
27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB
0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0
1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e
1 2
(
x12
x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6
多元正态分布及参数估计
2019/11/6
应用统计方法
22
2、性质 1) 设为常数,则 E (a X )a(E X ); 2)设 A,B,C 分别为常数矩阵,则
E ( A C X ) A E ( X B ) B C
3)设 X 1,X 2, ,X n为 n个同阶矩阵,则
E ( X 1 X 2 X n ) E X 1 E X 2 E X n
对一切 x、y成立,则称 x和 y相互独立。
2、设 x和 y是两个连续随机向量, x和 y相互
独立,当且仅当
f(x|y)fx(x)或 F (x ,y ) F x(x )F y(y )
对一切
2019/11/6
x
、y
成立。 应用统计方法
19
3、设 x1,x2, ,xn是 n个随机向量,若
F ( x 1 , x 2 , , x m ) F 1 ( x 1 ) F 2 ( x 2 ) F m ( x m ) mn
2019/11/6
应用统计方法
23
二、协方差矩阵
1、定义:设 x (x 1 ,x2, ,xp)和 y (y 1 ,y2, ,y q)分 别为 p维和 q维随机向量,则其协方差矩阵为
Exx2 1 E E ((xx1 2))y1E(y1)
y2E(y2) yqE(yq)
降的右连续函数;
2019/11/6
应用统计方法
4
② 分布函数的取值范围为[0,1],即
0F(a1,a2, ,ap)1
③ 分布函数当变量取值为无穷大时,函数值收敛到1,即
F(,, ,)1
2019/11/6
应用统计方法
5
二、两个常用的离散多元分布
多元正态分布及其参数估计、假设检验
协方差阵相等时,两个正态总体均值向量的检 验
协方差阵不相等时,两个正态总体均值向量的 检验
协方差阵检验 多个协差阵相等的检验
可编辑ppt
16
均值向量和协方差阵的假设检 验时常用的统计分布
可编辑ppt
17
可编辑ppt
可编辑ppt
10
多元正态分布密度函数
可编辑ppt
11
多元正态分布的数字特征
可编辑ppt
12
多元正态分布的性质
可编辑ppt
13
多元正态分布的参数估计
可编辑ppt
14
可编辑ppt
15
多元正态总体均值向量和协方 差阵的假设检验
均值向量和协方差阵的假设检验时常用的统计 分布
均值向量的假设检验
多元变量的边缘密度独立性与条件分布多元正态总体均值向量和协方差阵的假设检验多元正态总体均值向量和协方差阵的假设检验均值向量和协方差阵的假设检验时常用的统计分布协方差阵不相等时两个正态总体均值向量的检验多个协差阵相等的检验均值向量和协方差阵的假设检验时常用的统计分布均值向量的假设检验协方差阵相等时两个正态总体均值向量的检验协方差阵不相等时两个正态总体均值向量的检验多个协差阵相等的检验
28
多个协差阵相等的检验
可编辑ppt
29
第三讲 多元正态分布及其参数估计、 假设检验
多元分布概述 多元正态分布
可编辑ppt
1
第一节 多元分布概述
多元变量--随机向量 多元分布函数 多元分布密度 多元变量的边缘密度、独立性与条件分
布 多元变量的数字特征
可编辑ppt
2
第2章多元正态分布参数估计
第2章多元正态分布参数估计多元正态分布是多元随机变量的一种常见模型。
在实际问题中,我们常常需要通过已有的数据对多元正态分布的参数进行估计,便于进行后续的统计分析和预测。
多元正态分布的参数估计主要包括均值向量和协方差矩阵的估计。
对于均值向量的估计,最简单的方法是直接计算样本均值。
假设我们有一个包含n个样本的数据集,其中每个样本有d个维度的观测值,我们可以将样本数据表示为一个n×d的矩阵X。
则样本均值向量的估计值μ可以通过以下公式得到:μ = (1/n) * Σxi其中,xi表示第i个样本观测值。
对于协方差矩阵的估计,最常用的方法是样本协方差矩阵的估计。
样本协方差矩阵S的估计值可以通过以下公式得到:S = (1/n) * Σ(xi - μ)(xi - μ)T其中,T表示矩阵的转置。
需要注意的是,样本协方差矩阵的估计是基于样本的二阶矩估计,因此在数据量较小的情况下,估计结果可能存在偏差。
为了减小估计结果的偏差,可以使用修正样本协方差矩阵的估计。
修正样本协方差矩阵的估计值可以通过以下公式得到:S = ((n-1)/n) * Σ(xi - μ)(xi - μ)T其中,n-1是修正系数。
除了样本协方差矩阵,也可以使用样本相关系数矩阵来估计多元正态分布的协方差矩阵。
样本相关系数矩阵R的估计值可以通过以下公式得到:rij = sij / (si * sj)其中,sij表示样本协方差矩阵的元素,si和sj分别表示样本标准差。
需要注意的是,当样本量较小或者存在样本相关系数为1的情况时,样本相关系数矩阵的估计结果可能不可靠,此时推荐使用样本协方差矩阵来估计。
在实际问题中,参数估计是多元正态分布分析的重要步骤。
通过对样本数据进行参数估计,我们可以对多元正态分布的均值和协方差矩阵有一个初步的认识,从而便于进行后续的模型建立、参数推断和预测。
同时,合理的参数估计方法也有助于提高分析结果的精度和可靠性。
总之,多元正态分布参数估计是一个对多元随机变量的观测数据进行统计分析的重要任务。
第二章多元正态分布的参数估计
第二章多元正态分布的参数估计多元正态分布是在多个随机变量之间存在相互依赖关系时使用的一种概率分布。
它在许多统计分析和机器学习领域中都有广泛的应用。
在实际应用中,我们通常需要使用样本数据对多元正态分布的参数进行估计。
多元正态分布由均值向量和协方差矩阵两个参数来描述。
均值向量表示各个随机变量的平均值,而协方差矩阵表示各个随机变量之间的协方差。
参数估计的目标就是通过样本数据来估计这两个参数。
首先,我们需要收集一个具有充分样本量的数据集。
对于一个具有n个样本的多元正态分布,我们可以将样本数据表示为一个n行d列的矩阵X,其中每一行是一个d维的样本向量。
其中n表示样本数量,d表示随机变量的个数。
接下来,我们可以根据样本数据来估计多元正态分布的均值向量和协方差矩阵。
1.均值向量的估计:多元正态分布的均值向量可以通过样本均值向量来估计。
样本均值向量的计算公式如下:μ = (1/n) * Σxi其中μ是估计得到的均值向量,xi表示样本矩阵X的第i行。
2.协方差矩阵的估计:多元正态分布的协方差矩阵可以通过样本协方差矩阵来估计。
Σ=(1/(n-1))*(X-μ)'*(X-μ)其中Σ是估计得到的协方差矩阵,X是样本矩阵,μ是估计得到的均值向量。
需要注意的是,在计算协方差矩阵时,我们使用的是样本协方差矩阵而不是总体协方差矩阵。
这是因为样本协方差矩阵能更好地反映样本数据的真实情况。
以上就是多元正态分布的参数估计方法。
通过样本数据,我们可以使用样本均值向量和样本协方差矩阵来估计多元正态分布的参数。
这些参数估计能为我们提供关于多元正态分布的统计属性和特征,进而用于进一步的分析和应用。
第二章 多元正态分布及参数的估计
第二章多元正态分布及参数的估计在多元统计分析中,多元正态分布占有相当重要的地位.这是因为许多实际问题涉及到的随机向量服从正态分布或近似服从正态分布;当样本量很大时,许多统计量的极限分布往往和正态分布有关;此外,对多元正态分布,理论与实践都比较成熟,已有一整套行之有效的统计推断方法.基于这些理由,我们在介绍多元统计分析的种种具体方法之前,首先介绍多元正态分布的定义、性质及多元正态分布中参数的估计问题.目录§2.1 随机向量§2.2 多元正态分布的定义与基本性质§2.3 条件分布和独立性§2.4 多元正态分布的参数估计§2.1 随机向量本课程所讨论的是多变量总体.把p个随机变量放在一起得X=(X1,X2,…,Xp)′为一个p维随机向量,如果同时对p维总体进行一次观测,得一个样品为p维数据.常把n个样品排成一个n×p矩阵,称为样本资料阵.⎪⎪⎪⎪⎭⎫⎝⎛'''=⎪⎪⎪⎪⎭⎫ ⎝⎛=)()2()1(212222111211n np n n p p X X X x x x x x x x x x X def=(X 1,X 2,…,X p )其中 X(i)( i =1,…,n)是来自p 维总体的一个样品.在多元统计分析中涉及到的都是随机向量,或是多个随机向量放在一起组成的随机矩阵.本节有关随机向量的一些概念(联合分布,边缘分布,条件分布,独立性;X 的均值向量,X 的协差阵和相关阵,X 与Y 的协差阵)要求大家自已复习.三﹑ 均值向量和协方差阵的性质 (1) 设X ,Y 为随机向量,A ,B 为常数阵,则E(AX )=A·E(X ),E(AXB )=A·E(X )·BD(AX)=A·D(X)·A' COV(AX,BY)=A·COV(X,Y)·B'(2) 若X,Y 相互独立,则COV(X,Y)=O;反之不成立. 若COV(X,Y)=O,我们称X 与Y 不相关.故有: 两随机向量若相互独立,则必不相关;两随机向量若不相关,则未必相互独立.(3) 随机向量X=(X1,X2,…,Xp)′的协差阵D(X)=∑是对称非负定阵.即 ∑=∑´ , α´ ∑α≥0 (α为任给的p 维常量).(4) Σ=L 2 ,其中L 为非负定阵.由于Σ≥0(非负定),利用线性代数中实对称阵的对角化定理,存在正交阵Γ,使LL pp•=Γ⎪⎪⎪⎭⎫⎝⎛Γ•Γ⎪⎪⎪⎭⎫⎝⎛Γ=∑'0'0011λλλλ.0,1≥'=Γ'⎪⎪⎪⎭⎫⎝⎛Γ=L L L OOL p故,其中λλ当矩阵Σ>0(正定)时,矩阵L 也称为Σ的平方根矩阵,记为21∑.当矩阵Σ>0(正定)时,必有p ×p 非退化矩阵A 使得 Σ=AA ′.1⎪⎪⎪⎭⎫⎝⎛Γ=pOOA λλ其中若Σ≥0(非负定),必有p ×q矩阵1A 使得Σ=11A A ′).(111p q OOA q≤⎪⎪⎪⎭⎫⎝⎛Γ=λλ其中这里记Γ=(Γ1 | Γ2) , Γ1为p ×q 列正交阵(p ≥ q ).并设:.0,,0),,,1(01===>+p q i q i λλλ§2.2 多元正态分布的定义在一元统计中,若U ~N(0,1),则U 的任意线性变换X=σU +μ~N(μ,2σ)。
2 多元正态分布的参数估计
第二章多元正态分布的参数估计实验目的:熟练应用计算机软件进行均值向量、协差阵的估计,提高计算机分析应用能力。
频数分析SPSS操作方法1. 选择菜单Analyze→Descriptive Statistics→Frequencies,打开Frequencies 对话框,如图2-1。
将欲进行频数分析的变量a1移入Variable列表框中。
Display frequency tables复选框询问是否输出频数分布表。
由于频数分析基本就是通过频数分布表来表现的,所以一般情况下都要选择这个选项。
图2-1 Frequencies对话框2. 单击Statistics按钮,调出Statistics子对话框,如图2-2,选择输出的描述性统计量。
该对话框包含以下选项:Percentile Values选项栏:输出各种百分位数。
该选项栏共有三个可选项。
其中,Quartiles输出四分位数;Cut points for n equal groups输出n分位数,n为用户定义的2-100之间的整数;Percentile可以有选择地输出百分位数,方法是在后面的输入框中输入2-100之间的整数,并点击Add按钮确认添加。
Central Tendency选项栏:输出各种集中趋势指标,包括算术平均数、中位数、众数和总和。
◆Dispersion选项栏:输出各种离散程度指标。
◆Distribution选项栏:输出峰度和偏度指标。
所以在本节中我们仅选择输出Descriptives命令的Options子对话框(图2-7)中所没有的分位数指标。
这里选择Quartiles,输出四分位数。
图2-2 Statistics子对话框2. 单击Charts按钮,打开Charts子对话框,设置生成的统计图,如图2-3。
对话框中有两个选项栏:◆Chart Type选项栏:设置生成统计图的类型。
共四个选项,None表示不生成任何统计图,Bar charts生成条形图,Pie charts生成饼图,Histograms生成直方图。
第十二讲多元正态分布的参数估计与检验
H 0:? ? ? 0,H 1:? ? ? 0
令F
?
n (n ? p
p)( X
?
? 0 )T S ?1 ( X
?
? 0 ),
则可以证
明当 H 0 成立时,即 ? ? ? 0时,F ~ F ( p, n ? p)
而当
H
不成立时,
0
F
有偏大的趋势。因此,对
给定的显著性水平 ? ,当
F
?
n (n ?
?
?
)T V
?1(X
?
?
)?? ?
则称随机向量 X 为 p维正态随机向量,其中 ?
称为均值向量,V 为协方差矩阵(协差阵),且
V ? 0. 对于一般情形V ? 0, 仍可定义多维正
态随机向量, 记为X ~ N p(? ,V )。 当 V ? 0时,
X有前面的密度表示,而当 |V |? 0 时, X 的分 布是退化的正态分布。
且相互独立, 故 ? 2 ? 分布的定义知 Y TY ~ ? 2 ( p).
二、参数的估计
在此给出多元正态分布的参数 ? 和V的估
计。为简单计,仅考虑 V ? 0 的情形。 设 X 1, X 2 ,? , X n (n ? p) 是来自多元正态总
体 N p (? ,V )的简单样本,令
? X
?
1 n
Y ~N p ( A? ? b, AVA T ).
(4) X 为 p 维正态随机向量的充要条件为对任
一 p维向量c, cT X 是一维正态随机变量。
(5)
设X
?
(
X
T 1
,
X
T 2
)T
为多维正态随机向量,
多元正态分布的参数估计
第一节 引言 第二节 基本概念 第三节 多元正态分布 第四节 多元正态分布的参数估计 第五节 多元正态分布参数估计的
实例与计算机实现
第一节 引言
多元统计分析涉及到的都是随机向量或多个随机向量放在一 起组成的随机矩阵。例如在研究公司的运营情况时,要考虑 公司的获利能力、资金周转能力、竞争能力以及偿债能力等 财务指标;又如在研究国家财政收入时,税收收入、企业收 入、债务收入、国家能源交通重点建设基金收入、基本建设 贷款归还收入、国家预算调节基金收入、其他收入等都是需 要同时考察的指标。
5
ቤተ መጻሕፍቲ ባይዱ
变量 序号
1 2
表 2.1 数据
X1
X2
X 11
X 12
X 21
X 22
n
X n1
X n2
在这里横看表 2.1,记为
X ( ) ( X1, X 2 , , X p ) , 1, 2, , n 表示第 个样品的观测值。竖看表 2.1,第 j 列
X j ( X1 j , X 2 j , , X nj ) , j 1, 2, , p
k
型随机变量,称 P( X xk ) pk ,(k 1, 2, ) 为 X 的概率分 布。设 X ~ F(x) ,若存在一个非负函数 f (x) ,使得一切实数
x
x 有: F(x) f (t)dt ,则称 f (x) 为 X 的分布密度函数,
简称为密度函数。
8
一个函数 f (x) 能作为某个随机变量 X 的分布密度函数的
显然,如果我们只研究一个指标或是将这些指标割裂开分别 研究,是不能从整体上把握研究问题的实质的,解决这些问 题就需要多元统计分析方法。为了更好的探讨这些问题,本 章我们首先论述有关随机向量的基本概念和性质。
第2章 多元正态分布的参数估计
布函数即边缘分布函数为:
F ( x1 , x2 , , xq ) P( X 1 x1 , , X q xq ) P( X 1 x1 , , X q xq , X q 1 , , X p ) F ( x1 , x2 , , xq , , , )
机向量的密度函数的主要条件是:
p (1)f ( x1 , x2 ,, x p ) 0, ( x1 , x2 ,, x p ) R ;
(2)
f ( x , x ,, x
1 2
p
)dx1 dxp 1
2016/2/24
19
【例2.1】 试证函数 e ( x x ) , f ( x1 , x 2 ) 0,
1 2
x1 0, x 2 0 其它
为随机向量 X ( X1, X 2 ) 的密度函数。
证:只要验证满足密度函数两个条件即可
(1)显然,当 x1 0, x2 0 时有 f ( x1 , x2 ) 0
(2)
2016/2/24
( x1 x2 ) e dx1dx2
当 X 有分布密度 f ( x1 , x2 ,, x p ) 时(联合分布密 度),则 X (1)也有分布密度,即边缘密度函数为 :
f1 ( x1 , x2 ,, xq ) f ( x1 ,, x p )dxq1 ,, dxp
24
2016/2/24
例如:设随机变量X在1、2、3、4四个整数中等 可能地取值,另一个随机变量Y在1~X中等可能地 取一个整数值,则有边缘分布: X 1 Y 1
13,200 21,000 12,000
多元正态分布的定义与性质详解演示文稿
2. 风险函数
由于损失函数L与决策函数d(x)有关,而决策函数 是随机变量,因而损失函数也为随机变量。这样损失函 数与样本X的取值有关,因而需要构造一个更好的指标 来衡量决策函数的好坏. 这就是风险函数.
定义4.2 设样本空间和分布族分别为和F * ,决
策空间为,损失函数为L( , d ),决策函数为d( X ),
R( , d1) R( , d2 ),
且存在一些使得不等式严格成立,即R( , d1)
R(
,
d
2
),则称决策函数d1一致优于d
,如果等式
2
成立即R( , d1)=R(ห้องสมุดไป่ตู้, d2 ), ,则二者等价.
定义4.4 设D {d( X )}是一切定义在样本空间 上取值于决策空间上的决策函数的全体,若存 在一个决策函数d*( X )(d*( X ) D), 使得对任意一 个d( X ) D,都有
例4(p118) 设总体X服从正态分布N (, 2 ), 2为已知,
( X1, X2 , , Xn)T取自X的样本,试求参数点估计
和区间估计的决策函数.
解 根据上一章的结论,参数点估计的决策函数为
d( x)
x
1 n
n i 1
xi
参数区间估计的决策函数为
d ( x) [ x u
2
n
,
x
u
2
] n
决策 对每个统计问题的具体回答,就称为一个决策.
例如,参数的点估计,每一个估计值就是一个决策. 决策空间 一个统计问题中,可能选取得全部决策 组成的集合为决策空间,记为 R.
例如,设总体分布服从N (, 2 ), 对未知参数进行
估计,由于在(, )中取值,因而其决策空
多元正态分布参数的最大似然估计
多元正态分布参数的最大似然估计多元正态分布,也称为多元高斯分布,是概率分析中一种常见的分布。
在现实中,我们经常需要对数据进行建模,并判断其分布模型是否为多元正态分布。
多元正态分布的参数包括均值向量和协方差矩阵,而最大似然估计是确定这些参数的一种常用方法。
1. 多元正态分布的定义和参数多元正态分布是指在多维空间中,各变量之间相互独立、服从正态分布的一种概率分布。
设X=(X1,X2,…,Xn)为n维列向量,且其元素都是实数,X服从n元正态分布的概率密度函数表示为:f(x;μ,Σ)=(2π)−n/2|Σ|−1/2exp{−1/2(x−μ)TΣ−1(x−μ)}其中μ是n维列向量,代表X的均值向量,Σ是n×n的协方差矩阵。
|Σ|代表Σ的行列式。
2. 最大似然估计最大似然估计是确定参数值的一种方法,该方法通过样本数据来估计未知参数的值,以最大化样本出现的概率。
对于多元正态分布来说,最大似然估计可表述为:给定一组样本X1,X2,…,Xn,我们要找到均值向量μ和协方差矩阵Σ的估计值,使得在这些参数下,样本出现的概率最大。
在确定多元正态分布的参数时,最大似然估计是一种常用方法。
假设我们已有一组独立同分布的样本数据{X1,X2,…,Xn},为了确定多元正态分布的参数μ和Σ的最大似然估计值,我们需要按照以下步骤进行:3.1 求样本均值向量首先,我们需要求出样本均值向量x¯:x¯=1n∑i=1nXi3.2 求样本协方差矩阵其次,我们需要求出样本协方差矩阵S:最后,我们可以根据样本均值向量和协方差矩阵,求出多元正态分布的均值向量和协方差矩阵的最大似然估计值:μ=x¯Σ=S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) X 和 S 相互独立 ;
( 3) 1 X ~ N p ( , ), n
(n 1)S V ~ Wp (n 1, )
定理1.4.2 设X 1 , X 2 , , X n是来自于多元正态
总体 N p ( , )的一个随机样本,则:
( n 1) X和 S 分别是总体均值 和总体 n 协方差矩阵 的极大似然估计。求 和 的无偏估计。
解:
115.6 1 5 X Xi 5 i 1 74 . 8
14.8 13.4 1 5 S ( X i X )(X i X ) 4 i1 13 . 4 15 . 7
例1.4.1:
1 令 x1 表示舒张压, x 2 表示收缩压,假设某地区人的血压 X x 2
x
服从正态分布 N 2 ( , ) ,现从该地区随机抽取 5 人,测得血压数据 如下:
被测量者 舒张压 x1 收缩压 x 2 1 120 80 2 110 70 3 114 75 4 118 77 5 116 72
1 X Xi n i 1
n
样本离差矩阵
V ( X i X )( X i X )
i 1
n
样本协方差矩阵
S ( sij ) p p
1 V n 1
1 n ( X i X )( X i X ) n 1 i 1
样本相关矩阵
R (R rij ) (r D D p)p
2
( n 1) 2 s 分别是 的随机样本,则: x 和 n
总 体 均 值 和 方 差 的 极 大 似 然 估 计 。
2
定理1.4.1
设X 1 , X 2 , , X n是来自于多元正态
总体 N p ( , )的一个随机样本,则:
(1) 样本均值X 和样本协方差矩阵 S 分别是 总体均值 和总体协方差矩阵 的无偏估计 ;
ij p p
1 1 s 2
s
2
SD SD 1
s
2
1 s 2
其中:
D
1 s 2
s2 11
1
1 2 s pp
rij
s ij s ii s jj
一元正态总体参数估计的回顾
设x1 , x2 ,, xn 是来自于正态总体 N ( , 2 ) 的随机样本,则:
(1) 样本均值 x 和样本方差 s 2 分别是 总体均值 和方差 的无偏估计;
2
(2) x和s 相互独立 ;
( 3) x ~ N ( ,
2
2
n
),
( n 1) s
2
2
~ 2 ( n 1)
一元正态总体 参数的极大似然估计
设x 1 , x 2 , , x n 是 来 自 于 正 态 总 体 N ( , )
设X 1 , X 2 ,, X n为来自于多元正态总体 x1i x2 i N p ( , )的样本, 0, 其中X i , x pi 则常见的样本统计量有
样本均值
x1i x2 i Xi x pi