教育测量与评价的难度与区分度

合集下载

教育测量与评价的质量特性 难度与区分度课件

教育测量与评价的质量特性 难度与区分度课件

PPT学习交流
19

需进行显著性检验,才能确定其是否具有显著性意义
(1)对点双列相关公式中的 和 进行差异显著性检验,若差异显著, 表明 显著; (2)采用积差相关系数显著性检验的方法进行检验; (3)如果样本量较大(n>50),也可用下面近似方法:
, 认为 在0.05水平上显著;
,认为 在0.01水平上显著。
答对该题目的人数 被试人数
PPT学习交流
3
• 多值记分题的难度值计算
某题的平均得分 该题的满分
PPT学习交流
4
练习
• 题1:在100个学生中,答对第一题的30人,答 对第二题的60人,求第一、二道题的难度?比 较这两道题谁比谁难?
• 题2:某道论述题满分12分,所有考生在这道题 上的平均得分为3.6分,求该题的难度?
6
练习
题5:某区域1000人参加考试,试卷第一题高分组 180人答对,低分组60人答对,求该题难度?
如果该题满分为10分,高分组得分总数为2100分交流
7
二、难度指标的等距变换
• 运用标准分数(Z分数)作为题目难度的指标
PPT学习交流
8
例:某校学生在一次测验中,第一题的答对率为 15%,第二题的答对率为25%,第三题的答对率为 35%,假定这三题所测量的能力近似正态分布,问
信度
0.00 0.42 0.63 0.84 0.915 0.949
要达到理想的测验信度,提高区分度是一个好办法
PPT学习交流
16
难度
1.00 .90 .70 .50 .30 .10 .00
区分度的最大值
.00 .20 .60 1.00 .60 .20 00
难度适中,可使区分度达到最大值

教育测量与评价的质量特性难度与区分度

教育测量与评价的质量特性难度与区分度

难度的影响因素
测验项目的性质
测验目的
测验项目的性质不同,难度也会有所 不同。例如,记忆类的题目通常比分 析类的题目更容易。
测验目的不同,难度也会有所不同。 例如,选拔性测验通常比水平性测验 更难。
被试群体的水平
被试群体的水平越高,测验项目的难 度通常越低。反之,被试群体的水平 越低,测验项目的难度通常越高。
案例二:某评价体系的区分度评估
总结词
该案例介绍了如何通过区分度指标来评估某评价体系的区分度,以确定评价结果是否准确反映学生的 实际水平。
详细描述
首先,选取两个水平不同的学生群体作为参照样本。然后,根据评价体系对两个样本进行测试,并记 录每个样本在各个评价指标上的得分。接着,计算每个评价指标的区分度值,并分析其分布情况。最 后,根据区分度值的大小和分布情况,评估该评价体系的区分度是否良好。
案例三:难度与区分度的综合应用
总结词
该案例探讨了如何将难度和区分度两个 质量特性结合起来,以优化教育测量与 评价体系的设计。
VS
详细描述
首先,分析现有教育测量与评价体系的难 度和区分度情况。然后,根据分析结果, 调整试题难度和区分度指标,以提高评价 体系的准确性和可靠性。最后,通过实际 应用和验证,评估优化后的教育测量与评 价体系的效果。
难度的计算方法
通过率
通过率是指被试在测验项目上的 通过人数与总人数之比,可以直
观地反映测验项目的难度。
难度指数
难度指数是指被试在测验项目上的 平均得分与该测验项目的满分之比, 可以更准确地反映测验项目的难度。
难度曲线
难度曲线是以难度为横轴,通过率 为纵轴绘制的曲线,可以更全面地 反映测验项目的难度分布。
因素分析法

小自考-教育测量和教育评价

小自考-教育测量和教育评价

三.难度1、难度的意义:难度就是测验项目的难易程度。

通常以试题的“通过率”作为难度指标。

难度是分析测验项目的重要指标之一2、难度的计算:(1)二分法记分项目的难度计算:P=R/N (2)多分值记分项目的难度计算:P=X/Xman3、难度对测验的影响:测验难度影响测验分数的分布形态(难度大呈正偏态,难度小呈负偏态。

难度适中呈正态分布)。

测验难度影响测验分数的离散程度(难度偏大或偏小,离散程度小,分数较集中。

难度适中,离散程度大,分数分布范围大)。

4、测验难度水平的确定:(1)测验的平均难度应接近0.50左右 即0.50±0.20(2)测验的难度应该由测验的目的确定(选拔性测验)四:区分度1.区分度的意义:(1)区分度是指测验对被试实际水平的区分程度或能力(2)测量专家们把试题的区分度称为测验是否具有效度的“指示器”,并作为评价项目质量,筛选项目的主要指标与依据。

(3)区分度D 取值范围: -1.00——+1.00(D 为正值 ——积极区分;D 为负值 ——消极区分;D 为0 ——零区分。

具有积极区分作用的项目,其D 值越大,区分的效果越好。

)2、区分度(鉴别指数D )的计算:(1)二分法记分的测验项目:极端分组,从总分分数分布的两端各选择27%的被试组成高分组和低分组,分别计算出每道题目上的各自的通过率,二者之差就是鉴别度指数: (2)多分值记分的测验项目:极端分组,从总分分数分布的两端各选择25%的被试组成高分组和低分组,分别计算各自总分和最高分、最低分。

再按下列公式计算: 五:测验编制的基本程序:(1)确定测验目的:1.明确测量对象2.明确测量目标3.明确测量用途(2)制定编制计划:1.测验内容的确定:全面而且具有代表性的测验内容范围—“边界”。

各内容点的相对比重权重—“结构”.2.测验形式的确定:个体测验、团体测验、口头测验、书面测验、操作测验。

3.测验题目形式及题型的确定(客观题、主观题)4.测验时间及题量的确定:(测验内容的覆盖面。

信度、效度、区分度、难度的使用

信度、效度、区分度、难度的使用

信度、效度、难度、区分度及其在试卷分析中的使用教学测量(instructional measurement)是考核教学成效的一种方法。

这是借助于一定的手段与方式,对学生的学习成绩(简称学绩)进行探察,并以一定的数量来表示的考核办法。

2. 在教学测量中应注意什么(1)教学测量的目的在于考核教学成效,也就是考察教学目标的完成情况。

因此,教学测量的目标应以教学目标为依据,测量目标应与教学目标一致,而不能偏离教学目标(2)教学测量的对象是学生内在的能力与品德等的形成状况,它不可能像物理测量那样直接进行,只能借助于一定的手段与方式间接进行。

(3)教学成效是通过量化的学绩进行考察的。

也就是说,教学成效是以学生的学习成绩为直接考察依据的,而学绩是以一定的数量来表示的,因此命题的合理性与评分的客观性是有效教学测量的一个重要影响因素教学评价(instructional evaluation)就是依据教学目标,对学绩测验所得测量结果进行分析及解释。

它主要包含以下两个方面的工作。

(1)教学评价必须对学绩测验数据所表明的教学成效作出确切的诊断。

(2)教学评价必须对教学的成败原因进行分析,并对今后教学工作的改进方面作出明确的规定。

评价(估)的功能:为家长提供信息,为选拔提供信息,为学生提供信息,为教师提供信息,为学校(间)提供信息教学目标,有时也称为行为目标,是指对学生在一段时间教学后应该掌握的技能与概念的陈述。

信度信度指的是测量结果的稳定性程度,信度是衡量一个量表质量高低的重要指标。

信度不高的量表是不能使用的。

3.常见的信度种类(1)重测信度(2)复本信度(3)分半信度(4)同质信度(内部一致性信度)(5)评分者信度影响信度的因素♦被试♦主试者♦施测情境♦测量工具信度是指考试的可靠性,即考试结果的可信程度。

信度高的试题很少受到外部因素的影响,对任何学生的多次测定都会产生比较稳定的、前后一致的结果。

提高试卷信度的因素大致可包括以下几种情况:(1)使用ABC卷随机抽取试题。

信度效度难度区分度分析

信度效度难度区分度分析

信度效度难度区分度分析在教育测量和评估领域,信度、效度、难度和区分度是四个非常重要的概念。

它们对于衡量测试的质量、评估学生的学习成果以及改进教学方法都具有至关重要的意义。

接下来,让我们逐一深入探讨这四个概念。

信度,简单来说,就是指测试结果的稳定性和可靠性。

如果我们对同一批学生在相同的条件下进行多次相同的测试,得到的结果应该是相近的。

就好比用同一把尺子去测量一个物体的长度,每次测量的结果都应该差不多。

信度主要包括重测信度、复本信度和内部一致性信度等。

重测信度是在不同时间对同一批被试进行重复测量。

比如,今天对一群学生进行了一次数学测验,一周后再用相同的测验对他们进行测试,如果两次测试的成绩相近,说明这个测验的重测信度较好。

然而,重测可能会受到记忆、练习等因素的影响。

复本信度则是使用两个平行的测验(即内容、形式、难度等方面都相似)对同一批被试进行测量。

如果两个测验的结果一致性高,就表明复本信度良好。

但要编制两个高质量的平行测验并非易事。

内部一致性信度通常通过计算测验内部各个项目之间的相关程度来衡量。

例如,一份试卷中的各个题目,如果它们在测量同一个知识点或能力方面表现出较高的一致性,那么这份试卷的内部一致性信度就比较高。

常用的计算方法有克朗巴赫α系数等。

效度是指测试能够准确测量出所要测量的东西的程度。

好比射箭要射中靶心,测验也要准确测量到我们期望测量的内容。

效度主要包括内容效度、结构效度和效标关联效度。

内容效度关注的是测验内容是否涵盖了所要考查的知识和技能范围。

比如,一场语文考试如果能够全面考查学生的字词、语法、阅读理解和写作能力,那么它在内容效度方面就表现较好。

为了确保内容效度,出题者需要对教学大纲和课程目标有清晰的理解。

结构效度考察的是测验是否能够反映出所假设的理论结构或心理特质。

比如,一个智力测验是否真正测量了智力的各个方面,而不仅仅是某些表面的表现。

这需要通过复杂的统计分析和理论研究来验证。

效标关联效度则是将测验结果与一个外在的标准进行比较。

《教育测量与评价》习题与答案

《教育测量与评价》习题与答案

《教育测量与评价》习题与答案(解答仅供参考)一、名词解释1. 教育测量:教育测量是指运用科学的方法和标准,对学习者在知识、技能、态度、情感等方面的发展水平或学业成就进行量化测定的过程。

2. 信度:信度是评价测量工具稳定性和一致性的指标,反映的是同一份测验或者不同时间重复同一测验所得结果的一致程度。

高信度意味着测量结果具有较高的可靠性。

3. 效度:效度是指测量工具能够准确测出其所要测量内容的程度,即测量结果与实际要考察的目标之间的符合程度。

它是评价测量工具质量的最重要指标之一。

4. 标准参照评价:标准参照评价是一种基于预先设定的标准或目标来进行评价的方式,主要关注个体是否达到了特定的学习标准或发展目标,而不是将个体之间的表现进行比较。

5. 形式效度:形式效度是指测量工具在形式上是否与预定的测量目的和理论构想相一致,包括题目的编制、题目难度分布、题目类型的选择等是否恰当合理。

二、填空题1. 教育评价的核心任务是对教育活动的______进行价值判断。

答案:质量和效果。

2. 常见的教育测量方法有纸笔测验、观察法、访谈法和______等。

答案:项目反应理论(IRT)。

3. 评价学生的认知发展时,皮亚杰的认知发展阶段理论是一种常用的______。

答案:内容效度依据。

4. 教育评价中,______是指评价系统对所有被评价对象公平对待的程度。

答案:评价的公正性。

5. 在进行教育测量时,为了确保分数的稳定性,我们通常会通过计算______来评估测量工具的质量。

答案:信度系数。

三、单项选择题1. 下列哪种评价方式主要关注学生在学习过程中的进步与成长?()A. 形成性评价B. 总结性评价C. 配置性评价D. 标准参照评价答案:A2. 在教育测量中,若一个测验的信度系数为0.85,这意味着该测验的可靠性()。

A. 较低B. 一般C. 较高D. 不确定答案:C3. 关于效度,下列说法错误的是()。

A. 效度反映的是测量工具能否准确测出所要测量内容的程度B. 内容效度是指测验题目对整个待测内容范围的代表性程度C. 结构效度只能通过实证方法验证D. 同一测验的效度是固定不变的,不受被试者群体变化的影响答案:D4. 下列关于项目难度和区分度的说法正确的是()。

教育测量与评价中信度、效度、难度、区分度的计算

教育测量与评价中信度、效度、难度、区分度的计算

教育测量与评价信度、效度、难度、区分度的计算1 信度1.1 信度类型及应用1.2 信度系数大小的选择●某一个年级的代表性样本学生组在复本法测验中信度达到0.90或更多,才能对个体的测量提供可靠性。

●对某个班级(三四十名学生)的学生的平均能力进行说明,信度达到0.70或更高。

●决定一个小组在一门学科或多门学科中的学业地位,信度达到0.50或以上。

●要鉴定各个个体在同一学科上的地位,信度系数要达到0.94或更高。

●标准学科成绩测验要求信度系数在0.90以上。

●标准智力测验的信度系数应达到0.85以上。

●个性测验和兴趣测验的信度系数应达到0.70以上。

●品德测验达到0.60以上。

2 效度2.1 效度类型和估算点二列相关相关系数表P(2)≤0.05df=N-2分组法独立大样本,双总体Z检验Z值表,P≤0.05独立小样本,双总体t检验自由度df=N-2预期表法命中取舍法2.2 相关系数解释3 难度应用情形估算方法说明客观题,二分法记分原始定义法选择题难度,公式校正客观题,大规模测验极端分组法27%极端分组主观题,非二分记分平均分数法主观题,大规模测验极端分组法25%极端分组4 区分度4.1 区分度的计算方法计算方法应用情形说明极端分组法 客观题(自编测验) 27%极端分组,依据通过率主观题25%极端分组,依据分值相关法试题得分与测验总分都是连续变量积差相关相关系数表 P (2)≤0.05 df=N-2一个变量为连续变量,另一个真正的二分变量点二列相关相关系数表 P (2)≤0.05 df=N-2试题得分与测验总分都为连续变量,其中一个人为分为二分变量 二列相关 正态分布表求Y Z 值转换 检验Z 值两个变量都是二分变量Φ相关r 值转换为χ2值 查χ2值表 df=1 P ≤0.05 项目效度分析法 试题与外在效标的相关 相关法4.2 区分度的评价标准5 估算公式5.1 积差相关系数(1)计算信度、效度、区分度 (2)公式])([])([2222∑∑∑∑∑∑∑---=Y Y N X X N YX XY N r(3)检验相关系数表5.2 点二列相关(1)计算信度、区分度 (2)公式pqS X X r tqp pb __-=(3)检验 相关系数表5.3 二列相关(1)区分度计算 (2)公式Y pq S X X r tqp b •-=__(3)r 值转换为Z 值进行检验Npq Yr Z b•=1(4)Y 值通过查正态分布表取得 (5)Z 值临界值● P (α水平)≤0.05,|Z|≥1.96 ● P (α水平)≤0.01,|Z|≥2.585.4 斯皮尔曼—布朗公式(1)分半信度相关系数的校正 (2)公式211122x x x x tt r r r +=5.5 库德尔—理查森公式(1)内部一致性系数计算信度 (2)KR20、KR21公式⎪⎪⎭⎫ ⎝⎛-=∑2KR2011-K K r spq⎪⎪⎭⎫⎝⎛--=2KR21)(11-K K r Ks X K X5.6 克龙巴赫α系数(1)内部一致性系数计算信度 (2)公式⎪⎪⎭⎫⎝⎛-=∑2211-K K αTis S5.7 斯皮尔曼等级相关公式(1)评分者信度 (2)公式)1(6122--=∑N N D r R5.8 肯德尔和谐系数(1)评分者信度(2)评分者评定等级无相同等级)(12132N N K SW -=NR R R R S i ii i 222)()(∑∑∑-=-=(3)评分者评定等级有相同等级∑--=T K N N K SW )(121312)(3∑-=n n T(4)肯德尔和谐系数的检验●K在3~20之间,N在3~7之间时●N>7时,W值转化为χ2值,χ2=K(N-1)W,查χ2值表,df=N-1。

教育测量与评价教案 第5次课 难度 区分度

教育测量与评价教案  第5次课 难度 区分度
对于其它类型的测验,目的不同对难度的要求不同,如选拔性的测验难度就应小,而选择补习功课的学生困难就应大。
五、控制题目难度的方法
一般说来影响题目难度的主要因素有:
(1)考查知识点的多少;
(2)考查能力的复杂程度或层次的高低;
(3)考生对题目的熟悉程度(如本来比较容易的题目会因考生均未注意而造成很难,或者本来较难的题目会因考生普遍练习而变得容易);
一、概念
难度指测验试题的难易程度。
在教育测量中,客观题的难度一般用正确回答试题的人数与参加测验的总人数的比值来表示。
即P=R/N。R为答对的人数,N为参加测验的人数。
因此,这里难度实际代表的是易度。
难度是试题对学生知识和能力水平的适合程度的指标。试题难度不但对题目的区分度有影响,而且对试卷的信度和效度也有较大影响。
区分度自然越高越好,但要做到这一点较难。一般说来,可参照以下标准,对于有些要求不高的测验,有些试题的区分度低一些是容许的。
教学资源
朱德全.教育测量与评价[M].北京:高等教育出版社.2016
讨论、思考题、作业:
思考题:如何控制测验的难度?
教后小结
第五节区分度
一、概念
区分度指测验对考生实际水平的区分程度,用符号D来表示。具有良好的区分度的测验,实际水平高的应该得高分,实际水平低的应该得低分,所以区分度又叫鉴别力。它是评价试题质量,筛选试题的主要指标和依据。
区分又分为正区分(D>0)、零区分(D=0)和负区分(D<0),正区分又叫积极区分,负区分又叫消极区分。
很明显,难度是一个相对概念,难度的高低与被试的水平直接相关。一种测量对这一组被试是高难度的,可能对另一组被试是低难度的。也就是说,难度是由参与测量的被试群体的整体水平决定的。

教育测量与评价模拟及答案

教育测量与评价模拟及答案

教育测量与评价模拟及答案《教育测量与评估》模拟试卷考试形式:闭卷考试时间:90分钟一、概念辨析(5×8)1、测量与评价测量——按照一定的法则,给事物及其属性指派数字。

从中,可以看到测量的三个要素:法则、事物及其属性、数字。

评价——从事物的内在品质和外部功效出发,对有价值事物所作的调查研究,以判断价值的实现程度,进而考虑提高价值的可能性。

2、难度与区分度项目的难度是项目或试题难易程度的指标。

一般,难度系数P就是项目的通过率。

区分度是项目对受测者心理特质的区分能力的指标,它反映了项目鉴别好、坏受测者的能力程度,也在一定程度上反映了测验项目的有效性。

3、信度与效度信度是反映测验成绩在不同条件下的一致性、连续性程度的指标,定义为真分数方差与所得分数方差的比例,即为信度系数。

所谓效度就是测验对于所要测量的心理特质进行评定的有效程度,即测验测到所想测量的特质的程度。

一个效度低的测验,其得分在很大程度上受到其他心理特质的影响,尽管它反映了受测者的某种特点,但很大程度上反映的并不是所要测量的心理特质。

测验的效度分析,其实质是实践标准对测验进行检验的过程,测验本身是一种通过行为瓜对心理特质的检验,因此,效度分析则是检验的检验。

4、准则与标准评价的准则。

它规定评价的方面和内容,也就是说它规定评什么,不评什么。

所谓标准是指事物资变的临界点,即事物资变过程中量的划定性。

评价标准是对评价内容或方面量的划定,即要求或完成的程度或水平。

评价标准表示达到什么程度才是合乎要求的,大概能被称为优良的。

5、价值与需要价值——主体与客体之间的效益关系,即主体需要被客体属性所满意,或客体属性满意主体需要的一种特殊的效益关系。

由此,“价值”与“需要”密切相联。

需要——主体在生存和发展过程中,由于某种欠缺所处的一种摄取状态。

需要有三方面的特点:第一,需如果一种摄取状态,是主体有目标活动的动力,是主体行动的源泉。

正是需要激励了人的行动。

教育测量与评价重难点

教育测量与评价重难点

教育测量与评价重难点引言:1.统计学是关于数据的收集、整理、描述和推断(以获得有关研究对象特征及规律)的一种方法论科学。

2.心理和教育研究大致可以分为两大类:定性研究和定量研究,两者的区别主要在于研究方法和研究范式。

定性研究:主要用文字来描述现象和叙述结果,目的是理解和解释现象,如心理分析主要采用定性研究。

定量研究:采用比较科学的方法,通过收集数据和统计分析,借助数字和地图表来呈现结果,目的是了解现象的数量特征或现象之间的关系,并做出解释或推断,如实验心理主要采用定量研究。

3.选定了一个研究问题后,定量研究的主要步骤如下:1)文献检索与文献综述。

2)研究设计。

3)前期研究。

彩排。

4)收集数据。

5)数据登录和整理。

6)统计分析。

7)解释统计结。

8)呈现结果,得出结论。

第一章第一节一、总体与样本1.研究对象的全体成为总体(population),组成总体的基本单元成为个体。

2.被抽到的个体成为样品(case),在心理和教育研究中,通常将样品称为被试(subject)。

3.样品的全体称为样本(sample),样本所包含的样品个数成为样本容量(sample size),通常用n或者N来表示。

二、变量1.在一项研究中,研究者感兴趣的不是研究对象本身,而是与研究目的有关的变量。

所谓变量(variable),是指研究对象的个体之间在性质和数量上可以变化并可以直接或间接测量的条件、现象或特征。

2.对于一个变量,每一个个体都有一个确定的取值,称为变量值(value)。

样本中所有样品(被试)的变量值全体称为样本数据(sample data)。

三、数据来源1.在心理研究与教育中,主要通过调查(survey)(包括问卷、访谈、观察)、实验(experiment)或测验(testing)来收集数据。

四、变量命名和编码1.对于确定的变量,每个个体都对应着一个变量值。

2.如果变量的取值不是数值,要用数值进行编码。

五、反向题的重新编码1.在调查或测验中,研究者为了控制被试的反应误差,有时会在问卷或者量表中加入所谓的反向题(negative item)。

信度、效度、难度、区分度分析

信度、效度、难度、区分度分析
道题的难度计算出第四区分度分析通过极端分组法将我校1045名高二理科学生在某次月考中选择题部分得分情况分为高分组2821045和低分组2821045进而根据客观题区分度公式121110太高择题部分的区分度不是可见该次月考试题选选择题部分的区分度计算得出该次月考试题从而根据试卷区分度如下
《教育测量与评价》作业 3
x 2 (0 x 400) 产量 x (单位:件)之间的关系式为 f ( x) 625 1
x 144(400 x 500)
,每
件 产 品 的 售 价 g ( x) ( 单 位 : 元 ) 与 产 量 x 之 间 的 关 系 式 为
5 x 750(0 x 400) g ( x) 8 x 900(400 x 500)
C. (1, 1, 1)
D. (1, 1, 1)
4.如图, ABC ABC 是直三棱柱, BCA 90 ,点 E 、 F 分别是 AC 、
AB 的中点,若 BC CA CC ,则 BF 与 AE 所
成角的余弦值是( ) A. C.
30 10 30 15
P
PH PL 2
计算出第i道题的难度Pi 如下: P 1 0.248; P 2 0.325; P 3 0.197; P 4 0.303; P 5 0.209; P6 0.217; P7 0.234; P8 0.264; P9 0.11; P 10 0.204; P 11 0.209; P 12 0.21. 又Wi 5(i 1,2,...,12), W 12 5 60, N 12. 从而根据试卷的难度指数公式 1 P W
1 tan x
B.
cos 2 x sin 2 x cos 2 x

第四章 教育测验的难度和区分度

第四章 教育测验的难度和区分度

(2)关于校正问题的争议 围绕校正问题,存在着两种不同的看法: ◆支持者:应校正,排除猜测对难度的影响 理由:①猜测存在会高估测验的信度 ②校正可以反映题目的真实难度 ③校正可以培养被试诚实的美德 ◆反对者:反对进行校正 理由:①猜测并非完全是盲目的 ②不校正对难度的影响不大,约4%左右 (黄国彦,1997),可增加试题数目来解决 ③通过部分知识,合理猜测是值得培养的
主观题计算方法 1.基本公式:
P X X MAX
X :全体被试的平均得分
X
MAX
:题目满分
例3: 一组被试在某道题上的得分分别为:
2、5、9、10、4、8、7、5、3、0
该题满分为10分,则测题难度为多少?
2.极端值公式:
1 P 2
XH X X MAX
L

三、难度值的等距处理 1.P值是反顺序量表,只能表示次序,但不能判 断难度间差异的大小,需将其转化为Z分数。 2.转化方法: 若P 〉0.5,则先求P-0.5,再查表 若P〈 0.5,则先求0.5-P,再查表 若P=0.5,则Z=0 一般,P=0.84,则Z=-1;P=0.16,则Z=1 3.美国教育测验服务社(ETS)的转化 ∆=13+4Z (13,4) ∆量表是以25为上限,1位下限的等距量表。 ∆值越大,难度越高 注:一般情况下,难度的这种转化是非必需的。
3.选择题难度的校正 选择题的一个特点就是容易受猜测的影响, 这就使得答对的比例增加了,使得计算出来的 难度系数增加,高估难度。 (1)校正方法 CP=(KP-1)/(K-1) K:代表测题中可供选择的答案总数 例3:一个测题未经校正前的难度指数为0.5, 可供选择答案为5个,另一题目未经校正的难 度指数为0.53,可供选择答案为4个,试比较 两题的难度。 答案:CP1=0.38 CP2=0.37

教育测量与评价的难度与区分度

教育测量与评价的难度与区分度

况如下表。计算该选择题的区分度。
生 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
总 86 52 94 72 65 22 76 83 80 75 76 73 62 91 47 74 81 88 62 58 题1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0
X
f
fx
X
f
fx
高分组 10
10
100 低分组 10
0
0


8
8
64
8
5
40

7
6
42
7
8
56


5
1
5
5
2
10
4
0
0
4
10
40
问题:
◦ 有3道试题(A、B、C),它们的难度P值分别为0.85、 0.75 、0.65,试比较这三 道题目的难度差异情况。
◦ 我们能说:
◦ 我们不能说:
◦ 如何进行差异比较?
◦ 步骤:
P PH PL 2
◦ 按测验总分由高到低排序
◦ 从高分段向下选出全部试卷的27%作为高分组
◦ 从低分段向上选出全部试卷的27%作为低分组
◦ 按照上述公式计算项目难度值
◦ 例:100人参加某测验,高分组与低分组各取27人,其中第一题 高分组20人答对,低分组10人答对。这道题的难度系数是多少?
A=B或A≠B 1 23
符号化
男1女2;男 生喜欢11、男
生不喜欢
10……
断定: A>B A=B
分等级、位 1 2 3 4 次、排列顺

教育测量项目分析8(难度、区分度)重点

教育测量项目分析8(难度、区分度)重点
D PH PL
PH:高分组(总分前27%)通过率; PL:低分组(总分后27%)通过率.
区分度的计算
区分度:测试题对被试的区分程度或鉴别能力.
极端分组法(非0-1记分)
XH XL D N ( H L)
XH:高分组(总分前27%)总得分; XL:低分组(总分后27%)总得分; H: 最高得分; L:最低得分. N:分组人数(总人数27%).
数学教育统计与测评
CONTENTS
教育测量项目分析
1 项目分析 2 难度的计算 3 区分度的计算
4 难度、区分度、信效度的关系
项目分析
项目分析:测题分析
项目分析是评价项目质量和筛选项目的依据。项目分析结 果的好坏也直接影响整个测验的质量。
难度的计算
难度:测验项目的难易程度. 通常用字母P表示。 0 P 1
难度:测验项目的难易程度.
①0-1记分测验: 为了平衡选项数目对难度的影响,可以进行校正。
kP 1 1 P CP P k 1 k 1
P:未校正的难度; k:可供选择答案数.
难度的计算
难度:测验项目的难易程度.
②非0-1记分测验: 得分率法
X P W
X
:被试平均得分; W:题目满分.
区分度的计算
区分度:测试题对被试的区分程度或鉴别能力.
相关法:被试测题得分和测验总分之间的相关系数 相关系数高意味着:学习成绩好的被试在该题得分高,学 习成绩差的被试在该题得分低。也就是说,该题对被试学 习成绩好坏有较好的鉴别能力。
区分度的计算
区分度的标准
区分度 0.40以上 0.30~0.39 0.20~0.29 0.19以下 评 价
非常好 良好,如能改进则更佳 尚可,仍需再改进 劣,必须淘汰或加以修改

教育教学工作的教育测量与评价

教育教学工作的教育测量与评价
目的:客观、准确地测量学生的学习情况和能力
问卷调查法
目的:收集教育测量数据,了解教育效果
设计问卷:明确目标,设计合适的问题
发放问卷:选择合适的人群,确保样本代表性
数据分析:对收集到的数据进行处理和分析,得出结论
观察法与作品分析法
作品分析法的优点:全面、深入、有创意
观察法的优点:直接、真实、客观
作品分析法:通过分析学生的作品(如作文、绘画、手工等)来收集数据
诊断功能:帮助教师了解学生的学习情况,发现问题,及时调整教学策略
激励功能:通过评价结果,激发学生的学习积极性和自信心
反馈功能:向教师和学生提供关于教学效果的反馈信息,以便改进教学
导向功能:引导教师和学生关注重要的教学目标和内容,提高教学质量
教育评价的类型
诊断性评价:了解学生的学习状况,发现问题,改进教学
添加标题
设计评价方案与工具
添加标题
确定评价目标:明确评价的目的和意义
添加标题
设计评价指标:根据评价目标,制定具体的评价指标
添加标题
选择评价方法:根据评价指标,选择合适的评价方法
添加标题
制定评价标准:根据评价方法和指标,制定评价标准
添加标题
设计评价工具:根据评价标准,设计相应的评价工具
添加标题
实施评价:按照评价方案和工具,进行评价活动
综合化:综合运用多种教育测量方法,提高测量的全面性和准确性
实时化:实时收集学生的学习数据,及时调整教育测量策略
个性化:根据学生的学习特点和需求,提供个性化的教育测量方案
THANK YOU
汇报人:
05
分析数据:对收集到的数据进行分析和解释
06
反馈与改进:根据评价结果进行反馈和改进

区分度名词解释教育评价与测量

区分度名词解释教育评价与测量

区分度名词解释教育评价与测量
区分度是教育评价与测量领域中的一个重要概念,用于衡量一个测量工具(如考试)对于区分学生不同能力水平的程度。

在教育评价中,区分度可以帮助教师和教育者了解学生在某一领域的学习表现,并对教学方法进行调整和改进。

区分度的计算方法通常基于经验概率理论,并使用统计分析技术进行量化。

常用的区分度指标是麦克伦恩相关系数(Point-Biserial Correlation),它衡量了一个考试题目与总分之间的相关性。

如果一个题目的区分度较高,即与总分的相关性较强,那么这个题目就能够有效地区分学生的能力水平。

相反,如果一个题目的区分度较低,即与总分的相关性较弱,那么这个题目就不能很好地区分学生能力的差异。

区分度的高低对于教育评价的准确性和可信度具有重要影响。

如果题目的区分度较低,那么即使学生在总分上得到不同的分数,也无法明确地了解他们在具体知识点上的掌握程度。

因此,在评价学生能力时,应该选择具有较高区分度的题目,并对题目的设计和难度进行合理调整,以确保评价的有效性。

此外,区分度的概念也可以应用于其他教育评价方法,如问卷调查和观察评估。

在这些评估中,区分度可以帮助确定问卷项或观察指标是否能够有效地区分不同的特征或行为。

通过选择具有较高区分度的项或指标,可以提高评估的敏感性和准确性。

总之,区分度是教育评价与测量中的重要概念,它衡量测量工具对于区分学生不同能力水平的能力。

通过合理选择具有较高区分度的题目或指标,可以提高评价的准确性和可信度,从而更好地了解学生的学习表现和能力水平。

3-教育测量与评价的难度与区分度

3-教育测量与评价的难度与区分度

教育测量与评价中题目(项目)的区分度
例:100名考生参加主观性试题测验,按高、低分各占人数
的25%分组,其中第四题试题分析表如下所示,求该题目的 区分度。 X XL D H N ( H L)
X f 10 6 fx 120 60 低分组 X 12 10 f 0 4 fx 0 40 高分组 12 10
教育测量与评价பைடு நூலகம்题目(项目)的难度
二、难度的计算 主观题的平均数法
X P W


主观题的极端分组法 公式: X
P
H

步骤 按测验总分依次排序,确定比例各为 25%的高分组和低分组 为高分组、低分组分别编制每题得分的分析表(试题分析表) 用上述难度公式计算难度值
X L (2 NL) 2 N ( H L)
试 题 分 析 表
8
6 4
4
3 2
32
18 8
8
6 4
6
5 10
48
30 40
教育测量与评价中题目(项目)的区分度
三、区分度计算方法 相关法 考虑中间数据 以项目分数与效标分数的相关作为项目区分度的指标 (效标分数不易得到时,以测验总分代替) 相关越高,区分能力越好 具体方法:
80 75 76 73 46 39 40 41 合 合 合 合
Ф相关法计算区分度
测验的两个变量都是二分变量,可用计算Φ相关系数来表示
某项目的区分度 以测验总分划分为合格、不合格两类的被试在某一题目上通 过、未通过的人数列成四格表来计算
AD BC r A BC D A C B D
平均数上下各一个标准差的范围分别包含了全部人数的34%

考试题目的难度和区分度的量化分析——教育统计与测量在教学中的应用

考试题目的难度和区分度的量化分析——教育统计与测量在教学中的应用

考试题目的难度和区分度的量化分析——教育统计与测量在教学中的应用
教育统计与测量在教学中的应用教育统计与测量是教学中的重要组成部分,它是一种科学的方法,能够更有效地对学生的研究情况和教学效果进行定量分析,是一种有效的指导理念。

教育统计与测量的应用可以帮助教育机构更好地分析和管理教学,提高教育效果。

首先,教育统计与测量可以帮助教育机构合理安排考试题目,有效提高考试的难度和区分度。

教育统计与测量能够帮助考试组织者有效地确定考题的类型、难度和区分度,以便增加考试的客观性,以及考生的参与程度。

其次,教育统计与测量可以帮助教育机构评价学生的研究成果,以及教育教学的效果。

教育统计与测量的应用可以帮助评估教育机构的学生研究情况,以及考试成绩的变化情况,以及教育教学的效果。

通过定量分析,可以更有效地了解学生的研究情况,以及教育教学的效果,从而更好地指导教学工作,提高教育效果。

此外,教育统计与测量也可以帮助教育机构更好地改进教育教学的效果。

通过对学生研究情况和考试成绩的定量分析,教育机构可以及时发现研究中出现的问题,从而对教育教学进行必要的改进。

总之,教育统计与测量是教学中不可或缺的重要组成部分,它可以帮助教育机构更有效地安排考试题目,更好地评价学生研究情况和考试成绩,以及更有效地改进教育教学的效果,从而提高教育效果。

教育统计与测量的应用是教学中必不可少的,有助于提高教育效果的有效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

况如下表。计算该选择题的区分度。
生 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
总 86 52 94 72 65 22 76 83 80 75 76 73 62 91 47 74 81 88 62 58 题1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0
6
5
30
4
2
8
4
10
40
教育测量与评价中题目(项目)的区分度
三、区分度计算方法
相关法 考虑中间数据 以项目分数与效标分数的相关作为项目区分度的指标 (效标分数不易得到时,以测验总分代替) 相关越高,区分能力越好 具体方法:
▪ 积差相关法 ▪ 点二列相关 ▪ 二列相关 ▪ Φ相关
积差相关法计算区分度
主观性试题区分度的计算公式: D X H X L
▪ 说明:
N(H L)
▪ XH:高分组所得总分;XL:低分组所得总分;H:该题最高分;L:该 题最低分;N:考生人数(总人数的25%)
▪ 步骤:
▪ 按测验总分由高到低排序;分别确定测验总分的25%、25%作为高低分 组;列出试题分析表;将数据带入以上公式加以计算
个标准差的位置,由0.84-0.50=0.34去查Z值,Z=-1σ 若一个项目的难度位0.16,则这个项目的难度在平均数以上
一个标准差的位置,由0.50-0.16=0.34去查Z值,Z=σ 若某个项目有50%的学生通过,这个项目的难度落在下图0
的位置上
0.13% 2.14% 13.59% 34.13% 34.13% 13.59% 2.14% 0.13%
分等级、位 1 2 3 4 次、排列顺

学习成绩: 好=3 中=2
A<B
差=1
确定
(A-B)+ (B-C)=
A-C
1 23 4
求等距的度 数,决定差

温度
设A=KB,
从绝对零点
B=lC,则A 0 1 2 3 4 开始求等距
=KlC成立
的度数、决
定比率
体重 身高
正态分布的特征
平均数上下各一个标准差的范围分别包含了全部人数的34% 若某项目有84%的学生通过,这道题的难度在平均数以下一
3. 等距量表
间距量表,在赋值时有相等的度量单位,采用相对零点,被测所对应的 测量值由明确的距离关系 原始测验分数经过统计处理后推导出一种新的量表分数,此分数的“零 点”是一个相对零点
4. 比率量表
具有等距量表的一切性质,采用绝对零点。 针对总体而不是样本 不但能确定一个被测比另一个被测大(小)多少,而且还能得出其间的
-3
-2
-1
0
1
2
3
教育测量与评价中题目(项目)的难度
三、难度的转换
P向Z的转换
假定每个试题所要测量地潜在特质或能力是呈正态分布的,可 将P值作为正态曲线下的概率面积,以此转换成Z分数
问题:三道题目的难度系数为0.65、 0.55 、0.45,比较其差 异。
题号
P
难度Z值 难度差异
1
0.65 -0.385
教育测量与评价中题目(项目)的难度
公式的含义:
P X H X L (2NL)
XH:高分组所得总分;
2N(H Leabharlann L)XL:低分组所得总分;H:该题最高分;L:该题最低分;N: 考生总人数的25%
例:
100名学生参加论文式测验,按高、低分各占总人数的25%分 组,其中第6题的得分统计表如下所示。求该题目的难度。
教育测量与评价的
难度与区分度
2005-11-21
教育测量与评价中题目(项目)的难度
一、难度的含义 难度是指测验项目的难易程度 刻画被试作答一个题目所遇到的困难程度的量数,叫做题目的难度系数, 用符号 P表示
在教育测量中,P=正确回答试题的人数/参加测验的总人数
二、难度的计算 客观试题(二分法记分): P=R/N R:答对该题的人数;N:参加测验的总人数 对选择题的解答,因被试可猜测,故需对难度系数加以校正
点二列相关计算区分度
测验的一个变量是连续变量,另一个变量是二分变量时, 要用点二列相关系数表示某项目的区分度
rpb
Xp Xq St
pq
公式的说明: p为答对某题人数占全体人数 的比例 q为答错此题人数所占全体人
数的比例
(q=1-p)
20个学生参加语文测验,总分与某一St个为全选体择考题生的的标得准分差情

2
0.55 -0.125 0.26
3
0.45
0.125
0.25
两个项目之间的P值之差相等,但Z值之差不等 将P值转换为Z值之后,它们之间的单位相等,可以比较差异
教育测量与评价中题目(项目)的难度
三、难度的转换
Z分数向Δ分数的转换:
13 4z
转换为:平均数为13,标准差为4的标准分数
目的:消除负数,便于计算 转换之后可用所得的Δ值计算整个测验中所有项目的平均难度
教育测量与评价中题目(项目)的难度
三、难度的转换
难度指出的仅仅是题目的相对难度,不能客 观地指出题目难度之间差异大小
一般情况下,测验分数呈正态分布 利用正态分布表,可将P转换成具有相等单位
的等距变量
补充:量表的类型
测量:按照一定规则对事物的属性进行量的规定,即:按照法则给事物 指派数字
Ф相关法计算区分度
例:45名学生考取大学的人数和在某题上通过的人数由下
表所示。若以升学为效标,此题对学生是否有区分能力?
考取
未考取
通过
13
7
未通过
5
20
检验计算出的rФ值是否达到显著性水平,还需将rФ值
转换成χ2值,再进行χ2检验。
2 Nr2
练习:
20名学生的期末成绩如下表,为考查第一题是否有 区分能力,将该题用二分法记分,答对记1分,答错 记0分。试计算该题的区分度。
倍数关系
量表 水平
名称量表
等级量表
等距量表
比率量表
四种量表的比较
特性
图示
功能

文字表达
符号表达
同一性 区分性
等级性、位 次性、大于
或小于
单位相等 有人定参照 点,无绝对
零点 有绝对零点
断定:
分类、命名、 准考证号码;
A=B或A≠B 1 23
符号化
男1女2;男 生喜欢11、男
生不喜欢
10……
断定: A>B A=B
高分组通过率高,低分组通过率低
D为负时,试题消极区分
高分组通过率低,低分组通过率高
教育测量与评价中题目(项目)的区分度
二、区分度计算方法 极端分组法 客观性试题区分度的计算公式: D=PH-PL
▪ 按测验总分从高到低排序 ▪ 确定测验总分最高的27%的被试作为高分组,最低的27%的被试为低分组 ▪ 分别求出这两组被试通过试题的百分比 ▪ 将算得的有关数据带入上公式
若60分以上(含60分)为升级,60分以下为留级。 试用Φ相关法分析该题的区分度。
教育测量与评价中题目(项目)的区分度
三、区分度对测验的影响
1.区分度与难度的关系
难度(P) 区分度(D的最大值)
1.00
0.00
0.90
0.20
0.70
0.60
0.50
1.00
0.30
0.60
0.10
0.20
0.00
Ф相关法计算区分度
测验的两个变量都是二分变量,可用计算Φ相关系数来表示 某项目的区分度
以测验总分划分为合格、不合格两类的被试在某一题目上通 过、未通过的人数列成四格表来计算
AD BC
r A BC DA CB D
一类

数据

合计
另一类数据


A
B
C
D
A+C B+D
合计
A+B C+D
N
二列相关计算区分度
测验总分与项目分数均为连 续变量,其中一个被人为地 分成两个类别,
rb
X
p St
Xq
pq Y
公式的说明:
p为二分变量中某一类别在全 部变量中所占的比例,q为另 一类别所占的比例(q=1-p) St为全部连续变量的标准差 Y表示正态曲线下与P相对应 的纵线高度。
生 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 总 86 52 94 72 65 22 76 83 80 75 76 73 62 91 47 74 81 88 62 58 作 47 37 55 27 22 10 35 42 46 39 40 41 38 52 21 39 42 48 29 27 类合 合 合 不 不 不 不 合 合 合 合 合 合 合 不 不 合 合 不 不
CP kP 1 k 1
CP:校正后的难度值;P:实际得到的通过率;K:选项数目
例:某次测验中,20个学生中有15人答对了某一选择题,分别计算此题有 四个选项、三个选项、两个选项时的难度值
教育测量与评价中题目(项目)的难度
二、难度的计算
客观题的极端分组法
根据测验分数按高低排序,用两个极端组(高分、低分)在 某项目上的平均通过率表示项目的难度
生 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 总 86 90 54 89 50 44 43 28 75 82 60 70 75 81 70 80 76 77 79 50 一1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0
相关文档
最新文档