高中物理选修3-5原子结构知识点

合集下载

物理选修3-5人教版 18.2原子的核式结构模型 (共12张PPT)

物理选修3-5人教版 18.2原子的核式结构模型 (共12张PPT)

在原子的中心有一个很小的核,叫做原子核。原子的全 部正电荷和几乎全部质量都集中在原子核里,带负电的电子 在核外空间绕着核旋转。
根据卢瑟福的原子结构模型,原子内部是十分“空 旷”的,举一个简单的例子:
原子
体育场
原子核
根据卢瑟福的原子核式模型和 α 粒子散射的实验数据, 可以推算出各种元素原子核的电荷数,还可以估计出原子核 的大小。
(1) 原子的半径约为 10 ─ 10 m、原子核半径约是 10 ─14 m, 原子核的体积只占原子的体积的万亿分之一。
(2) 原子核所带正电荷数与核外电子数以及该元素在周期 表内的原子序数相等。
(3) 电子绕核旋转所需向心力就是核对它的库仑力。
1. 在用 α 粒子轰击金箔的实验中,卢瑟福观察到的 α 粒子的
绝大多数 α 粒子穿过金箔后仍沿原来的方向前进,但少数 α 粒子发生了较大的偏转,并且有极少数 α 粒子的偏转超过 了90°,有的甚至几乎达到180°。
西瓜模型或枣糕模型能否解释这种现象?
根据汤姆孙模型计算的结果:电子质量很小,对 α 粒子的 运动方向不会发生明显影响;由于正电荷均匀分布, α 粒子 所受库仑力也很小,故 α 粒子偏转角度不会很大。
汤姆孙发现了电子,并且知道了电子是带负电 荷的,人们推断出原子中还有带正电的物质。那么 这两种物质是怎样构成原子的呢?

汤姆孙的原子模型பைடு நூலகம்
在汤姆孙的原子模型中,原子是一个球体,正电核均 匀分布在整个球内,电子镶嵌其中。
英国物理学家 汤姆孙
汤姆孙原子模型 (枣糕模型)
1909~1911年,英国物理学家 卢瑟福和他的助手们进行了 α 粒子 散射实验。
运A动. 全情部况α是粒( 子B穿过) 金属箔后仍按原来的方向前进

高中物理:选修3-5知识点总结+精讲大全!

高中物理:选修3-5知识点总结+精讲大全!

高中物理:选修3-5知识点总结+精讲大全!高中物理选修3—5是必考内容,今天带来了它的知识点总结和精讲精华第十六章:动量守恒定律▐一、动量;动量守恒定律1、动量可以从两个侧面对动量进行定义或解释①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P=mv。

单位是。

动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以动量也是相对的。

2、动量守恒定律当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。

人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构

人教版高中物理选修3-5知识点整理及重点题型梳理]  原子结构

人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。

人教版物理选修3-5课件 第十八章 原子结构 1电子的发现

人教版物理选修3-5课件 第十八章 原子结构 1电子的发现

液滴编号 1 2 3 4 …
电荷量/C 6.41×10-19 9.70×10-19 1.6×10-19 4.82×10-19

解析:表格中的数据与电子电量的比值关系为: qe1=61.4.61××1100--1199=4,
qe2=91.7.60××1100--1199=6, qe3=11..66××1100--1199=1, qe4=41.8.62××1100--1199=3.
(1)调节两金属板间的电势差 U,当 U=U0 时,使得 某个质量为 m1 的油滴恰好做匀速运动.该油滴所带电荷 量 q 为多少?
(2)若油滴进入电场时的速度可以忽略,当两金属板 间的电势差 U=U1 时,观察到某个质量为 m2 的油滴进入 电场后做匀加速运动,经过时间 t 运动到下极板,求此油 滴所带电荷量 Q.
得出结论:电荷是量子化的,电荷的电荷量都是元 电荷 e 的整数倍.
答案:电荷是量子化的,电荷的电荷量都是元电荷 的整数倍
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
第十八章 原子结构
1 电子的发现
学习目标
1.知道电子是怎样发现 的及其对人类探索原子 结构的重大意义. 2.了解汤姆孙发现电子 的研究方法,知道电子 的电荷量和质量. 3.能运用所学知识解决 电子在电场和磁场中的 运动问题.
重点难点 重点 1.电子的发现
过程及其意义. 2.电荷的量子 化. 难点
C.保持步骤 B 中的电压 U 不变,对 M1、M2 区域 加一个大小、方向合适的磁场 B,使荧屏正中心处重现 亮点,试问外加磁场的方向如何?

人教版高中物理选修3-5知识点汇总_一册全_

人教版高中物理选修3-5知识点汇总_一册全_

人教版高中物理选修3—5知识点总结第十六章动量守恒定律动16.1实验探究碰撞中的不变量碰撞的特点:1、相互作用时间极短。

2.相互作用力极大,即内力远大于外力。

3、速度都发生变化。

一、实验的基本思路1、一维碰撞:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。

2、猜想与假设:一个物体的质量与它的速度的乘积是不是不变量?3、碰撞可能有很多情形。

例如两个物体可能碰后分开,也可能粘在一起不再分开。

二、需要考虑的问题①如何保证碰撞是一维的?即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。

在固定的轨道上做实验——气垫导轨。

②怎样测量物体的质?用天平测量。

③怎样测量两个物体在磁撞前后的速度?速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件。

④数据处理:列表。

参考案例一气垫导轨和光电门研究碰撞。

参考案例二利用单摆研究碰撞参考案例三利用打点计时器研究碰撞参考案例四利用平抛运动研究碰撞研究能量损失较小的碰撞时,可以选用参考案例二;研究碰撞后两个物体结合在一起的情况时,可以选用参考案例三。

参考案例四测出小球落点的水平距离可根据平抛运动的规律计算出小球的水平初速度。

实验设计思想巧妙之处在于用长度测量代替速度测量。

16.2动量定理一、动量1、定义:把物体的质量m和速度ʋ的乘积叫做物体的动量p,用公式表示为p = mʋ2、单位:在国际单位制中,动量的单位是千克米每秒,符号是kg•m/s3、动量是矢量:方向由速度方向决定,动量的方向与该时刻速度的方向相同。

4、注意:物体的动量,总是指物体在某一时刻的动量,即具有瞬时性,故在计算时相应的速度应取这一时刻的瞬时速度。

5、动量的变∆p①某段运动过程(或时间间隔)末状态的动量p',跟初状态的动量p的矢量差,称为动量的变化(或动量的增量),即p = p' - p。

选修3-5原子结构整章知识点

选修3-5原子结构整章知识点

选修3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容(一)1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。

2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。

(二)1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”。

2. a粒子散射实验:(1)a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。

(2)实验现象:绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数a粒子(约占八千分之一)发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来”。

(3)卢瑟福核式结构模型:原子中带正电的部分体积很小,但几乎占有全部质量,电子在正电体的外面运动。

按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。

3. 原子核的电荷与尺度:(1)电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。

(2)尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷”的。

(三)1. 光谱:(1)定义:把光按波长的大小分开,获得光的波长(频率)成分和强度分布的记录。

即光谱。

(2)分类:光谱分为线状谱和连续谱。

(3)特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。

2. 原子光谱:(1)定义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。

(2)光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确定物质的组成成分,这种方法称为光谱分析。

3. 氢原子光谱:巴耳末公式:,式中R是里德伯常量,其值为R=1.10×l07m-1,n只能取整数,不能连续取值,波长也只会是分立的值。

人教版高中物理选修3-5 18.1-2电子的发现 原子的核式结构模型教学课件共29张PPT

人教版高中物理选修3-5 18.1-2电子的发现 原子的核式结构模型教学课件共29张PPT

二。卢瑟福的原子核式结构
1、在原子的中心有一个很小的核,叫做原子核. 2、原子的全部正电荷和几乎全部质量都集中在原 子核里. 3、带负电的电子在核外空间绕着核旋转.
课堂巩固
1.α粒子散射实验中,卢瑟福用α粒子轰击金箔, 下列四个选项中哪一项属于实验得到的正确结果
(B)
A.α粒子穿过金箔时都不改变方向 B.少数α粒子穿过金箔时有较大的偏转 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较小的偏转
汤姆孙的原子模型
汤姆孙的原子模型: 原子是一个球体;正电核 均匀分布在整个球内,而 电子就像大枣镶嵌在蛋糕 里那样镶嵌在原子里面.
汤姆孙的“枣糕模型”对吗?
正电荷
电子 勒纳德用电子轰击金属膜
一。α粒子散射实验 1.实验装置
全部设备装在真空中。
卢瑟福
2.实验步骤
(1)α粒子从铅盒的小孔射出,形成很细的一束射线, 射到荧光屏上产生闪光,通过放大镜可以看到这些闪 光点。
中正确的是:( C )
A.说明α粒子的速度很大 B.说明α粒子的质量比金原子还大 C.说明金原子的内部大部分是空的 D.说明金原子也是个球体
3、(2017·江苏·1)下列说法中正确的是 (C) A.质子与中子的质量不等,但质量数相等 B.两个质子之间,不管距离如何,核力总是大于 库仑力 C.同一种元素的原子核有相同的质量数,但中子 数可以不同 D.除万有引力外,两个中子之间不存在其它相互 作用力
2.卢瑟福α粒子散射实验表明( D )
A.原子带正电 B.原子是一个球体 C.电子在任意一个圆形轨道上运动 D.原子内部的正电荷并不是均匀分布的,而是集 中在很小的体积内
三。原子核的电荷与尺度
1.原子的组成

物理选修3-5原子结构之谜

物理选修3-5原子结构之谜

原子结构之谜一、知识点总结1、1858年德国科学家普吕克尔发现了阴极射线:在一个被抽成真空的玻璃管两端加上高电压,这时阴极会发出一种射线,使正对阴极的玻璃管壁上出现绿色的荧光,这种期奇妙的射线被称为阴极射线。

2、汤姆生对阴极射线等现象的研究中发现了电子,揭示了原子内部有着更深层次的结构,打破来传统的“原子不可分”的观念。

3、探究阴极射线阴极射线的带负电粒子实际就是电子,阴极射线的本质是高速电子流。

4、原子结构的认识过程(1)汤姆生首先提出葡萄干布丁模型(2)α粒子散射实验(3)1911年,卢瑟福提出原子的核式结构的模型:原子的中心有一个带有正电的原子核,它几乎集中了原子的全部质量,而电子则在核外空间绕核旋转。

原子核的质量几乎集中了原子的全部质量,但它的半径却非常小,仅相当于原子半径的万分之一。

5、对模型的理解:模型不是真实情况(实物)的精确复制品,建立模型的过程中,往往是忽略一些次要的因素,留下一些能够反映原物本是的主要因素。

6、原子光谱:某种原子的气体通电后可以发光并产生固定不变的光谱,这种光谱被称为原子光谱。

是了解原子性质的最重要的直接证据。

原子光谱是分立的亮线,是不连续的。

每种原子都有自己特定的原子光谱。

不同的原子,其原子光谱均不相同,故原子光谱被称为原子的“指纹”。

我们通过对光谱的分析鉴别不同的原子,确定物体的化学组成,发现新元素。

注意:用分光镜观察氢原子光谱,要尽量缩短时间以延长光谱管的寿命。

7、氢原子光谱在可见光区有四条分立的谱线。

可见氢原子受激发只能发出几种特定频率的光。

四条谱线的波长满足巴尔末公式:⎪⎭⎫ ⎝⎛-=221211n R λ,n =3,4,5,6 … R 为里德伯常量。

符合巴耳末公式的光谱线统称为巴耳末系。

8、广义巴尔末公式:⎪⎭⎫ ⎝⎛-=22111n mR λ,其中m 和n 均为正整数,且n >m 或者)()(1n T m T -=λ,式中2)(m R m T = ,2)(n R n T =称为光谱项 谱线波长的倒数可以表示为两光谱项之差。

粤教版高中物理选修3-5课件第三章第三四节原子的能级结构

粤教版高中物理选修3-5课件第三章第三四节原子的能级结构

(3)玻尔理论对氢原子光谱的解释. ①解释巴耳末公式: 按照玻尔理论,从高能级跃迁到低能级时辐射的光子 的能量为 hν=Em-En;巴耳末公式中的正整数 n 和 2 正 好代表能级跃迁之前和之后的定态轨道的量子数 n 和 2. ②解释氢原子光谱的不连续性: 原子从较高能级向低能级跃迁时放出光子的能量等 于前后两能级差,由于原子的能级是分立的,所以放出 的光子的能量也是分立的,因此原子的发射光谱只有一 些分立的亮线.
答案:CD
拓展一 氢原子光谱 如图所示为氢原子光谱. (1)仔细观察,氢原子光谱具有什么特点? (2)氢原子光谱的谱线波长具有什么规律?
提示:(1)氢原子光谱从左向右谱线间的距离越来越大. (2)氢原子光谱的谱线波长符合巴耳末公式.
1.原子光谱. (1)概念: 原子的气体通电后可以发光并产生固定不变的光 谱,这种光谱被称为原子光谱. (2)特点: ①每种原子都有自己特定的原子光谱. ②不同的原子,其原子光谱不同,原子光谱被称为 原子的“指纹”.
(4)玻尔理论的局限性. ①玻尔理论的成功之处:玻尔理论第一次将量子观 念引入原子领域.提出了定态和跃迁的概念,成功地解 释了氢原子光谱的实验规律. ②玻尔理论的局限性:过多地保留了经典理论,对 更复杂的原子发光无法解释.
2.氢原子能级. (1)氢原子的能级图如图所示,从玻尔的基本假设出 发,运用经典电磁学和经典力学的理论,可以计算氢原 子中电子的可能轨道及相应的能量. rn=n2r1,En=En21,式中 n=1,2,3,…其中 r1= 0.53×10-10 m,E1=-13.6 eV. n 取不同的量子数时,可求得各能级的能量值.
第三章 原子结构之谜
第三节 氢原子光谱 第四节 原子的能级结构
学习目标
1.了解氢原子光谱的不连 续性及各个线系. 2.了解能级结构猜想. 3.知道氢原子能级公式. 4.能够利用能级公式分析 一些有关能级的问题.

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P = mv。

单位是skg .动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以m动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

高中物理选修3-5第十八章第59讲 原子的核式结构模型 氢原子光谱 原子能级

高中物理选修3-5第十八章第59讲 原子的核式结构模型 氢原子光谱 原子能级

第59讲原子的核式结构模型氢原子光谱原子能级考情剖析(注:①考纲要求及变化中Ⅰ代表了解和认识,Ⅱ代表理解和应用;②命题难度中的A 代表容易,B代表中等,C代表难)知识 整合知识网络基础自测一、原子结构 1.电子的发现英国物理学家____________________发现了电子. 2.α粒子散射实验1909~1911年,英国物理学家____________和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿______________方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于______________,也就是说它们几乎被“撞”了回来.3.原子的核式结构模型在原子中心有一个很小的核,原子全部的__________________和几乎全部__________________都集中在核里,带负电的电子在核外空间绕核旋转.4.三种原子模型的对比二、氢原子光谱与玻尔理论1.光谱(1)光谱用光栅或棱镜可以把光按波长展开,获得光的____________________(频率)和强度分布的记录,即光谱.(2)光谱分类有些光谱是一条条的____________,这样的光谱叫做线状谱.有的光谱是连在一起的____________,这样的光谱叫做连续谱.(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=________________________,(n=3,4,5,…),R是里德伯常量,R=1.10×107m-1,n为量子数.2.玻尔理论(1)定态原子只能处于一系列____________的能量状态中,在这些能量状态中原子是__________________的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=__________________.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是________________,因此电子的可能轨道也是________________________________________________________________________.3.玻尔模型的局限性玻尔模型的成功之处在于引入了量子化观点,其不足之处在于保留了轨道的观念.量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道,只不过是电子出现____________的地方,把电子的概率分布用图象表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成云雾,称为“电子云”.三、氢原子的能级、能级公式1.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=__________(n=1,2,3,…),其中E1为基态能量,其数值为E1=__________.(2)氢原子的半径公式:r n=____________________(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.2.氢原子的能级图能级图如图所示.重点阐述重点知识概述能级图中相关量意义的说明难点释疑1.氢原子跃迁时电子动能、电势能与原子能量的变化(1)原子能量:E n =E kn +E pn =E 1n2,随n 增大而增大,其中E 1=-13.6 eV.(2)电子动能:电子绕氢原子核运动时静电力提供向心力,即k e 2r 2=m v 2r ,所以E k n =ke 22r n,随r 增大而减小.(3)电势能通过库仑力做功判断电势能的增减. 当轨道半径减小时,库仑力做正功,电势能减小;反之,轨道半径增大时,电势能增加. 2.关于光谱线条数的两点说明(1)一群氢原子跃迁发出可能的光谱线条数为N =C 2n=n (n -1)2. (2)一个氢原子跃迁发出可能的光谱线条数最多为(n -1).【典型例题1】 (1)能量为E i 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子.这一能量E i 称为氢的电离能.现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为____________(用光子频率ν、电子质量m 、氢原子的电离能E i 和普朗克常量h 表示).(2)氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV ,求氢原子处于基态时:①电子的动能;②原子的电势能;③用波长是多少的光照射可使其电离?温馨提示(2)由圆周运动规律、能量守恒定律和光电效应方程易解本题.记录空间【变式训练1】如图所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时:(1)有可能放出多少种能量的光子?(2)在哪两个能级间跃迁时,所放出光子波长最长?波长是多少?【变式训练2】如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子.问:(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射出上述能量的光子?(2)请在图中画出获得该能量后的氢原子可能的辐射跃迁图.易错诊所1.光子的发射和吸收(1)能级的跃迁根据玻尔模型,原子只能处于一系列的不连续的能量状态中,这些状态分基态和激发态两种.其中原子在基态时是稳定的,原子在激发态时是不稳定的,当原子处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.【注意】①原子能级跃迁时,处于激发态的原子可能经过一次跃迁回到基态;也可能由较高能级的激发态先跃迁到较低能级的激发态,最后回到基态.一个原子由较高能级回到基态,到底发生了几次跃迁,是不确定的.②物质中含有大量的原子,各个原子的跃迁方式也是不统一的.有的原子可能经过一次跃迁就回到基态.而有的原子可能经过几次跃迁才回到基态.(2)光子的发射原子能级跃迁时以光子的形式放出能量,原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的能量可由下式表示:hν=E m-E n由上式可以看出,能级的能量差越大,放出光子的频率就越高.(3)光子的吸收光子的吸收是光子发射的逆过程,原子在吸收了光子后会从较低能级向较高能级跃迁.两个能级的能量差值仍是一个光子的能量.其关系式仍为hν=E m-E n.【说明】由于原子的能级是一系列不连续的值,则任意两个能级差也是不连续的,故原子只能发射一些特定频率的光子,同样也只能吸收一些特定频率的光子.但是.当光子能量足够大时,如光子能量E≥13.6 eV时,则处于基态的氢原子仍能吸收此光子并发生电离.2.原子能级跃迁问题跃迁是指电子从某一轨道跳到另一轨道,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态).(1)跃迁时电子动能、原子势能与原子能量的变化.当轨道半径减小时,库仑引力做正功,原子的电势能E p减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.(2)使原子能级跃迁的两种粒子——光子与实物粒子.原子若是吸收光子的能量而被激发,则光子的能量必须等于两能级的能量差,否则不被吸收.不存在激发到n=2时能量有余,而激发到n=3时能量不足,则可激发到n=2的问题.原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E=E m-E n),均可使原子发生能级跃迁.【典型例题2】试计算处于基态的氢原子吸收波长为多少的光子,电子可以跃迁到n =2轨道上.温馨提示大于或小于这个能量均不能发生上述跃迁.记录空间【变式训练3】欲使处于基态的氢原子激发,下列措施可行的是()①用10.2 eV的光子照射;②用11 eV的光子照射;③用14 eV的光子照射;④用动能为11 eV的电子碰撞.A.①②③B.①③④C.②③④D.①②④随堂演练1.在卢瑟福的α粒子散射实验中,有极少数α粒子发生了大角度的偏转,其原因可能是()A.原子的正电荷和绝大部分质量集中在一个很小的核上B.正电荷在原子中是均匀分布的C.原子中存在着带负电的电子D.原子只能处于一系列不连续的能量状态中2.关于玻尔的原子模型理论,下面说法正确的是()A.原子可以处于连续的能量状态中B.原子能量状态不可能是连续的C.原子中的电子在核外轨道上运动时,要向外辐射能量D.原子核外电子在轨道上运动时,不向外辐射能量3.卢瑟福通过α粒子散射实验,判断出原子中心有一个很小的核,并由此提出了原子的核式结构学说.如图所示的平面示意图中①、③两条线表示α粒子运动的轨迹,则沿②所示方向射向原子核的α粒子可能的运动轨迹是()第3题图A.轨迹a B.轨迹bC.轨迹c D.轨迹d4.已知氢原子的基态能量为-13.6eV,用能量为12.3eV的光子去照射一群处于基态的氢原子,受光子照射后,下列关于氢原子跃迁的说法中正确的是()A.原子能跃迁到n=2的轨道上去B.原子能跃迁到n=3的轨道上去C.原子能跃迁到n=4的轨道上去D.原子不能跃迁到其他轨道上去5.(多选)(1)氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是()A.氢原子的能量增加B.氢原子的能量减少C.氢原子要吸收一定频率的光子D.氢原子要放出一定频率的光子(2)在氢原子光谱中,电子从较高能级跃迁到n=2能级发出的谱线属于巴耳末线系,若一群氢原子自发跃迁时发出的谱线中只有2条属于巴耳末线系,则这群氢原子自发跃迁时最多发出__________一条不同频率的谱线.第59讲 原子的核式结构模型氢原子光谱 原子能级知识整合 基础自测一、1.汤姆孙 2.卢瑟福 原来 90° 3.正电荷 质量二、1.(1)波长 (2)亮线 光带 (3)R ⎝⎛⎭⎫122-1n 2 2.(1)不连续 稳定 (2)E m -E n (3)不连续的 不连续的 3.概率最大三、1.(1)1n2E 1 -13.6 eV (2)n 2r 1重点阐述【典型例题1】 (1)能量为E i 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子.这一能量E i 称为氢的电离能.现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为____________(用光子频率ν、电子质量m 、氢原子的电离能E i 和普朗克常量h 表示).(2)氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV ,求氢原子处于基态时:①电子的动能; ②原子的电势能;③用波长是多少的光照射可使其电离?【答案】 (1)2(hν-E i )m(2)①13.6eV ②-27.2eV ③9.14×10-8m 【解析】 (1)由能量守恒得12mv 2=h ν-E i ,解得电子速度为v =2(hν-E i )m.(2)①设处于基态的氢原子核外电子速度为v 1,则k e 2r 21=mv 2r 1.所以电子动能E k1=12mv 21ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19eV =13.6eV. ②因为E 1=Ek 1+Ep 1,所以Ep 1=E 1-Ek 1=-13.6eV -13.6eV =-27.2eV . ③设用波长为λ的光照射可使氢原子电离:hcλ=0-E 1.所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19m =9.14×10-8m. 【点评】 与能级有关的能量问题的规范求解1.一般解题步骤(1)分析已知量,根据库仑力提供核外电子做圆周运动的向心力列圆周运动动力学方程.(2)根据处于某定态原子的能量等于电子动能与电子电势能之和列方程,求电势能. (3)原子发生能级跃迁时能量与吸收或放出光子(或实物粒子)的能量相等,可列方程求光子的频率或相关物理量.2.对氢原子能级跃迁的进一步理解 (1)原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子的能量满足hν=E末-E 初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hν大于或小于E 末-E 初时都不能被原子吸收.(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差.(3)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能.(4)原子还可以吸收外来实物粒子(例如自由原子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E =E m -E n ),均可使原子发生能级跃迁.(5)跃迁时电子动能、原子势能与原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.变式训练1 (1)6种 (2)第4能级向第3能级跃迁 1.88×10-6m【解析】 (1)N =n (n -1)2=4×(4-1)2种=6种.(2)氢原子由第4能级向第3能级跃迁时,能量差最小,辐射的光子波长最长.由hν=E 4-E 3 得:h cλ=E 4-E 3所以λ=hcE 4-E 3= 6.63×10-34×3×108[-0.85-(-1.51)]×1.6×10-19m≈1.88×10-6 m.变式训练2 (1)12.75eV (2)如图所示 【解析】 (1)氢原子从n >2的某一能级跃迁到n =2的能级,辐射光子的频率应满足hν=E n -E 2=2.55eV ,E n =hν+E 2=-0.85eV ,所以n =4,基态氢原子要跃迁到n =4的能级,应提供:ΔE =E 4-E 1=12.75eV .(2)辐射跃迁图如图所示.【典型例题2】 试计算处于基态的氢原子吸收波长为多少的光子,电子可以跃迁到n =2轨道上.【答案】 1.22×10-7m【解析】 氢原子基态对应的能量E 1=-13.6 eV ,电子在n =2的轨道上时,氢原子的能量为E 2=E 122=-3.4 eV ,氢原子核外电子从n =1轨道跃迁到n =2轨道需要的能量:ΔE =E 2-E 1=10.2 eV =1.632×10-18J.由玻尔理论有:hν=ΔE ,又ν=c/λ,所以chλ=ΔE.11 λ=ch ΔE =3×108×6.63×10-341.632×10-18m =1.22×10-7m. 变式训练3 B 【解析】 由原子的跃迁条件知:氢原子在各能级间跃迁时,只有吸收能量值刚好等于某两能级能量之差的光子(即hν=E 初-E 终).由氢原子能级关系不难算出10.2 eV 刚好为氢原子n =1和n =2的两能级能量之差,而11 eV 则不是氢原子基态和任一激发态的能量之差,因而氢原子只能吸收前者被激发,而不能吸收后者.对于14 eV 的光子,其能量大于氢原子的电离能(13.6 eV),足以使氢原子电离——使电子脱离核的束缚而成为自由电子,因而不受氢原子能级间跃迁条件的限制.由能的转化和守恒定律不难知道,氢原子吸收14 eV 的光子电离后产生的自由电子还应具有0.4 eV 的动能.另外,用电子去碰撞氢原子时,入射电子的动能可全部或部分地被氢原子吸收,所以只要入射电子的动能大于或等于基态和某个激发态能量之差,也可使氢原子激发,由以上分析知选项B 正确.随堂演练1.A 【解析】 卢瑟福根据α粒子散射实验提出核式结构模型:在原子的中心有一很小的核,原子的全部正电荷和几乎全部的质量都集中在原子核上,带负电的电子在核外空间里绕核高速旋转.本题答案为选项A.2.BD 【解析】 根据玻尔模型中能级的量子化可知,A 错,B 正确;而原子核外电子处于不同能级时,电子虽然加速运动,但不向外辐射能量,C 错,D 正确.3.A 【解析】 α粒子的运动轨迹夹在速度与合力的方向之间并向合力的一侧偏转,沿②所示方向的α粒子所受原子核的作用力的合力方向向下,故轨迹为a ,即A 正确.4.D 【解析】 由E =13.6n 2 eV 可知: E 1=-13.6 eV, E 2=-3.4 eVE 3=-1.51 eV, E 4=-0.85 eV则:E 2-E 1=10.2 eV<12.3 eVE 3-E 1=12.09 eV<12.3 eVE 4-E 1=12.75 eV>12.3 eV所以处于基态的氢原子不可能吸收该光子,因而氢原子不能跃迁到其他轨道上去.正确答案为选项D.5.(1)BD (2)6【解析】 (1)氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确.(2)氢原子发出的光谱线中有2条属于巴耳末线系,说明电子是从n =4能级向低能级跃迁的,因此可发出的谱线条数为n =C 24=6(条).。

高二下学期物理人教版选修3-5第十八章第四节玻尔的原子模型 课件

高二下学期物理人教版选修3-5第十八章第四节玻尔的原子模型 课件

2.实际上,原子中的电子的坐标没有确定的值。因此,我 们只能说某时刻电子在某点附近单位体积内出现的概率是多 少,而不能把电子的运动看做一个具有确定坐标的质点的轨 道运动。
3.当原子处于不同状态时电子在各处出现的概率是不一样 的。如果用疏密不同的点子表示电子在各个位置出现的概率, 画出图来就像云雾一样,可以形象地把它称做电子云,如图 所示,是氢原子处于n=1的状态时的电子云示意图和氢原子 处于n=2的状态时的电子云示意图
3.关于玻尔的氢原子模型,下列说法正确的是( B ) A.按照玻尔的观点,电子在一系列定态轨道上运动时向外辐射 电磁波
B.电子只有吸收能量等于两个能级差的光子才能从低能级跃迁 到高能级
C.一群电子从能量较高的定态轨道跃迁到基态时,只能放出一 种频率的光子
D.玻尔的氢原子模型彻底解决了卢瑟福原子结构模型的缺陷, 原子结构从此不再神秘
7.为了做好疫情防控工作,小区物业利用红外测温仪对出入 人员进行体温检测。红外测温仪的原理是:被测物体辐射的 光线只有红外线可被捕捉,并转变成电信号。图为氢原子能 级示意图,已知红外线单个光子能量的最大值为1.62eV,要 使氢原子辐射出的光子可被红外测温
仪捕捉,最少应给处于n=2激发态的
氢原子提供的能量为( C )
(2)一个处于基态且动能为Ek0的氢原子与另一个处于基态且 静止的氢原子进行对心碰撞。若要使其中一个氢原子从基态跃
迁到激发态,则Ek0至少为多少?
解:(2)设氢原子质量为m,初速度为v0,氢原子相互作用后 速度分别为v1和v2,相互作用过程中机械能减小量为ΔE
由动量守恒定律得: mv 0 mv1 mv2
A.10.20eV
B.2.89eV
C.2.55eV
D.1.89eV

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结

高中物理选修3-5总结一、动量定理的理解与应用1.容易混淆的几个物理量的区别(1)动量与冲量的区别:2.动量定理的应用(1)应用I=Δp求变力的冲量。

如果物体受到变力作用,则不能直接用I=F·t求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。

(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化。

曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。

如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。

(3)用动量定理解释现象。

用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,分析力与作用时间的关系;另一类是作用力一定,分析力作用时间与动量变化间的关系。

分析问题时,要把哪个量一定、哪个量变化搞清楚。

(4)处理连续流体问题(变质量问题)。

通常选取流体为研究对象,对流体应用动量定理列式求解。

3.应用动量定理解题的步骤(1)选取研究对象。

(2)确定所研究的物理过程及其始、末状态。

(3)分析研究对象在所研究的物理过程中的受力情况。

(4)规定正方向,根据动量定理列方程式。

(5)解方程,统一单位,求解结果。

4.动量守恒定律与机械能守恒定律的比较①系统(或某方向)不受外力作用时,系统(或某方向)动量守恒;②系统(或某方向)受外力但所受外力之和为零,则系统(或某方向)动量守恒;③系统(或某方向)所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统(或某方向)的动量可看成近似守恒;④系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒。

但是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒。

例1、如图所示,在光滑水平面上放置A、B两个物体,其中B物体与一个质量不计的弹簧相连且静止在水平面上,A物体质量是m,以速度v0逼近物体B,并开始压缩弹簧,在弹簧被压缩过程中( )A.在任意时刻,A、B组成的系统动量相等,都是mv0B.任意一段时间内,两物体所受冲量大小相等.C.在把弹簧压缩到最短过程中,A物体动量减少,B物体动量增加.D.当弹簧压缩量最大时,A、B两物体的速度大小相等例2、有一质量为m=20kg的物体,以水平速度v=5m/s的速度滑上静止在光滑水平面上的小车,小车质量为M=80kg,物体在小车上滑行距离ΔL =4m后相对小车静止。

高中物理选修3-5知识点

高中物理选修3-5知识点

第十七章波粒二象性1.黑体:完全吸收入射各波长电磁波不反射2.热辐射现象:①任物在任℃都发射各种波长电磁波②辐射能量大小及波长分布与℃有关③既辐射也反射能量3.黑体辐射:①℃↑,黑体的辐射强度↑②℃↑,辐射强度极大值向波长短方移动4.能量子:①1900年普朗克②普`提振动的带电微粒的能量只是最小能量值ε的整数倍③ε=hν④h普朗克常量=6.63×10-34J·S ν频率光电效应的实验规律1.光电效应:照射金属光,使金属中的电子从表面逸出光电子:逸出电子勒纳德和汤姆孙等相继实验证实2.饱和电流:光色不变,入射光越强,饱和电流越大,单位时间内发射的光电子数越多3.遏止电压:使光电流减小到0的反向电压U c,光电子一定存在初速度满足12m e u c2=eU c颜色不同,频率不同,~不同4.光电子的能量只与入射光的频率有关5.截至频率(极限频率)νc不同金属截至~不同6.入射光频率<νc不发生光电效应7.瞬时性:当频率>νc,立即产光电流光电效应解释中的疑难1.逸出功W0:脱离做功最小值2.不同金属W0不同3.光↑,逸出电子数↑,光电流↑爱因斯坦的光电效应方程1.光:一份一份的由一个个不可分割的ε组成2.频率为ν的光的能量子为hν,h为普朗克常量3.光子:光的能量子为hν4.金属电子吸一光子获能是hν,一部分克服金属的逸出功W0,剩下表现为逸出后电子的初动能E k即hν=E k+W0或E k=hν-W0(爱因斯坦光点效应方程)(W0交于负半轴)若E k光电子的最大初动能E k=12m e u c2一个光子只给一个电子输能·爱因`表明:E k与入射光的频率ν有关hν>W0时,才有光电子逸出,νc=W0ℎ(光电效应截至频率)·电子一次性全吸能,不累能量时间,光电流几乎瞬时产生·同颜色(ν相同)的光,光较强时,包含光子数↑,照射金属产生光电子↑,饱和电流↑康普顿效应1.光的散射:在介质中与物质微粒相互作用,传播方向改变2.康普顿效应:散射X射线时,除与入射光波长λ0相同的成分,还有波长大于λ0的成分3.光电效应:光子具有能量康普顿效应:光子除了具有能量还具有动量光子的动量1.E=mc2E一定的能量m一定的质量2.光子的动量:p=ℎλλ波长h普朗克常量p动量【p=mc①ε=hf②ε=mc2③联解①②③得p=ℎλ】(f=ν=cλc光速f=ν频率)光的波粒二象性1.波粒二象性:光具有波动性+粒子性2.能量ε和动量p:描述物质的粒子性的重要物理量3.波长λ或频率ν:描述物质的波动性的典型物理量粒子的波动性1.德布罗意:①提出假设:实物粒子具有波动性②德布罗意波(物质波、概率波):与实物粒子相联系的波2.概率波1.光的强弱对应光子数目:明纹处光子多,暗纹处光子少光子落在明纹处概率大,暗纹概率小2.光的波动性不是光子之间的相互作用引起,是光子自身固有性质不确定性关系不确定性关系1.托马斯·杨和菲涅耳:光的波动说麦克斯韦:光的电磁理论爱因斯坦:光子理论第十八章原子结构电子的发现原子可以分割,由更小微粒组成电子的发现1.汤姆孙认为阴极射线是带电粒子流2.组成阴极射线的粒子为电子3.热离子发射:金属高温发射粒子现象4.密立根:电荷是量子化,任何带电体的电荷是e的整数倍e=1.602 177 33(49)×10-19C 原子的核式结构模型汤姆孙:提出“枣糕模型”和“西瓜模型”α粒子散射实验1.α粒子:放射性物质(如铀和镭)发射出来快速运动粒子,带两个单位正电荷2.卢瑟福α粒子轰击金箔实验(α粒子散射实验)3.卢瑟福原子结构模型:原子核:原子中心一个很小的核原子全部的正电荷和质量集在此带负电电子在核外绕核旋转4.对α粒子散射实验数据分析:可估计原子核大小和正电荷数5.原子序数=核电荷数=质子数=核外电子数(英)汤姆孙:发现电子氢原子光谱光谱1.光谱:光栅或棱镜把各颜色光按波长展开,获光的波长(频率)+强度分布的记录2.线状谱:光谱有一条条的亮线3.连续光谱:非条,连在一起的光带例:炽热气体、液体及高温高压气体产生4.各原子发射光谱都是线状谱5.亮线:原子的特征谱线(元素发出多少频率的光,就吸收多少频率的光)。

选修3-5-2.1~2电子-原子的核式结构

选修3-5-2.1~2电子-原子的核式结构
选修3-5 第二章 原子结构
第1节 电子 第2节 原子的核式结构模型
电子显微镜下的石墨原子
电子的发现者:J.J.汤姆孙
1906年获诺贝尔物理学奖 他的儿子及7位学生后来 均获诺贝尔奖
阅读教材20-21页,回答问题:
• • • • • •
1. 什么是阴极射线? 2. 如何判断阴极射线带的是负电? 3. 什么叫比荷?请计算电子的比荷。 4. 如何测定阴极射线的比荷? 5. 为什么汤姆森认为电子是比原子更小的微粒? 6. 谁第一次精确测定了电子的带电量?
电子电荷精确测量——密立根
美国物理学家 密立根
原子结构——枣糕模型
• 枣糕模型
α粒子散射实验
新西兰物理学家 卢瑟福
原子结构——核式结构模型
吾爱吾师,吾更爱真理! • 核式结构模型
缺陷:与经典电磁理论矛盾
小结
• 一种粒子 阴极射线微粒:电子 带负电 质量只有氢原子的1/1800
• 二个模型
• 三个天才
ห้องสมุดไป่ตู้
J.J.汤姆孙 密立根
卢瑟福

物理选修3-5知识点归纳

物理选修3-5知识点归纳

物理选修3-5知识点总结一、量子理论的建立黑体和黑体辐射、1、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。

2、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。

(普朗克的能量子理论很好的解释了这一现象)3、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hνh为普朗克常数(6.63×10-34J.S)二、光电效应光子说光电效应方程1、光电效应(表明光子具有能量)(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。

在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。

(2)光电效应的研究结果:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:当所加电压U为0时,电流I并不为0。

只有施加反向电压,也就是阴极接电源正极阳极接电源负极,在光电管两级形成使电子减速的电场,电流才可能为0。

使光电流减小到0的反向电压Uc 称为遏止电压E k=eU c。

遏止电压的存在意味着光电子具有一定的初速度;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率高于截止频率时才能发生光电效应v c=w0/h;④光电效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。

规律:①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应;②光电子的最大初动能与入射光的强度无关..;③入射光照到金属上时,光电子的发射几乎是瞬时的............,一般..而增大..................,只随着入射光频率的增大不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。

选修3-5 第三章 第1讲

选修3-5 第三章 第1讲
接跃迁,有时可能是间接跃迁。两种情况下辐射(或吸收)光子 的能量是不同的。直接跃迁时辐射(或吸收)光子的能量等于间 接跃迁时辐射(或吸收)的所有光子的能量和。
【典例透析1】如图所示为氢原子最低的四个能级,当氢原子
在这些能级间跃迁时:
(1)有可能放出多少种能量的光子?
(2)在哪两个能级间跃迁时,所放出光子波长最长?最长波长
1 En=Ekn+Epn= E2 ,随n增大而增大,随n的减小而减小,其中
E1=-13.6 eV。
n
(2)电子动能变化规律
①从公式上判断电子绕氢原子核运动时静电力提供向心力,即
ke 2 e2 v2 ,所以 E kn ,随r增大而减小。 k 2 m 2rn r r
②从库仑力做功上判断,当轨道半径增大时,库仑引力做负功, 故电子动能减小。反之,当轨道半径减小时,库仑引力做正功, 故电子的动能增大。
n n 1 4 4 1 【解析】(1)N= 种=6种。
(2)氢原子由第4能级向第3能级跃迁时,能量差最小,辐射的 光子波长最长。 由hν=E4-E3得:h c =E4-E3
hc 所以最长波长λ= E 4 E3 6.63 1034 3 108 = [ 0.85 1.51] 1.6 1019
能级图中的横线
横线左端的数字“1,2,3„”
相 关 量
意义 表示氢原子的能量 表示相邻的能量差,量子数越 大相邻的能量差越小,距离越 小 表示原子由较高能级向较低能 级跃迁,原子跃迁的条件为 hν =Em-En
横线右端的数字“-13.6, -3.4„”
相邻横线间的距离
带箭头的竖线
2.对原子跃迁条件hν =Em-En的说明 (1)原子跃迁条件hν =Em-En只适用于光子和原子作用而使原子 在各定态之间跃迁的情况。

高中物理选修3-5 原子结构与原子核

高中物理选修3-5 原子结构与原子核

,Z表示核电荷数.
(1)天然放射现象
元素 自发 地放出射线的现象,首先由 贝可勒尔 发现.天然放射现象的发现,说明原
子核具有 复杂 的结构.
答案
考点三 原子核及核反应
(2)三种射线
名称 构成 符号 电荷量 质量 电离能力 贯穿本领
α射线 氦核
+2e 4 u
最强
最弱
β射线 电子
-e
较强
较强
γ射线 光子 γ
解析答案
考点一 原子的核式结构
1234
2.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出
的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是
.(填选图下方的
字母) 吸引
吸引

解析 α粒子受到原子核的斥力作用而发生散射, 离原子核越近的粒子,受到的斥力越大,散射角度越大,选项C正确.
答案
返回
考点四 核力与核能
【考点逐项排查】
1.核力:原子核 内部 ,核子间所特有的相互作用力. 2.核能 (1)核子在结合成原子核时出现质量亏损Δm,其对应的能量ΔE= Δmc2 . (2)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm, 吸收的能量为ΔE= Δmc2 . 3.核能释放的两种途径的理解 (1)使较重的核分裂成中等大小的核;(2)较小的核结合成中等大小的核.核子的比结 合能都会增大,都可以释放能量.
答案
考点一 原子的核式结构
1 2 3 4 【题组阶梯突破】
1. (多选)如图所示为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和 显微镜一起分别放在图中的A、B、C、D四个位置时观察到的现象,下述说法中正 确的是( ABD ) A.放在A位置时,相同时间内观察到屏上的闪光次数最多 B.放在B位置时,相同时间内观察到屏上的闪光次数只比 A位置时稍少些 C.放在C、D位置时,屏上观察不到闪光 D.放在D位置时,屏上仍能观察到一些闪光,但次数极少 解析 根据α粒子散射现象,绝大多数α粒子沿原方向前进, 少数α粒子发生较大偏转.

高中物理 选修3-5知识点

高中物理 选修3-5知识点

原子物理(3—5)(一)动量物体的动量 P=mv ,矢量① 动量守恒'+'=+22112211v m v m v m v m ,使用时需选择正方向② 条件:(Ⅰ)系统F 合=0;(Ⅱ)F 内>> F 外;(Ⅲ)系统某方向上F 合=0 ③ 实例:碰撞、爆炸、反冲等 ④ 动量与动能 mpE k 22=,k mE p 2=练习1:静止的Li 63核俘获一个速度s m v /107.741⨯=的中子而发生核反应,生成一个新核和速度大小为s m v /100.242⨯=、方向与反应前中子速度方向相同的氦核He 42,上述核反应方程为 ,另一个新核的速度大小为 m/s 。

练习2:(教科书P 51)两个氘核聚变时产生一个中子和一个氦核(氦的同位素),已知氘核的质量m H =2.0141u ,氦核的质量为m He =3.0160u ,中子的质量为m n =1.0087u ,(以上质量均指静质量)(1)写出核反应方程(2)计算反应释放出的核能(3)如果反应前两个氘核的动能均为0.35Mev ,它们正面对碰发生聚变,且反应释放的核能全部转化为动能,计算反应生成的氦核和中子的动能。

(二)原子结构1.原子模型2.氢原子光谱(1)光谱种类① 发射光谱:物质发光直接产生的光谱。

(例如炽热的固体、液体及高温高压气体发光产生连续光谱....;稀薄气体发光产生线状谱...,不同元素的线状谱线不同,又称特征谱线) ② 吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。

(2)氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。

3.玻尔的原子能级结构① 卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(“核式结构模型”无法解释a 、原子的稳定性;b 、原子光谱的分立特征)1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章原子结构一、电子的发现:(一)电子的发现:1.电子是怎样发现的:汤姆生用测定粒子的荷质比的方法发现了电子。

汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。

当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。

2.电子的发现对人类认识原子结构的重要性。

①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。

②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。

(二)汤姆生的原子模型(枣糕模型)葡萄干面包模型二、原子的核式结构的发现(一)原子核式结构的发现:1.什么叫散射实验?用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。

2.为什么用α粒子的散射(实验)现象可以研究原子的结构?原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。

①由于α粒子具有足够的能量可以接近原子的中心,②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。

3.α粒子散射装置①放射源(Pa“坡”)玛丽·居里的祖国波兰。

②金箔:1μm,能透光,有3000多层原子厚。

③荧光屏荧光屏和显微镜能够围绕金箔在一个④显微镜圆周上转动,从而可以观察到穿过金箔后⑤转动圆盘偏转角度不同的α粒子4.实验过程:实验室建在地下,通道大拐角(防光进入)马斯登和盖革(卢瑟福的学生、助手)进入实验室后要静座半小时散瞳孔后进行观察(纯人工计数),这种观察是十分艰苦细致的工作,所用的时间也是相当长的。

(1909年~~1911年两年的时间)。

5.实验结果:①“绝在多数”(几十万个)α粒子穿过金箔后仍沿原来的方向前进②“少数”(上万个)α粒子都发生了较大的偏转,③并且“极少数”(1350角几十个,1800角十几个)α粒子的偏转超过了900,有的甚至几乎达到1800,象是被金箔弹了回来。

6.实验分析:马斯登和盖革把实验结果交给老师后,卢瑟福开始认为是实验错了(汤姆生是卢瑟福的老师,老师的观点能否轻易否定吗?)根据原理论寻找新的解释,后来才发现应修改理论,三个多星期后,卢瑟福吹着口哨到了实验室,两个学生一听,老师已解决了这个问题。

①电子不可能使α粒子发生大角度散射,α粒子跟电子碰撞过程中,两者动量的变化相等,由于α粒子的质量是电子质量的7300倍,在碰撞前后,质量大的α粒子速度几乎不变,而质量小的电子速度要发生改变,因此,α粒子与电子正碰时,不会出现被反弹回来的现象。

发生非对心碰撞时,α粒子也不会有大角度的偏转,可见,电子使α粒子在速度的大小和方向上的改变都是十分微小的。

②按照汤姆生的原子模型,正电荷在原子内部均匀地分布,α粒子穿过原子时,由于粒子两侧正电荷对它的斥力有相当大一部分互相抵消,使α粒子偏转的力也不会很大。

α粒子的大角度散射现象,说明汤姆生模型不符合原子结构的实际情况。

③实验中发现极少数α粒子发生了大角度偏转,甚至反弹回来,表明这些α粒子在原子中的某个地方受到了质量、电量均比它本身大得多的物体的作用。

④金箔的厚度大约1μm,金原子的直径大约是3×10-10米,绝大多数α粒子在穿过金箔时,相当于穿过三千多个金原子的厚度,但它们的运动方向却没有发生明显的变化,这个现象表明了α粒子在穿过金箔时,基本上没有受到力的作用,说明原子中的绝大部分是空的,原子的质量和电量都集中在体积很小的核上。

(二)原子核的电荷和大小:1.测知原子核的电荷:原子中的电子数等于原子序数。

2.意义:给元素排序提供了实验依据,元素的化学性质归根到底是由原子中的电子数决定的,从而是由原子核中的电荷数来决定的。

3.核的大小:直径10-14m以下原子核的半径只相当于原子半径的万分之一,原子核的体积只相当于原子体积的万亿分之一。

4.原子核密度很大,1立方厘米的原子核质量为107吨。

(三)卢瑟福原子核式结构模型:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间进而绕着核旋转。

三、玻尔的原子理论(一)玻尔理论产生的背景:1.背景:核式结构虽然能很好地解释α粒子散射实验,但跟经典的电磁理论发生了矛盾,这些矛盾说明从宏观现象总结出来的经典电磁理论不适用于微观现象。

不解决这个矛盾,原子理论就不能前进,这就是产生玻尔原子理论的历史背景。

2.核式结构与经典电磁理论的矛盾:①按经典电磁理论,电子在绕核作加速运动过程中,要向外辐射电磁波,因此能量要减少,电子轨道半径也要变小,最终会落到原子核上,因而原子是不稳定的;②电子在转动过程中,随着转动半径的缩小,转动频率不断增大,辐射电磁波的频率不断变大,因而大量原子发光的光谱应该是连续光谱。

而事实上,原子是稳定的,原子光谱也不是连续的光谱,而是线状光谱。

(明线光谱)(二)玻尔原子理论的主要内容:1.能级假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫做定态。

具有一定的能量,也叫能级。

(能量指系统动能和势能的总和)能级假设是针对原子的稳定性提出的,它承认核式模型,但假定原子只能处于一系列“不连续”的稳定状态中。

从宏观现象的“连续”的概念过渡到微观世界的“不连续”的概念,是人类对物质世界认识上的一次飞跃。

2.跃迁假设:原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由两种定态的能量差决定,即hν=E2-E1跃迁假设说明了原子发光的机制,这一条假设是针对原子发光的光谱是线状光谱提出的,运用了普朗克的量子理论。

3.轨道假设:原子的不同能量状态对应于电子的不同运行轨道,由于原子的能量状态是不连续的,因此电子的可能轨道也是不连续的,即电子不能在任意半径的轨道上运行,只有满足下列条件的轨道才是可能的:轨道半径r 跟电子的动量mv 的乘积等于h/2π的整数倍,即mvr=n π2h , n=1, 2, 3 ....,式中n 是正整数叫量子数,这种现象叫做轨道的量子化。

轨道量子化假设也是针对原子的核式模型提出的,是对第一条假设的补充。

(三)氢原子的大小和能级:(玻尔理论对氢原子的应用)1.能级:原子各个定态的能量值,叫做它的能级。

在正常情况下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态叫做基态。

电子在离核较远的轨道上运动处于高能级状态,这种定态叫激发态。

2.轨道半径公式(可能):r n =n 2r 1n=1, 2, 3 ......E n =21nE 1 式中r 1代表第一条(即离核最近的一条)可能轨道的半径。

E 1代表电子在第一条(即离核最近的一条)可能轨道的运动时的能量。

n 是量子数。

r 1=0.53×10-10mE 1=-13.6ev ,(E ∞=0,电子的动能等于电势能绝对值的一半)四、玻尔原子理论对氢光谱的解释(一)氢光谱的规律:1、氢光谱(可见光区)每种元素都发出自己独特的光谱,各种元素的每条光谱线的频率都是固定不变的。

氢光谱在可见光区有四条谱线红 H α 0.6562μm蓝 H β 0.4861μm紫 H γ 0.4340μm紫 H δ 0.4101μm2.巴耳末经验公式:(1885年瑞士中学教师)(规律)λ1=R(22121n-), n=3, 4, 5 ...... 式中R 叫做里德伯恒量,测得R=1.096776×107m -1计算与实验符合得很好,此谱系称巴耳末系。

(二)玻尔理论对氢光谱规律的解释:E n =21nE 1 (巴耳末系)h ν=E 2-E 1=21n E 1-221E 1=-E 1(221-21n ) 又λνc =,则:λhc =-E 1(221-21n) λ1=-hc E 1(221-21n ) 计算:R=-hc E 1=1.097373×107m -1, 也解释了帕邢系(红外区)(n=3)预言了当时未发现的光谱系:(说明理论的正确)赖曼系(紫外区)(n=1)布喇开系(远红外区)(n=4)注意:1、氢光谱中的每个线系,都是原子从不同的高能级向某一低能级跃迁时发出的谱线。

2、光谱线上的每一条谱线都是大量处于同一能态的原子向同一低能级(态)跃迁的结果。

3、由于每个原子所处的能态不同,大量原子的跃迁在同一时刻,会发出不同频率的光束,因此光谱线上能够出现各种谱线。

五、玻尔原子理论的困难和量子力学(一)玻尔原子理论的困难:具有两个以上电子的比较复杂的原子光谱,玻尔原子理论都遇到了不可克服的困难(在于理论内部的矛盾)。

玻尔理论是一种半经典的理论,一方面引入了量子假设,另一方面又应用经典理论计算电子轨道半径和能量。

因此,玻尔理论在解释复杂的微观现象时遇到困难,乃是必然的。

(二)量子力学的创始人:海森堡、薛定谔玻尔、玻恩、狄拉克1.量子力学是彻底的量子理论,是研究微观世界的基本理论工具。

它不但能解释玻尔理论所能解释的现象,而且能够解释大量玻尔理论不能解释的现象,玻尔理论中的三点假设,在量子力学中也变成理论上推导出来的直接结果。

2.建立在量子力学基础上的原子理论与玻尔原子理论的区别:根据量子力学,核外电子的运动服从统计规律,而没有固定的轨道,我们只能知道它们在核外某处出现的几率大小,核外电子的这种运动情况可用“电子云”来形象描述,电子云稠密的地方就是电子出现几率大的地方。

六、原子的受激辐射 激光(一)激光的产生原理:1.原子发光的两种情形:①自激辐射(自然光):处于激发态的原子是不稳定的,只能停留很短的时间,通常约为10-8秒,就自发地跃迁到较低能级去,同时辐射出一个光子,(hν=E2-E1)这种辐射叫做自发辐射。

原子发生自发辐射时,各个原子发出的光子是四面八方辐射的,它们的频率、初相和偏振方向互不相同,而且每个原子每次发光持续的时间很短约10-9秒,下一次发光又会发出跟前一次不同的光子,因此这些光叠加时不会产生稳定的干涉花样,看到的只是大量光产生的一种平均效果,这种光就是自然光,这就是普通光源发光的情形。

②受激辐射(激光):当原子处于激发态E2时,如果恰好有能量hν=E2-E1的光子从附近通过,在入射光子的电磁场的影响下,原子会发出一个同样的光子而跃迁到低能级E1去,这种辐射叫受激辐射。

原子发生受激辐射时,发出的光子的频率、发射方向、初相和偏振方向等,都跟入射光子完全一样,也就是说,受激辐射的光子跟入射光子没有任何区别,这样,一个入射光子由于引起受激辐射就变成了两个光子(同样),如果这两个光子在媒质中传播时再引起其他原子发生受激辐射,就会产生越来越多的相同的光子,使光得到加强,这就是激光。

相关文档
最新文档