高考三视图复习
高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.
2023年高考数学一轮复习点点练26空间几何体的三视图与直观图表面积与体积含解析理

第八单元立体几何考情分析多以两小一大的形式出现,每年必考,分值为17~22分.重点考查几何体的三视图问题、几何体的表面积与体积、空间线面位置关系,用向量法计算空间角,其中与球有关的接(切)问题是考查的难点.对于空间向量的应用,空间直角坐标系的建立是否合理是解决有关问题的关键,有时所给空间图形不规则——没有三条互相垂直的直线,不利于空间直角坐标系的建立,另外,探索性问题中动点坐标的设法及有关计算是难点.点点练26空间几何体的三视图与直观图、表面积与体积一基础小题练透篇1.[2022·山东济宁检测]已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC的面积是( )A.3B.22C.32D.342.[2021·江西吉安联考]某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体中,最长的棱的长度为( )A.3B.32C.33D.63.[2022·四川成都七中高三期中]已知一个几何体的三视图如图,则它的表面积为( )A .3πB .4πC.5πD.6π4.[2021·衡水模拟]已知正三棱锥S ABC 的三条侧棱两两垂直,且侧棱长为2,则此三棱锥的外接球的表面积为( )A .πB.3πC.6πD.9π5.[2022·云南大理模拟预测]一个几何体的三视图如图所示,则这个几何体的体积为( )A .43πB.2πC.πD.83π 6.[2021·江苏海安高级月考]三棱锥A BCD 中,∠ABC =∠CBD =∠DBA =60°,BC =BD =1,△ACD 的面积为114,则此三棱锥外接球的表面积为( ) A .4πB.16πC.163πD.323π7.[2022·四川省南充市白塔模拟]如图所示,网格纸上小正方形的边长为1,粗线画出的是某个多面体的三视图,若该多面体的所有顶点都在球C 的表面上,则球C 的表面积是( )A .8πB.12πC.16πD.32π 8.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.9.[2022·湘豫名校联考]在四面体ABCD 中,AB =CD =5,AD =BC =13,AC =BD =10,则此四面体的体积为________.二能力小题提升篇1.[2022·深圳市高三调研]已知圆柱的底面半径为2,侧面展开图为面积为8π的矩形,则该圆柱的体积为( )A .8πB.4πC.83πD.2π2.[2022·浙江省高三测试]如图是用斜二测画法画出的∠AOB 的直观图∠A ′O ′B ′,则∠AOB 是( )A .锐角B .直角C .钝角D .无法判断3.[2022·河南省洛阳市高三调研]大约于东汉初年成书的我国古代数学名著《九章算术》中,“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”实际是知道了球的体积V ,利用球的体积,求其直径d 的一个近似值的公式:d =3169V ,而我们知道,若球的半径为r ,则球的体积V =43πr 3,则在上述公式d =3169V 中,相当于π的取值为( )A.3B .227C .278D .1694.[2021·云南省曲靖市高三二模]如图,在水平地面上的圆锥形物体的母线长为12,底面圆的半径等于4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥侧面爬行一周后回到点P 处,则小虫爬行的最短路程为( )A .123B .16C .24D .24 35.[2022·江西省兴国县高三月考]已知三棱锥P ABC 中,PA ⊥平面ABC ,AB ⊥AC ,AB =AC =2,且三棱锥P ABC 外接球的表面积为36π.则PA =________.6.[2022·广东七校第二次联考]在四棱锥P ABCD 中,四边形ABCD 是边长为2a 的正方形,PD ⊥底面ABCD ,且PD =2a ,若在这个四棱锥内放一个球,则该球半径的最大值为________.三高考小题重现篇1.[2021·山东卷]已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B.2 2 C .4D.4 22.[2021·全国甲卷]在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )3.[2021·全国甲卷]已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.4.[2021·全国甲卷]已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥OABC的体积为( )A.212B.312C.24D.345.[2020·山东卷]已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.6.[2019·全国卷Ⅱ]中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.四经典大题强化篇1.在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O 为AC的中点.(1)证明:A1O⊥平面ABC;(2)求三棱锥C1ABC的体积.2.已知点P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,∠ABC=90°,点B 在AC上的射影为D,求三棱锥P-ABD体积的最大值.点点练26 空间几何体的三视图与直观图、表面积与体积一 基础小题练透篇1.答案:A解析:由题图可知原△ABC 的高AO =3,BC =B ′C ′=2,∴S △ABC =12·BC ·OA =12×2×3= 3.2.答案:C解析:由三视图还原几何体,可得该几何体可看作如图所示的棱长为3的正方体中,以A ,B ,C ,D 为顶点的三棱锥,其最长的棱为BD ,且BD =32+32+32=3 3.3.答案:B解析:由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同,底面圆的半径r =1,圆锥的母线长l =(3)2+1=2,记该几何体的表面积为S ,故S =12(2πr )l +12×4πr 2=4π.4.答案:C解析:正三棱锥的外接球即是棱长为2的正方体的外接球,所以外接球的直径2R =(2)2+(2)2+(2)2=6,所以4R 2=6,外接球的表面积4πR 2=6π.5.答案:A解析:根据三视图可知几何体是由有公共的底面的圆锥和圆柱体的组合体,由三视图可知,圆锥的底面半径为1,高为1,圆柱的底面半径为1,高为1,所以组合体的体积为13π×12×1+π×12×1=4π3.6.答案:A解析:∵BC =BD =1,∠CBD =60°,∴CD =1,又AB =AB ,∠ABC =∠DBA =60°,BC =BD ,∴△ABC ≌△ABD ,则AC =AD ,取CD 中点E ,连接AE ,又由△ACD 的面积为114,可得△ACD 的高AE =112,则可得AC =AD =3,在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos60°,∴3=AB 2+1-2×AB ×1×12,解得AB =2,则AC 2+BC 2=AB 2,可得∠ACB =90°,∴∠ADB=90°,∴AC ⊥BC ,AD ⊥BD ,根据球的性质可得AB 为三棱锥外接球的直径,则半径为1, 故外接球的表面积为4π×12=4π.7.答案:A解析:由三视图可还原几何体为从长、宽均为2,高为2的长方体中截得的四棱锥S ABCD ,则四棱锥S ABCD 的外接球即为长方体的外接球, ∴球C 的半径R =122+2+4=2,∴球C 的表面积S =4πR 2=8π. 8.答案:2+22解析:如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt△ABE 中,AB =1,∠ABE =45°,∴BE =22.又四边形AECD 为矩形,AD =EC =1,∴BC =BE +EC =22+1,由此还原为原图形如图2所示,是直角梯形A ′B ′C ′D ′.在梯形A ′B ′C ′D ′中,A ′D ′=1,B ′C ′=22+1,A ′B ′=2. ∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.9.答案:2解析:设四面体ABCD 所在的长方体的长、宽、高分别为a ,b ,c ,则⎩⎪⎨⎪⎧a 2+b 2=5,a 2+c 2=13,b 2+c 2=10,得⎩⎪⎨⎪⎧a =2,b =1,c =3,所以四面体ABCD 的体积V =abc -13×12abc ×4=13abc =2.二 能力小题提升篇1.答案:A解析:设圆柱的高为h ,则2π×2×h =8π⇒h =2,所以圆柱的体积为π×22×2=8π.2.答案:C解析:根据斜二测画法规则知,把直观图∠A ′O ′B ′还原为平面图,如图所示:所以∠AOB 是钝角. 3.答案:C解析:由d =3169V 得V =916·(2r )3=43·278r 3,比较V =43πr 3,相当于π的取值为278. 4.答案:A解析:如图,设圆锥侧面展开扇形的圆心角为θ,则由题可得2π×4=12θ,则θ=2π3,在Rt△POP ′中,OP =OP ′=12,则小虫爬行的最短路程为PP ′=122+122-2×12×12×⎝ ⎛⎭⎪⎫-12=12 3.5.答案:27解析:由PA ⊥平面ABC ,AB ⊥AC ,将三棱锥补成长方体,它的对角线是其外接球的直径,∵三棱锥外接球的表面积为36π,设外接球的半径为R ,则4πR 2=36π,解得R =3∴三棱锥外接球的半径为3,直径为6,∵AB =AC =2,∴22+22+PA 2=62,∴PA =27.6.答案:(2-2)a解析:方法一 由题意知,球内切于四棱锥P ABCD 时半径最大.设该四棱锥的内切球的球心为O ,半径为r ,连接OA ,OB ,OC ,OD ,OP ,则V P -ABCD =V O -ABCD +V O -PAD +V O -PAB +V O -PBC +V O -PCD ,即13×2a ×2a ×2a =13×⎝ ⎛⎭⎪⎫4a 2+2×12×2a ×2a +2×12×2a ×22a ×r ,解得r =(2-2)a .方法二 易知当球内切于四棱锥P -ABCD ,即与四棱锥P -ABCD 各个面均相切时,球的半径最大.作出相切时的侧视图如图所示,设四棱锥P -ABCD 内切球的半径为r ,则12×2a ×2a=12×(2a +2a +22a )×r ,解得r =(2-2)a . 三 高考小题重现篇1.答案:B解析:设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则πl =2π×2,解得l =2 2.2.答案:D解析:根据题目条件以及正视图可以得到该几何体的直观图,如图,结合选项可知该几何体的侧视图为D.3.答案:39π解析:设该圆锥的高为h ,则由已知条件可得13×π×62×h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π. 4.答案:A解析:如图所示,因为AC ⊥BC ,且AC =BC =1,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥面ABC ,OO 1=1-⎝ ⎛⎭⎪⎫AB 22=1-⎝ ⎛⎭⎪⎫222=22,所以三棱锥O ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212. 5.答案:2π2解析:如图,连接B 1D 1,易知△B 1C 1D 1为正三角形,所以B 1D 1=C 1D 1=2.分别取B 1C 1,BB 1,CC 1的中点M ,G ,H ,连接D 1M ,D 1G ,D 1H ,则易得D 1G =D 1H =22+12=5,D 1M ⊥B 1C 1,且D 1M = 3.由题意知G ,H 分别是BB 1,CC 1与球面的交点.在侧面BCC 1B 1内任取一点P ,使MP =2,连接D 1P ,则D 1P =D 1M 2+MP 2=(3)2+(2)2=5,连接MG ,MH ,易得MG =MH =2,故可知以M 为圆心,2为半径的圆弧GH 为球面与侧面BCC 1B 1的交线.由∠B 1MG =∠C 1MH =45°知∠GMH =90°,所以GH 的长为14×2π×2=2π2. 6.答案:26 2-1 解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1. 四 经典大题强化篇1.解析:(1)证明:因为AA 1=A 1C ,且O 为AC 的中点,所以A 1O ⊥AC ,又平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,且A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABC .(2)∵A 1C 1∥AC ,A 1C 1⊄平面ABC ,AC ⊂平面ABC ,∴A 1C 1∥平面ABC ,即C 1到平面ABC 的距离等于A 1到平面ABC 的距离.由(1)知A 1O ⊥平面ABC ,且A 1O =AA 21 -AO 2=3,∴VC 1-ABC =VA 1-ABC =13S △ABC ·A 1O =13×12×2×3×3=1. 2.解析:设点P 在平面ABC 上的射影为G ,如图,由PA =PB =PC =2,∠ABC =90°,知点P 在平面ABC 上的射影G 为△ABC 的外心,即AC 的中点.设球的球心为O ,连接PG ,则O 在PG 的延长线上.连接OB ,BG ,设PG =h ,则OG =2-h ,所以OB 2-OG 2=PB 2-PG 2,即4-(2-h )2=4-h 2,解得h =1,则AG =CG = 3.设AD =x ,则GD =x -AG =x -3,BG =3,所以BD =BG 2-GD 2=-x 2+23x ,所以S △ABD =12AD ·BD =12-x 4+23x 3. 令f (x )=-x 4+23x 3,则f ′(x )=-4x 3+63x 2.由f ′(x )=0,得x =0或x =332,易知当x =332时,函数f (x )取得最大值24316,所以(S △ABD )max =12×934=938.又PG =1,所以三棱锥P -ABD 体积的最大值为13×938×1=338.。
高一数学空间几何体的三视图知识点归纳

高一数学空间几何体的三视图知识点归纳高一数学空间几何体的三视图知识点归纳知识点是知识、理论、道理、思想等的相对独立的最小单元。
下面是店铺给大家带来的高一数学空间几何体的三视图知识点归纳,希望能帮到大家!光由一点向外散射形成的投影叫做中心投影,其投影的大小随物体与投影中心间距离的变化而变化。
平行投影:在一束平行光线照射下形成的投影叫做平行投影。
在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
空间几何体的`三视图:光线从几何体的前面向后面正投影,得到投影图,叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,叫做几何体的侧视图;从几何体的上面向下面正投影,得到投影图,高考地理,叫做几何体的俯视图。
几何体的正视图、侧视图、俯视图统称为几何体的三视图。
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
平行投影与中心投影的区别和联系:①平行投影的投射线都互相平行,中心投影的投射线是由同一个点发出的.如图所示,②平行投影是对物体投影后得到与物体等大小、等形状的投影;中心投影是对物体投影后得到比原物体大的、形状与原物体的正投影相似的投影.③中心投影和平行投影都是空间图形的基本画法,平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.④画实际效果图时,一般用中心投影法,画立体几何中的图形时一般用平行投影法.画三视图的规则:①画三视图的规则是正侧一样高,正俯一样长,俯侧一样宽.即正视图、侧视图一样高,正视图、俯视图一样长,俯视图、侧视图一样宽;②画三视图时应注意:被挡住的轮廓线画成虚线,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示,尺寸线用细实线标出;D表示直径,R表示半径;单位不注明时按mm计;③对于简单的几何体,如一块砖,向两个互相垂直的平面作正投影,就能真实地反映它的大小和形状.一般只画出它的正视图和俯视图(二视图).对于复杂的几何体,三视图可能还不足以反映它的大小和形状,还需要更多的投射平面.【高一数学空间几何体的三视图知识点归纳】。
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
经典高考数学三视图还原方法归纳

---高考数学三视图复原方法概括方法一:复原三步曲核心内容:三视图的长度特点——“长对齐,宽相等,高平齐〞,即正视图和左视图同样高,正视图和俯视图同样长,左视图和俯视图同样宽。
复原三步骤:1〕先画正方体或长方体,在正方体或长方体地面上截拿出俯视图形状;2〕依照正视图和左视图有无垂直关系和节点,确立并画出刚才截拿出的俯视图中各节点处垂直拉升的线条〔剔除此中无需垂直拉升的节点,不可以确立的先垂直拉升〕,由高平齐确立其长短;3〕将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去全部的协助线条即可获得复原的几何体。
方法展现〔1〕将以下列图的三视图复原成几何体。
复原步骤:①依照俯视图,在长方体地面初绘ABCDE 如图;②依照正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处-------不行能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确立点S的地点;如图③将点S与点ABCD分别连结,隐去全部的协助线条,即可获得复原的几何体S-ABCD以下列图:经典题型:例题1:假定某几何体的三视图,以下列图,那么此几何体的体积等于〔〕cm3。
解答:〔24〕例题2:一个多面体的三视图以下列图,那么该多面体的表面积为〔〕-------答案:21+3计算过程:步骤以下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依照正视图和左视图中显示的垂直关系,判断出节点E、F、M、N处不行能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确立点G,G',B',D',E',F'地地点如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连结,将G'与点E'、F'分别连结,隐去全部的协助线即可获得复原的几何体,以下列图。
-------例题3:以下列图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,那么该多面体的各条棱中,最长的棱的长度是〔〕答案:〔6〕复原图形方法一:假定由主视图引起,详细步骤以下:〔1〕依照主视图,在长方体后侧面初绘ABCM如图:〔2〕依照俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不行能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确立点D的地点如图:(3〕将点D与A、B、C分别连结,隐去全部的协助线条即可获得复原的几何体D—ABC以下列图:-------解:置于棱长为4个单位的正方体中研究,该几何体为四周体D—ABC,且AB=BC=4,AC=42,DB=DC=25,可得DA=6.故最长的棱长为 6.方法2假定由左视图引起,详细步骤以下:〔1〕依照左视图,在长方体右边面初绘BCD如图:〔2〕依照正视图和俯视图中显示的垂直关系,判断出在节点C、D处不行能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确立点A的地点,如图:3〕将点A与点B、C、D分别连结,隐去全部的协助线条即可获得复原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,因此我们能够用一个正方体做载体复原:-------〔1〕依据正视图,在正方体中画出正视图上的四个极点的原象所在的线段,用红线表示。
高考数学中的三视图与投影相关知识点

高考数学中的三视图与投影相关知识点在几何学的领域中,三视图与投影是十分重要的一部分,它们不仅仅是应用于让我们更好地看清三维物体,也是高考数学常见的考点之一。
因此,在这篇文章中,我们将深入探讨高考数学中的三视图与投影相关知识点,帮助大家更好地理解和应用相关内容。
一、三视图概述在现实生活中,很多物体都是三维的,它们有长度、宽度和高度等特征,但我们任何时候都无法同时看到物体的所有信息,因为我们的眼睛只能看到一个角度。
为了更好地看清三维物体,我们可以将其分解为三个不同的投影角度,即正面视图、左视图和顶视图,这就是三视图的概念。
在数学中,我们可以通过三个二维的视图来表示三维物体的形状,三个视图分别呈现物体的正面、左侧和顶部,这些视图给我们提供了关于物体轮廓形状的详细信息。
三维物体的三视图可以通过投影的方式得到,这也是三视图和投影密不可分的原因。
二、投影概述投影是基于投影面和投影线进行的,是将三维物体在二维平面上展示的一种方式。
在投影中,投影面和投影线的位置非常重要,它们决定了最终投影的效果和质量。
在平行投影中,投影线是垂直于投影面的直线,这种投影方式可以得到准确的形状和大小,但是它的透视感比较弱,在某些情况下无法展示物体的深度,因此在我们画高考数学的题目时需要注意使用透视投影来展示物体的深度。
透视投影是一种根据物体在空间中的位置、大小、形状等特征进行的投影方式。
在透视投影中,物体的前方向是远离投影面的方向,反之则是物体的后方向,这种方式可以更好地表现物体的深度和透视效果。
三、三视图和投影的联系三视图和投影密不可分,因为三视图是通过投影方式得到的,我们可以通过三视图来确定物体在三维空间中的位置和方向,从而得到正确的投影。
在绘制三视图时,我们需要利用的是三个视图的交点来确定物体的位置,然后再根据物体的大小和形状来确定它的轮廓。
同样,在投影中,我们也需要确定三维物体在空间中的位置和方向,然后再根据其大小和形状进行投影。
高考数学中的三视图及相关方法

高考数学中的三视图及相关方法在高考数学中,三视图是一个常见的概念。
三视图是一个物体分别从三个不同的方向所观测到的图形,通过三个视图可以确定一个物体的形状、尺寸及空间位置。
在学习三视图时,需要掌握一些相关的知识和方法。
一、投影法与投影面在学习三视图之前,需要先掌握投影法和投影面的相关概念。
投影法是指从物体上某一点出发,将光线对着投影面射出,所形成的投影。
投影面是指用来做投影的平面。
在三视图中,通常使用前、上、侧三个平面来进行投影,这三个平面分别称为主平面。
二、主视图主视图是指在三视图中,以物体的正面朝前、上面朝上、左面朝左的方向所形成的视图。
主视图常常是确定一个物体的形状和尺寸的主要依据。
三、侧视图侧视图是指在三视图中,以物体左侧面朝上、物体正面朝前、物体下侧面朝下的方向所形成的视图。
侧视图和主视图相结合,可以确定一个物体的整体形状和尺寸。
四、俯视图俯视图是指在三视图中,以物体的上部朝上、物体的前面朝下、物体的左侧面朝左的方向所形成的视图。
俯视图主要用来确定一个物体的上部结构,例如天棚、台面等。
五、三视图的绘制方法在学习三视图时,需要掌握三视图的绘制方法。
绘制三视图时,需要确定主平面,然后将物体在主平面上分别绘出主视图、侧视图、俯视图。
在绘制时,需要按比例绘制,保持各个视图之间的比例关系一致。
六、三视图的应用在实际生活中,三视图有很多应用。
例如在工程设计中,可以通过三视图来确定一个建筑物或机械设备的形状和尺寸,以便进行制造和施工。
在家具设计方面,通过三视图可以确定家具的形状和尺寸,以便进行制造和销售。
总之,三视图在数学中是一个非常重要的概念。
通过学习三视图,可以帮助我们更好地了解物体的形状、尺寸和空间位置,从而更好地进行设计、制造和施工。
通过掌握三视图的相关知识和方法,我们可以在高考数学中取得更好的成绩。
高中数学 三视图 知识点总结及解题技巧专题汇总

高中数学三视图知识点总结及解题技巧专题汇总1、三视图的概念(1)正投影的概念:正投影是指投影线互相平行,并都垂直于投影面的投影。
(2)三视图:物体向投影面投影所得到的图形,称为视图。
将物体在三个相互垂直的平面内作垂直投影所得的三个图形,称为三视图。
分别为主视图(正)、俯视图和侧(左)视图。
2、识图技巧(1)试图位置一般三视图的放置方式是按下图所示的标准位置,如果题目中给出的不是,那么为了解题的需要,可以把它们摆放为标准位置,便于尺寸的对应;(2)侧面与试图的关系当几何体的侧面与投影面不平行的时候,这个角度的视图的形状就不是该侧面的形状,只有当侧面与投影面平行的时候,视图才能真实地反映几何体侧面的形状。
(3)看图要领:主、俯视图长对正;主、侧视图高平齐;俯、侧视图宽相等;(4)三视图考题中选取的几何体一般有三种(I)一些常见的几何体,如长方体、棱柱、棱锥、圆柱、圆锥、球等等,熟悉这些几何体的三视图是个基础。
(II)上述几何体被平面截取后得到的几何体,比如将正方体消去一个角后的几何体;(III)2个几何体的组合体,比如把一个球放在一个长方体上面;3、解题要领(1)先确定底面——大多数试题中下,俯视图的图形都是几何体底面的真实形状;(2)找视图中有线线垂直的地方,这些关键线往往对应着几何体中线面垂直、面面垂直的地方,几何体的高很多情况就是视图平面图形的高,求几何体的体积时这一点显得尤为重要;(3)注意三视图与几何体的摆放位置直接相关,同样一个几何体若摆放位置不同,那么三视图的形状也会有变化;4、典型例题讲解例题1:某几何体的三视图如下,确定它的形状;分析:(1)看俯视图,可知底面是直角三角形;(2)主视图中,SA那里是直角,而俯视图中,与SA对应的是点S,这样可以确定SA在几何体中是一条与底面垂直的棱,(3)结合以上画出直观图;图(1)底面是直角三角形ACB,∠ACB是直角;(2)S A和底面垂直;这个问题如果设计成一个考题,可能是这样:一个几何体的三视图如图所示,它的体积是 .因为涉及到计算,因此我们最好把三视图重新画一下,放到标准位置,方便长度关系的计算,由对应关系,可以算得底面三角形的高应为2,故底面的面积为124=42⨯⨯; 而高为2,则体积为1824=33⨯⨯例题2.(2007年山东8)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A.34000cm 3 B.38000cm 3C.32000cmD.34000cm分析:(1)看俯视图,确定底面为一个正方形;(2)看正视图和俯视图,最右边应该面面垂直,而且与底面垂直的是一个三角形的面,; (3)这样就可以确定了,这个几何体是一个四棱锥,底面是正方形,一个侧面是等腰三角形且与底面垂直;(4)可以得出棱锥的顶点在底面的投影是底面右边的中点,底面积为400,高为20,所以体积为38000cm 3。
2023年高考数学(文科)一轮复习课件——空间几何体的结构、三视图和直观图

考点二 空间几何体的三视图
例1 (1)(2021·全国乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视 图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次 为__③__④__(_或__②__⑤__,__答__案__不__唯__一__)_____(写出符合要求的一组答案即可).
_平__行__且__相__等___
相交于_一__点___,但 不一定相等
延长线交于___一__点_
_平__行__四__边__形___
_三__角__形___
__梯__形__
索引
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台
图形
互相平行且相等,
母线
__垂__直__于底面
相交于__一__点__
轴截面 侧面展开图
索引
2.(易错题)在如图所示的几何体中,是棱柱的为___③__⑤___(填写所有正确的序号). 解析 由棱柱的定义可判断③⑤属于棱柱.
索引
3.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体
是( C )
A.棱台
B.四棱柱
C.五棱柱
D.六棱柱
解析 由几何体的结构特征,剩下的几何体为五棱柱.
索引
训练1 (1)如图,网格纸的各小格都是正方形,粗实线画
出的是一个几何体的三视图,则这个几何体是( B )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 解析 由题知,该几何体的三视图为一个三角形、两个四边形,经分析可 知该几何体为三棱柱.
索引
(2)(2022·成都检测)一个几何体的三视图如图所示,
索引
解析 根据“长对正、高平齐、宽相等”及图中数据,可知图②③只能是侧 视图,图④⑤只能是俯视图,则组成某个三棱锥的三视图,所选侧视图和俯 视图的编号依次是③④或②⑤.若是③④,则三棱锥如图1所示;若是②⑤, 则三棱锥如图2所示.
1-高考复习三视图和球及点线面位置关系-学生

必修2 三视图和球及点线面位置关系一.选择题(共30小题)1.(2015•泉州校级模拟)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1B.2C.3D.42.(2015•张掖二模)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是()A.12πB.4πC.3πD.12π3.(2015•眉山模拟)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.4.(2015•河南模拟)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.5.(2015•重庆一模)一多面体的三视图如图所示,则该多面体的体积是()A.B.C.6D.76.(2015•惠州模拟)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于()cm3.A.18 B.21 C.24 D.287.(2015•防城港模拟)一个几何体的三视图如图所示,则这个几何体的体积等于()A.4B.6C.8D.128.(2014•湖北)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②9.(2013•广东)设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β10.(2012•山东模拟)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.11.(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,)12.(2012•浙江)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β13.(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.B.C.D.14.(2011•浙江)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β15.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关16.(2010•广东模拟)已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是()A.B.C.4πD.17.(2010•辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π18.(2009•宁夏)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()A.48+12B.48+24C.36+12D.36+24 19.(2004•辽宁)设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是()A.B.C.D.20.(2003•天津)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.3D.6π21.(2015•秦安县一模)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l22.(2015•中山二模)设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若m∥α,n⊥β且α⊥β,则m⊥n B.若m⊥α,n⊥β且m⊥n,则α⊥βC.若α⊥β,m∥n且n⊥β,则m∥αD.若m⊂α,n⊂β且m∥n,则α∥β23.(2015•淮南一模)设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,m⊥α,则l⊥α;②若m∥l,m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.其中正确命题的个数是()A.1B.2C.3D.424.(2015春•枣庄校级月考)已知球O面上的四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于()A.B.C.D.25.(2014•瓦房店市校级模拟)点A、B、C、D在同一球面上,AB=BC=,AC=2,若四面体ABCD的体积的最大值为,则这个球的表面积为()A.B.8πC.D.26.(2014•青岛二模)已知三棱锥D﹣ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,则三棱锥的外接球的表面积为()A.πB.6πC.5πD.8π27.(2014•辽宁二模)设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值为()A.4B.8C.12 D.1628.(2014•安徽模拟)半径为R的球的内接正四棱柱的侧面积的最大值是()A.8R2B.8R2C.4R2D.4R229.(2014•宁城县模拟)已知直角梯形ABCD,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,沿AC折叠成三棱锥,当三棱锥体积最大时,此时三棱锥外接球的体积是()A.B.C.D.2π30.(2014•抚顺模拟)已知正四棱锥P﹣ABCD的底面边长和高都为4,O是底面ABCD的中心,以O为球心的球与四棱锥P﹣ABCD的各个侧面都相切,则球O的表面积为()A.B.C.D.。
高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图

1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的 Ox, Oy ,建立直 角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 O ' x ',O ' y ', 使 ∠x 'O ' y ' = 45o (或135o ), 它们确 定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 x ' 轴 的线段, 且长度保持不变; 在已知图形平行于 y 轴的线段, 在直观图中画成平行于 y ' 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去 x ' 轴、 y ' 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚线. 注: 直观图和平面图形的面积比为 2 : 4 . 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做 该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体 的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:
2 / 27
度量原则长对正、高平齐、宽相等即正俯同长、正侧同高、俯侧同宽 虚实原则轮廓线、现则实、隐则虚 俯视图 几何体上下方向投影所得到的投影图反映几何体的长度和宽度 口诀 正侧同高正府同长府侧同宽或长对正、高平齐、宽相等 三、常见几何体的直观图与三视图 常见几何体的直观图与三视图如表 8-3 所示.
高考有方法——三视图解题超级策略

高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.留意正视图、侧视图和俯视图的视察方向,留意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先依据已知的一部分三视图,还原、推想直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形态.要熟识柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析依据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD 是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.62B.6 C.42D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,依据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.其次步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最终一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.4042+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A A 、23 B 、43 C 、83D 、24244131211侧视图俯视图正视图侧视图正视图CDBP A5325、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C )61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B ) ()A 6 ()B 9 ()C 12 ()D 18O yxz (0,1,1)(0,0,0)(1,0,1)(1,1,0)DD 1C 1B 119、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11、已知某几何体的三视图如图所示,则其体积为_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于_____________.13、某几何体的三视图如图所示,则该几何体的体积为_____________.14、某几何体的三视图如图所示,则该几何体的体积为_____________.11142122222224442PBAC338332315、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A .62B .42C .6D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+俯视图正视图r2r2rrCAP。
2020届高考数学理一轮复习空间几何体及其三视图、直观图文科

文数
课标版
第一节 空间几何体及其三视图、直观图
教材研读
栏目索引
1.空间几何体的结构特征
多 (1)棱柱:侧棱都① 平行且相等 ,上、下底面平行且是② 全等 的多边形. 面 (2)棱锥:底面是多边形,侧面是有一个公共顶点的三角形. 体 (3)棱台:可以由平行于棱锥底面的平面截棱锥得到,其上、下底面是③ 相似 多边形
旋 (1)圆柱:可以由④ 矩形 绕其任一边所在直线旋转得到. 转 (2)圆锥:可以由直角三角形绕其⑤ 直角边 所在直线旋转得到. 体 (3)圆台:可以由直角梯形绕其⑥ 垂直于底边的腰 所在直线或等腰梯形绕其上、下
底边中点的连线所在直线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球:可以由半圆或圆绕其⑦ 直径 所在直线旋转得到
栏目索引
2.三视图与直观图
三视图 画三视图的规则:长对正,高平齐,宽相等 空间几何体的直观图常用⑧ 斜二测 画法来画,规则如下: (1)原图形中x轴、y轴、z轴两两垂直(原点为O),直观图中相应x'轴,y'轴满足∠x'O'y'=
直观图 ⑨ 45°(或135°) (O'为原点),z'轴与x'轴和y'轴所在平面垂直. (2)原图形中平行于坐标轴的线段在直观图中仍 平行于相应坐标轴 ,平行于x轴 和z轴的线段长度在直观图中保持原长度 不变 ,平行于y轴的线段长度在直观 图中长度为 原来的一半
栏目索引
2-1 (2014课标Ⅰ,8,5分)如图,网格纸的各小格都是正方形,粗实线画出 的是一个几何体的三视图,则这个几何体是 ( )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 答案 B 由题中三视图可知该几何体的直观图如图所示,则这个几何 体是三棱柱,故选B.
高中三视图的解题技巧

People who have never failed may not have succeeded either.(页眉可删)高中三视图的解题技巧空间立体几何的三视图是高中数学新课程的新增内容之一,也是近几年全国各地高考的热点内容,那你知道高中三视图有什么解题技巧吗?下面是整理的高中三视图的解题技巧的相关内容,仅供参考。
高中三视图的解题技巧【1】一、简单几何体的三视图还原规律复杂的几何体是由简单几何体组合而成的,简单几何的分类:柱体(圆柱和棱柱);椎体(圆锥和棱锥);台体(圆台和棱台);球体.要掌握复杂几何体的三视图还原,先要搞清楚简单几何体的三视图还原规律,一般情况下简单几何体的三视图还原有如下规律:1. 三视图中如果其中两个视图是矩形(不要管内部的细节,只要外轮廓线为矩形就称该视图为矩形)那么该空间几何体为柱体.当第三个试图为圆时,该空间几何体为圆柱,否则为棱柱.2. 三视图中如果其中两个视图是三角形(不要管内部的细节,只要外轮廓线为矩形就称该视图为三角形)那么该空间几何体为锥体,当第三个试图为圆时,该空间几何体为圆锥,否则为棱锥.3. 三视图中如果其中两个视图是梯形(不要管内部的细节,只要外轮廓线为矩形就称该视图为梯形)那么该空间几何体为台体.当第三个试图两个同心圆时,该空间几何体为圆台,否则为棱台.二、叠加式组合体的三视图还原方法组合体的组合形式可分为三种:叠加式、切割式、综合式.切割式与综合式在高中阶段见到的不是很多,这里只对高中阶段出现较多的叠加式组合体的三视图还原方法进行论述.既然组合体是由简单几何体组合而成的,那么就可以“化整为零”,把组合体的三视图划分为一个个简单几何体的三视图,再分别根据这些简单几何体的三视图按照上面论述的简单几何体三视图的还原规律把它们还原成简单几何体,再“积零为整",把这些简单几何体组合在一起就得了组合体的三视图.这样就将复杂的三视图问题转化成最基本的'简单几何体的三视图还原问题来解决了,大大降低了对空间想象能力的要求,这一方法的难点在于如何把组合体的三视图划分为一个个简单几何体的三试图,该方法的具体过程如下:1. 分线框.一般从主视图入手,将主视图划分成一个个线框(一般是封闭的线框,但有时也可不完全封闭),这些线框就是组成组合体的一个个简单几何体的主视图.2. 对投影.在俯视图和左视图上把主视图中每个线框对应的投影找出来,主要是根据“长对正,高平齐,宽相等”和"三视图所反映的组合体各部分的方位”来找.3. 识形体.根据每一部分的三视图,逐个想象出每一部分所对应的几何体4. 合起来,想整体. 每一部分的形状确定后,再根据各部分的相对位置关系组合成整个组合体的形状.相关阅读-高中三视图规则【2】主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。
高考三视图知识点

高考三视图知识点高考是每个学生都将面临的一次重要考试。
其中,物理学科对于很多学生来说可能是一个难点。
而在物理学中,三视图是一个重要的知识点,需要学生掌握和理解。
本文将重点介绍高考物理中的三视图知识点,从不同角度深入讨论,帮助学生更好地理解和应对考试。
一、什么是三视图?三视图是指一个物体在不同方向上的投影图。
通常来说,我们可以通过正视图、左视图和俯视图来理解一个物体的形状和结构。
正视图是指从物体正前方看的投影图,左视图是指从物体左侧看的投影图,俯视图是指从物体上方看的投影图。
二、三视图的应用三视图在日常生活和工程设计中有着广泛的应用。
在建筑设计中,工程师需要通过三视图来理解和描述建筑物的形状和结构,从而进行合理的设计和施工。
在机械加工中,工人需要通过三视图来理解和操作机械设备,保证产品的准确加工。
在电子电路设计中,工程师需要通过三视图来理解和布局电路板的组成部分,确保电子设备的正常工作。
三、如何绘制三视图?绘制三视图需要一定的技巧和方法。
首先,我们需要确定物体的主视图,即选择一个合适的方向作为正面。
然后,根据物体的形状和尺寸,我们可以绘制正视图和左视图。
在绘制正视图时,需要注意保持比例和准确度,确保投影图能够准确地反映物体的形状和结构。
在绘制左视图时,需要将物体按照一定角度倾斜,以获得合适的投影图。
最后,通过观察和分析正视图和左视图,我们可以绘制出俯视图,从不同角度全面地了解物体。
四、三视图与三维几何的关系三视图是三维几何的重要组成部分,可以通过观察三视图来判断物体的形状和结构。
在三维几何中,我们通过描述物体的点、线和面来构建物体的形态。
而三视图则通过将这些点、线和面在不同方向上投影到二维平面上来描述物体。
因此,三视图可以看作是三维几何与二维平面之间的桥梁,帮助我们理解和描述三维物体。
五、常见的三视图题型在高考物理中,三视图经常出现在选择题和计算题中。
例如,考生可能会遇到给定一个物体的正视图和俯视图,需要根据给定信息绘制出左视图的题目。
高考美术基础三视图绘制基础知识点清单

高考美术基础三视图绘制基础知识点清单一、概述在高考美术基础考试中,三视图绘制是一个重要的技巧。
通过学习三视图绘制的基础知识,考生可以提高自己的绘画水平,更好地展示自己的美术表达能力。
下面是三视图绘制的一些基础知识点,供考生参考。
二、三视图的定义三视图,即平面投影图,是将一个物体从正面、侧面和俯视角度绘制出来的技巧。
通过三视图的绘制,可以全方位地展示出物体的形状和结构。
三、三视图的主要内容1. 正视图:以物体的正面为视角,展示物体的外形和细节。
2. 侧视图:以物体的侧面为视角,展示物体的高度和深度。
3. 俯视图:以物体的上方为视角,展示物体的平面投影图。
四、三视图的绘制方法1. 正视图的绘制方法:a. 在纸上绘制一个正方形或长方形,代表物体的外框。
b. 确定物体的大小比例,将物体的各个部分按比例绘制到正方形内部。
c. 注意保持物体的形状和比例,绘制物体的外轮廓和细节。
2. 侧视图的绘制方法:a. 在正视图下方或右侧绘制一个相同大小的正方形或长方形。
b. 根据物体的形状和比例,将物体的侧面绘制在另一个平面内。
c. 注意保持物体的比例和立体感,绘制物体的侧面轮廓和细节。
3. 俯视图的绘制方法:a. 在正视图的上方或左侧绘制一个相同大小的正方形或长方形。
b. 根据物体的形状和比例,将物体的上方视图绘制在另一个平面内。
c. 注意保持物体的比例和视角,绘制物体的上方轮廓和细节。
五、三视图绘制的注意事项1. 注意物体的比例关系,保持正视图、侧视图和俯视图之间的一致性。
2. 注重物体的立体感和细节表达,在绘制过程中要注意投影的角度和效果。
3. 注意线条的粗细和细节的表现,使绘制的三视图更加清晰、准确。
六、三视图绘制的应用1. 工程设计:三视图绘制是工程设计中的一项基本技能,可以帮助工程师更好地理解和表达设计意图。
2. 制图:在建筑、机械等领域,三视图绘制是进行设计图纸制作的重要环节。
3. 学术研究:通过三视图的绘制,可以更好地展示研究对象的结构和外观,便于学术交流和发表。
高考复习三视图专题

NMABCDB 1C 1高考复习:三视图专题1.如图1是一个空间几何体的三视图,则该几何体的侧面积...为A .3B .C .8D .122.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的体积为_______.3全等的等腰直角三角形,如果直角三角形的直角边长都为1个几何体的表面积为A .61B .23C .32.32+4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 ( ) A .383cm B .343cmC .323cmD .313cm5.已知某几何体的三视图如右,根据图中标出的尺寸 (单位:cm ),可得这个几何体的体积是( )A .343cmB .383cm C .32cm D .34cm6.如图是一正方体被过棱的中点M 、N 和顶点A 、D 、1C 截去两个角后所得的几何体,则该几何体的主视图(或称正视图)为( ) 12,A A AC ==7.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1,BC AB ==A . 2B . 4C .D .8.如图1,将一个正三棱柱截去一个三棱锥,得到几何体DEF BC -,则该几何体的正视图(或称主视图)是主视图正视图 俯视图侧视图正视图 俯视图侧视图第5题图第7题图A .B .C .D .9.一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图 如图所示,则该几何体的侧视图可以为A .B .C .D . 10.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( ) A.1B.2C.3D.411.一个圆锥的正(主)视图及其尺寸如图2圆锥底面的平面将此圆锥截成体积之比为1﹕7部分,则截面的面积为A .14πB .πC .94π D .4π12.一个几何体的三视图如图所示,则该几何体的体积为A.32aB.36aC.312aD.318a13.如图所示,一个空间几何体的主视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为( )A .π4B .π3C .π2D .π2314.已知某几何体的三视图如右图所示,则该几何体的体积是A .16 B .13 C .12 D 15.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为....①长方形;②正方形;③圆;④椭圆.其中正确的是 A .①② B . ②③ C .③④ D . ①④16. 如图,是一个几何体的正视图、侧视图、俯视图,且正视图、侧视图都是矩形,则该几何体的体积是 .17. 一个空间几何体的三视图及部分数据如上图所示,则这个几何体的体积是 ( )A .3B .52 C .2 D .3218.已知一个空间几何体的三视图如图所示,正视图图2主视图侧视图俯视图根据图中标出的尺寸(单位:cm),可得这个几何体的体积是A .4 cm 3B .5 cm 3C .6 cm 3D .7 cm 319.如图为一个几何体的三视图,正视图和侧视图均为 矩形,俯视图中曲线部分为半圆,尺寸如图,则该几 何体的全面积为A.3236++πB.2422++πB.C.3258++π D.2432++π20.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体 的体积是 .正视图俯视图侧视图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)已知图形中平行于x轴的线段,在直观图中保持原长度不 变;平行于y轴的线段,长度为原来的一半.
小结:“横同,竖半 ,平行性不变”
已知正△ABC 的边长为 a,那么正△ABC 的直观图△
A′B′C′的面积是( )
几何体
主视图
左视图
俯视图
空间想象力2
主视图 左视图
三视图
主视图 左视图
宽
宽
俯视图
俯视图
w老师提示:不见部分的轮廓线通常画成虚线.
w画三视图要认真准确,特别是宽相等.
画物体的三视图时,要符合如下原则:
A:大小:长对正(主视图与俯视图),高平 齐(主视图与左视图),宽相等(左视图与俯 视图).
3、 探照灯、手电筒、路灯和台灯 的光线可以看成是从一点出发的,
像这样的光线所形成的投影称为
中心投影(central projection).
两条光线是平行,因此 它们是太阳光下形成的.
两光线相交于一点,因 此它们是灯光下形成的.
一个物体在三个投影面内同时进行 正投影,
在正面得到的由前向后观察物体 的视图,叫做主视图;
A. 43a2
B. 83a2
C. 86a2
• [答案] D
D. 166a2
[解析] 如图(1)为 实际图形,建立 如图所示的平面 直角坐标系xOy.
小结 :
▪ 三视图
▪ 主视图——从正面看到的图
▪ 左视图——从左面看到的图
▪ 俯视图——从上面看到的图
▪ 画物体的三视图时,要符合如下原则:
▪ 位置: 主视图 左视图
在水平面内得到的由上向下观察物 体的视图,叫做俯视图 ;
在侧面内得到由左向右观察物体的 视图,叫做左视图。
从左面看
主视图
从上面看
正面
左视图
水平面俯视图
侧面
从正面看
主视图
左视图 高
长
宽
宽 俯视图
主视图
高平齐
左视图 高
三视图画法要点
长
宽
宽
俯视图
长对正
宽相等
圆柱、圆锥和球,它们的三种视图如下表
所示:
B:虚实:在画图时,看得见部分的轮廓通常画成 实线,看不见部分的轮廓线通常画成虚线.
课前自助餐
1.判断下列结论是否正确.(打“√”或“×”) (1)有两个平面互相平行,其余各面都是平行四边形的多面体是棱 柱. × (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.× (3)有两个平面互相平行,其余各面都是梯形的多面体是棱台.× (4)直角三角形绕其任一边所在直线旋转一周所形成的几何 体都是圆锥. ×
▪
俯视图
▪ 大小:长对正,高平齐,宽相等.
§投影与三视图
猜 猜 他 们 是 什 么 关 系 ?
看 问 题 不 能 只 看 单 方 面
知识点回顾
投影、平行投影、中心投影的定义及举例。
1、物体在光线的照射下,会在地面或墙 壁上留下它得影子,这就是投影现象 (projection)。
太阳光
2、太阳光线可以看 成平行光线,像这样的 光线所形成的投影,称 为平行投影(parallel projection).
(5)若在圆柱的上、下底面的圆周上各取一点,则这两点的连 线是圆柱的母线.
(6)正方体、球、圆锥各自的三视图中,三视图均相同. ×
×
授人以渔
斜二测画法的步骤
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于O点.画 直观图时,把它画成对应的x’轴、y’轴,两轴交于O’,使 x'O y'45o(或 135o),它们确定的平面表示水平平面.