菱形的判定优秀课件.ppt

合集下载

第2课时菱形的判定课件(共24张PPT)2023-2024学年北师大版八年级数学下册

第2课时菱形的判定课件(共24张PPT)2023-2024学年北师大版八年级数学下册
点 O ,点 E,F,G,H 分别是 OA,OB,OC,OD 的中
点. 求证:四边形 EFGH 是菱形.
证明:∵四边形 ABCD 是菱形,∴AD ∥
= CB,AC⊥BD.
又点E,F,G,H 分别为 OA,OB,OC,OD 的中点,
1
1
∴HE∥AD且 HE= 2 AD,FG∥BC且 FG = 2 BC,
做成一个平行四边形. 转动木条,这个平行四边形什么
时候变成菱形?
你能证明这个猜想吗?
猜想:对角线互相垂直的平行四边形是
菱形.
证明
已知:四边形ABCD是平行四边形,对角线AC与BD
相交于点O,AC⊥BD.
求证:四边形ABCD是菱形.
证明:∵四边形ABCD是平行四边形
B
∴OA=OC.
又∵ AC⊥BD,

O
D
C
随堂练习
抢答
2.如图,四边形ABCD的两条对角线相交于点O,且互相平分.
添加下列条件,仍不能判定四边形ABCD为菱形的是(
A.AC⊥BD
C.AC=BD
B.AB=AD
C)
A
D
D.∠ABD=∠CBD
O
分析
由题知四边形ABCD是平行四边形
A.依据:对角线互相垂直的平行四边形是菱形;
B.依据:有一组邻边相等的平行四边形是菱形;
菱形的判定

对角线
几何语言
如:四边相等的
四边形是菱形
如图, ∵ = , = ,
∴ 四边形 是平行四边形.
又 ∵ = ,
∴ 四边形 是菱形.(菱形的定义)
如:对角线互相垂直的
平行四边形是菱形.
如图, ∵ 四边形 是平行四边形,

18.2.2菱形 菱形的判定课件(共29张PPT) 人教版数学八年级下册

18.2.2菱形 菱形的判定课件(共29张PPT) 人教版数学八年级下册
成的四边形的什冬天么,时干啥候还希变望成别的菱呢!形?
当这个四边形的对角线互相垂直时变成菱形.
新知探究
猜想:对角线互相垂直的平行四边形是菱形.
下面我们来进行验证:
小山整把济南围了个圈儿,只有北边缺着点口儿。这一圈
已知:如小图山,在冬在天特▱A别可B爱C,D好中像是,把对济南角放在线一A个小C摇,B篮里D,相交于点O, 它们全安静不动地低声地说:“你们放心吧,这儿准保暖
G
C
和。”真的,济南的人们在冬天是面上含笑的。他们一看
∴∠A=∠B=∠C那=些∠小D山,=心9中0°便觉, 得A有D了=着B落C,,有A了B依=靠C。D他.们由天上
看到山上,便不知不觉地想起:“明天也许就是春天了H吧?
F
∵E,F,G,H分这点样幻别的想温不是暖能A,一B今时,天实夜现B里,C山他,草们C也也D许并就不,绿着A起急来,D了因的吧为中?有”这点就样,是慈这善
这样的温暖,今天夜里山草也许就绿起来了吧?”就是这
四点条幻边想不都能相一时等实现,他们也并不着急,因为有这样慈善
的冬天,干啥还希望别的呢!
两条对角线互相垂 直,并且每一条对

角线平分一组对角
新知探究
探究点1 对角线互相垂直的平行四边形是菱形.
如图,用一长一短两根木条,在它们的中点处固定一
小山整把济南围了个圈儿,只有北边缺着点口儿。这一圈
也可以反推菱形的性质来得到它的判定呢? 看到山上,便不知不觉地想起:“明天也许就是春天了吧? 这样的温暖,今天夜里山草也许就绿起来了吧?”就是这
我们大家
点幻想不能一时实现,他们也并不着急,因为有这样慈善
一起来尝试的一冬天下,干吧啥还!希望别的呢!
类比导入
图形 性质定理

菱形的判定公开课课件课件

菱形的判定公开课课件课件
第19页,幻灯片共25页
4、如图, 在△ABC中, AB=AC, 点M在边BC上, 过
点M分别作AB、AC的平行线, 与AC、AB分别相交
于点D、E. 当点M位于BC的什么位置时, 四边形
AEMD是菱形?请给予证明.
证明:∵EM∥AC,DM∥AB ∴四边形AEMD是平行四边形
若EM=DM,则□AEMD是菱形
一组邻边相等的平行四边形是菱形
O
证明:平行四边形ABCD中
B
2
E
4
C
AD∥BC
∴∠1=∠2,∠3=∠4
EF垂直平分AC ∴AO=CO,AF=CF,
∴ △AOF≌△COE
∴ AF=CE
又AF∥CE ∴四边形AFCE是平行四边形
∴平行四边形四边形AFCE是菱形
第12页,幻灯片共25页
例1.已知:平行四边形ABCD的对角线AC的垂直
求证:四边形CDEF是菱形
A
12
F
E
O
B
C
D
第23页,幻灯片共25页
小结
我学会了什么?
第24页,幻灯片共25页
第25页,幻灯片共25页
∴ □ ABCD是菱形.
组邻边相等的平行四边形是菱形)
第8页,幻灯片共25页
(一
思考与探索
你能用直尺和圆规作一个菱形吗?请作图 并说明理由。
第9页,幻灯片共25页
归纳
A
B
平行四边形 邻边相等
D
C AD=DC
A 平行四边形
B对角线互相垂直
DA
C
AC⊥BD
四边形 B 四边相等
D
AD=DC=CB=BA
AC
四边形 B对角线互相垂直平分

八年级人教版菱形的判定市公开课获奖课件省名师示范课获奖课件

八年级人教版菱形的判定市公开课获奖课件省名师示范课获奖课件

想一想
• 假如一种四边形是一种平行四
边形,则只要再有什么条件就
能够鉴定它是一种菱形?根据
什么?
A
D
根据定义得:
有一组邻边相等旳平行四边形叫做菱形.
B
C
在 ABCD中, AB AD
ABCD是菱形.
还有什么措施吗?
自学指导
• 自学内容:99页 • 自课时间:4分钟 • 自学要求:
1、矩形还有哪些鉴定措施?怎样证明? 2 、例3
A
∴OA=OC 又∵ AC ⊥ BD;
B
O
D
∴BA=BC
(线段垂直平分线上旳点到线段两 个端点旳距离相等)
C
∴ ABCD是菱形 (有一组邻边相等旳平行四边形叫做菱形).
数学语言 ∵四边形ABCD是平行四边形; AC ⊥ BD;
∴ □ ABCD是菱形
画一画
先画两条等长旳线段AB、AD,然后分别以B、 D为圆心,AB为半径画弧,得到两弧旳交点C, 连接BC、CD,就得到了一种四边形,猜一猜, 这是什么四边形?
分析: 四边形AFCE是菱形
AE=EC=CF=FA
A
ED
1
O
B
23
F
C
AE=EC AF=CF
AE=AF
EF 垂直平分AC
∠1= ∠2
∠1= ∠3
∠2= ∠3
ห้องสมุดไป่ตู้AE∥FC
AF=CF EF ⊥AC
四边形ABCD 是平行四边形
C
F
G
A
B
D
E
已知,如图, ∠ ABC中, ∠ ACB= 900,BF平分
∠ ABC,CD垂直于AB于D,和BF交于点G ,

菱形性质与判定课件ppt

菱形性质与判定课件ppt

面积计算
菱形面积的计算公式为
面积 = (对角线1 × 对角线2) / 2。由于菱形的对角线互相垂直且平分,因此可以使用此公式来计算面积。
另一种计算菱形面积的方法是
面积 = 底 × 高。在这里,底是菱形的一条边,高是从这条边到对角顶点的垂直距离。
周长计算
01
菱形的周长计算公式为:周长 = 4 × 边长。由于菱形的四条边都相等, 因此可以使用此公式来计算周长。
建筑学中的应用
建筑设计
菱形结构在建筑设计中常被用作装饰元素,如菱形窗格、菱形图案的墙面等,增加建筑物的美感和独特性。
空间划分
菱形地砖、菱形玻璃等可以用于室内空间划分,创造出独特视觉效果,同时起到引导人流、划分功能区域的作用。
工程学中的应用
结构工程
菱形结构具有较好的稳定性和承重能力,在桥梁、道路、隧道等工程建设中,菱形结构 常被用于增强结构的稳定性和承载能力。
邻边互相垂直且相等判定
邻边互相垂直
菱形的任意一组邻边互相垂直,因此 可以通过测量任意一组邻边的夹角是 否为90度来判断一个四边形是否为菱 形。
邻边长度相等
除了互相垂直外,菱形的任意一组邻 边的长度还相等。这也是菱形的一个 基本性质。
03
菱形与其他四边形的比较
与矩形的关系
01
02
03
边的性质
菱形的对边相等,与矩形 相同;但菱形的邻边也相 等,这是矩形不具备的性 质。
角度关系
两组对角相等,即∠A=∠C,∠B=∠D;邻角互补,即∠A+∠B=180°, ∠B+∠C=180°。
对角线性质
对角线互相垂直: AC⊥BD。
对角线长度关系:对 角线长度不一定相等 ,但满足 AC²+BD²=4AB²。

1.1.2菱形的判定 课件(共20张PPT)

1.1.2菱形的判定 课件(共20张PPT)

教师讲评
③四边相等的四边形是菱形.
几何语言:如图,∵AB=BC=CD=DA,∴四边形ABCD是菱形.
注意点:①②两种方法都是在平行四边形的基础上外加一个条
件来判定菱形.③是在四边形的基础上加上四条边相等来判定菱
形.
典例精讲
【题型一】菱形的判定简单应用
例1.下列条件中能判断四边形是菱形的是( )
如图所示,绿丝带重叠部分形成的图形是一个漂
亮的菱形.你知道怎样判断它是一个菱形吗?
为了迎接第33届牡丹花会,公园里的园艺师建造了一个如图所示
的平行四边形花坛ABCD,经测量花坛的边长AB=20米,沿着花
坛的两条对角线修建的两条小路AC和BD交于点O,AC=24米,
BD=32米,小亮说这是个菱形花坛。他的说法正确吗?为什么?
列结论一定成立的是( )
A. AD=CD
B.四边形 ABCD面积不变
C. AC=BD
D.四边形 ABCD周长不变
典例精讲 【题型二】利用菱形的性质与判定求长度、角度或面积
例4:如图,在平行四边形ABCD中,AC与BD交于点O,点E是AB边
上的中点,连接OE,OE=2.5,AC=8,BD=6.有下列结论:①△ABD是
弧,得到两弧的交点C,连接BC,CD,就得到了一个四边形,如图.
(1)猜一猜,这是什么四边形?
(菱形)
(2)根据画图,你还有其他方法能判定此四边形的形状吗?
小组合作试着进行证明. (四边相等的四边形是菱形)
证明:因为AB=AD,AB=BC,所以AD=BC . 又因为
AB=CD,所以四边形ABCD为平行四边形.




∴OA=OC= AC=3,OD=OB= BD=4.

菱形的性质与判定ppt课件

菱形的性质与判定ppt课件
四边形
_______.
【探究提升】 取两张短边长度相等的平行四边形纸条和
< , ≤ ,其中 = ,∠ = ∠,将它们按图2放
置,落在边上,,与边分别交于点,.求证:四边形
是菱形.
证明:∵ 四边形纸条和是
折叠,使得落在边上,折痕为,
展平纸片.如图2,再次折叠该三角形
纸片,使点与点重合,折痕为,再
次展平后连接,.求证:四边形是菱形.
证明:由第一次折叠,得为∠
的平分线.∴ ∠ = ∠.
由第二次折叠,得∠ = ∠,
= , = .
= = = = , = .若∠ = ∘ ,则
∠的度数为( B )
A.∘
B.∘
C.∘
D.∘
第10题图
11.
如图,将△ 沿着方
向平移得到△ ,只需添加一个条件即可证
明四边形是菱形,这个条件可以是
= (答案不唯一)
∴ 四边形为菱形.
第7题图
(2)求的长.
解:∵ 四边形为菱形,
∴ = = , = , ⊥ .
在 △ 中, = − = ,
∴ = = .
第7题图
8.张师傅应客户要求加工4个菱形零件,在交付客户之前,张师傅需要对
4个零件进行检测,根据零件的检测结果,图中有可能不合格的零件是
( C )
A.
B.
C.
D.
9.(2023洛阳期中改编)如图1,四边形
是菱形,在直线上找两点,,
使四边形是菱形,则甲、乙两个方
案( C )
A.甲对,乙错
B.乙对,甲错
C.甲、乙都对
D.甲、乙都错
10.如图,四边形内有一点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:∵ 四边形ABCD是平行四边形 ∴OA=OC=4 OB=OD=3 A 又∵AB=5 ∴AB2=AO2+BO2 ∴∠AOB=90° ∴AC⊥BD 又∵ 四边形ABCD是平行四边形 ∴四边形ABCD是菱形. D O B C
归纳
菱形常用的判定方法:
1、一组邻边相等的平行四边形叫做菱形.
2、对角线互相垂直的平行四边形是菱形.
证明:∵DE∥AC DF∥AB
E
3
12
∴四边形AEDF是平行四边形 ∵ DE∥AC B ∴∠2=∠3 ∵ AD是△ABC的角平分线 ∴ ∠1=∠2 ∴ ∠1=∠3 ∴AE=DE ∴ □AEDF是菱形
F D C
探究一
先画两条等长的线段AB、AD,然后分别以 B、D为圆心,AB为半径画弧,得到两弧的交点 C,连接BC、CD,就得到了一个四边形,猜一 猜,这是什么四边形?说出你的理由
A D
在 ABCD中, AB AD ABCD是菱形.
B
C
判定方法1:
一组邻边相等的平行四边形是菱形
A D
数学语言:
B
O
C
∵四边形ABCD是平行四边形,AB=AD ∴四边形ABCD是菱形
还有其他么方法吗?
练习:已知:如图,AD平分∠BAC, DE∥AC 交AB于E,DF∥AB交AC于F. A 求证:四边形AEDF是菱形.
(对角线互相垂直平分的四边形是菱形.) 3、有四条边相等的四边形是菱形.Biblioteka 小结:菱形的判定方法:
四条边相等
四边形 菱形
平行四边形
1.做一做:判断下列命题是否正确,并说明理由. (1)对角线互相平分且邻边相等的四边形是菱形. 对 (2)两组对边分别平行且一组邻边相等的四边形 是菱形. 对 (3)邻角相等的四边形是菱形.错 (4)有一组邻边相等的四边形是菱形.错 (5)两组对角分别相等且对角线互相垂直的四边形 是菱形. 对 错 (6)对角线互相垂直的四边形是菱形. (7)对角线互相垂直平分的四边形是菱形。 对 (8)一条对角线平分一个内角的平行四边形是菱形。 对
1 1 EF GH BD,FG EH AC 2 2
H
G
C
∴EF=FG=GH=HE ∴四边形EFGH是菱形
探究二
菱形的两条对角线既互相垂直,又互相平分. 从菱形的这一性质受到启发,你能画出一个菱形 吗?
过点O画两条互相垂直的线段AC 和BD,使得OA=OC,OB=OD. 连结AB, BC,CD,DA,则四边形ABCD是菱形,如 图2-55.
菱形的判定方法3:
A D AC⊥BD B C B C A D
对角线互相垂直的平行四边形是菱形; (对角线互相垂直平分的四边形是菱形)
□ABCD
菱形ABCD
AC⊥BD
□ABCD
四边形ABCD是菱形
练习:如图, ABCD的两条对角线AC、BD相交 于点O,AB=5,AC=8,DB=6 求证:四边形ABCD是菱形.
图2-55
你能说出这样画出的四边形ABCD一定是菱形的道理吗?
如图2-55,由画法可知,四边形ABCD 的两条对角线 AC 与BD 互相平分,因此它是平行四边形. 又已知其对角 线互相垂直,上述问题抽象出来就是: 对角线互相垂直的平行四边形是菱形吗? 我们来进行证明.
由于四边形ABCD的两条对角线AC与BD 互相平分,因此它是平行四边形.
2、□ABCD的对角线AC与BD相交于点O,
(1)若AB=AD,则□ABCD是 菱 (2)若AC=BD,则□ABCD是 形;
矩 形; 矩
(3)若∠ABC是直角,则□ABCD是
D
形;
C
(4)若∠BAO=∠DAO,则□ABCD是 菱 形。
O A B
3、选择:
(1).下列命题中正确的是(C ) A.一组邻边相等的四边形是菱形 B.三条边相等的四边形是菱形 C.四条边相等的四边形是菱形 D.四个角相等的四边形是菱形
A D B 四边形ABCD C AB=BC=CD=DA A
D
B
C
菱形ABCD
数学语言
∵在四边形ABCD中 AB=BC=CD=DA ∴四边形ABCD是菱形
练习:如图,顺次连接矩形ABCD各边中点, 得到四边形EFGH,求证:四边形EFGH是菱 形。 E
A D
证明:连接AC、BD F ∵四边形ABCD是矩形 B ∴AC=BD ∵点E、F、G、H为各边中点
互相平分 1、对角线_____________ 的四边形是平行四边形。
相等 2、对角线_____________ 的平行四边形是矩形。 互相垂直 3、对角线_____________ 的平行四边形是菱形。 相等且互相平分 4、对角线__________________ 的四边形是矩形。
互相垂直平分 5、对角线___________________ 的四边形是菱形。
又由于DB是线段AC的垂直平分线, 因此,DA=DC. 从而平行四边形ABCD是菱形.
图2-55
命题:对角线互相垂直的平行四边 形是菱形.
已知:在
求证: ABCD 中,AC ⊥ BD
ABCD 是菱形
A B O C D
证明: ∵四边形ABCD是平行四边形
∴OA=OC
又∵ AC ⊥ BD; ∴BA=BC ∴ ABCD是菱形
菱形的判定
想一想: 1.菱形、矩形的定义?
2.它们分别比平行四边形多了哪些性质? 3.怎样判定一个四边形是矩形?
矩形与菱形
矩形 定义
有一角是直角的平行 四边形叫做矩形.
菱形
有一组邻边相等的平行四 边形叫做菱形.
四条边都相等
平行四边形的性质 性 边 质 角 对角线 四个角都是直角 相等
有一角是直角的平行四边形 对角线相等的平行四边形 三个角都是直角的四边形
A B C O D
猜想:四条边相等的四边形是菱形。
下面我们来证明这个结论.
如图2-53,在四边形ABCD中,AB=BC=CD=DA. ∵ AD = BC, AB = DC, ∴ 四边形ABCD是平行四边形. 又 AB = AD,
∴ 四边形ABCD是菱形.
图2-53
菱形的判定方法2:
四条边都相等的四边形是菱形.
互相垂直且平分每一组对角
????
判 定
学习目标:
• 1、回顾菱形的定义及性质
• 2、探索并掌握菱形的判定方法 • 3、能利用菱形的判定方法解决实际问题
想一想
我们在学习平行四边形的判定和矩形的 判定时,我们首先想到的第一种方法是什 么?那么类比着它们,菱形的第一种判定 方法是什么? 根据定义得: 一组邻边相等的平行四边形是菱形.
相关文档
最新文档